
University of Arizona
February 3, 2023

Michelle Strout and Chapel team members

CHAPEL TUTORIAL FOR PYTHON
PROGRAMMERS: PRODUCTIVITY AND
PERFORMANCE IN ONE LANGUAGE

• Poll Everywhere link: pollev.com/michellestrout402
• There will be fun questions throughout the tutorial

• Attempt this Online website for running Chapel code
• Go to main Chapel webpage at https://chapel-lang.org/
• Click on the little ATO icon on the lower left that is above the YouTube icon

• Using a container on your laptop
• First, install podman or docker for your machine and then start them up
• Then, the below commands work with podman or docker

podman pull docker.io/chapel/chapel # takes about 3 minutes
cd ChapelForPythonProgrammersFeb2023 # assuming git clone has happened
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel ./hello

• Chapel on Puma and Ocelote: see the README.md in repository

2

HOW TO PARTICIPATE IN THIS TUTORIAL See
https://github.com/mstrout/ChapelFor
PythonProgrammersFeb2023 for
more info and for example code.

https://pollev.com/michellestrout402
https://chapel-lang.org/
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

CHAPEL PROGRAMMING LANGUAGE

4

HOW APPLICATIONS ARE USING CHAPEL

Chapel server for a Python
client (~25K lines of Chapel)

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD

Refactoring existing codes
into Chapel (~100K lines of Chapel)

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté,

Matthieu Parenteau, et al.
École Polytechnique Montréal

Writing code in Chapel
(~10k lines of including parallel FFT)

ChplUltra: Simulating Ultralight
Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University / University of Auckland

• Let’s take some time to briefly
introduce ourselves
• Michelle

– Chapel team leader
– Affiliate faculty in the Department of

Computer Science

• Current Chapel team
• Team members on slack

– Jeremiah Corrado
– Daniel Fedorin
– Scott Bachman
– John Hartman

• Participants, tell us some about
yourself

INTRODUCTIONS

5HPE PROPRIETARY

• Compile and run Chapel programs in a web browser, on Puma/Ocelote, and/or on
your laptop

• Familiarity with the Chapel execution model including how to run codes in parallel
on a single node, across nodes, and both

• Experiment compiling and running provided Chapel code examples
• k-mer counting (bioinformatics application)
• Processing files in parallel using parallelism over multiple nodes and threads
• Solving a diffusion PDE (partial differential equation)
• Image processing (coral reef diversity example)
• Same code can be compiled to run on a multi-core CPU AND a GPU

• Where to get help and how you can participate in the Chapel community

6

LEARNING OBJECTIVES FOR TODAY'S TUTORIAL

• Attempt this Online website for running Chapel code
• Go to main Chapel webpage at https://chapel-lang.org/
• Click on the little ATO icon on the lower left that is above the YouTube icon

• Using a container on your laptop
• First, install podman or docker for your machine and then start them up
• Then, the below commands work with podman or docker

podman pull docker.io/chapel/chapel # takes about 3 minutes
cd ChapelForPythonProgrammersFeb2023 # assuming git clone has happened
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel ./hello

• Chapel on Puma and Ocelote: see the README.md in repository

7

HOW TO PARTICIPATE IN THIS TUTORIAL See
https://github.com/mstrout/ChapelFor
PythonProgrammersFeb2023 for
more info and for example code.

Try one of these three options for
using Chapel

https://chapel-lang.org/
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

• Parallel hello world
• hellopar.chpl

• Key concepts
• 'coforall'
• configuration constants, 'config const'
• range values, '0..#tasksPerLocale'

– potentially via separate compilation / incremental recompilation

• 'writeln'
• inline comments start with '//'

9

PARALLELISM ACROSS NODES AND WITHIN NODES
// can be set on the command line with --tasksPerLocale=2

config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales on loc {
coforall tid in 0..#tasksPerLocale {

writeln("Hello world! ",
"(from task ", tid,
" of ", tasksPerLocale,
" on locale ", here.id,
" of ", numLocales, ")");

}
}

10

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Think “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

11

TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

12

TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl
‘here’ refers to the locale on

which we’re currently running

how many processing units
(think “cores”) does my locale have?

what’s my locale’s name?

13

TASK-PARALLEL “HELLO WORLD”

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

a 'coforall’ loop executes each
iteration as an independent task

14

TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

15

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}

}

helloTaskPar.chpl

16

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}

}

helloTaskPar.chpl create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033

Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035

…

A

B

C

18

K-MER COUNTING FROM BIOINFORMATICS

use Map, IO;

config const infilename = ("kmer_large_input.txt");
config const k = 4;

var sequence, line : string;
var f = open(infilename, iomode.r);
var infile = f.reader();
while infile.readLine(line) {
sequence += line.strip();
}
infile.close();

var nkmerCounts : map(string, int);

for ind in 0..<(sequence.size-k) {
nkmerCounts[sequence[ind..#k]] += 1;
}

kmer.chpl
‘Map’ and 'IO' are two of the standard

libraries provided in Chapel. A 'map' is like a
dictionary in python.

'config const' indicates a configuration
constant, which result in built-in

command-line parsing

The variable 'nkmerCounts' is being
declared as a dictionary mapping

strings to ints

Counting up each kmer in the sequence

Reading all of the lines from the input
file into the string 'sequence'.

• Some things to try out with 'kmer.html'
chpl kmer.html
./kmer

./kmer –-k=10 # can change k

./kmer --infilename="kmer.chpl" # can change the infilename

./kmer --k=10 --infilename="kmer.chpl" # can change both

19

EXPERIMENTING WITH THE K-MER EXAMPLE See
https://github.com/mstrout/ChapelFor
PythonProgrammersFeb2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

A

B

C

• See 'diffusion.chpl' in the repository
• Some things to try out with 'diffusion.html'

chpl diffusion.html
./diffusion

--xLen=4 --yLen=4 --nx=61 --ny=61 # doubles the size of the domain along each
dimension, keeping the density of points the same

--nu=0.025 # reduces the viscosity of the fluid

--nt=100 # runs the simulation for twice as long

22

2D DIFFUSION PARTIAL DIFFERENTIAL
EQUATION EXAMPLE

See
https://github.com/mstrout/ChapelFor
PythonProgrammersFeb2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

What is it?
• Computational Fluid Dynamics framework for airplane simulation written from scratch
• Modular design, permitting various computational modules to be integrated (or not)
• ~48k lines written in ~2 years

Who did it?
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• not open-source (yet), but available by request to researchers

Why Chapel?
• performance and scalability competitive with MPI + C++
• provided a simpler coding experience for computational scientists

– has enabled senior students to move faster
– has permitted junior students to contribute more readily

• net result: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.

24

CHAMPS IN ONE SLIDE

• Eric Laurendeau (PI) gave our CHIUW 2021 keynote
• title: HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis
• students also gave talks on their individual efforts
• key excerpts:

"To show you what Chapel did in our lab... [NSCODE, their previous framework] ended up 120k lines. And my students said ‘We can't
handle it anymore. It's too complex, we lost track of everything.' And today, they went from 120k lines to 48k lines, so 3x less. But the code
is not 2D, it's 3D. And it's not structured, it’s unstructured, which is way more complex. And it's multi-physics: aeroelastic, aeroicing. So, I've
got industrial-type code in 48k lines. So for me, this is like the proof of the benefit of Chapel, plus the smiles I have on my students
everyday in the lab because they love Chapel as well. So that's the key, that's the takeaway."
"So CHAMPS, that's the new solver that has been made, and all made by the students... So, [Chapel] promotes the programming efficiency.
It was easy for them to learn. ...I see the end result. We ask students at the master's degree to do stuff that would take 2 years and they do
it in 3 months. And I'm not joking, this is from 2 years to 3 months. So if you want to take a summer internship and you say 'program a new
turbulance model', well they manage. And before, it was impossible to do."

• CHAMPS participating in 4th CFD High Lift Prediction Workshop and 1st Icing Prediction Workshop
• teams compete against one another to do the same massive simulations

– entries compared in terms of model accuracy, performance, practicality

• sponsored by AIAA and NASA
• initial results are looking competitive to longer-lived / more established codes from Stanford, MIT, etc.

25

CHAMPS: QUOTES AND STATUS FROM THE PI

• See 'writelnExamples.chpl' in the repository
• Key points
• The Chapel compiler provides default 'writeThis' routines for every

standard library and user-defined datatype
• This helps enable "printf" debugging

26

WRITING OUT EVERYTHING EXAMPLE See
https://github.com/mstrout/ChapelFor
PythonProgrammersFeb2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem;
config const dir = “DataDir”;
var fList = findFiles(dir);
var filenames
= newBlockArr(0..#fList.size,string);

filenames = fList;

// per file word count
forall f in filenames {
...
// code from kmer.chpl
...

}

28

parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer
prompt> ./parfilekmer –nl 4

Shared and Distributed-Memory
Parallelism using forall, a distributed
array, and command line options to

indicate number of locales

• See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.html'
put more and bigger files into DataDir/ or set the config const dir to something else
chpl parfilekmer.html
./parfilekmer --dir="SomethingElse/"

./parfilekmer –-k=10 # can also change k

29

PROCESSING FILES IN PARALLEL See
https://github.com/mstrout/ChapelFor
PythonProgrammersFeb2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

• See 'image_analysis_example/' subdirectory in the repository
• Coral reef diversity analysis written by Scott Bachman
• Calls out to libpng to read and write PNG files
• Uses distributed and shared memory parallelism

• 'image_analysis_example/README.md' explains how to compile and run it

• Some things to try out when running 'main'
./main -nl 4 --inname=Roatan_benthic_r3_gray.png --outname=out1.png --radius=10

./main -nl 4 --inname=Roatan_benthic_r3_gray.png --outname=out2.png --radius=100

Can also change the number of locales, but only up to the -N number given to salloc

31

IMAGE PROCESSING EXAMPLE See
https://github.com/mstrout/ChapelFor
PythonProgrammersFeb2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

What is it?
• A Python library supporting a key subset of NumPy and Pandas for Data Science
• Implemented using a client-server model with Chapel as the server to support scalability
• Designed to compute results within the human thought loop (seconds to minutes on TB-scale arrays)
• ~35K lines of Chapel

Who did it?
• Mike Merrill, Bill Reus, et al., US DOD
• Open-source: https://github.com/Bears-R-Us/arkouda

Why Chapel?
• high-level language with C-comparable performance
• great distributed array support
• ports from laptop to supercomputer
• close to Pythonic—thus is readable for Python users who look under the hood

33

ARKOUDA IN ONE SLIDE

https://github.com/Bears-R-Us/arkouda

• Recent hero run performed on large Apollo system
• 72 TiB of 8-byte values
• 480 GiB/s (2.5 minutes elapsed time)
• used 73,728 cores of AMD Rome
• ~100 lines of Chapel code

• Believed to be within 2-3x of world record
• however, a bit apples-to-oranges:

– they sort larger key values (to their benefit)
– their data starts on disk (SSD)

34

ARKOUDA ARGSORT: HERO RUN

• Generate code for GPUs
• Nascent support for NVIDIA
• Exploring AMD and Intel support

• Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts
• Using the 'locale' concept to indicate execution and data

allocation on GPUs
• 'forall' and 'foreach' loops will be converted to kernels
• Arrays declared in 'on here.gpus[0]' blocks are allocated on the

GPU

• For more info...
• https://chapel-lang.org/docs/technotes/gpu.html

36

GPU SUPPORT IN CHAPEL

use GPUDiagnostics;
startGPUDiagnostics();

var operateOn = if here.gpus.size > 0
then here.gpus else [here,];

// Same code can run on GPU or CPU
coforall loc in operateOn do on loc {

var A: [1..10] int;
foreach a in A do a+=1;
writeln(A);

}

stopGPUDiagnostics();
writeln(getGPUDiagnostics());

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

• Wavelet example by Jeremiah Corrado included in the github repository
• Slides and Code:

https://github.com/mstrout/ChapelForPythonProgrammersFeb2023/tree/main/wavelet_example

• Primers
• https://chapel-lang.org/docs/primers/index.html

• Blog posts for Advent of Code
• https://chapel-lang.org/blog/index.html

• Test directory in main repository
• https://github.com/chapel-lang/chapel/tree/main/test

37

OTHER CHAPEL EXAMPLES

https://github.com/mstrout/ChapelForPythonProgrammersFeb2023/tree/main/wavelet_example
https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test

• Takeaways
• Chapel is a general-purpose programming language designed to leverage parallelism
• It is being used in some large production codes
• Our team is responsive to user questions and would enjoy having you participate in our community

• How to get more help
• Ask us questions on discourse, gitter, or stack overflow
• Also feel free to email me at michelle.strout@hpe.com

• Engaging with the community
• Share your sample codes with us and your research community!
• Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

38

TUTORIAL SUMMARY

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

39

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

