
CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27, 2023

Michelle Strout and Jeremiah Corrado

INTRODUCTION TO CHAPEL PARALLEL
PROGRAMMING LANGUAGE

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

2

INTRODUCTION TO CHAPEL

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

CHAPEL PROGRAMMING LANGUAGE

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

4(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• April 2023: 1200 GiB/s for argsort on an HPE EX system

Recent Journal Paper on using Chapel for calibrating hydrologic models
• Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed

watershed hydrologic models", Environmental Modeling and Software.
• They report super-linear speedup

5

HIGHLIGHTS OF CHAPEL USAGE

https://github.com/Bears-R-Us/arkouda

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

ARKOUDA ARGSORT PERFORMANCE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

6

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

7

INTRODUCTION TO CHAPEL

Four nodes/CPUs

8

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Each locale executes on a “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

9

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

hello-dist-node-names.chpl

10

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

‘here’ refers to the locale on
which we’re currently running

how many processing units
(think “cores”) does my locale have?

what’s my locale’s name?

hello-dist-node-names.chpl

11

TASK-PARALLEL “HELLO WORLD”

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

a 'coforall’ loop executes each
iteration as an independent task

hello-dist-node-names.chpl

12

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

hello-dist-node-names.chpl

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

13

coforall loc in Locales {
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

the array of locales we’re running on
(introduced a few slides back)

Locales array:

Locale 0 Locale 1 Locale 2 Locale 3

hello-dist-node-names.chpl

14

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
 on loc {
 const numTasks = here.numPUs();
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033

Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035

…

hello-dist-node-names.chpl

• What Chapel is and how programmers are using Chapel in their applications

• Chapel execution model with a parallel and distributed "Hello World"

• 2D Heat Diffusion example: variants and how to compile and run them

• Learning objectives for today's 90-minute Chapel tutorial

15

INTRODUCTION TO CHAPEL

• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

16

2D HEAT DIFFUSION EXAMPLE
See https://go.lbl.gov/cuf23-repo for more info
and for example code.

https://go.lbl.gov/cuf23-repo

• 2D heat diffusion PDE

• Solving for next temperatures at each time step
using finite difference method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all
the values and time to solution

17

PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

𝑢!,#$%& = 𝑢!,#$ + 𝛼 𝑢!%&,#$ + 𝑢!'&,#$ − 4𝑢!,#$ + 𝑢!,#%&$ + 𝑢!,#'&$

𝑢$ 𝑢$%&

Stored in uStored in un

Fixed
boundary

values

Simplified form for below
assume 𝚫x=𝚫y, and let

𝛂=𝛎𝚫t/𝚫x2

forall (i, j) in indicesInner do
 u[i, j] = un[i, j] + alpha *
 (un[i, j-1] + un[i-1, j] + un[i+1, j] +

 un[i, j+1] - 4 * un[i, j]);

• Declaring 'u' and 'un' arrays

• Declaring 'u' and 'un' arrays as distributed (e.g.,
2x2 distribution is shown)

• Reads that cross the distribution boundary will
result in a remote get

18

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

𝑢$ 𝑢$%&

Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
 INDICES = Block.createDomain(indices);
var u: [INDICES] real;

• Synchronous parallellism
• 'coforall', distributed memory parallelism across processes/locales

with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

19

PARALLELISM SUPPORTED BY CHAPEL

iterationiteration
coforall

iteration

stmt
 beginbegin

begin

stmt

stmt

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

20

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27, 2023

Michelle Strout and Jeremiah Corrado

PROGRAMING IN CHAPEL

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
• Serial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

22

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• During the tutorial today and tomorrow (July 26-27, 2023)
• Download the tarball of examples and follow the instructions in the README

curl -LO https://go.lbl.gov/cuf23.tar.gz
tar xzf cuf23.tar.gz
cd cuf23/

• After the tutorial
• The cuf23 tarball will still be available or clone from https://go.lbl.gov/cuf23-repo for Chapel code
• Attempt this Online website for running Chapel code

– Go to main Chapel webpage at https://chapel-lang.org/ and click on the ATO icon on the lower left
• Using a container on your laptop

– First, install docker for your machine and then start it up
– Then, the below commands work with docker
 docker pull docker.io/chapel/chapel-gasnet # takes about 5 minutes
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet chpl hello.chpl
 docker run --rm -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet ./hello -nl 1

23

HOW TO PARTICIPATE IN THIS TUTORIAL AND AFTERWARDS

Check out the chapel-quickReference.pdf in the cuf23/chapel/ subdirectory

https://go.lbl.gov/cuf23.tar.gz
https://go.lbl.gov/cuf23-repo
https://chapel-lang.org/

24

SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

use Map, IO;

config const infilename = "kmer_large_input.txt";
config const k = 4;

var sequence, line : string;
var f = open(infilename, ioMode.r);
var infile = f.reader();
while infile.readLine(line) {
 sequence += line.strip();
}

var nkmerCounts : map(string, int);

for ind in 0..<(sequence.size-k) {
 nkmerCounts[sequence[ind..#k]] += 1;
}

kmer.chpl
‘Map’ and 'IO' are two of the standard

libraries provided in Chapel. A 'map' is like a
dictionary in python.

'config const' indicates a configuration
constant, which result in built-in

command-line parsing

The variable 'nkmerCounts' is being
declared as a dictionary mapping

strings to ints

Counting up each kmer in the sequence

Reading all of the lines from the input
file into the string 'sequence'.

• Some things to try out with 'kmer.chpl'
chpl kmer.chpl
./kmer -nl 1

./kmer -nl 1 –-k=10 # can change k

./kmer -nl 1 --infilename="kmer.chpl" # changing infilename

./kmer -nl 1 --k=10 --infilename="kmer.chpl" # can change both

• Key concepts
• 'use' command for including modules
• configuration constants, 'config const'
• reading from a file
• 'map' data structure

25

EXPERIMENTING WITH THE K-MER EXAMPLE make run-kmer

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
• Parallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

26

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• Synchronous parallellism
• 'coforall', distributed memory parallelism across

processes/locales with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

27

PARALLELISM SUPPORTED BY CHAPEL
coforall loc in Locales do on loc { /* ... */ }
coforall tid in 0..<numTasks { /* ... */ }

cobegin { doTask0(); doTask1(); ... doTaskN(); }

var x : atomic int = 0, y : sync int = 0;
sync {
 begin x.add(1);
 begin y.writeEF(1);
 begin x.sub(1);
 begin y.writeFF(0);
}
assert(x.read() == 0);
assert(y.readFE() == 0);

var n = [i in 1..10] i*i;
forall x in n do x += 1;

var nPartialSums = + scan n;
var nSum = + reduce n;

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

28(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

29

USE OF PARALLELISM IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

In this tutorial will be working with examples of parallelism from the yellow highlighted columns.

• Parallel hello world
• hellopar.chpl

• Key concepts
• 'coforall' over the `Locales` array with an `on` statement
• 'coforall' creating some number of tasks per locale
• configuration constants, 'config const'
• range expression, '0..<tasksPerLocale'
• 'writeln'
• inline comments start with '//'

30

PARALLELISM ACROSS LOCALES AND WITHIN LOCALES
// can be set on the command line with --tasksPerLocale=2

config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
 coforall tid in 0..<tasksPerLocale {

 writeln("Hello world! ",
 "(from task ", tid,
 " of ", tasksPerLocale,
 " on locale ", here.id,
 " of ", numLocales, ")");
 }
}

make run-hellopar

• In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

• For now, think of each compute node as having one locale run on it

31

LOCALES AND EXECUTION MODEL IN CHAPEL

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

• Two key built-in variables for referring to locales in Chapel programs:
•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

LOCALES AND EXECUTION MODEL IN CHAPEL

Locale 0 Locale 1 Locale 2 Locale 3

32

Processor Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

33

Processor Core

Memory

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

on Locales[1] {
 var B: [1..2, 1..2] real;

 B = 2 * A;
}

basics-on.chpl

34

All Chapel programs begin running
as a single task on locale 0

Locale 0 Locale 1 Locale 2 Locale 3

Variables are stored using the
memory local to the current task

on-clauses move tasks
to other locales

remote variables can be
 accessed directlyThis is a serial, but distributed computation

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {
 on loc {
 var B = A;
 }
}

basics-for.chpl

35

This loop will serially iterate over
the program’s locales

Locale 0 Locale 1 Locale 2 Locale 3

This is also a serial, but distributed computation

MIXING LOCALITY WITH TASK PARALLELISM

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {
 on loc {
 var B = A;
 }
}

basics-coforall.chpl

36

The coforall loop creates
a parallel task per iteration

Locale 0 Locale 1 Locale 2 Locale 3

This results in a parallel distributed computation

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = Block.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl

37

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

• Parallel hello world
• hellopar.chpl

• Key concepts
• 'coforall' over the `Locales` array with an `on` statement
• 'coforall' creating some number of tasks per locale
• configuration constants, 'config const'
• range expression, '0..<tasksPerLocale'
• 'writeln'
• inline comments start with '//'

• Things to try
./run-hellopar -nl 1 --tasksPerLocale=3
./run-hellopar -nl 2 --tasksPerLocale=3

38

PARALLELISM ACROSS LOCALES AND WITHIN LOCALES
// can be set on the command line with --tasksPerLocale=2

config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
 coforall tid in 0..<tasksPerLocale {

 writeln("Hello world! ",
 "(from task ", tid,
 " of ", tasksPerLocale,
 " on locale ", here.id,
 " of ", numLocales, ")");
 }
}

make run-hellopar

• This is a parallel, but local program:

• This is a distributed, but serial program:

• This is a distributed parallel program:

39

PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

writeln("Hello from locale 0!");
on Locales[1] do writeln("Hello from locale 1!");
on Locales[2] {
 writeln("Hello from locale 2!");
 on Locales[0] do writeln("Hello from locale 0!");
}
writeln("Back on locale 0");

coforall i in 1..msgs do
 writeln("Hello from task ", i);

coforall i in 1..msgs do
 on Locales[i%numLocales] do
 writeln("Hello from task ", i, " running on locale ", here.id);

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
• Distributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

40

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'
chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files

./parfilekmer -nl 2 –-k=10 # can also change k

41

PROCESSING FILES IN PARALLEL
make run-parfilekmer

ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem;
config const dir = “DataDir”;
var fList = findFiles(dir);
var filenames =
 Block.createArray(0..<fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
 ...
 // code from kmer.chpl
 ...
}

42

parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer –nl 4

• shared and distributed-memory
parallelism using 'forall'

• in other words, parallelism within
the locale/node and across
locales/nodes

• a distributed array
• command line options to indicate

number of locales

43

BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"filename1" "filename2" "filename3" "filename4" "filename5" "filename6" "filename7" "filename8"

• Array of strings for filenames is distributed
across locales

• 'forall' will do parallelism across locales and then
within each locale to take advantage of multicore

Locale 0 Locale 1

prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 2

• See 'parfilekmer.chpl' in the repository

• Some things to try out with 'parfilekmer.chpl'
chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files

./parfilekmer -nl 2 –-k=10 # can also change k

• Concepts illustrated
• 'forall' provides distributed and shared memory parallelism when do a 'forall'

over the Block distributed array
• No puts and gets happening yet

44

PROCESSING FILES IN PARALLEL
make run-parfilekmer

• Compile and run Chapel programs
• Familiarity with the Chapel execution model including how to run codes in parallel on a single

node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
üDistributed parallelism and 1D arrays, (processing files in parallel)
• Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
• Distributed parallel image processing, (coral reef diversity example)
• GPU parallelism (stream example)

• Where to get help and how you can participate in the Chapel community

45

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

Note 1: Variables are allocated on the locale where the task is running
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 var x, y, z: int;
 …

}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

 x

 y

 z

locale 1

0

0

0

46

Note 2: Tasks can refer to lexically visible variables, whether local or remote
CHAPEL SUPPORTS A GLOBAL NAMESPACE

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 if !done {
 if verbose then
 writef("Adding locale 1’s contribution");
 total += computeMyContribution();
 }
}

onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

locale 1

if !done {
 if verbose then
 writef("Adding…
 total += computi…
}

code runs on locale 1,
but refers to values
stored on locale 0

47

• See 'heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

• Some things to try out with these variants
chpl heat_2D.chpl
./heat_2D -nl 1

--nt 10 --nx=2048 --ny=2048 # decreases the number of time steps
 # and reduces the size of the domain
 # along each dimension from default 4096

48

2D HEAT DIFFUSION EXAMPLE make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_buffers

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = Block.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

basics-distarr.chpl

49

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

• 2D heat diffusion PDE

• Solving for next temperatures at each time step
using finite difference method

• All updates in a timestep can be done in parallel

• Output is the mean and standard deviation of all
the values and time to solution

50

PARALLEL HEAT DIFFUSION IN HEAT_2D.CHPL

𝑢!,#$%& = 𝑢!,#$ + 𝛼 𝑢!%&,#$ + 𝑢!'&,#$ − 4𝑢!,#$ + 𝑢!,#%&$ + 𝑢!,#'&$

𝑢$ 𝑢$%&

Stored in uStored in un

Fixed
boundary

values

Simplified form for below
assume 𝚫x=𝚫y, and let

𝛂=𝛎𝚫t/𝚫x2

forall (i, j) in indicesInner do
 u[i, j] = un[i, j] + alpha *
 (un[i, j-1] + un[i-1, j] + un[i+1, j] +

 un[i, j+1] - 4 * un[i, j]);

• Declaring 'u' array

• Declaring 'u' array as distributed

• Reads that cross the distribution boundary will
result in a remote get

51

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D_DIST.CHPL

𝑢$ 𝑢$%&

Stored in uStored in un

const indices = {0..<nx, 0..<ny}
var u: [indices] real;

const indices = {0..<nx, 0..<ny},
 INDICES = Block.createDomain(indices);
var u: [INDICES] real;

• Each locale has own copies
of 'u' and 'un' subdomains
with a one-cell halo

• (1) Array assignment writes
edge values into neighbors'
halo landing pads

• (2) copy into local halo

• (3) compute next u in
parallel locally

52

HALO BUFFER OPTIMIZATION IN HEAT_2D_DIST_BUFFERS.CHPL

𝑢$ 𝑢$%&

(1) write to neighbor halo

(2) copy into local halo

(3) compute next u in parallel locally

const indices = {0..<nx, 0..<ny},
 indicesInner = indices.expand(-1),
 INDICES = Block.createDomain(indices);
const u: [INDICES] real;
...
var LOCALE_DOM = Block.createDomain(u.targetLocales().domain);
var haloArrays: [LOCALE_DOM][0..<4] haloArray;
param N = 0, S = 1, E = 2, W = 3;
...
for 1..nt {
 haloArrays[tidX, tidY-1][E].v = uLocal2[.., WW+1];
 ...
 b.barrier();
 uLocal1 <=> uLocal2;

 uLocal1[.., WW] = haloArrays[tidX, tidY][W].v;
 ...
 forall (i,j) in localIndicesInner do
 uLocal2[i,j] = uLocal1[i,j] + alpha*(uLocal1[i-1,j] + uLocal1[i+1,j]
 + uLocal1[i,j-1] + uLocal1[i,j+1] - 4*uLocal1[i,j]);
 b.barrier();
}

Declare and distribute 'u' array.

HALO BUFFER OPTIMIZATION CODE

53

Declare North, South, East, and West halo
arrays per locale

Copy local edge results into neighbor's halo
array. 'tidX' and 'tidY' are the locale's task id
X and Y coordinates. Using array slicing in

'uLocal2[..,WW+1]'.

Copy halo array into local halo.

Compute u[I,j] in local subdomain.
Barrier over all locales

• See 'diffusion/heat_2D.*.chpl' in the Chapel examples
• 'heat_2D.chpl' - shared memory parallel version that runs in locale 0
• 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
• 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

• Concepts illustrated
• 'forall' provides distributed and shared memory parallelism when do a 'forall'

over the 2D Block distributed array
• 'heat_2D_dist.chpl' version doesn't do any special handling of the halo exchange
• 'heat_2D_dist_buffers.chpl' shows an optimization that explicitly copies

subarrays into buffers

54

2D HEAT DIFFUSION EXAMPLE
make run-heat_2D
make run-heat_2D_dist
make run-heat_2D_dist_buffers

• See 'image_analysis/' subdirectory in the Chapel examples
• Coral reef diversity analysis written by Scott Bachman
• Reads a single file in parallel
• Uses distributed and shared memory parallelism
• Is being used and modified by Scott and collaborators for climate research

• 'image_analysis/README' explains how to compile and run it
cd image_analysis
chpl main.chpl --fast
./main -nl 2 --in_name=banda_ai --map_type=benthic --window_size=100000

55

IMAGE PROCESSING EXAMPLE

• Analyzing images for coral reef diversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a

neighborhood, i.e., convolution over image
• Developed by Scott Bachman, NCAR scientist who

is a visiting scholar on the Chapel team
• Scott started learning Chapel in Sept 2022, started

Coral Reef app in Dec 2022, already had
collaborators presenting results in Feb 2023

• Last week with ~5 lines changed, ran on a GPU
• Performance

• Less than 300 lines of Chapel code scales out to
100s of processors on Cheyenne (NCAR)

• Full maps calculated in seconds, rather than days

56

IMAGE PROCESSING FOR CORAL REEF DISSIMILARITY

Distributed Parallelism: Divide the domain into “strips” and allocate a task per strip

Task 1

Task 2

…

Task (n-1)

Task n

• See 'image_analysis/' subdirectory in the Chapel examples
• Coral reef diversity analysis written by Scott Bachman
• Reads a single file in parallel
• Uses distributed and shared memory parallelism
• Is being used and modified by Scott and collaborators for climate research

• 'image_analysis/README' explains how to compile and run it

• Concepts illustrated
• User-defined modules
• Reading a single file in parallel
• Sparse domains used to create masks in 'distance_mask.chpl'
• Creating a 1D block distribution by reshaping the 'Locales' array
• Gets to locale 0 will occur for some smaller arrays that live on locale 0

58

IMAGE PROCESSING EXAMPLE

• Generate code for GPUs
• Support for NVIDIA and AMD GPUs
• Exploring Intel support

• Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts
• Using the 'locale' concept to indicate execution and data

allocation on GPUs
• 'forall' and 'foreach' loops are converted to kernels
• Arrays declared within GPU sublocale code blocks are

allocated on the GPU

• For more info...
• https://chapel-lang.org/docs/technotes/gpu.html

59

GPU SUPPORT IN CHAPEL

use GpuDiagnostics;
startGpuDiagnostics();

var operateOn =
if here.gpus.size>0 then here.gpus
 else [here,];

// Same code can run on GPU or CPU
coforall loc in operateOn do on loc {
 var A : [1..10] int;
 foreach a in A do a+=1;
 writeln(A);
}

stopGpuDiagnostics();
writeln(getGpuDiagnostics());

gpuExample.chpl

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

config var n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales do on loc {
 cobegin {
 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 }
 }
}

stream-ep.chpl

60

This program uses all CPUs and GPUs
across all of your compute nodes

‘cobegin { … }’ creates a task
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad

Performance vs. reference versions has become competitive as of the last release

61

STREAM TRIAD: PERFORMANCE VS. REFERENCE VERSIONS

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

62

Processor Core

Memory

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

63

Processor Core

Memory

config const n = 1_000_000,
 alpha = 0.01;

use BlockDist;

const Dom = Block.createDomain({1..n});
var A, B, C: [Dom] real;

A = B + alpha * C;

STREAM TRIAD: DISTRIBUTED MEMORY, CPUS ONLY

64

These programs are both CPU-only

Nothing refers to GPUs,
explicitly or implicitly

config const n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales {
 on loc {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
}

stream-ep.chpl

stream-glbl.chpl

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

config const n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales do on loc {

 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }

}

stream-ep.chpl

65

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently

on each of this locale’s GPUs

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

config const n = 1_000_000,
 alpha = 0.01;

coforall loc in Locales do on loc {
 cobegin {
 coforall gpu in here.gpus do on gpu {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 {
 var A, B, C: [1..n] real;
 A = B + alpha * C;
 }
 }
}

stream-ep.chpl

66

This program uses all CPUs and GPUs
across all of our compute nodes

‘cobegin { … }’ creates a task
per child statement

one task runs our multi-GPU triad

the other runs the multi-CPU triad

• Primers
• https://chapel-lang.org/docs/primers/index.html

• Blog posts for Advent of Code
• https://chapel-lang.org/blog/index.html

• Test directory in main repository
• https://github.com/chapel-lang/chapel/tree/main/test

• Presentations
• https://chapel-lang.org/presentations.html

67

OTHER CHAPEL EXAMPLES & PRESENTATIONS

https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test
https://chapel-lang.org/presentations.html

• Takeaways
• Chapel is a PGAS programming language designed to leverage parallelism
• It is being used in some large production codes
• Our team is responsive to user questions and would enjoy having you participate in our community

• How to get more help
• Ask the Chapel team and users questions on discourse, gitter, or stack overflow
• Also feel free to email me at michelle.strout@hpe.com

• Engaging with the community
• Share your sample codes with us and your research community!
• Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

68

TUTORIAL SUMMARY

https://chapel-lang.org/CHIUW.html

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

69

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

CURRENT CHAPEL TEAM AT HPE

70HPE PROPRIETARY

71

BACKUP SLIDES AND ADDITIONAL CONTENT

• Online documentation is here: https://chapel-lang.org/docs/
• The primers can be particularly valuable for learning a concept: https://chapel-lang.org/docs/primers/index.html

– These are also available from a Chapel release in ‘$CHPL_HOME/examples/primers/’
or ‘$CHPL_HOME/test/release/examples/primers/’ if you clone from GitHub

• When debugging, almost anything in Chapel can be printed out with ‘writeln(expr1, expr2, expr3);’
• Types can be printed after being cast to strings, e.g. ‘writeln(”Type of “, expr, “ is “, expr.type:string);’
• A quick way to print a bunch of values out clearly is to print a tuple made up of them ‘writeln((x, y, z));’

• Once your code is correct, before doing any performance timings, be sure to re-compile with ‘--fast’
• Turns on optimizations, turns off safety checks, slows down compilation, speeds up execution significantly
• Then, when you go back to making modifications, be sure to stop using `--fast` in order to turn checks back on

• For vim / emacs users, syntax highlighters are in $CHPL_HOME/highlight
• Imperfect, but typically better than nothing
• Emacs MELPA users may want to use the chapel-mode available there (better in many ways, weird in others)

72

GENERAL TIPS WHEN GETTING STARTED WITH CHAPEL (ALSO IN README)

https://chapel-lang.org/docs/
https://chapel-lang.org/docs/primers/index.html

• begin / cobegin statements: the two other ways of creating tasks

• atomic / synchronized variables: types for safe data sharing & coordination between tasks

• task intents / task-private variables: control how variables and tasks relate

73

OTHER TASK PARALLEL FEATURES

begin stmt; // fire off an asynchronous task to run ‘stmt’

cobegin { // fire off a task for each of ‘stmt1’, ‘stmt2’, …
 stmt1;
 stmt2;
 stmt3;
 …
} // wait here for these tasks to complete before proceeding

var sum: atomic int; // supports various atomic methods like .add(), .compareExchange(), …
var cursor: sync int; // stores a full/empty bit governing reads/writes, supporting .readEF(), .writeEF()

coforall i in 1..niters with (ref x, + reduce y, var z: int) { … }

for loop: each iteration is executed serially by the current task
• predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order
• a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order
• implemented using one or more tasks, locally or distributed, as determined by the iterand expression

coforall loop: each iteration is executed concurrently by a distinct task
• explicit parallelism; supports synchronization between iterations (tasks)

74

SPECTRUM OF CHAPEL FOR-LOOP STYLES

forall i in 1..n do … // forall loops over ranges use local tasks only
forall (i,j) in {1..n, 1..n} do … // ditto for local domains…
forall elem in myLocArr do … // …and local arrays
forall elem in myDistArr do … // distributed arrays use tasks on each locale owning part of the array
forall i in myParIter(…) do … // you can also write your own iterators that use the policy you want

• Any function or operator that takes scalar arguments can be called with array expressions instead

• Interpretation is similar to that of a zippered forall loop, thus:

 is equivalent to:

 as is:

• So, in the Jacobi computation,
 ==

75

SIDEBAR: PROMOTION OF SCALAR SUBROUTINES

proc foo(x: real, y: real, z: real) {
 return x**y + 10*z;
}

C = foo(A, 2, B);

forall (c, a, b) in zip(C, A, B) do
 c = foo(a, 2, b);

C = A**2 + 10*B;

abs(A[D] - Temp[D]); forall (a,t) in zip(A[D], Temp[D]) do abs(a – t);

