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• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial
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INTRODUCTION TO CHAPEL



Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.
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CHAPEL PROGRAMMING LANGUAGE



APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

4(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration 
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance
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CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in 

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• April 2023: 1200 GiB/s for argsort on an HPE EX system

Recent Journal Paper on using Chapel for calibrating hydrologic models
• Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed 

watershed hydrologic models", Environmental Modeling and Software.
• They report super-linear speedup
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HIGHLIGHTS OF CHAPEL USAGE

https://github.com/Bears-R-Us/arkouda


HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

6



• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial
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INTRODUCTION TO CHAPEL



Four nodes/CPUs
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CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Each locale executes on a “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4   # or  ‘–nl 4’
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TASK-PARALLEL “HELLO WORLD”

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD”

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

‘here’ refers to the locale on 
which we’re currently running

how many processing units 
(think “cores”) does my locale have?

what’s my locale’s name?

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD”

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

a 'coforall’ loop executes each 
iteration as an independent task

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD”

 
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  
 

So far, this is a shared-memory program

Nothing refers to remote locales, 
explicitly or implicitly

hello-dist-node-names.chpl

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032



TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)
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coforall loc in Locales {
  on loc {
    const numTasks = here.maxTaskPar;
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  }  
}

the array of locales we’re running on 
(introduced a few slides back)

Locales array:

Locale 0 Locale 1 Locale 2 Locale 3

hello-dist-node-names.chpl
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TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
  on loc {
    const numTasks = here.numPUs();
    coforall tid in 1..numTasks do
      writef("Hello from task %n of %n on %s\n",
             tid, numTasks, here.name);
  }  
}

create a task per locale 
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033

Hello from task 3 of 4 on n1034 
Hello from task 1 of 4 on n1035

…

hello-dist-node-names.chpl



• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial
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INTRODUCTION TO CHAPEL



• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos
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2D HEAT DIFFUSION EXAMPLE
See https://go.lbl.gov/cuf23-repo for more info 
and for example code.

https://go.lbl.gov/cuf23-repo


• 2D heat diffusion PDE

• Solving for next temperatures at each time step 
using finite difference method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all 
the values and time to solution
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PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

𝑢!,#$%& = 𝑢!,#$ + 𝛼 𝑢!%&,#$ + 𝑢!'&,#$ − 4𝑢!,#$ + 𝑢!,#%&$ + 𝑢!,#'&$

𝑢$ 𝑢$%&

Stored in uStored in un

Fixed 
boundary 

values

Simplified form for below
assume 𝚫x=𝚫y, and let 

𝛂=𝛎𝚫t/𝚫x2

forall (i, j) in indicesInner do
  u[i, j] = un[i, j] + alpha *
   (un[i, j-1] + un[i-1, j] + un[i+1, j] + 

       un[i, j+1] - 4 * un[i, j]);



• Declaring 'u' and 'un' arrays

• Declaring 'u' and 'un' arrays as distributed (e.g., 
2x2 distribution is shown)

• Reads that cross the distribution boundary will 
result in a remote get
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DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

𝑢$ 𝑢$%&

Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
      INDICES = Block.createDomain(indices);
var u: [INDICES] real;



• Synchronous parallellism
• 'coforall', distributed memory parallelism across processes/locales 

with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation
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PARALLELISM SUPPORTED BY CHAPEL

iterationiteration
coforall

iteration

stmt
  beginbegin

begin

stmt

stmt



• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single 

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

20

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL
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PROGRAMING IN CHAPEL



• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single 

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community
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LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL



• During the tutorial today and tomorrow (July 26-27, 2023)
• Download the tarball of examples and follow the instructions in the README

curl -LO https://go.lbl.gov/cuf23.tar.gz
tar xzf cuf23.tar.gz
cd cuf23/

• After the tutorial
• The cuf23 tarball will still be available or clone from https://go.lbl.gov/cuf23-repo for Chapel code
• Attempt this Online website for running Chapel code

– Go to main Chapel webpage at https://chapel-lang.org/ and click on the ATO icon on the lower left
• Using a container on your laptop

– First, install docker for your machine and then start it up
– Then, the below commands work with docker
 docker pull docker.io/chapel/chapel-gasnet    # takes about 5 minutes
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet chpl hello.chpl
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet ./hello -nl 1
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HOW TO PARTICIPATE IN THIS TUTORIAL AND AFTERWARDS

Check out the chapel-quickReference.pdf in the cuf23/chapel/ subdirectory

https://go.lbl.gov/cuf23.tar.gz
https://go.lbl.gov/cuf23-repo
https://chapel-lang.org/
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SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

use Map, IO;

config const infilename = "kmer_large_input.txt";
config const k = 4;
 
var sequence, line : string;
var f = open(infilename, ioMode.r);
var infile = f.reader();
while infile.readLine(line) {
 sequence += line.strip();
}

var nkmerCounts : map(string, int);

for ind in 0..<(sequence.size-k) {
 nkmerCounts[sequence[ind..#k]] += 1;
}

kmer.chpl
‘Map’ and 'IO' are two of the standard 

libraries provided in Chapel.  A 'map' is like a 
dictionary in python.

'config const' indicates a configuration 
constant, which result in built-in 

command-line parsing

The variable 'nkmerCounts' is being 
declared as a dictionary mapping 

strings to ints

Counting up each kmer in the sequence

Reading all of the lines from the input 
file into the string 'sequence'.



• Some things to try out with 'kmer.chpl'
chpl kmer.chpl
./kmer -nl 1

./kmer -nl 1 –-k=10                          # can change k

./kmer -nl 1 --infilename="kmer.chpl"        # changing infilename

./kmer -nl 1 --k=10 --infilename="kmer.chpl" # can change both

• Key concepts
• 'use' command for including modules
• configuration constants, 'config const'
• reading from a file
• 'map' data structure
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EXPERIMENTING WITH THE K-MER EXAMPLE make run-kmer



• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single 

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community
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LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL



• Synchronous parallellism
• 'coforall', distributed memory parallelism across 

processes/locales with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation
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PARALLELISM SUPPORTED BY CHAPEL
coforall loc in Locales do on loc { /* ... */ }
coforall tid in 0..<numTasks { /* ... */ }

cobegin { doTask0(); doTask1(); ... doTaskN(); } 

var x : atomic int = 0, y : sync int = 0;
sync {
  begin x.add(1);
  begin y.writeEF(1);
  begin x.sub(1);
  begin y.writeFF(0);
}
assert(x.read() == 0);
assert(y.readFE() == 0);

var n = [i in 1..10] i*i;
forall x in n do x += 1;

var nPartialSums = + scan n;
var nSum = + reduce n;



APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)
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USE OF PARALLELISM IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed 
'coforall'

Threaded 
'coforall'

Asynchronous 
'begin'

'cobegin' sync or 
atomic vars

subprocesses forall scan

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

In this tutorial will be working with examples of parallelism from the yellow highlighted columns.



• Parallel hello world
• hellopar.chpl

• Key concepts
• 'coforall' over the `Locales` array with an `on` statement
• 'coforall' creating some number of tasks per locale
• configuration constants, 'config const'
• range expression, '0..<tasksPerLocale'
• 'writeln'
• inline comments start with '//'
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PARALLELISM ACROSS LOCALES AND WITHIN LOCALES
// can be set on the command line with --tasksPerLocale=2

config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
  coforall tid in 0..<tasksPerLocale {

    writeln("Hello world! ",
            "(from task ", tid,
            " of ", tasksPerLocale,
            " on locale ", here.id,
            " of ", numLocales, ")" );
  }
}

make run-hellopar



• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as having one locale run on it
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LOCALES AND EXECUTION MODEL IN CHAPEL

Processor Core

Memory

Compute 
Node 0

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3



• Two key built-in variables for referring to locales in Chapel programs:
•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

LOCALES AND EXECUTION MODEL IN CHAPEL

Locale 0 Locale 1 Locale 2 Locale 3
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Processor Core

Memory



1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run?  Where should data be allocated?  

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3
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Processor Core

Memory



BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

on Locales[1] {
  var B: [1..2, 1..2] real;

  B = 2 * A;
}

basics-on.chpl
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All Chapel programs begin running 
as a single task on locale 0

Locale 0 Locale 1 Locale 2 Locale 3

Variables are stored using the 
memory local to the current task

on-clauses move tasks 
to other locales

remote variables can be
 accessed directlyThis is a serial, but distributed computation



BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {
  on loc {
    var B = A;
  }
}

basics-for.chpl
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This loop will serially iterate over 
the program’s locales

Locale 0 Locale 1 Locale 2 Locale 3

This is also a serial, but distributed computation



MIXING LOCALITY WITH TASK PARALLELISM

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {
  on loc {
    var B = A;
  }
}

basics-coforall.chpl
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The coforall loop creates 
a parallel task per iteration

Locale 0 Locale 1 Locale 2 Locale 3

This results in a parallel distributed computation



ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = Block.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl
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Chapel also supports distributed 
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation



• Parallel hello world
• hellopar.chpl

• Key concepts
• 'coforall' over the `Locales` array with an `on` statement
• 'coforall' creating some number of tasks per locale
• configuration constants, 'config const'
• range expression, '0..<tasksPerLocale'
• 'writeln'
• inline comments start with '//'

• Things to try
./run-hellopar -nl 1 --tasksPerLocale=3
./run-hellopar -nl 2 --tasksPerLocale=3
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PARALLELISM ACROSS LOCALES AND WITHIN LOCALES
// can be set on the command line with --tasksPerLocale=2

config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
  coforall tid in 0..<tasksPerLocale {

    writeln("Hello world! ",
            "(from task ", tid,
            " of ", tasksPerLocale,
            " on locale ", here.id,
            " of ", numLocales, ")" );
  }
}

make run-hellopar



• This is a parallel, but local program:

• This is a distributed, but serial program:

• This is a distributed parallel program:
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PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

writeln("Hello from locale 0!");
on Locales[1] do writeln("Hello from locale 1!");
on Locales[2] {
  writeln("Hello from locale 2!");
  on Locales[0] do writeln("Hello from locale 0!");
}
writeln("Back on locale 0");

coforall i in 1..msgs do
  writeln("Hello from task ", i);

coforall i in 1..msgs do
  on Locales[i%numLocales] do
    writeln("Hello from task ", i, " running on locale ", here.id);



• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single 

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community
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LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL



• See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'
chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/"     # change dir with inputs files

./parfilekmer -nl 2 –-k=10                     # can also change k
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PROCESSING FILES IN PARALLEL
make run-parfilekmer



ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem;
config const dir = “DataDir”;              
var fList = findFiles(dir);
var filenames = 
  Block.createArray(0..<fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
  ...
  // code from kmer.chpl
  ...
}
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parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer –nl 4

• shared and distributed-memory 
parallelism using 'forall'

• in other words, parallelism within 
the locale/node and across 
locales/nodes

• a distributed array
• command line options to indicate 

number of locales
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BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"filename1" "filename2" "filename3" "filename4" "filename5" "filename6" "filename7" "filename8"

• Array of strings for filenames is distributed 
across locales

• 'forall' will do parallelism across locales and then 
within each locale to take advantage of multicore

Locale 0 Locale 1

prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 2



• See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'
chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/"     # change dir with inputs files

./parfilekmer -nl 2 –-k=10                     # can also change k

• Concepts illustrated
• 'forall' provides distributed and shared memory parallelism when do a 'forall' 

over the Block distributed array
• No puts and gets happening yet
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PROCESSING FILES IN PARALLEL
make run-parfilekmer



• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single 

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
üDistributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community
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LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL



Note 1: Variables are allocated on the locale where the task is running
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
    done = false; 

…

on Locales[1] {
  var x, y, z: int;
  …

}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

    x

    y

    z
  

locale 1

0

0

0

46



Note 2: Tasks can refer to lexically visible variables, whether local or remote
CHAPEL SUPPORTS A GLOBAL NAMESPACE

config const verbose = false;
var total = 0,
    done = false; 

…

on Locales[1] {
  if !done {
    if verbose then
      writef("Adding locale 1’s contribution");
    total += computeMyContribution();
  }
}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

 

  

  
locale 1

if !done {
  if verbose then
    writef("Adding…
  total += computi…
}

code runs on locale 1, 
but refers to values 
stored on locale 0

47



• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

• Some things to try out with these variants
chpl heat_2D.chpl
./heat_2D -nl 1

--nt 10 --nx=2048 --ny=2048   # decreases the number of time steps
                              # and reduces the size of the domain 
                              # along each dimension from default 4096
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2D HEAT DIFFUSION EXAMPLE make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_buffers



ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = Block.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl
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Chapel also supports distributed 
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation



• 2D heat diffusion PDE

• Solving for next temperatures at each time step 
using finite difference method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all 
the values and time to solution
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PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

𝑢!,#$%& = 𝑢!,#$ + 𝛼 𝑢!%&,#$ + 𝑢!'&,#$ − 4𝑢!,#$ + 𝑢!,#%&$ + 𝑢!,#'&$

𝑢$ 𝑢$%&

Stored in uStored in un

Fixed 
boundary 

values

Simplified form for below
assume 𝚫x=𝚫y, and let 

𝛂=𝛎𝚫t/𝚫x2

forall (i, j) in indicesInner do
  u[i, j] = un[i, j] + alpha *
   (un[i, j-1] + un[i-1, j] + un[i+1, j] + 

       un[i, j+1] - 4 * un[i, j]);



• Declaring 'u' array

• Declaring 'u' array as distributed

• Reads that cross the distribution boundary will 
result in a remote get
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DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

𝑢$ 𝑢$%&

Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
      INDICES = Block.createDomain(indices);
var u: [INDICES] real;



• Each locale has own copies 
of 'u' and 'un' subdomains 
with a one-cell halo

• (1) Array assignment writes 
edge values into neighbors' 
halo landing pads

• (2) copy into local halo

• (3) compute next u in 
parallel locally
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HALO BUFFER OPTIMIZATION IN HEAT_2D_DIST_BUFFERS.CHPL

𝑢$ 𝑢$%&

(1) write to neighbor halo

(2) copy into local halo

(3) compute next u in parallel locally



const indices = {0..<nx, 0..<ny},
      indicesInner = indices.expand(-1),
      INDICES = Block.createDomain(indices);
const u: [INDICES] real;
...
var   LOCALE_DOM = Block.createDomain(u.targetLocales().domain);
var   haloArrays: [LOCALE_DOM][0..<4] haloArray;
param N = 0, S = 1, E = 2, W = 3;
...
for 1..nt {
  haloArrays[tidX, tidY-1][E].v = uLocal2[.., WW+1];
  ...
  b.barrier();
  uLocal1 <=> uLocal2;

  uLocal1[.., WW] = haloArrays[tidX, tidY][W].v;
  ...
  forall (i,j) in localIndicesInner do
    uLocal2[i,j] = uLocal1[i,j] + alpha*(uLocal1[i-1,j] + uLocal1[i+1,j]  
      + uLocal1[i,j-1] + uLocal1[i,j+1] - 4*uLocal1[i,j]);
  b.barrier();
}

Declare and distribute 'u' array.

HALO BUFFER OPTIMIZATION CODE
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Declare North, South, East, and West halo 
arrays per locale

Copy local edge results into neighbor's halo 
array.  'tidX' and 'tidY' are the locale's task id 
X and Y coordinates.  Using array slicing in  

'uLocal2[..,WW+1]'.

Copy halo array into local halo.

Compute u[I,j] in local subdomain.
Barrier over all locales



• See 'diffusion/heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

• Concepts illustrated
• 'forall' provides distributed and shared memory parallelism when do a 'forall' 

over the 2D Block distributed array
• 'heat_2D_dist.chpl' version doesn't do any special handling of the halo exchange
• 'heat_2D_dist_buffers.chpl' shows an optimization that explicitly copies 

subarrays into buffers
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2D HEAT DIFFUSION EXAMPLE
make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_dist_buffers



• See 'image_analysis/' subdirectory in the Chapel examples
• Coral reef diversity analysis written by Scott Bachman
• Reads a single file in parallel
• Uses distributed and shared memory parallelism
• Is being used and modified by Scott and collaborators for climate research

• 'image_analysis/README' explains how to compile and run it
cd image_analysis
chpl main.chpl --fast
./main -nl 2 --in_name=banda_ai --map_type=benthic --window_size=100000
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IMAGE PROCESSING EXAMPLE



• Analyzing images for coral reef diversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a 

neighborhood, i.e., convolution over image
• Developed by Scott Bachman, NCAR scientist who 

is a visiting scholar on the Chapel team
• Scott started learning Chapel in Sept 2022, started 

Coral Reef app in Dec 2022, already had 
collaborators presenting results in Feb 2023

• Last week with ~5 lines changed, ran on a GPU
• Performance

• Less than 300 lines of Chapel code scales out to 
100s of processors on Cheyenne (NCAR)

• Full maps calculated in seconds, rather than days
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IMAGE PROCESSING FOR CORAL REEF DISSIMILARITY



Distributed Parallelism:  Divide the domain into “strips” and allocate a task per strip

Task 1

Task 2

…

Task (n-1)

Task n



• See 'image_analysis/' subdirectory in the Chapel examples
• Coral reef diversity analysis written by Scott Bachman
• Reads a single file in parallel
• Uses distributed and shared memory parallelism
• Is being used and modified by Scott and collaborators for climate research

• 'image_analysis/README' explains how to compile and run it

• Concepts illustrated
• User-defined modules
• Reading a single file in parallel
• Sparse domains used to create masks in 'distance_mask.chpl'
• Creating a 1D block distribution by reshaping the 'Locales' array
• Gets to locale 0 will occur for some smaller arrays that live on locale 0
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IMAGE PROCESSING EXAMPLE



• Generate code for GPUs
• Support for NVIDIA and AMD GPUs
• Exploring Intel support

• Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts
• Using the 'locale' concept to indicate execution and data 

allocation on GPUs
• 'forall' and 'foreach' loops are converted to kernels
• Arrays declared within GPU sublocale code blocks are 

allocated on the GPU

• For more info...
• https://chapel-lang.org/docs/technotes/gpu.html
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GPU SUPPORT IN CHAPEL

use GpuDiagnostics;
startGpuDiagnostics();

var operateOn =
if here.gpus.size>0 then here.gpus 
                    else [here,];

// Same code can run on GPU or CPU
coforall loc in operateOn do on loc {
 var A : [1..10] int;
 foreach a in A do a+=1;
  writeln(A);
}

stopGpuDiagnostics();
writeln(getGpuDiagnostics());

gpuExample.chpl

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html


STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

config var n = 1_000_000,
           alpha = 0.01;

coforall loc in Locales do on loc {
  cobegin {
      coforall gpu in here.gpus do on gpu {
        var A, B, C: [1..n] real;
        A = B + alpha * C;
      }
      {
        var A, B, C: [1..n] real;
        A = B + alpha * C;        
      }
    }
  }  
}

stream-ep.chpl

60

This program uses all CPUs and GPUs 
across all of your compute nodes

‘cobegin { … }’ creates a task 
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad



Performance vs. reference versions has become competitive as of the last release
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STREAM TRIAD: PERFORMANCE VS. REFERENCE VERSIONS 



1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run?  Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory    

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3
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Processor Core

Memory



1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run?  Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel  

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3
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Processor Core

Memory



config const n = 1_000_000,
             alpha = 0.01;

use BlockDist;

const Dom = Block.createDomain({1..n});
var A, B, C: [Dom] real;

A = B + alpha * C;

STREAM TRIAD: DISTRIBUTED MEMORY, CPUS ONLY
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These programs are both CPU-only

Nothing refers to GPUs, 
explicitly or implicitly

config const n = 1_000_000,
             alpha = 0.01;

coforall loc in Locales {
  on loc {
    var A, B, C: [1..n] real;
    A = B + alpha * C;
  }  
}

stream-ep.chpl

stream-glbl.chpl



STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

config const n = 1_000_000,
             alpha = 0.01;

coforall loc in Locales do on loc {

    coforall gpu in here.gpus do on gpu {
      var A, B, C: [1..n] real;
      A = B + alpha * C;
    }

  
}

stream-ep.chpl
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This is a GPU-only program

Nothing other than coordination code 
runs on the CPUs

Use a similar ‘coforall’ + ‘on’ idiom 
to run a Triad concurrently

on each of this locale’s GPUs



STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

config const n = 1_000_000,
             alpha = 0.01;

coforall loc in Locales do on loc {
  cobegin {
    coforall gpu in here.gpus do on gpu {
      var A, B, C: [1..n] real;
      A = B + alpha * C;
    }
    {
      var A, B, C: [1..n] real;
      A = B + alpha * C;        
    }
  }  
}

stream-ep.chpl
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This program uses all CPUs and GPUs 
across all of our compute nodes

‘cobegin { … }’ creates a task 
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad



• Primers
• https://chapel-lang.org/docs/primers/index.html

• Blog posts for Advent of Code
• https://chapel-lang.org/blog/index.html

• Test directory in main repository
• https://github.com/chapel-lang/chapel/tree/main/test

• Presentations
• https://chapel-lang.org/presentations.html
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OTHER CHAPEL EXAMPLES & PRESENTATIONS

https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test
https://chapel-lang.org/presentations.html


• Takeaways
• Chapel is a PGAS programming language designed to leverage parallelism
• It is being used in some large production codes
• Our team is responsive to user questions and would enjoy having you participate in our community

• How to get more help
• Ask the Chapel team and users questions on discourse, gitter, or stack overflow
• Also feel free to email me at michelle.strout@hpe.com

• Engaging with the community
• Share your sample codes with us and your research community!
• Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

68

TUTORIAL SUMMARY

https://chapel-lang.org/CHIUW.html


Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage 

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel 
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues
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CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues


CURRENT CHAPEL TEAM AT HPE

70HPE PROPRIETARY
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BACKUP SLIDES AND ADDITIONAL CONTENT



• Online documentation is here: https://chapel-lang.org/docs/ 
• The primers can be particularly valuable for learning a concept: https://chapel-lang.org/docs/primers/index.html 

– These are also available from a Chapel release in ‘$CHPL_HOME/examples/primers/’
or ‘$CHPL_HOME/test/release/examples/primers/’ if you clone from GitHub

• When debugging, almost anything in Chapel can be printed out with ‘writeln(expr1, expr2, expr3);’
• Types can be printed after being cast to strings, e.g. ‘writeln(”Type of “, expr, “ is “, expr.type:string);’
• A quick way to print a bunch of values out clearly is to print a tuple made up of them ‘writeln((x, y, z));’

• Once your code is correct, before doing any performance timings, be sure to re-compile with ‘--fast’
• Turns on optimizations, turns off safety checks, slows down compilation, speeds up execution significantly
• Then, when you go back to making modifications, be sure to stop using `--fast` in order to turn checks back on

• For vim / emacs users, syntax highlighters are in $CHPL_HOME/highlight
• Imperfect, but typically better than nothing
• Emacs MELPA users may want to use the chapel-mode available there (better in many ways, weird in others)
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GENERAL TIPS WHEN GETTING STARTED WITH CHAPEL (ALSO IN README)

https://chapel-lang.org/docs/
https://chapel-lang.org/docs/primers/index.html


• begin / cobegin statements: the two other ways of creating tasks

• atomic / synchronized variables: types for safe data sharing & coordination between tasks

• task intents / task-private variables: control how variables and tasks relate
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OTHER TASK PARALLEL FEATURES

begin stmt;   // fire off an asynchronous task to run ‘stmt’

cobegin {     // fire off a task for each of ‘stmt1’, ‘stmt2’, …
  stmt1;
  stmt2;
  stmt3;
  …
}             // wait here for these tasks to complete before proceeding

var sum: atomic int;   // supports various atomic methods like .add(), .compareExchange(), …
var cursor: sync int; // stores a full/empty bit governing reads/writes, supporting .readEF(), .writeEF()

coforall i in 1..niters with (ref x, + reduce y, var z: int) { … }



for loop: each iteration is executed serially by the current task
• predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order
• a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order
• implemented using one or more tasks, locally or distributed, as determined by the iterand expression

coforall loop: each iteration is executed concurrently by a distinct task
• explicit parallelism; supports synchronization between iterations (tasks)
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SPECTRUM OF CHAPEL FOR-LOOP STYLES

forall i in 1..n do …              // forall loops over ranges use local tasks only
forall (i,j) in {1..n, 1..n} do …  // ditto for local domains…
forall elem in myLocArr do …       // …and local arrays
forall elem in myDistArr do …      // distributed arrays use tasks on each locale owning part of the array
forall i in myParIter(…) do …      // you can also write your own iterators that use the policy you want



• Any function or operator that takes scalar arguments can be called with array expressions instead

• Interpretation is similar to that of a zippered forall loop, thus:

   is equivalent to:

  as is:

• So, in the Jacobi computation,
                                                         ==

75

SIDEBAR: PROMOTION OF SCALAR SUBROUTINES

proc foo(x: real, y: real, z: real) {
  return x**y + 10*z;
}

C = foo(A, 2, B);

forall (c, a, b) in zip(C, A, B) do
  c = foo(a, 2, b);

C = A**2 + 10*B;

abs(A[D] - Temp[D]); forall (a,t) in zip(A[D], Temp[D]) do abs(a – t);


