Hewlett Packard
Enterprise

CHAPEL TUTORIAL FOR PYTHON
PROGRAMMERS:PRODUCTIVITY AND
PERFORMANCE IN ONE LANGUAGE

Michelle Strout and Chapel team members

RMACC Rocky Mountain Advanced Computing Consortium
May 18, 2023

See

HOW TO PARTICIPATE IN THIS TUTORIAL https.//qgithub.com/mstrout/ChapelFor

PythonProgrammersMay2023 for
more info and for example code.

e Poll Everywhere link: pollev.com/michellestrout402
« There will be fun questions throughout the tutorial

o Attempt this Online website for running Chapel code
e Go to main Chapel webpage at hitps://chapel-lang.org/
o Click on the little ATO icon on the lower left that is above the YouTube icon O 3 m D

e Using a container on your laptop I'il I’
« First, install docker or podman for your machine and then start them up
e Then, the below commands work with docker (see github README.md for podman)

docker pull docker.io/chapel/chapel # takes about 5 minutes

cd ChapelForPythonProgrammersMay2023 # assuming git clone has happened
docker run --rm -v "SPWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
docker run --rm -v "SPWD":/myapp -w /myapp chapel/chapel ./hello

— o

https://pollev.com/michellestrout402
https://chapel-lang.org/
https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

CHAPEL PROGRAMMING LANGUAGE

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

Tom Westerhout

Radboud University

Chapel-based Hydrologic;'lplodel Calibration

Marjan Asgari et al.
University of Guelph

—

Python3 Client m™ma Chapel Server

Socket

Code Modules

2
]
E
£
<

t Distributed

Object Store
Platform

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

RH (%) at Lake Mead

0 . : L =y
2010 2011 2012 2013 2014 2015
date

Nelson Luis Dias
The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EX?LORATIONuPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance
PR D) d R L4

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

[

. \,,_‘ |

ChapQG: Layered Quasigeostrophic CFD

lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

HIGHLIGHTS OF CHAPEL USAGE

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
o Professor Eric Laurendeau’s team at Polytechnique Montreal
o Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.

« Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in
3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
o Mike Merrill, Bill Reus, et al., US DOD
« Python front end client, Chapel server that processes dozens of terabytes in seconds
o April 2023: 1200 GiB/s for argsort on an HPE EX system

apkovda
massive scale
data science

Recent Journal Paper on using Chapel for calibrating hydrologic models

« Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed
watershed hydrologic models"”, Environmental Modeling and Software.

e They report super-linear speedup

— .

https://github.com/Bears-R-Us/arkouda

INTRODUCTIONS

e Let’s take some time to introduce
ourselves

e Michelle Strout

— Chapel team leader
— Affiliate faculty in the Department of
Computer Science at UArizona

e Current Chapel team —
— Tech Lead: Brad Chamberlain

— Visiting Scholar from NCAR: Scott
Bachman

« Participants, tell us some about
yourself

- Your institution
—Proudest HPC accomplishment
- Biggest HPC challenge

—

HPE PROPRIETARY

6

LEARNING OBJECTIVES FOR TODAY'S TUTORIAL

e Compile and run Chapel programs in a web browser and/or on your laptop

e Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

e Experiment compiling and running provided Chapel code examples
e k-mer counting (bioinformatics application)
e Processing files in parallel using parallelism over multiple nodes and threads
 Solving a diffusion PDE (partial differential equation)
e Image processing (coral reef diversity example)
e Same code can be compiled to run on a multi-core CPU AND a GPU

e Where to get help and how you can participate in the Chapel community

— |

7

See

HOW TO PARTICIPATE IN THIS TUTORIAL https.//qgithub.com/mstrout/ChapelFor

PythonProgrammersMay2023 for
more info and for example code.

e Poll Everywhere link: pollev.com/michellestrout402
« There will be fun questions throughout the tutorial

o Attempt this Online website for running Chapel code
e Go to main Chapel webpage at hitps://chapel-lang.org/
o Click on the little ATO icon on the lower left that is above the YouTube icon O m D

e Using a container on your laptop I'il I’
« First, install docker or podman for your machine and then start them up
e Then, the below commands work with docker (see github README.md for podman)

docker pull docker.io/chapel/chapel # takes about 5 minutes

cd ChapelForPythonProgrammersMay2023 # assuming git clone has happened
docker run --rm -v "SPWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
docker run --rm -v "SPWD":/myapp -w /myapp chapel/chapel ./hello

— .

https://pollev.com/michellestrout402
https://chapel-lang.org/
https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

" Which option did you choose to try out Chapel during this :
tutorial?

Attempt This Online

Container on your
laptop

Doing the polls and
watching a neighbor

Learning from the
examples in the slides

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

PARALLELISM ACROSS NODES AND WITHIN NODES

// can be set on the command line with --tasksPerLocale=2
e Parallel hello worild

« ExamplesinSlides/hellopar.chpl

config const tasksPerlocale = 1;

// parallel loops over nodes and then over threads

* Key COI‘ICGP"’S coforall loc in Locales do on loc {
'‘coforall’ coforall tid in 0..#tasksPerlLocale {

configuration constants, 'config const'

g " | n
« range values, '0.#tasksPerlLocale' wELEeln (THELLO WOELEL ty
writeln' "(from task ", tid,
e writein " of ", tasksPerLocale,
e inline comments start with '//' " on locale ", here.id,

" of ", numLocales, ")");

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

e Locales can run tasks and store variables

e Think “compute node” on a parallel system
« User specifies number of locales on executable’s command-line

prompt> ./myChapelProgram --numLocales=4 # or ‘"nl 4

Locales array:

locale 2

User’s code starts running as a single task on locale O

11

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on %s\n",
tid, numTasks, here.name) ;

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks

tid,

= here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n

numTasks,

$Nn O

n %$s\n",

‘here’ refers to the locale on
which we’re currently running

how many processing units
(think “cores”) does my locale have?

here.name) ; what’s my locale’s name?

13

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.numPUs () ;

coforall tid in 1..numTasks do

writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

a 'coforall’ loop executes each

iteration as an independent task

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

— -

TASK-PARALLEL “HELLO WORLD”

helloTaskPar.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

prompt> chpl helloTaskPar.

prompt> ./helloTaskPar
Hello from task 1 of 4
Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

— .

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl

coforall loc in Locales {
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

16

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

helloTaskPar.chpl create a task per locale

on which the program is running

coforall loc in Locales {
on loc {
const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %$n of %$n on %s\n",
tid, numTasks, here.name) ;

} prompt> chpl helloTaskPar.chpl

} prompt> ./helloTaskPar -nl=4
Hello from task 1 of on nl032
Hello from task 4 of on nl032
Hello from task of on nl034

have each task run ‘on’ its locale

then print a message per core,
as before

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

Which Chapel code does the same thing as this python ' A

code? var X =

var str = "answer";
writeln(str, " = "

config const tasksPerlLocale = 2;
coforall tid in 0. .#tasksPerLocale {

var message = "answer = ";
X = 47 message += 42:string;
str = "answer" B writeln(message);

¥

print(str, " =", x)

var X = 42;
C var str = "answer";
coforall loc in Locales {
on loc {
writeln(x, " = ", str);

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

K-MER COUNTING FROM BIOINFORMATICS

kmer.chpl

use Map, I10;

config const infilename =
config const k

var sequence, line string;
var f open (infilename,
var infile f.reader();
while infile.readLine(line) {
sequence += line.strip():;

}

infile.close () ;

var nkmerCounts

for ind in 0..<(sequence.size-k)
nkmerCounts [sequence[ind. .#k]]

}

I

ioMode.r) ;

map (string, int);

{

("kmer large input.txt");

‘Map’ and 'l0' are two of the standard
libraries provided in Chapel. A 'map'is like a

dictionary in python.

‘config const' indicates a configuration
constant, which result in built-in
command-line parsing

Reading all of the lines from the input
file into the string 'sequence’.

The variable 'nkmerCounts' is being
declared as a dictionary mapping

1;

strings to ints

Counting up each kmer in the sequence

Il‘?

See
EXPERIMENTING WITH THE K-MER EXAMPLE https.//qgithub.com/mstrout/ChapelFor

PythonProgrammersMay2023 for
more info and for example code.

e Some things to try out with 'ExamplesinSlides/kmer.chpl’
chpl kmer.chpl

./ kmer

./kmer —--k=10 # can change k

./kmer --infilename="kmer.chpl" # can change the infilename
./kmer --k=10 --infilename="kmer.chpl" # can change both

— .

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

What Chapel code does the same thing as this python code? A

// declare a dictionary/map to store the count per kmer
var nkmerCounts : map(string, int);

// count up the number of times each kmer occurs

for ind in 0..<(sequence.size-k) {
nkmerCounts[sequencelind. .#k]l] += 1;

}

var sequence, line : string;

var f = open(infilename, ioMode.r);
var infile = f.reader();

while infile.readLine(line) {

read in a file into a list of strings
where each string has a line with the newline at the end removed

K Ciiepanicoane o) o f1e: sequence += line.strip();
lines = [line.strip() for line in file] B) q . p() I

print(lines)

use List, IO;

var lines : list(string);

var infile = open("filename.txt",ioMode.r).reader();

while infile.readLine(line) {
lines.append(line.strip());

(: var line : string;

}
1

writeln(lines);

N Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app N

2D DIFFUSION PARTIAL DIFFERENTIAL See
EQUATION EXAMPLE https://github.com/mstrout/ChapelFor

PythonProgrammersMay2023 for
more info and for example code.

o See 'ExamplesinSlides/diffusion.chpl' in the repository
o Some things to try out with 'diffusion.chpl'

chpl diffusion.chpl
./diffusion

--xLen=4 --yLen=4 --nx=61 --ny=61 # doubles the size of the domain
along each dimension, keeping the

==

density of points the same
--nu=0.025 # reduces the fluid viscosity

--nt=100 # twice as many timesteps

— .

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

Based on this code, we can conclude that Chapel can do
summation, min, and max reductions over lists and arrays.

var oneDimArray : [1..4] int = [20, 30, 40, 50]1;
writeln("oneDimArray = ", oneDimArray);
writeln("+ reduce oneDimArray = ", + reduce oneDimArray);

use List;
var alList : list(real) = new list([50, 20, 30,J40]);

Wi Eelin (S alSis = |l
writeln("min reduce alList = ", min reduce alList);

True False

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

See
WRITING OUT EVERYTHING EXAMPLE https.//qgithub.com/mstrout/ChapelFor

PythonProgrammersMay2023 for
more info and for example code.

o See 'ExamplesinSlides/writelnExamples.chpl' in the repository
e Key points

o The Chapel compiler provides default 'writeThis' routines for every
standard library and user-defined datatype

« This helps enable "printf" debugging through the use of 'writeln' calls

— .

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

ANALYZING MULTIPLE FILES USING PARALLELISM

parfilekmer.chpl

use FileSystem;
config const dir = “DataDir”;
var flist = findFiles(dir);

var filenames =
Block.createArray (0. .#fList.size,string) ;

filenames = flist;

// per file word count
forall £ in filenames {

// code from kmer.chpl

prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer
prompt> ./parfilekmer -nl 4

Shared and Distributed-Memory
Parallelism using forall, a distributed
array, and command line options to

indicate number of locales

See
PROCESSING FILES IN PARALLEL https.//qgithub.com/mstrout/ChapelFor

PythonProgrammersMay2023 for
more info and for example code.

o See 'ExamplesinSlides/parfilekmer.chpl' in the repository

e Some things to try out with 'parfilekmer.chpl'

put more and bigger files into DataDir/

or set the config const dir to something else
chpl parfilekmer.chpl

./parfilekmer --dir="SomethingElse/"

./parfilekmer —--k=10 # can also change k

— .

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

What does the following Chapel code do?

var array = 1.2 3 Gl
var result = "":
FOE DUM SN arEEay |
result += num:string + ":";

}

result = result[9..#result.size-1];

var sum : int;
for siibstr in mesulit spilaf(-1 {
sum += substr : int;

}

writeln("sum = ", sum);

Converts an array of strings
to integers and then prints
their sum.

Converts an array of integers
to strings, concatenates

them with a colon in-between,
then splits that string and
sums up resulting integers.

Sums an array of integers and
then concatenates them into
astring.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

See

IMAGE PROCESSING EXAMPLE https.//qithub.com/mstrout/ChapelFor

PythonProgrammersMay2023 for
more info and for example code.

o See 'image_analysis_example/' subdirectory in the repository
o Coral reef diversity analysis written by Scott Bachman
 Calls out to libpng to read and write PNG files

« Uses disfributed and shared memory parallelism

* 'image_analysis_example/README.md' explains how to compile and run it

e Some things to try out when running 'main'

./main -nl 4 --inname=Roatan benthic r3 gray.png --outname=outl.png --radius=10
./main -nl 4 --inname=Roatan benthic r3 gray.png --outname=out2.png --radius=100

Can also change the number of locales, but only up to the -N number given to salloc

— .

https://github.com/mstrout/ChapelForPythonProgrammersMay2023
https://github.com/mstrout/ChapelForPythonProgrammersMay2023

GPU SUPPORT IN CHAPEL

use GpuDiagnostics;

o Generate code for GPUs

o Support for NVIDIA and AMD GPUs
» Exploring Intel support

startGpuDiagnostics () ;

var operateOn =

e Chapel code calling CUDA examples if here.gpus.size>0 then here.gpus
e https://qithub.com/chapel- else [here,];
lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
e https://github.com/chapel- // Same code can run on GPU or CPU
lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl cefersilll log o cperatedn fo @ o6 |
 Key concepts var A : [1..10] int;
» Using the 'locale’ concept to indicate execution and data foreach a in A do a+=1;
allocation on GPUs writeln (A) ;
o 'forall' and 'foreach’ loops will be converted to kernels }
» Arrays declared in 'on here.gpusli]' blocks are allocated on
the GPU stopGpuDiagnostics () ;
e For more info... writeln (getGpuDiagnostics());

e https://chapel-lang.org/docs/technotes/gpu.html

— .

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

STREAM TRIAD: SHARED MEMORY

stream-ep.chpl

config var n = 1 000 000,
alpha = 0.01;

var A, B, C: [1l..n]
A =B + alpha * C;

real;

Declare three arrays of size ‘n’

Whole-array operations compute
Stream Triad in parallel

So far, this is simply a multi-core program

Nothing refers to remote locales (nodes),
explicitly or implicitly

30

STREAM TRIAD: DISTRIBUTED MEMORY

stream-ep.chpl ‘coforall’ loops execute each
iteration as an independent task

config var n = 1 000 000,

alpha = 0.01; the array of locales (nodes)
coforall loc in Locales {
on loc { have each task run ‘on’ its locale

var A, B, C: [1l..n] real;
A = B + alpha * C; then run multi-core Stream, as before
}

This is a CPU-only program

Nothing refers to GPUs,
explicitly or implicitly

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

stream-ep.chpl

config var n
a

coforall loc
on loc {

A =

= 1 000 000,
lpha = 0.01;

in Locales {

coforall gpu in here.gpus do on gpu {
var A, B, C: [l..n] real;

B + alpha * C;

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently
on each of this locale’s GPUs

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

32

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

stream-ep.chpl

config var n
alpha

1 000 000,
0.01;

coforall loc in Locales {
on loc {
cobegin {
coforall gpu in here.gpus do on gpu {
var A, B, C: [1l..n] real;
A B + alpha * C;

A

B + alpha * C;

‘cobegin { ... } creates a task
per child statement

one task runs our multi-GPU triad

var A, B, C: [1.. n] real; —————————— the other runs the multi-CPU triad

This program uses all CPUs and GPUs
across all of your compute nodes

33

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS (REFACTOR)

stream-ep.chpl

config var n
alpha

1 000 000,
0.01;

coforall loc in Locales {
on loc {
cobegin {
coforall gpu in here.gpus do on gpu {
runTriad () ;

}

}

proc runTriad()
var A, B, C:
A

{
[1..n]

B + alpha * C;

real;

}

‘cobegin { ... } creates a task
per child statement

one task runs our multi-GPU triad

runTriad () ;
}
} the other runs the multi-CPU triad

the compiler creates CPU and GPU
versions of this procedure

—

34

STREAM TRIAD: PERFORMANCE VS. REFERENCE VERSIONS

|
Stream (using NVIDIA RTX A2000)
H=N—m—m = _‘,_'__‘_,‘._‘..‘..‘..‘..‘..'..'..'..‘..-.f‘..

............. 800
5 200 o
Qo —
<N £ »600
O m - C+CUDA DM
© O 100 -~ 1.30 (1.29+Eager Load+LICM) o0 400
I'S -M- 1.30 Prerelease (1.29+Eager Load) '|E 200

-9 1.29
0 1 ! 0

32 64
Number of Elements (M)

128

f

Stream (using AMD Instinct MI100)

—==—===X

x—* __________ 8 ________

=% C+HIP
-@- Chapel

32 64
Number of Elements (M)

128

Performance vs. reference versions has become increasingly competitive over the past 4 months

—

OTHER CHAPEL EXAMPLES

e Primers
o https://chapel-lang.org/docs/primers/index.html

» Blog posts for Advent of Code
o https://chapel-lang.org/blog/index.html

» Test directory in main repository
o https://github.com/chapel-lang/chapel/tree/main/test

36

https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test

TUTORIAL SUMMARY

» Takeaways

e Chapel is a general-purpose programming language designed to leverage parallelism
e It is being used in some large production codes

o Our team is responsive to user questions and would enjoy having you participate in our community

 How to get more help
« Ask us questions on discourse, gitter, or stack overflow
o Also feel free to email me at michelle.strout@hpe.com

e Engaging with the community
e Share your sample codes with us and your research community!
« Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

— .

https://chapel-lang.org/CHIUW.html

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
 (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.

Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

read a blog-length or chapter-length introduction to Chapel
learn about projects powered by Chapel

check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Giop/'s
) §
L A\“‘ evi
\ |
\
Gopis
st
\
1

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; // use the Cyclic distribution Llibrary
config const n = 100; // use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

C e The Chapel Parallel Programming Language
| [=

38

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

