Hewlett Packard Enterprise

INTRODUCTION TO CHAPEL PARALLEL PROGRAMMING LANGUAGE

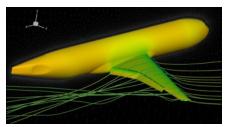
Michelle Strout and Jeremiah Corrado CUF23: Sponsored by OLCF, NERSC, and ECP July 26-27, 2023

INTRODUCTION TO CHAPEL

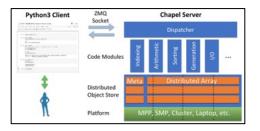
- What Chapel is and how programmers are using Chapel in their applications
- Chapel execution model with a parallel and distributed "Hello World"
- 2D Heat Diffusion example: variants and how to compile and run them
- Learning objectives for today's 90-minute Chapel tutorial

CHAPEL PROGRAMMING LANGUAGE

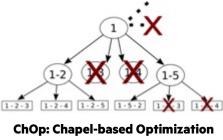
Chapel is a general-purpose programming language that provides ease of parallel programming, high performance, and portability.

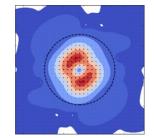

And is being used in applications in various ways:

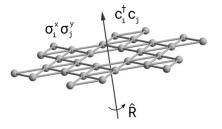
refactoring existing codes,

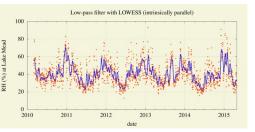

developing new codes,

serving high performance to Python codes (Chapel server with Python client), and providing distributed and shared memory parallelism for existing codes.

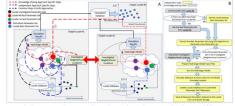

APPLICATIONS OF CHAPEL: LINKS TO USERS' TALKS (SLIDES + VIDEO)


CHAMPS: 3D Unstructured CFD
CHIUW 2021 CHIUW 2022


Arkouda: Interactive Data Science at Massive Scale CHIUW 2020 CHIUW 2023



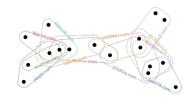
CHIUW 2021 CHIUW 2023


ChplUltra: Simulating Ultralight Dark MatterCHIUW 2020CHIUW 2022

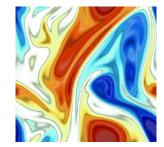
Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

Chapel-based Hydrological Model Calibration

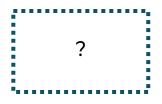
CHIUW 2022



CrayAl HyperParameter Optimization (HPO)



RapidQ: Mapping Coral Biodiversity


CHIUW 2023

CHGL: Chapel Hypergraph Library CHIÚW 2020

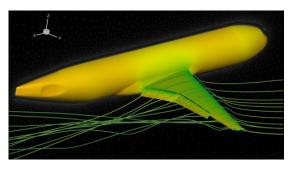
ChapQG: Layered Quasigeostrophic CFD

Your Application Here?

HIGHLIGHTS OF CHAPEL USAGE

CHAMPS: Computational Fluid Dynamics framework for airplane simulation

- Professor Eric Laurendeau's team at Polytechnique Montreal
- Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
- Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in 3 months."


Arkouda: data analytics framework (<u>https://github.com/Bears-R-Us/arkouda</u>)

- Mike Merrill, Bill Reus, et al., US DOD
- Python front end client, Chapel server that processes dozens of terabytes in seconds
- April 2023: 1200 GiB/s for argsort on an HPE EX system

Recent Journal Paper on using Chapel for calibrating hydrologic models

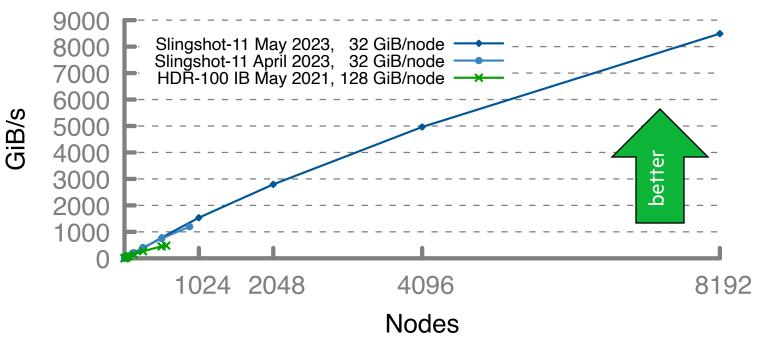
- Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed watershed hydrologic models", Environmental Modeling and Software.
- They report super-linear speedup

ARKOUDA ARGSORT PERFORMANCE

HPE Apollo (May 2021)

- HDR-100 Infiniband network (100 Gb/s)
- 576 compute nodes
- 72 TiB of 8-byte values
- ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)


- Slingshot-11 network (200 Gb/s)
- 896 compute nodes
- 28 TiB of 8-byte values
- ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)

- Slingshot-11 network (200 Gb/s)
- 8192 compute nodes
- 256 TiB of 8-byte values
- ~8500 GiB/s (~31 seconds)

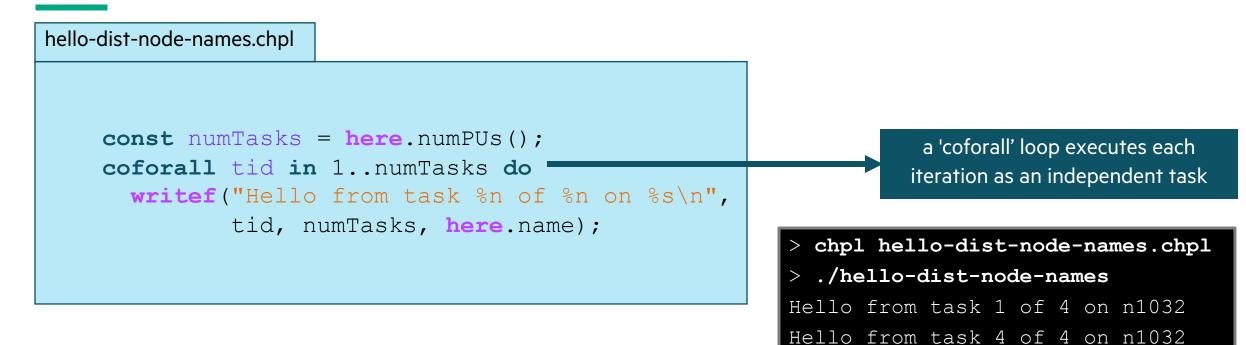
A notable performance achievement in ~100 lines of Chapel

Arkouda Argsort Performance

INTRODUCTION TO CHAPEL

• What Chapel is and how programmers are using Chapel in their applications

- Chapel execution model with a parallel and distributed "Hello World"
- 2D Heat Diffusion example: variants and how to compile and run them
- Learning objectives for today's 90-minute Chapel tutorial


CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

- Locales can run tasks and store variables
 - Each locale executes on a "compute node" on a parallel system
 - User specifies number of locales on executable's command-line

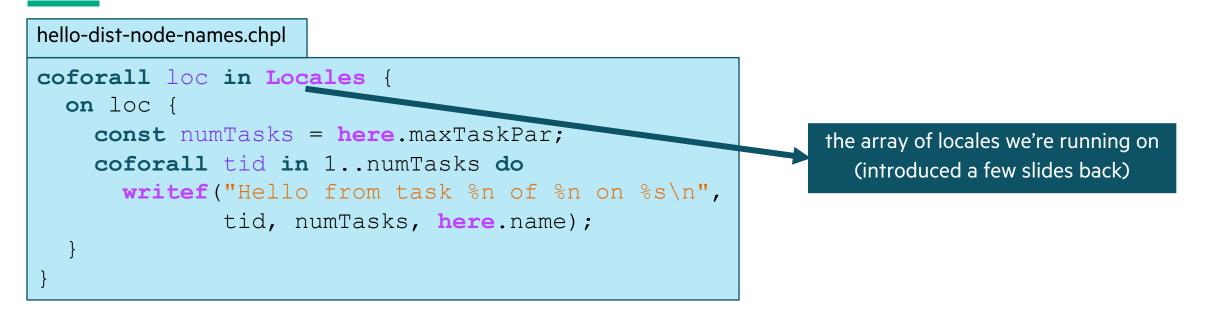
prompt> ./myC	hapelProgram	numLocales	=4 # or '-nl	4' Fo	ur nodes/CPUs
Locales array:	locale 0	locale 1	locale 2	locale 3	
	User's co	ode starts running a	is a single task on lo	cale O	

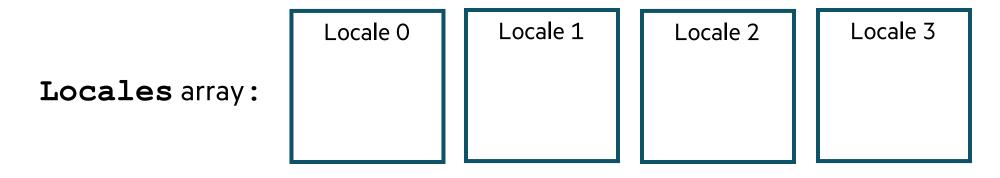
hello-dist-node-names.chpl

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n 1 %n on %s\n",
 tid, numTasks, here.name);
 what's my locale's name?

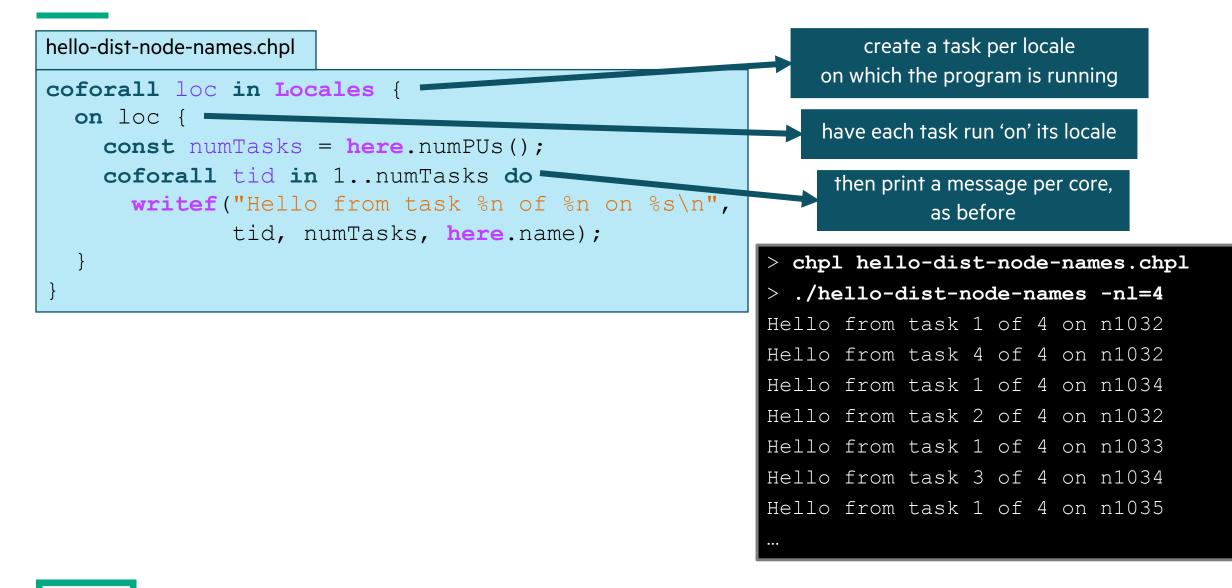
Hello from task 3 of 4 on n1032

Hello from task 2 of 4 on n1032


> chpl hello-dist-node-names.chpl								
> ./hello-dist-node-names								
Hello	from	task	1	of	4	on	n1032	
Hello	from	task	4	of	4	on	n1032	
Hello	from	task	3	of	4	on	n1032	
Hello	from	task	2	of	4	on	n1032	


So far, this is a shared-memory program

Nothing refers to remote locales, explicitly or implicitly


12

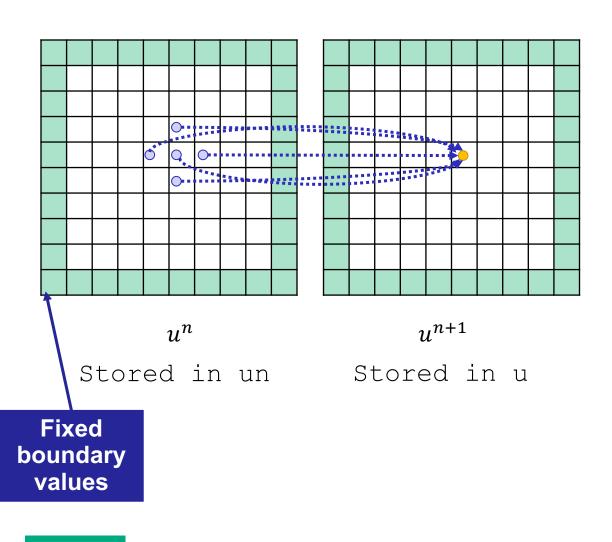
TASK-PARALLEL "HELLO WORLD" (DISTRIBUTED VERSION)

TASK-PARALLEL "HELLO WORLD" (DISTRIBUTED VERSION)

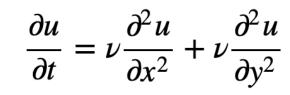
INTRODUCTION TO CHAPEL

• What Chapel is and how programmers are using Chapel in their applications

- Chapel execution model with a parallel and distributed "Hello World"
- 2D Heat Diffusion example: variants and how to compile and run them
- Learning objectives for today's 90-minute Chapel tutorial


2D HEAT DIFFUSION EXAMPLE

See <u>https://go.lbl.gov/cuf23-repo</u> for more info and for example code.

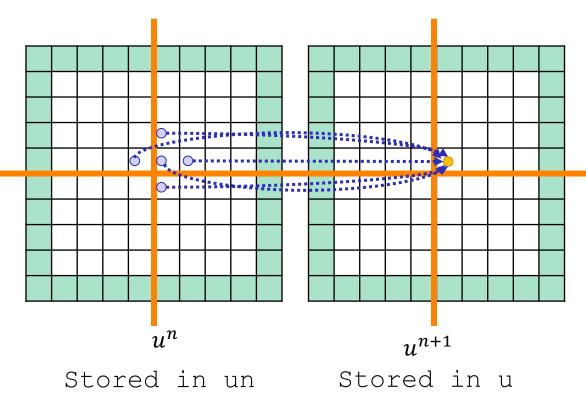

See 'heat_2D.*.chpl' in the Chapel examples

- 'heat_2D.chpl' shared memory parallel version that runs in locale 0
- 'heat_2D_dist.chpl' parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
- 'heat_2D_dist_buffers.chpl' parallel and distributed version that copies to neighbors landing pad and then into local halos

PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

• 2D heat diffusion PDE

Simplified form for below assume $\Delta x = \Delta y$, and let $\alpha = \nu \Delta t / \Delta x^2$


• Solving for next temperatures at each time step using finite difference method

$$u_{i,j}^{n+1} = u_{i,j}^n + \alpha \left(u_{i+1,j}^n + u_{i-1,j}^n - 4u_{i,j}^n + u_{i,j+1}^n + u_{i,j-1}^n \right)$$

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all the values and time to solution

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

• Declaring 'u' and 'un' arrays

```
const indices = {0..<nx, 0..<ny}
var u: [indices] real;</pre>
```

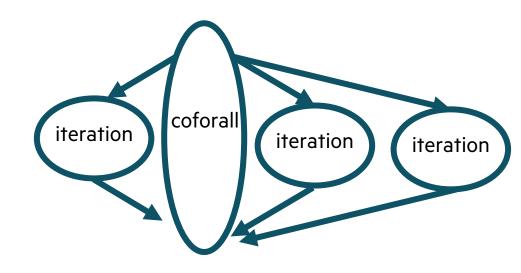
• Declaring 'u' and 'un' arrays as distributed (e.g., 2x2 distribution is shown)

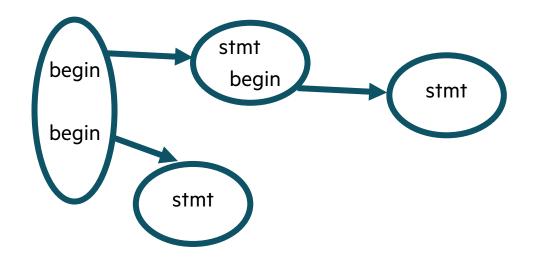
```
const indices = {0..<nx, 0..<ny},
        INDICES = Block.createDomain(indices);
var u: [INDICES] real;
```

• Reads that cross the distribution boundary will result in a remote get

PARALLELISM SUPPORTED BY CHAPEL

Synchronous parallellism


- 'coforall', distributed memory parallelism across processes/locales with 'on' syntax
- 'coforall', shared-memory parallelism over threads
- 'cobegin', executes all statements in block in parallel


Asynchronous parallelism

- 'begin', creates an asynchronous task
- 'sync' and 'atomic' vars for task coordination
- spawning subprocesses

Higher-level parallelism abstractions

- 'forall', data parallelism and iterator abstraction
- 'foreach', SIMD parallelism
- 'scan', operations such as cumulative sums
- 'reduce', operations such as summation

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

- Compile and run Chapel programs
- Familiarity with the Chapel execution model including how to run codes in parallel on a single node, across nodes, and both
- Learn Chapel concepts by compiling and running provided code examples
 - Serial code using map/dictionary, (k-mer counting from bioinformatics)
 - Parallelism and locality in Chapel
 - Distributed parallelism and 1D arrays, (processing files in parallel)
 - Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
 - Distributed parallel image processing, (coral reef diversity example)
 - GPU parallelism (stream example)
- Where to get help and how you can participate in the Chapel community

Hewlett Packard Enterprise

PROGRAMING IN CHAPEL

Michelle Strout and Jeremiah Corrado CUF23: Sponsored by OLCF, NERSC, and ECP July 26-27, 2023

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

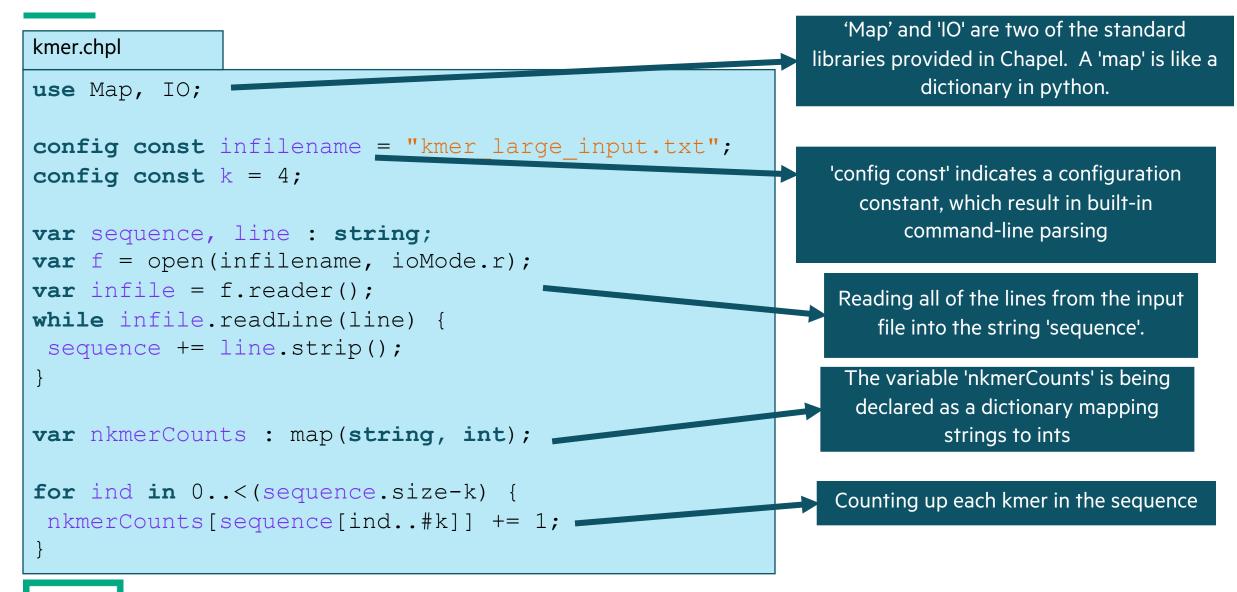
- Compile and run Chapel programs
- Familiarity with the Chapel execution model including how to run codes in parallel on a single node, across nodes, and both
- Learn Chapel concepts by compiling and running provided code examples
 - Serial code using map/dictionary, (k-mer counting from bioinformatics)
 - Parallelism and locality in Chapel
 - Distributed parallelism and 1D arrays, (processing files in parallel)
 - Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
 - Distributed parallel image processing, (coral reef diversity example)
 - GPU parallelism (stream example)
- Where to get help and how you can participate in the Chapel community

HOW TO PARTICIPATE IN THIS TUTORIAL AND AFTERWARDS

• During the tutorial today and tomorrow (July 26-27, 2023)

• Download the tarball of examples and follow the instructions in the README

curl -LO <u>https://go.lbl.gov/cuf23.tar.gz</u>
tar xzf cuf23.tar.gz
cd cuf23/


Check out the chapel-quickReference.pdf in the cuf23/chapel/ subdirectory

- After the tutorial
 - The cuf23 tarball will still be available or clone from <u>https://go.lbl.gov/cuf23-repo</u> for Chapel code
 - Attempt this Online website for running Chapel code
 - -Go to main Chapel webpage at https://chapel-lang.org/ and click on the ATO icon on the lower left
 - Using a container on your laptop
 - First, install docker for your machine and then start it up
 - Then, the below commands work with docker

docker pull docker.io/chapel/chapel-gasnet # takes about 5 minutes
docker run --rm -v "\$PWD":/myapp -w /myapp chapel/chapel-gasnet chpl hello.chpl
docker run --rm -v "\$PWD":/myapp -w /myapp chapel/chapel-gasnet ./hello -nl 1

() 🎽

SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

EXPERIMENTING WITH THE K-MER EXAMPLE

• Some things to try out with 'kmer.chpl'

```
chpl kmer.chpl
./kmer -nl 1
```

```
./kmer -nl 1 --k=10  # can change k
./kmer -nl 1 --infilename="kmer.chpl"  # changing infilename
./kmer -nl 1 --k=10 --infilename="kmer.chpl" # can change both
```

• Key concepts

- 'use' command for including modules
- configuration constants, 'config const'
- reading from a file
- 'map' data structure

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

- Compile and run Chapel programs
- Familiarity with the Chapel execution model including how to run codes in parallel on a single node, across nodes, and both
- Learn Chapel concepts by compiling and running provided code examples
 - ✓ Serial code using map/dictionary, (k-mer counting from bioinformatics)
 - Parallelism and locality in Chapel
 - Distributed parallelism and 1D arrays, (processing files in parallel)
 - Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
 - Distributed parallel image processing, (coral reef diversity example)
 - GPU parallelism (stream example)
- Where to get help and how you can participate in the Chapel community

PARALLELISM SUPPORTED BY CHAPEL

Synchronous parallellism

- 'coforall', distributed memory parallelism across processes/locales with 'on' syntax
- 'coforall', shared-memory parallelism over threads
- 'cobegin', executes all statements in block in parallel

Asynchronous parallelism

- 'begin', creates an asynchronous task
- 'sync' and 'atomic' vars for task coordination
- spawning subprocesses

Higher-level parallelism abstractions

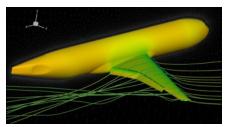
- 'forall', data parallelism and iterator abstraction
- 'foreach', SIMD parallelism
- 'scan', operations such as cumulative sums
- 'reduce', operations such as summation

```
coforall loc in Locales do on loc { /* ... */ }
coforall tid in 0..<numTasks { /* ... */ }</pre>
```

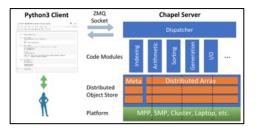
```
cobegin { doTask0(); doTask1(); ... doTaskN(); }
```

```
var x : atomic int = 0, y : sync int = 0;
```

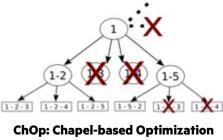
```
sync {
   begin x.add(1);
   begin y.writeEF(1);
   begin x.sub(1);
```

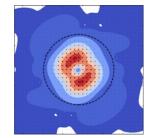

```
begin y.writeFF(0);
```

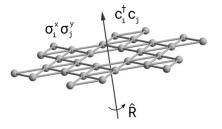
```
assert(x.read() == 0);
assert(y.readFE() == 0);
```

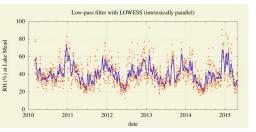

```
var n = [i in 1..10] i*i;
forall x in n do x += 1;
```

```
var nPartialSums = + scan n;
var nSum = + reduce n;
```

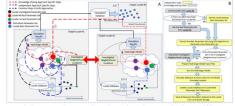

APPLICATIONS OF CHAPEL: LINKS TO USERS' TALKS (SLIDES + VIDEO)


CHAMPS: 3D Unstructured CFD
CHIUW 2021 CHIUW 2022


Arkouda: Interactive Data Science at Massive Scale CHIUW 2020 CHIUW 2023



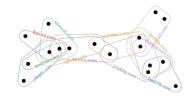
CHIUW 2021 CHIUW 2023


ChplUltra: Simulating Ultralight Dark MatterCHIUW 2020CHIUW 2022

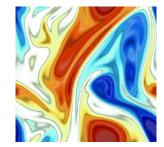
Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

Chapel-based Hydrological Model Calibration

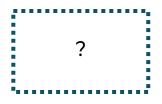
CHIUW 2022



CrayAl HyperParameter Optimization (HPO)



RapidQ: Mapping Coral Biodiversity


CHIUW 2023

CHGL: Chapel Hypergraph Library CHIÚW 2020

ChapQG: Layered Quasigeostrophic CFD

Your Application Here?

USE OF PARALLELISM IN SOME APPLICATIONS AND BENCHMARKS

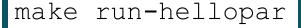
Application	Distributed 'coforall'	Threaded 'coforall'	Asynchronous 'begin'	'cobegin'	sync or atomic vars	subprocesses	forall	scan
НРО	\checkmark	\checkmark				\checkmark		
Arkouda	\checkmark	\checkmark					\checkmark	\checkmark
CHAMPS	\checkmark	\checkmark						
ChOp	\checkmark		\checkmark		\checkmark		\checkmark	
ParFlow							\checkmark	
Coral Reef	\checkmark	\checkmark		\checkmark			\checkmark	
Task Graph			\checkmark		\checkmark			

In this tutorial will be working with examples of parallelism from the yellow highlighted columns.

PARALLELISM ACROSS LOCALES AND WITHIN LOCALES

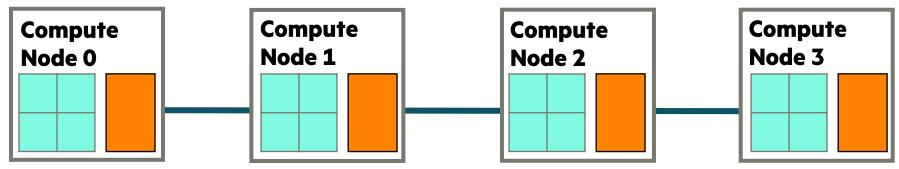
Parallel hello world

• hellopar.chpl


• Key concepts

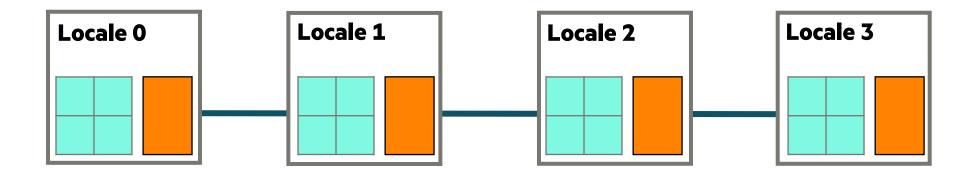
- 'coforall' over the `Locales` array with an `on` statement
- 'coforall' creating some number of tasks per locale
- configuration constants, 'config const'
- range expression, '0..<tasksPerLocale'
- 'writeln'
- inline comments start with '//'

// can be set on the command line with --tasksPerLocale=2
config const tasksPerLocale = 1;

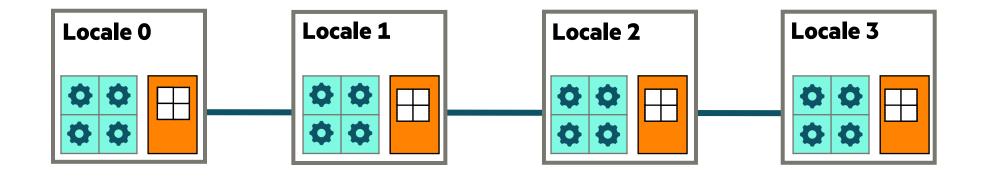

// parallel loops over nodes and then over threads
coforall loc in Locales do on loc {
 coforall tid in 0..<tasksPerLocale {</pre>

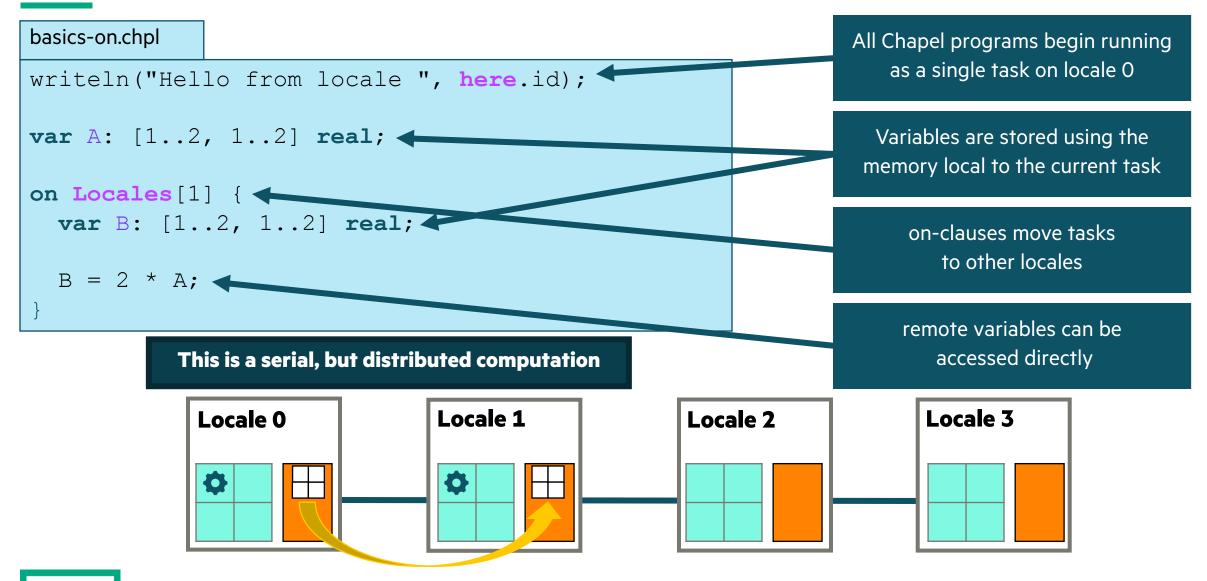
writeln("Hello world! ", "(from task ", tid, " of ", tasksPerLocale, " on locale ", here.id, " of ", numLocales, ")");

LOCALES AND EXECUTION MODEL IN CHAPEL

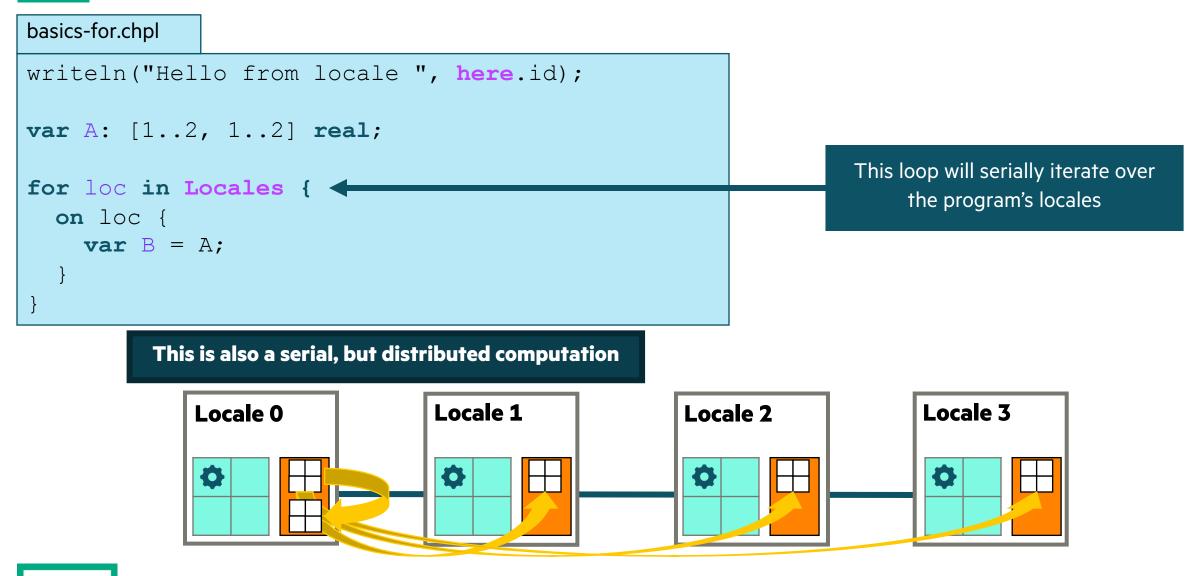

- In Chapel, a *locale* refers to a compute resource with...
 - processors, so it can run tasks
 - memory, so it can store variables
- For now, think of each compute node as having one locale run on it

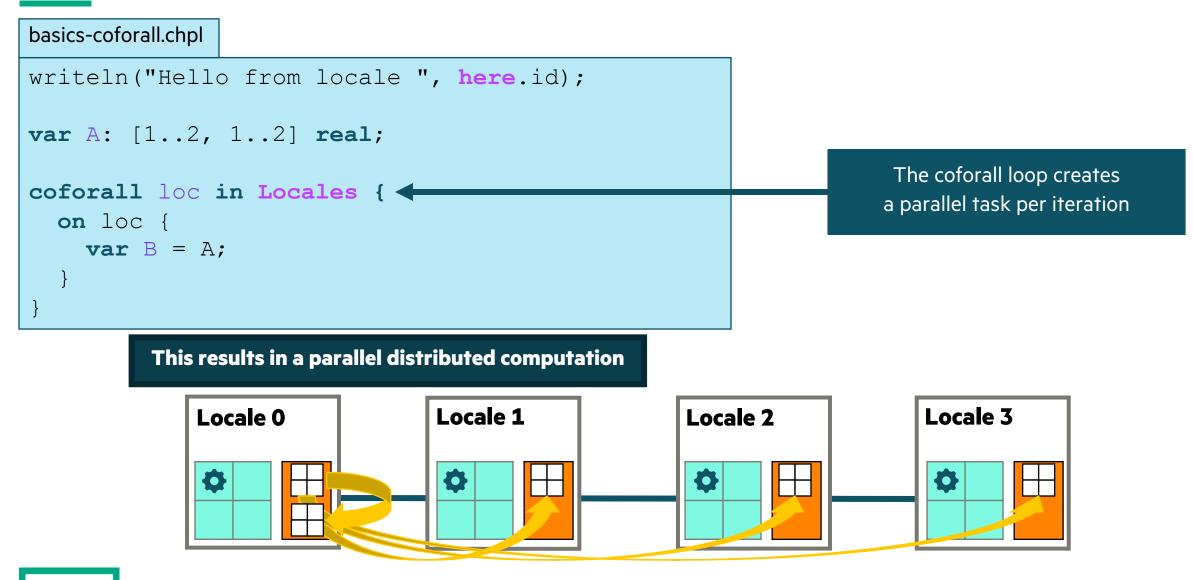
LOCALES AND EXECUTION MODEL IN CHAPEL

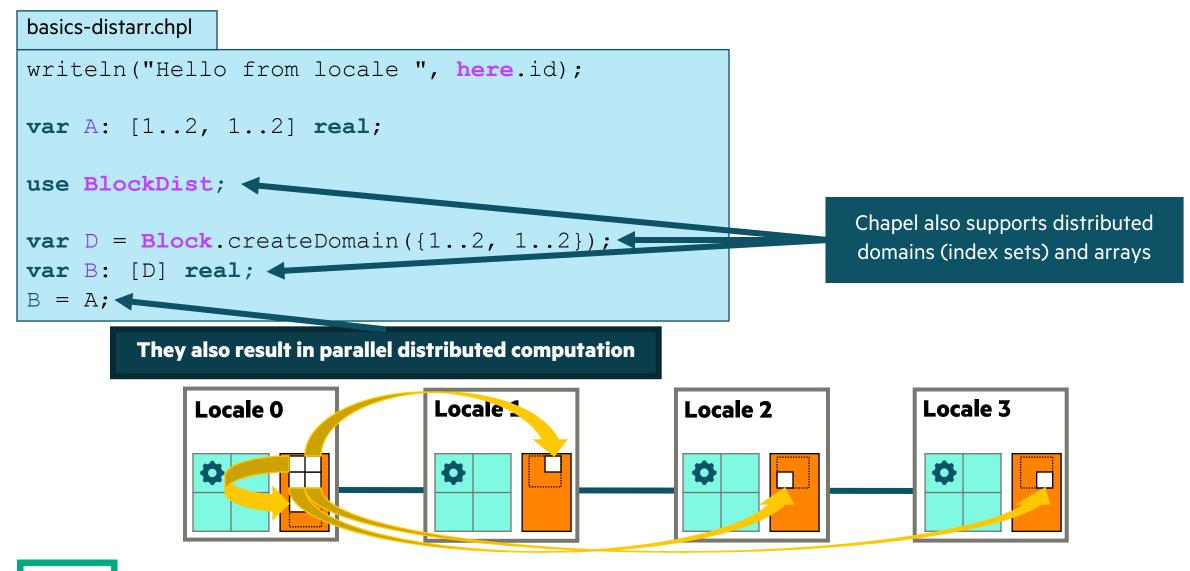

- Two key built-in variables for referring to locales in Chapel programs:
 - Locales: An array of locale values representing the system resources on which the program is running
 - **here**: The locale on which the current task is executing


KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

- **1. parallelism:** Which tasks should run simultaneously?
- **2. locality:** Where should tasks run? Where should data be allocated?




BASIC FEATURES FOR LOCALITY


BASIC FEATURES FOR LOCALITY

MIXING LOCALITY WITH TASK PARALLELISM

ARRAY-BASED PARALLELISM AND LOCALITY

PARALLELISM ACROSS LOCALES AND WITHIN LOCALES

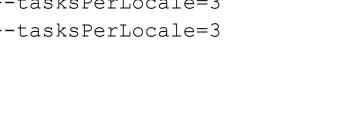
Parallel hello world

• hellopar.chpl

• Key concepts

- 'coforall' over the `Locales` array with an `on` statement
- 'coforall' creating some number of tasks per locale
- configuration constants, 'config const'
- range expression, '0..<tasksPerLocale'
- 'writeln'
- inline comments start with '//'

• Things to try


```
./run-hellopar -nl 1 --tasksPerLocale=3
./run-hellopar -nl 2 --tasksPerLocale=3
```

```
// can be set on the command line with --tasksPerLocale=2
config const tasksPerLocale = 1;
```

make run-hellopar

// parallel loops over nodes and then over threads
coforall loc in Locales do on loc {
 coforall tid in 0..<tasksPerLocale {</pre>

```
writeln("Hello world! ",
    "(from task ", tid,
    " of ", tasksPerLocale,
    " on locale ", here.id,
    " of ", numLocales, ")" );
```


PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

• This is a parallel, but local program:

coforall i in 1..msgs do
 writeln("Hello from task ", i);

• This is a distributed, but serial program:

```
writeln("Hello from locale 0!");
on Locales[1] do writeln("Hello from locale 1!");
on Locales[2] {
  writeln("Hello from locale 2!");
  on Locales[0] do writeln("Hello from locale 0!");
}
writeln("Back on locale 0");
```

• This is a distributed parallel program:

```
coforall i in 1..msgs do
    on Locales[i%numLocales] do
    writeln("Hello from task ", i, " running on locale ", here.id);
```

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

- Compile and run Chapel programs
- Familiarity with the Chapel execution model including how to run codes in parallel on a single node, across nodes, and both
- Learn Chapel concepts by compiling and running provided code examples
 - ✓ Serial code using map/dictionary, (k-mer counting from bioinformatics)
 ✓ Parallelism and locality in Chapel
 - Distributed parallelism and 1D arrays, (processing files in parallel)
 - Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
 - Distributed parallel image processing, (coral reef diversity example)
 - GPU parallelism (stream example)
- Where to get help and how you can participate in the Chapel community

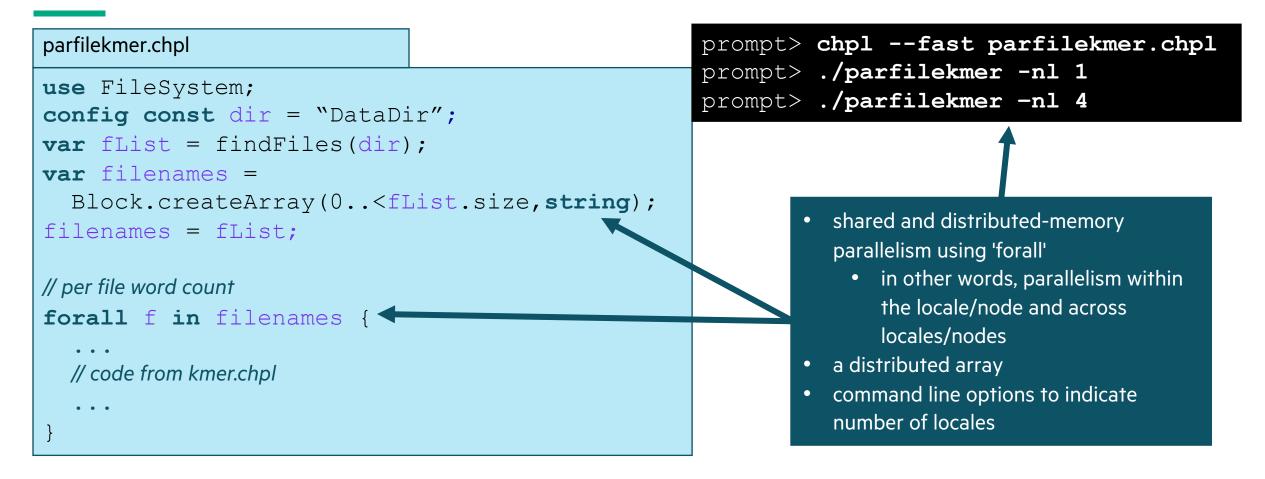
PROCESSING FILES IN PARALLEL

- See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'

```
chpl parfilekmer.chpl --fast
```

```
./parfilekmer -nl 2 --dir="SomethingElse/"
```


```
./parfilekmer -nl 2 --k=10
```

change dir with inputs files

make run-parfilekmer

```
# can also change k
```

ANALYZING MULTIPLE FILES USING PARALLELISM

BLOCK DISTRIBUTION OF ARRAY OF STRINGS

Locale 0				Locale 1				
"filename1"	"filename2"	"filename3"	"filename4"	"filename5"	"filename6"	"filename7"	"filename8"	
				ſ		tuin an four fi		diatributed
					 Array of strings for filenames is distributed across locales 			
	chplfa ./parfile					-		locales and then ntage of multicore

PROCESSING FILES IN PARALLEL

• See 'parfilekmer.chpl' in the repository

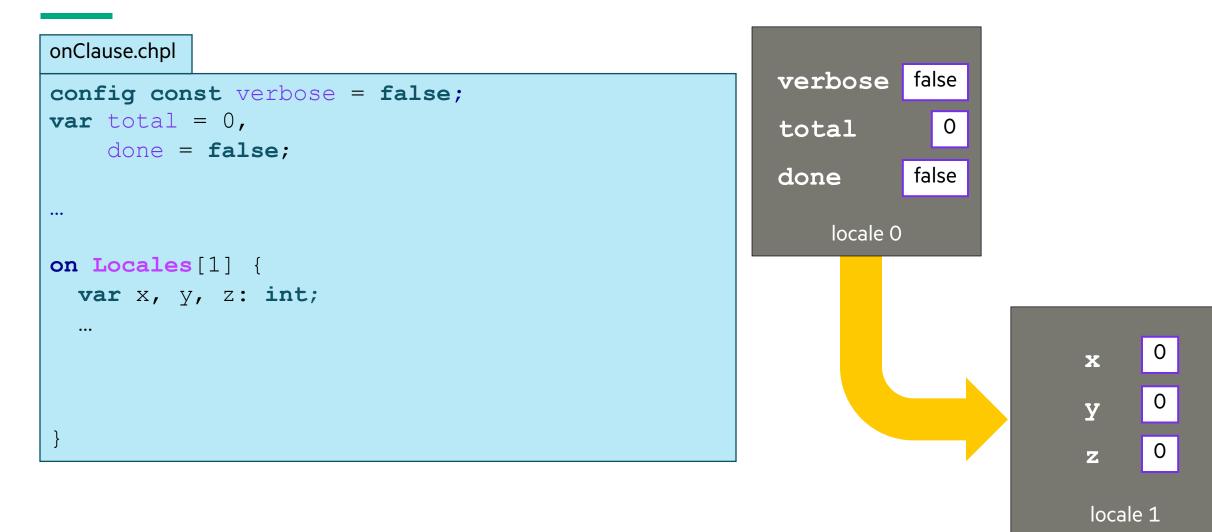
Some things to try out with 'parfilekmer.chpl'

```
chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files
```

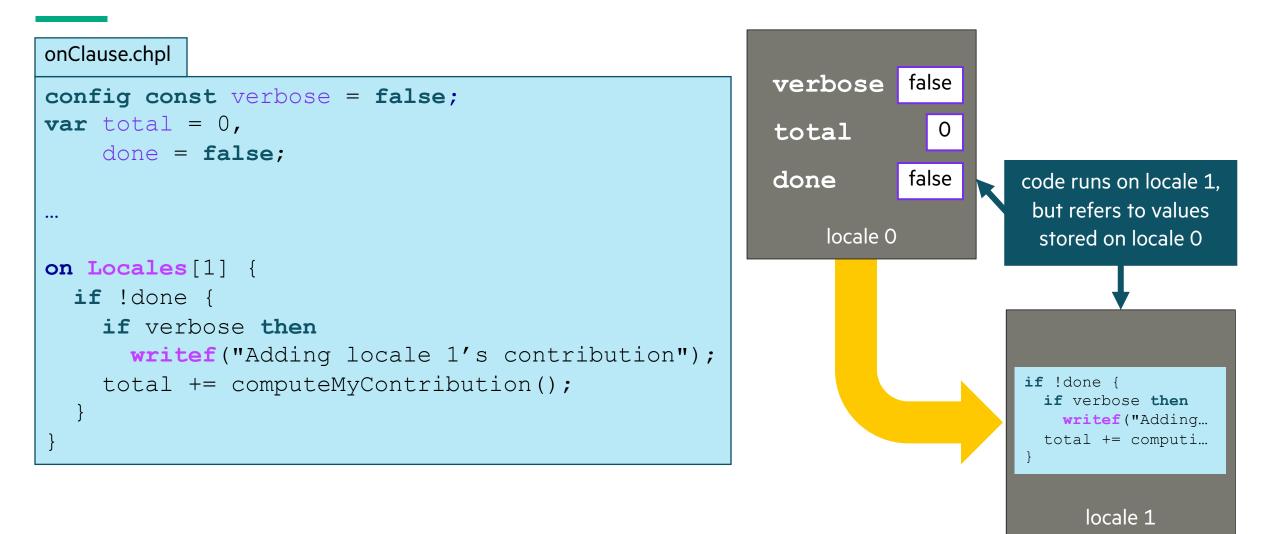
```
./parfilekmer -nl 2 --k=10 \protect # can also change k
```

Concepts illustrated

- 'forall' provides distributed and shared memory parallelism when do a 'forall' over the Block distributed array
- No puts and gets happening yet


LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

- Compile and run Chapel programs
- Familiarity with the Chapel execution model including how to run codes in parallel on a single node, across nodes, and both
- Learn Chapel concepts by compiling and running provided code examples
 - ✓ Serial code using map/dictionary, (k-mer counting from bioinformatics)
 ✓ Parallelism and locality in Chapel
 - ✓ Distributed parallelism and 1D arrays, (processing files in parallel)
 - Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
 - Distributed parallel image processing, (coral reef diversity example)
 - GPU parallelism (stream example)
- Where to get help and how you can participate in the Chapel community


CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

Note 1: Variables are allocated on the locale where the task is running

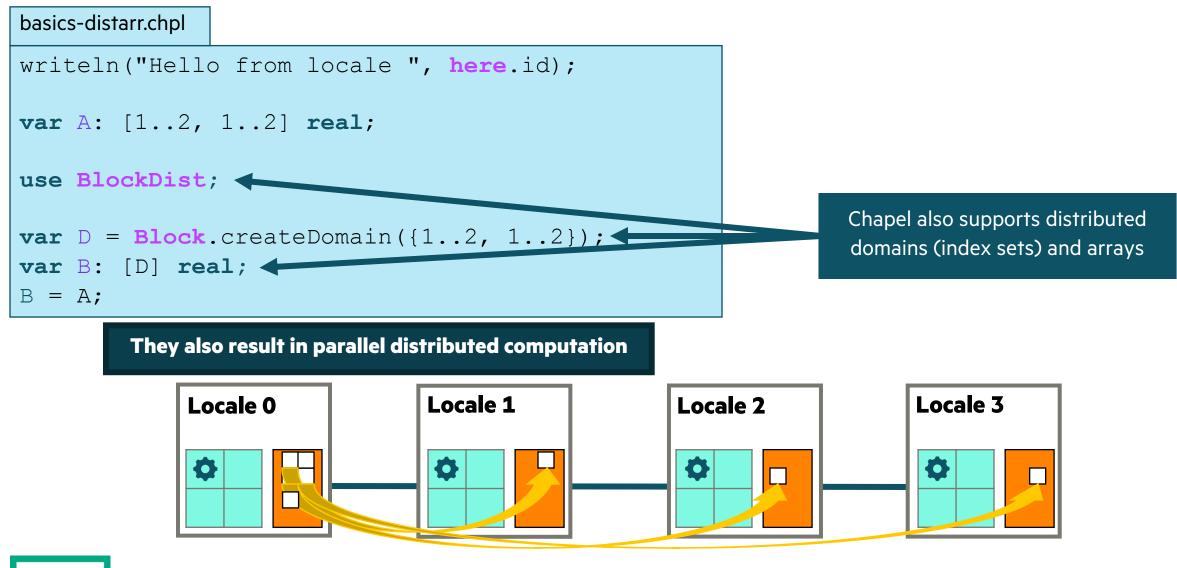
CHAPEL SUPPORTS A GLOBAL NAMESPACE

Note 2: Tasks can refer to lexically visible variables, whether local or remote

2D HEAT DIFFUSION EXAMPLE

• See 'heat_2D.*.chpl' in the Chapel examples

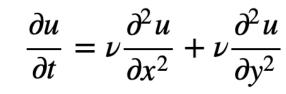
- 'heat_2D.chpl' shared memory parallel version that runs in locale 0
- 'heat_2D_dist.chpl' parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
- 'heat_2D_dist_buffers.chpl' parallel and distributed version that copies to neighbors landing pad and then into local halos


• Some things to try out with these variants

```
chpl heat_2D.chpl
./heat_2D -nl 1
```


--nt 10 --nx=2048 --ny=2048 # decreases the number of time steps # and reduces the size of the domain # along each dimension from default 4096

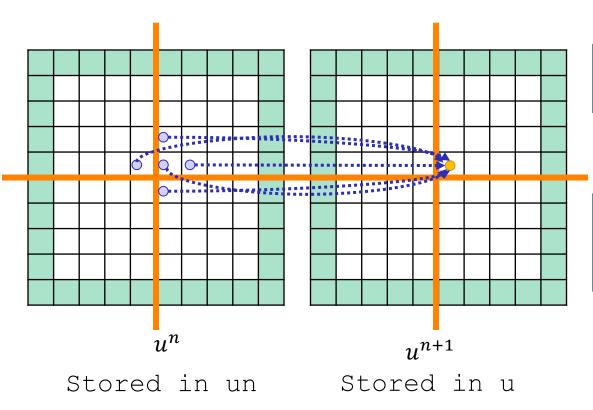
make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_buffers


ARRAY-BASED PARALLELISM AND LOCALITY

PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

• 2D heat diffusion PDE

Simplified form for below assume $\Delta x = \Delta y$, and let $\alpha = \nu \Delta t / \Delta x^2$


• Solving for next temperatures at each time step using finite difference method

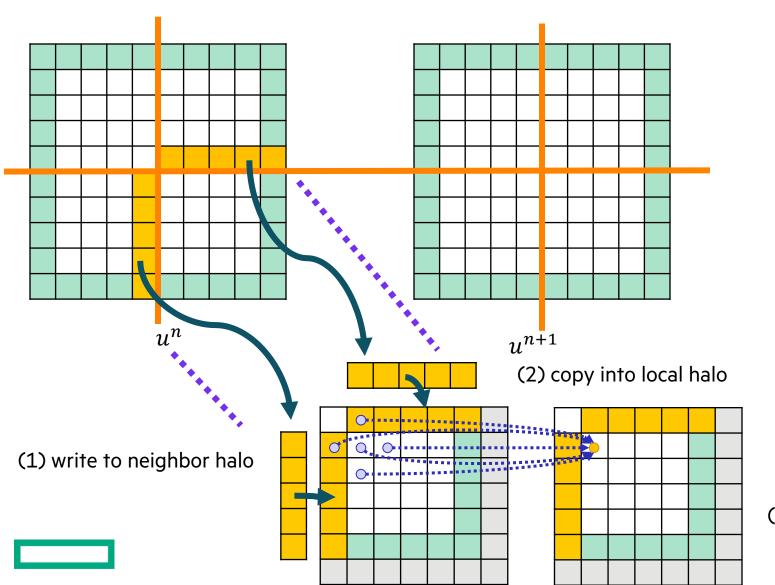
$$u_{i,j}^{n+1} = u_{i,j}^n + \alpha \left(u_{i+1,j}^n + u_{i-1,j}^n - 4u_{i,j}^n + u_{i,j+1}^n + u_{i,j-1}^n \right)$$

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all the values and time to solution

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

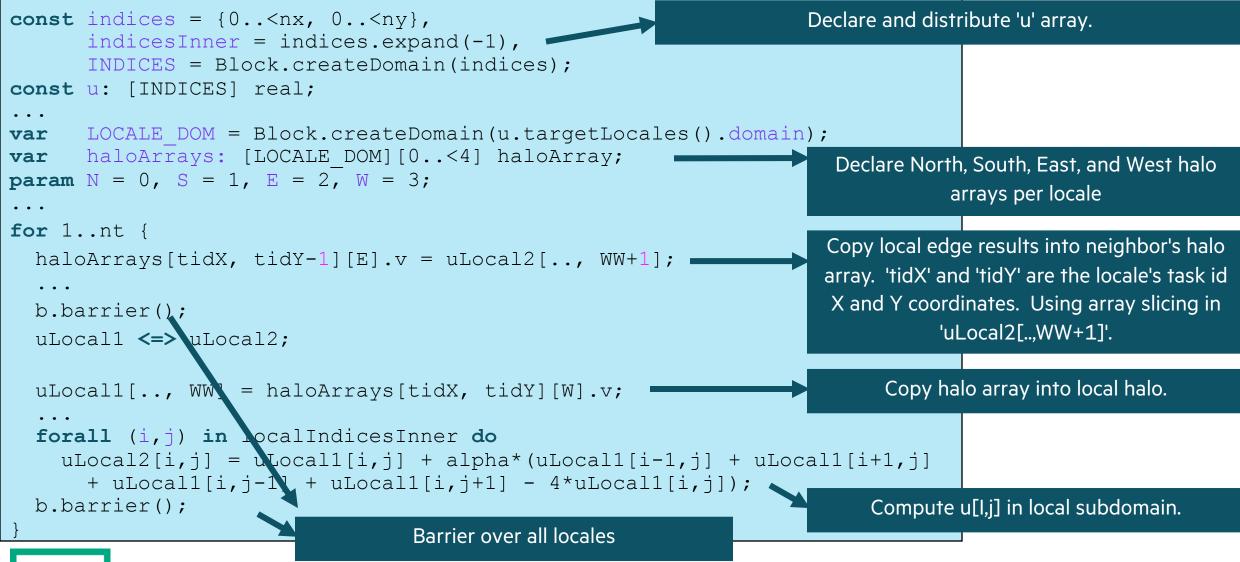
• Declaring 'u' array


```
const indices = {0..<nx, 0..<ny}
var u: [indices] real;</pre>
```

Declaring 'u' array as distributed

```
const indices = {0..<nx, 0..<ny},
    INDICES = Block.createDomain(indices);
var u: [INDICES] real;</pre>
```

• Reads that cross the distribution boundary will result in a remote get


HALO BUFFER OPTIMIZATION IN HEAT_2D_DIST_BUFFERS.CHPL

- Each locale has own copies of 'u' and 'un' subdomains with a one-cell halo
- (1) Array assignment writes edge values into neighbors' halo landing pads
- (2) copy into local halo
- (3) compute next u in parallel locally

⁽³⁾ compute next u in parallel locally

HALO BUFFER OPTIMIZATION CODE

2D HEAT DIFFUSION EXAMPLE

• See 'diffusion/heat_2D.*.chpl' in the Chapel examples

- 'heat_2D.chpl' shared memory parallel version that runs in locale 0
- 'heat_2D_dist.chpl' parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
- 'heat_2D_dist_buffers.chpl' parallel and distributed version that copies to neighbors landing pad and then into local halos

Concepts illustrated

- 'forall' provides distributed and shared memory parallelism when do a 'forall' over the 2D Block distributed array
- 'heat_2D_dist.chpl' version doesn't do any special handling of the halo exchange
- 'heat_2D_dist_buffers.chpl' shows an optimization that explicitly copies subarrays into buffers

make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_dist_buffers

IMAGE PROCESSING EXAMPLE

• See 'image_analysis/' subdirectory in the Chapel examples

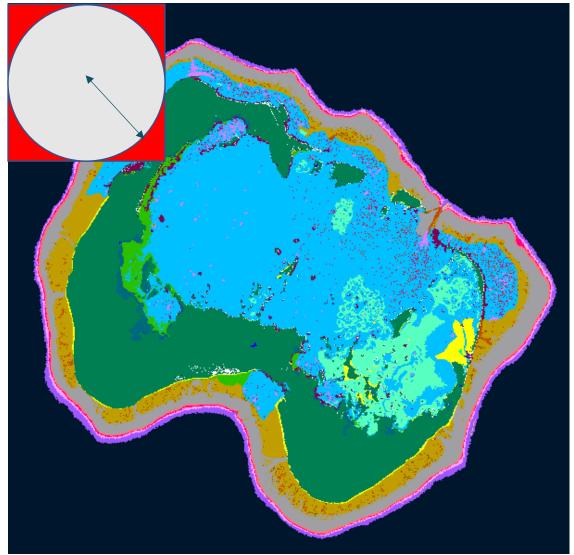
- Coral reef diversity analysis written by Scott Bachman
- Reads a single file in parallel
- Uses distributed and shared memory parallelism
- Is being used and modified by Scott and collaborators for climate research

• 'image_analysis/README' explains how to compile and run it

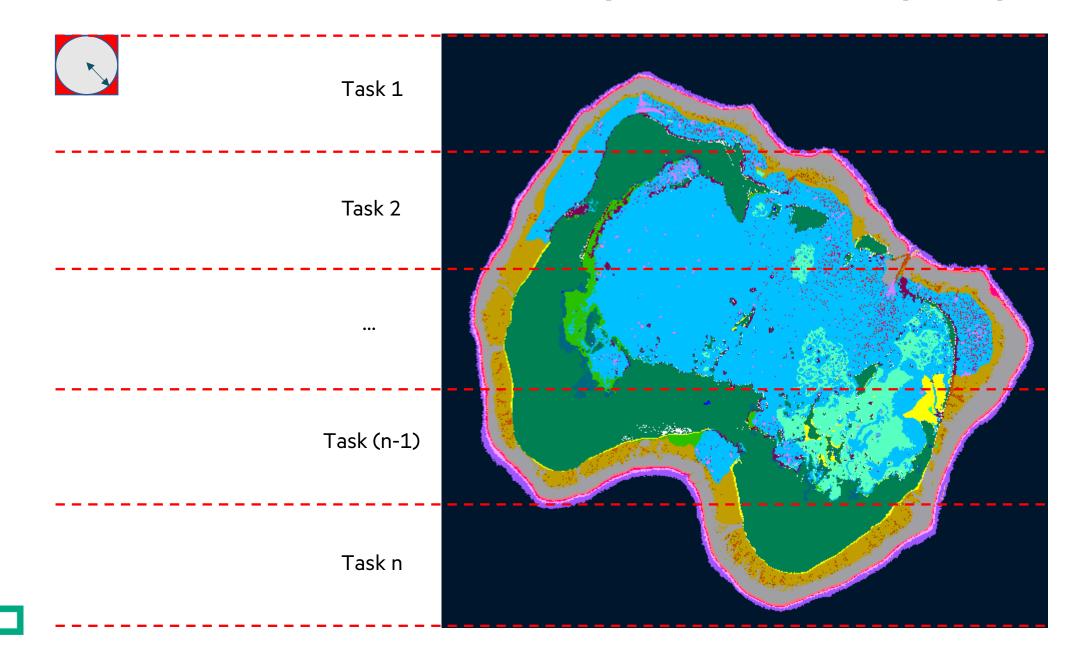
```
cd image_analysis
chpl main.chpl --fast
./main -nl 2 --in_name=banda_ai --map_type=benthic --window_size=100000
```

IMAGE PROCESSING FOR CORAL REEF DISSIMILARITY

Analyzing images for coral reef diversity


• Important for prioritizing interventions

Algorithm implemented productively


- Add up weighted values of all points in a neighborhood, i.e., convolution over image
- Developed by Scott Bachman, NCAR scientist who is a visiting scholar on the Chapel team
- Scott started learning Chapel in Sept 2022, started Coral Reef app in Dec 2022, already had collaborators presenting results in Feb 2023
- Last week with ~5 lines changed, ran on a GPU

• Performance

- Less than 300 lines of Chapel code scales out to 100s of processors on Cheyenne (NCAR)
- Full maps calculated in *seconds*, rather than days

Distributed Parallelism: Divide the domain into "strips" and allocate a task per strip

IMAGE PROCESSING EXAMPLE

• See 'image_analysis/' subdirectory in the Chapel examples

- Coral reef diversity analysis written by Scott Bachman
- Reads a single file in parallel
- Uses distributed and shared memory parallelism
- Is being used and modified by Scott and collaborators for climate research
- 'image_analysis/README' explains how to compile and run it

Concepts illustrated

- User-defined modules
- Reading a single file in parallel
- Sparse domains used to create masks in 'distance_mask.chpl'
- Creating a 1D block distribution by reshaping the 'Locales' array
- Gets to locale 0 will occur for some smaller arrays that live on locale 0

GPU SUPPORT IN CHAPEL

Generate code for GPUs

- Support for NVIDIA and AMD GPUs
- Exploring Intel support

Chapel code calling CUDA examples

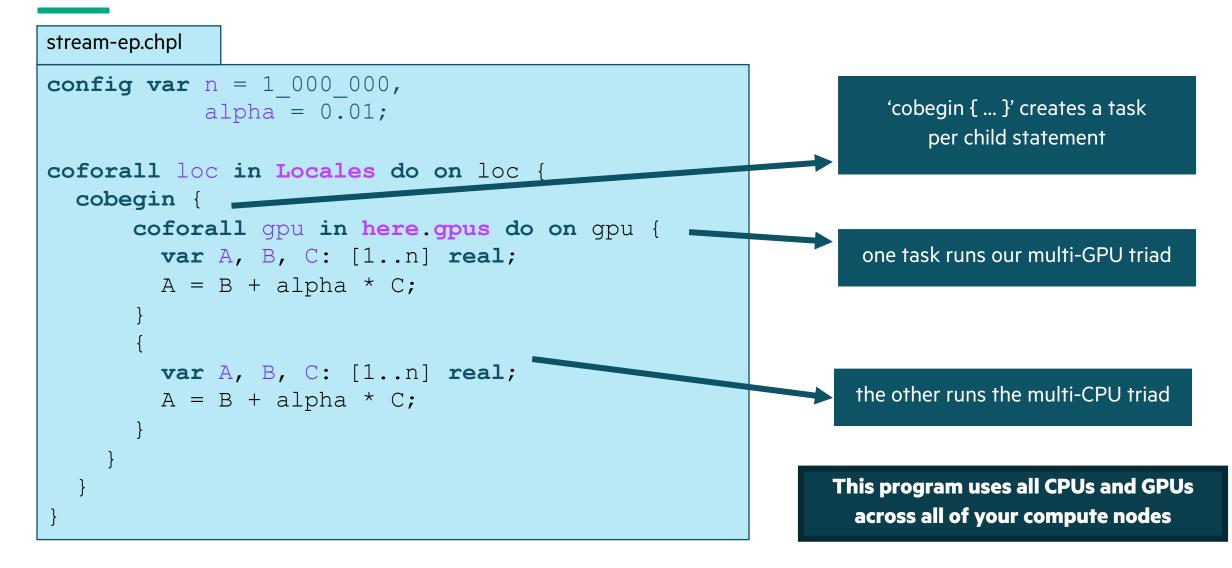
- <u>https://github.com/chapel-</u> lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
- <u>https://github.com/chapel-</u> lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts

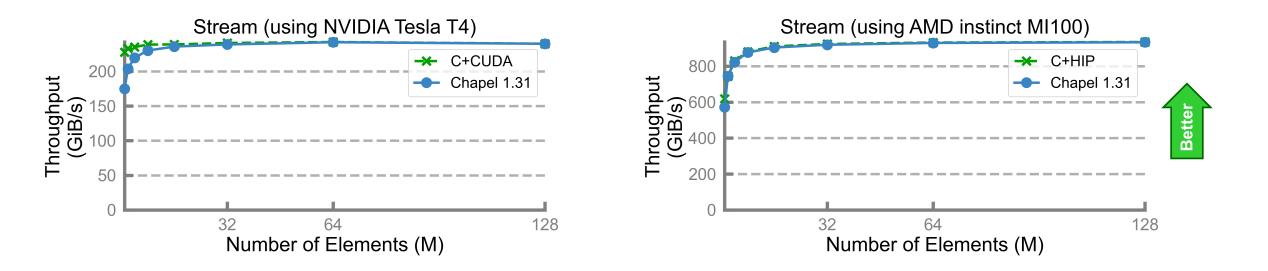
- Using the 'locale' concept to indicate execution and data allocation on GPUs
- 'forall' and 'foreach' loops are converted to kernels
- Arrays declared within GPU sublocale code blocks are allocated on the GPU

• For more info...

<u>https://chapel-lang.org/docs/technotes/gpu.html</u>

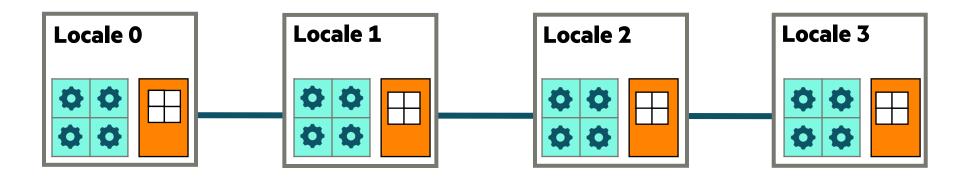

gpuExample.chpl

```
use GpuDiagnostics;
startGpuDiagnostics();
```


```
// Same code can run on GPU or CPU
coforall loc in operateOn do on loc {
  var A : [1..10] int;
  foreach a in A do a+=1;
  writeln(A);
}
stopGpuDiagnostics();
```

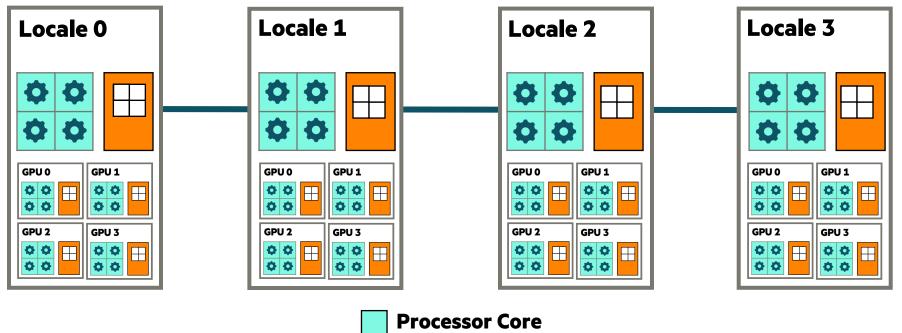
```
writeln(getGpuDiagnostics());
```

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS


STREAM TRIAD: PERFORMANCE VS. REFERENCE VERSIONS

Performance vs. reference versions has become competitive as of the last release

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING


- **1. parallelism:** What tasks should run simultaneously?
- **2. locality:** Where should tasks run? Where should data be allocated?
 - complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

- **1. parallelism:** What tasks should run simultaneously?
- 2. locality: Where should tasks run? Where should data be allocated?
 - complicating matters, compute nodes now often have GPUs with their own processors and memory
 - we represent these as *sub-locales* in Chapel

Memory

STREAM TRIAD: DISTRIBUTED MEMORY, CPUS ONLY

stream-glbl.chpl

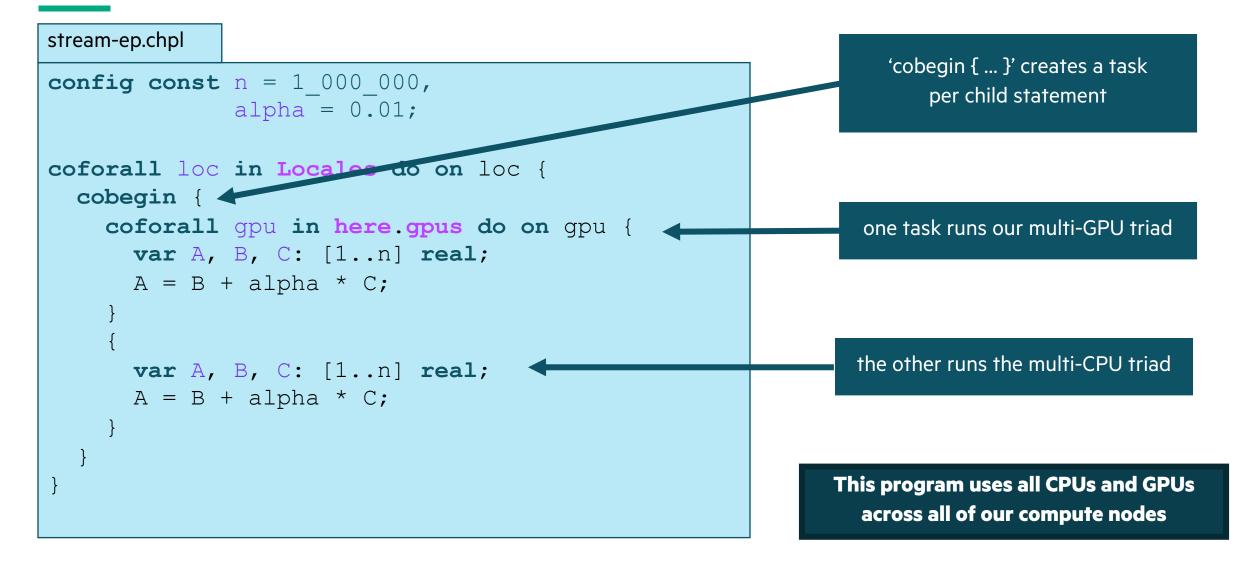
use BlockDist;

```
const Dom = Block.createDomain({1..n});
var A, B, C: [Dom] real;
```

A = B + alpha * C;

These programs are both CPU-only

Nothing refers to GPUs, explicitly or implicitly


```
stream-ep.chpl
```

```
coforall loc in Locales {
  on loc {
    var A, B, C: [1..n] real;
    A = B + alpha * C;
```

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

OTHER CHAPEL EXAMPLES & PRESENTATIONS

• Primers

https://chapel-lang.org/docs/primers/index.html

• Blog posts for Advent of Code

https://chapel-lang.org/blog/index.html

• Test directory in main repository

<u>https://github.com/chapel-lang/chapel/tree/main/test</u>

• Presentations

<u>https://chapel-lang.org/presentations.html</u>

TUTORIAL SUMMARY

Takeaways

- Chapel is a PGAS programming language designed to leverage parallelism
- It is being used in some large production codes
- Our team is responsive to user questions and would enjoy having you participate in our community

How to get more help

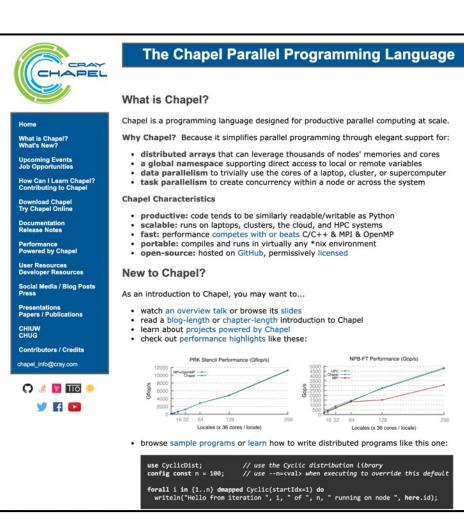
- Ask the Chapel team and users questions on discourse, gitter, or stack overflow
- Also feel free to email me at michelle.strout@hpe.com

Engaging with the community

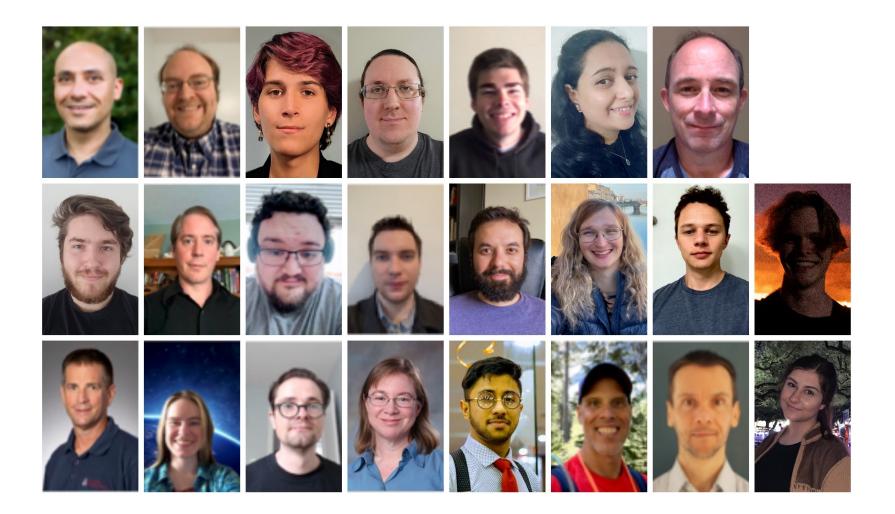
- Share your sample codes with us and your research community!
- Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

CHAPEL RESOURCES

Chapel homepage: <u>https://chapel-lang.org</u>


• (points to all other resources)

Social Media:


- Twitter: <u>@ChapelLanguage</u>
- Facebook: <u>@ChapelLanguage</u>
- YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:

- Discourse: https://chapel.discourse.group/
- Gitter: https://gitter.im/chapel-lang/chapel
- Stack Overflow: https://stackoverflow.com/questions/tagged/chapel
- GitHub Issues: https://github.com/chapel-lang/chapel/issues

CURRENT CHAPEL TEAM AT HPE

BACKUP SLIDES AND ADDITIONAL CONTENT

GENERAL TIPS WHEN GETTING STARTED WITH CHAPEL (ALSO IN README)

- Online **documentation** is here: <u>https://chapel-lang.org/docs/</u>
 - The primers can be particularly valuable for learning a concept: <u>https://chapel-lang.org/docs/primers/index.html</u>
 - These are also available from a Chapel release in '\$CHPL_HOME/examples/primers/'

or `\$CHPL_HOME/test/release/examples/primers/' if you clone from GitHub

- When debugging, almost anything in Chapel can be printed out with 'writeln(expr1, expr2, expr3);'
 - Types can be printed after being cast to strings, e.g. 'writeln("Type of ", expr, " is ", expr.type:string);'
 - A quick way to print a bunch of values out clearly is to print a tuple made up of them 'writeln((x, y, z));'
- Once your code is correct, before doing any performance timings, be sure to re-compile with **'--fast'**
 - Turns on optimizations, turns off safety checks, slows down compilation, speeds up execution significantly
 - Then, when you go back to making modifications, be sure to stop using `--fast` in order to turn checks back on
- For vim / emacs users, **syntax highlighters** are in \$CHPL_HOME/highlight
 - Imperfect, but typically better than nothing
 - Emacs MELPA users may want to use the chapel-mode available there (better in many ways, weird in others)

OTHER TASK PARALLEL FEATURES

• **begin / cobegin statements:** the two other ways of creating tasks

begin *stmt;* // fire off an asynchronous task to run 'stmt'

cobegin {	// fire off a task for each of 'stmt1', 'stmt2',
stmt1;	
stmt2;	
stmt3;	
}	// wait here for these tasks to complete before proceeding

• atomic / synchronized variables: types for safe data sharing & coordination between tasks

var sum: atomic int; // supports various atomic methods like .add(), .compareExchange(), ...
var cursor: sync int; // stores a full/empty bit governing reads/writes, supporting .readEF(), .writeEF()

• task intents / task-private variables: control how variables and tasks relate

coforall i in 1...niters with (ref x, + reduce y, var z: int) { ... }

SPECTRUM OF CHAPEL FOR-LOOP STYLES

for loop: each iteration is executed serially by the current task

• predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order

• a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order

• implemented using one or more tasks, locally or distributed, as determined by the iterand expression

forall i in 1n do	// forall loops over ranges use local tasks only
forall (i,j) in {1n} do	// ditto for local domains
forall elem in myLocArr do	//and local arrays
forall elem in myDistArr do	// distributed arrays use tasks on each locale owning part of the array
<pre>forall i in myParIter() do</pre>	// you can also write your own iterators that use the policy you want

coforall loop: each iteration is executed concurrently by a distinct task

• explicit parallelism; supports synchronization between iterations (tasks)

SIDEBAR: PROMOTION OF SCALAR SUBROUTINES

• Any function or operator that takes scalar arguments can be called with array expressions instead

```
proc foo(x: real, y: real, z: real) {
    return x**y + 10*z;
}
```

• Interpretation is similar to that of a zippered forall loop, thus:

C = foo(A, 2, B);

is equivalent to:

forall (c, a, b) in zip(C, A, B) do
 c = foo(a, 2, b);

as is:

 $C = A^{**2} + 10^{*}B;$

• So, in the Jacobi computation,

abs(A[D] - Temp[D]); == forall (a,t) in zip(A[D], Temp[D]) do abs(a - t);