
C O M P U T E | S T O R E | A N A L Y Z E

Grab-Bag Topics / Demo

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
3

● Demonstrate chplvis
● Study an example: Detecting Duplicate Files
● You will learn about:

● viewing communication pattern and volume with chplvis
● optimizing for communication
● spawning subprocesses with the Spawn module
● working with the FileSystem and IO modules
● sorting data with the Sort module
● calling C functions

● And use knowledge from earlier:
● tuples
● block distribution
● zippered iteration
● forall loops
● …

C O M P U T E | S T O R E | A N A L Y Z E

chplvis

Copyright 2016 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

chplvis

Copyright 2016 Cray Inc.
5

● Seehttp://chapel.cray.com/docs/latest/tools/chplvis/chplvis
.html

● Example 3 is
Jacobi-like

C O M P U T E | S T O R E | A N A L Y Z E

chplvis

Copyright 2016 Cray Inc.
6

● Upper Left shows scale of
communication

C O M P U T E | S T O R E | A N A L Y Z E

chplvis

Copyright 2016 Cray Inc.
7

● Try clicking on:
● both halves of each line
● the boxes indicating Locales

C O M P U T E | S T O R E | A N A L Y Z E

Detecting Duplicate Files

Copyright 2016 Cray Inc.
8

C O M P U T E | S T O R E | A N A L Y Z E

Detecting Duplicate Files

Copyright 2016 Cray Inc.
9

● Goal: Write a program that produces a list of files that
have the same contents
● take in files and directories as arguments
● use SHA1 hash in order to find likely duplicates

C O M P U T E | S T O R E | A N A L Y Z E

Reading Arguments and Enumerating Files

Copyright 2016 Cray Inc.
10

proc main(args:[] string)
{
// This program looks for duplicate files.
// Arguments are files or directories to include in search.

// Gather the paths we want to hash to find duplicates.
// Start out with a 0-length array
// We'll append to it with push_back
// This is only possible for arrays that do not share a domain.
var paths:[1..0] string;

for arg in args[1..] {
if isFile(arg) then
paths.push_back(arg);

else if isDir(arg) then
// use FileSystem.findfiles to easily enumerate files.
// A parallel version is available.
for path in findfiles(arg, recursive=true) do
paths.push_back(path);

}

C O M P U T E | S T O R E | A N A L Y Z E

Arrays for the Computation

Copyright 2016 Cray Inc.
11

// Create a distributed array of paths so that we can

// distribute the work of hashing files to

// different Locales

var n:int = paths.size;

var BlockN = {1..n} dmapped Block({1..n});

var distributedPaths:[BlockN] string;

distributedPaths = paths;

// Create an array of hashes paths.

// This array is not distributed in this version.

// The array will store (hash, path).

// After computing this array, we'll sort it in order to

// find duplicates.

var hashAndFile:[1..paths.size] (string, string);

C O M P U T E | S T O R E | A N A L Y Z E

Computing SHA1 with Spawn

Copyright 2016 Cray Inc.
12

// Using the Spawn module, compute the SHA1 sums with an
// external program
forall (id,path) in zip(distributedPaths.domain,
distributedPaths) {

// The spawn call creates a subprocess. By specifying
// stdout=PIPE, we are requesting that the output of
// the subprocess be sent to a pipe that we can read from.
var sub = spawn(["sha1sum", path], stdout=PIPE);
// Read the hash value from the output of sha1sum.
// Note that sha1sum output looks like this:
// d556d22d3e7b3ae55108442b36b5833523c923b7 file-name
var hashString:string;
sub.stdout.read(hashString);
// Store the hash and the path into the array.
// Since the array is not distributed, this sends data
// to Locale 0.
hashAndFile[id] = (hashString, path);
sub.wait();

}

C O M P U T E | S T O R E | A N A L Y Z E

Sorting to Group Duplicates

Copyright 2016 Cray Inc.
13

// Sort the hashAndFile array on Locale 0

// Since we stored the hash value first in the tuple elements,

// this call groups values with the same hash.

// Use the Sort Module.

sort(hashAndFile);

C O M P U T E | S T O R E | A N A L Y Z E

Let's look at chplvis output!

Copyright 2016 Cray Inc.
14

C O M P U T E | S T O R E | A N A L Y Z E

chplvis output: string version

Copyright 2016 Cray Inc.
15

● Significant communication
(for only 316 files)

C O M P U T E | S T O R E | A N A L Y Z E

// Store the hash and the path into the array.
// Since the array is not distributed, this sends data
// to Locale 0.
hashAndFile[id] = (hashString, path);

chplvis output: string version

Copyright 2016 Cray Inc.
16

● Lots of 'on' statements
● communicating strings is

expensive!

C O M P U T E | S T O R E | A N A L Y Z E

Reducing overhead with integers

Copyright 2016 Cray Inc.
17

C O M P U T E | S T O R E | A N A L Y Z E

Using Integers

Copyright 2016 Cray Inc.
18

● We don't actually need to communicate strings
● Instead of a path string, could store integer index into

paths array
● Instead of a hash string, could store a tuple of integers

● SHA1 hash is 20 bytes -- fits in 3 Chapel ints

C O M P U T E | S T O R E | A N A L Y Z E

Creating a type for hashes

Copyright 2016 Cray Inc.
19

// a SHA-1 hash is 160 bits, so it fits in 3 64-bit ints.

type Hash = (int,int,int);

C O M P U T E | S T O R E | A N A L Y Z E

Using integers in the hashAndFile array

Copyright 2016 Cray Inc.
20

// Create an array of hashes and file ids

// a file id is just the index into the paths array.

var hashAndFileId:[1..paths.size] (Hash, int);

C O M P U T E | S T O R E | A N A L Y Z E

Working with integers in the loop

Copyright 2016 Cray Inc.
21

var hash = stringToHash(hashString);

// This version is just communicating 4 integer values

// back to Locale 0.

hashAndFileId[id] = (hash, id);

C O M P U T E | S T O R E | A N A L Y Z E

Converting hex to ints

Copyright 2016 Cray Inc.
22

proc stringToHash(s:string): Hash {
// The below is a workaround since Chapel doesn't yet have
// an equivalent of sscanf in C and readf for integers
// can't take in a maximum field width

// Open up an in-memory "file"
var f = openmem();
var w = f.writer();
// Write int-sized substrings separated by spaces
w.write(s[1..16], " ");
w.write(s[17..32], " ");
w.write(s[17..32]);
w.close();
var r = f.reader();
var hash:Hash;
// Use Formatted I/O to read hex values into integers
r.readf("%xu%xu%xu", hash(1), hash(2), hash(3));
r.close();
return hash;

}

C O M P U T E | S T O R E | A N A L Y Z E

Let's look at chplvis output!

Copyright 2016 Cray Inc.
23

C O M P U T E | S T O R E | A N A L Y Z E

chplvis output: integer version

Copyright 2016 Cray Inc.
24

● Reduced communication (for
only 316 files)

C O M P U T E | S T O R E | A N A L Y Z E

chplvis output: integer version

Copyright 2016 Cray Inc.
25

● Only 1 on statement
● Now communication to

Locale 0 uses PUT
// This version is just communicating 4 integers
// back to Locale 0.
hashAndFileId[id] = (hash, id);

C O M P U T E | S T O R E | A N A L Y Z E

Using a C library to SHA

Copyright 2016 Cray Inc.
26

C O M P U T E | S T O R E | A N A L Y Z E

SHA1 available in OpenSSL library

Copyright 2016 Cray Inc.
27

C O M P U T E | S T O R E | A N A L Y Z E

Including SHA1

Copyright 2016 Cray Inc.
28

// This require statement allows this module to add

// some required libraries to the link line

require "-lcrypto", "-lssl";

// The extern block allows Chapel source code to include

// C declarations. The declarations are automatically

// added to the enclosing Chapel scope. Functions,

// variables, and types are supported - including

// inline functions. Macros have limited support.

// See C Interoperability

extern {

#include <openssl/sha.h>

}

C O M P U T E | S T O R E | A N A L Y Z E

Calling SHA1

Copyright 2016 Cray Inc.
29

// The extern block above included everything in

// openssl/sha.h, including the SHA1 function. But,

// in order to call it, we need to create C types

// from some Chapel data.

// string.c_str() returns a C string referring to

// the string's data

// c_ptrTo(something) returns a C pointer referring

// to something

SHA1(data.c_str(), data.length:uint, c_ptrTo(mdArray));

C O M P U T E | S T O R E | A N A L Y Z E

Alternative way of including SHA1

Copyright 2016 Cray Inc.
30

// This require statement indicates that the generated code

// should #include "openssl/sha.h" and be compiled with

// -lcrypto -lssl

require "openssl/sha.h", "-lcrypto", "-lssl";

// This 'extern proc' declaration tells the Chapel

// compiler that a C function SHA1 is available and

// describes the arguments in the Chapel type system.

extern proc SHA1(d:c_string, n:size_t, md:c_ptr(uint(8)));

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

31

