
RMACC Rocky Mountain Advanced Computing Consortium
May 18, 2023

Michelle Strout and Chapel team members

CHAPEL TUTORIAL FOR PYTHON
PROGRAMMERS: PRODUCTIVITY AND
PERFORMANCE IN ONE LANGUAGE

• Poll Everywhere link: pollev.com/michellestrout402
• There will be fun questions throughout the tutorial

• Attempt this Online website for running Chapel code
• Go to main Chapel webpage at https://chapel-lang.org/
• Click on the little ATO icon on the lower left that is above the YouTube icon

• Using a container on your laptop
• First, install docker or podman for your machine and then start them up
• Then, the below commands work with docker (see github README.md for podman)

 docker pull docker.io/chapel/chapel # takes about 5 minutes
 cd ChapelForPythonProgrammersMay2023 # assuming git clone has happened
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel ./hello

2

HOW TO PARTICIPATE IN THIS TUTORIAL See
https://github.com/mstrout/ChapelFor
PythonProgrammersMay2023 for
more info and for example code.

https://pollev.com/michellestrout402
https://chapel-lang.org/
https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

CHAPEL PROGRAMMING LANGUAGE

APPLICATIONS OF CHAPEL

4(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• April 2023: 1200 GiB/s for argsort on an HPE EX system

Recent Journal Paper on using Chapel for calibrating hydrologic models
• Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed

watershed hydrologic models", Environmental Modeling and Software.
• They report super-linear speedup

5

HIGHLIGHTS OF CHAPEL USAGE

https://github.com/Bears-R-Us/arkouda

• Let’s take some time to introduce
ourselves
• Michelle Strout

– Chapel team leader
– Affiliate faculty in the Department of

Computer Science at UArizona

• Current Chapel team
– Tech Lead: Brad Chamberlain
– Visiting Scholar from NCAR: Scott

Bachman

• Participants, tell us some about
yourself
– Your institution
– Proudest HPC accomplishment
– Biggest HPC challenge

INTRODUCTIONS

6HPE PROPRIETARY

• Compile and run Chapel programs in a web browser and/or on your laptop

• Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

• Experiment compiling and running provided Chapel code examples
• k-mer counting (bioinformatics application)
• Processing files in parallel using parallelism over multiple nodes and threads
• Solving a diffusion PDE (partial differential equation)
• Image processing (coral reef diversity example)
• Same code can be compiled to run on a multi-core CPU AND a GPU

• Where to get help and how you can participate in the Chapel community

7

LEARNING OBJECTIVES FOR TODAY'S TUTORIAL

• Poll Everywhere link: pollev.com/michellestrout402
• There will be fun questions throughout the tutorial

• Attempt this Online website for running Chapel code
• Go to main Chapel webpage at https://chapel-lang.org/
• Click on the little ATO icon on the lower left that is above the YouTube icon

• Using a container on your laptop
• First, install docker or podman for your machine and then start them up
• Then, the below commands work with docker (see github README.md for podman)

 docker pull docker.io/chapel/chapel # takes about 5 minutes
 cd ChapelForPythonProgrammersMay2023 # assuming git clone has happened
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel ./hello

8

HOW TO PARTICIPATE IN THIS TUTORIAL See
https://github.com/mstrout/ChapelFor
PythonProgrammersMay2023 for
more info and for example code.

Try one of these options for
using Chapel

https://pollev.com/michellestrout402
https://chapel-lang.org/
https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

• Parallel hello world
• ExamplesInSlides/hellopar.chpl

• Key concepts
• 'coforall'
• configuration constants, 'config const'
• range values, '0..#tasksPerLocale'
• 'writeln'
• inline comments start with '//'

10

PARALLELISM ACROSS NODES AND WITHIN NODES
// can be set on the command line with --tasksPerLocale=2

config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
 coforall tid in 0..#tasksPerLocale {

 writeln("Hello world! ",
 "(from task ", tid,
 " of ", tasksPerLocale,
 " on locale ", here.id,
 " of ", numLocales, ")");
 }
}

11

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Think “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

12

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

helloTaskPar.chpl

13

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

helloTaskPar.chpl
‘here’ refers to the locale on

which we’re currently running

how many processing units
(think “cores”) does my locale have?

what’s my locale’s name?

14

TASK-PARALLEL “HELLO WORLD”

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

helloTaskPar.chpl

a 'coforall’ loop executes each
iteration as an independent task

15

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

helloTaskPar.chpl

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

16

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
 on loc {
 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

helloTaskPar.chpl

17

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
 on loc {
 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

helloTaskPar.chpl create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033

Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035

…

A

B

C

19

K-MER COUNTING FROM BIOINFORMATICS

use Map, IO;

config const infilename = ("kmer_large_input.txt");
config const k = 4;

var sequence, line : string;
var f = open(infilename, ioMode.r);
var infile = f.reader();
while infile.readLine(line) {
 sequence += line.strip();
}
infile.close();

var nkmerCounts : map(string, int);

for ind in 0..<(sequence.size-k) {
 nkmerCounts[sequence[ind..#k]] += 1;
}

kmer.chpl
‘Map’ and 'IO' are two of the standard

libraries provided in Chapel. A 'map' is like a
dictionary in python.

'config const' indicates a configuration
constant, which result in built-in

command-line parsing

The variable 'nkmerCounts' is being
declared as a dictionary mapping

strings to ints

Counting up each kmer in the sequence

Reading all of the lines from the input
file into the string 'sequence'.

• Some things to try out with 'ExamplesInSlides/kmer.chpl'
chpl kmer.chpl
./kmer

./kmer –-k=10 # can change k

./kmer --infilename="kmer.chpl" # can change the infilename

./kmer --k=10 --infilename="kmer.chpl" # can change both

20

EXPERIMENTING WITH THE K-MER EXAMPLE See
https://github.com/mstrout/ChapelFor
PythonProgrammersMay2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

A

B

C

• See 'ExamplesInSlides/diffusion.chpl' in the repository
• Some things to try out with 'diffusion.chpl'

chpl diffusion.chpl
./diffusion

--xLen=4 --yLen=4 --nx=61 --ny=61 # doubles the size of the domain
 # along each dimension, keeping the
 # density of points the same

--nu=0.025 # reduces the fluid viscosity

--nt=100 # twice as many timesteps

22

2D DIFFUSION PARTIAL DIFFERENTIAL
EQUATION EXAMPLE

See
https://github.com/mstrout/ChapelFor
PythonProgrammersMay2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

• See 'ExamplesInSlides/writelnExamples.chpl' in the repository
• Key points

• The Chapel compiler provides default 'writeThis' routines for every
standard library and user-defined datatype

• This helps enable "printf" debugging through the use of 'writeln' calls

24

WRITING OUT EVERYTHING EXAMPLE See
https://github.com/mstrout/ChapelFor
PythonProgrammersMay2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem;
config const dir = “DataDir”;
var fList = findFiles(dir);
var filenames =
 Block.createArray(0..#fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
 ...
 // code from kmer.chpl
 ...
}

25

parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer
prompt> ./parfilekmer –nl 4

Shared and Distributed-Memory
Parallelism using forall, a distributed
array, and command line options to

indicate number of locales

• See 'ExamplesInSlides/parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'
put more and bigger files into DataDir/
or set the config const dir to something else
chpl parfilekmer.chpl
./parfilekmer --dir="SomethingElse/"

./parfilekmer –-k=10 # can also change k

26

PROCESSING FILES IN PARALLEL See
https://github.com/mstrout/ChapelFor
PythonProgrammersMay2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

• See 'image_analysis_example/' subdirectory in the repository
• Coral reef diversity analysis written by Scott Bachman
• Calls out to libpng to read and write PNG files
• Uses distributed and shared memory parallelism

• 'image_analysis_example/README.md' explains how to compile and run it

• Some things to try out when running 'main'
./main -nl 4 --inname=Roatan_benthic_r3_gray.png --outname=out1.png --radius=10

./main -nl 4 --inname=Roatan_benthic_r3_gray.png --outname=out2.png --radius=100

Can also change the number of locales, but only up to the -N number given to salloc

28

IMAGE PROCESSING EXAMPLE See
https://github.com/mstrout/ChapelFor
PythonProgrammersMay2023 for
more info and for example code.

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

• Generate code for GPUs
• Support for NVIDIA and AMD GPUs
• Exploring Intel support

• Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts
• Using the 'locale' concept to indicate execution and data

allocation on GPUs
• 'forall' and 'foreach' loops will be converted to kernels
• Arrays declared in 'on here.gpus[i]' blocks are allocated on

the GPU

• For more info...
• https://chapel-lang.org/docs/technotes/gpu.html

29

GPU SUPPORT IN CHAPEL

use GpuDiagnostics;
startGpuDiagnostics();

var operateOn =
 if here.gpus.size>0 then here.gpus
 else [here,];

// Same code can run on GPU or CPU

coforall loc in operateOn do on loc {
 var A : [1..10] int;
 foreach a in A do a+=1;
 writeln(A);
}

stopGpuDiagnostics();
writeln(getGpuDiagnostics());

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

STREAM TRIAD: SHARED MEMORY

config var n = 1_000_000,
 alpha = 0.01;

 var A, B, C: [1..n] real;
 A = B + alpha * C;

stream-ep.chpl

Declare three arrays of size ‘n’

30

So far, this is simply a multi-core program

Nothing refers to remote locales (nodes),
explicitly or implicitly

Whole-array operations compute
Stream Triad in parallel

STREAM TRIAD: DISTRIBUTED MEMORY

config var n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales {
 on loc {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
}

stream-ep.chpl

have each task run ‘on’ its locale

then run multi-core Stream, as before

31

the array of locales (nodes)
on which this program is running

‘coforall’ loops execute each
iteration as an independent task

This is a CPU-only program

Nothing refers to GPUs,
explicitly or implicitly

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

config var n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales {
 on loc {

 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 }
}

stream-ep.chpl

32

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently

on each of this locale’s GPUs

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

config var n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales {
 on loc {
 cobegin {
 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 }
 }
}

stream-ep.chpl

33

This program uses all CPUs and GPUs
across all of your compute nodes

‘cobegin { … }’ creates a task
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS (REFACTOR)

config var n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales {
 on loc {
 cobegin {
 coforall gpu in here.gpus do on gpu {
 runTriad();
 }
 runTriad();
 }
 }
}
proc runTriad() {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
}

stream-ep.chpl

34

‘cobegin { … }’ creates a task
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad

the compiler creates CPU and GPU
versions of this procedure

Performance vs. reference versions has become increasingly competitive over the past 4 months

35

STREAM TRIAD: PERFORMANCE VS. REFERENCE VERSIONS

• Primers
• https://chapel-lang.org/docs/primers/index.html

• Blog posts for Advent of Code
• https://chapel-lang.org/blog/index.html

• Test directory in main repository
• https://github.com/chapel-lang/chapel/tree/main/test

36

OTHER CHAPEL EXAMPLES

https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test

• Takeaways
• Chapel is a general-purpose programming language designed to leverage parallelism
• It is being used in some large production codes
• Our team is responsive to user questions and would enjoy having you participate in our community

• How to get more help
• Ask us questions on discourse, gitter, or stack overflow
• Also feel free to email me at michelle.strout@hpe.com

• Engaging with the community
• Share your sample codes with us and your research community!
• Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

37

TUTORIAL SUMMARY

https://chapel-lang.org/CHIUW.html

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

38

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

