
C O M P U T E      |      S T O R E      |      A N A L Y Z E

More Data Parallelism:
Domain Maps



C O M P U T E      |      S T O R E      |      A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Data Parallelism Implementation Qs

Copyright 2016 Cray Inc.
3

Q1: How are arrays laid out in memory?
● Are regular arrays laid out in row- or column-major order?  Or…?

● How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
● Completely local to one locale?  Or distributed?
● If distributed… In a blocked manner?  cyclically?  block-cyclically?  

recursively bisected?  dynamically rebalanced?  …?

dynamically

…?

…?



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Data Parallelism Implementation Qs

Copyright 2016 Cray Inc.
4

Q1: How are arrays laid out in memory?
● Are regular arrays laid out in row- or column-major order?  Or…?

● How are sparse arrays stored? (COO, CSR, CSC, block-structured, …?)

Q2: How are arrays stored by the locales?
● Completely local to one locale?  Or distributed?
● If distributed… In a blocked manner?  cyclically?  block-cyclically?  

recursively bisected?  dynamically rebalanced?  …?

dynamically

…?

…?
A:	Chapel’s domain maps are designed to give the 

user full control over such decisions



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1},
D = BigD[1..n, 1..n],

LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {
forall (i,j) in D do
Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

By default, domains and their arrays are mapped to a single locale.
Any data parallelism over such domains/ arrays will be executed by the cores on that locale.
Thus, this is a shared-memory parallel program.

Copyright 2016 Cray Inc.
5



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1} dmapped Block({1..n, 1..n}),
D = BigD[1..n, 1..n],

LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {
forall (i,j) in D do
Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

With this simple change, we specify a mapping from the domains and arrays to locales
Domain maps describe the mapping of domain indices and array elements to locales

specifies how array data is distributed across locales
specifies how iterations over domains/arrays are mapped to locales

BigD D LastRow A Temp

Copyright 2016 Cray Inc.
6



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Jacobi Iteration in Chapel
config const n = 6,

epsilon = 1.0e-5;

const BigD = {0..n+1, 0..n+1} dmapped Block({1..n, 1..n}),
D = BigD[1..n, 1..n],

LastRow = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {
forall (i,j) in D do
Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;

const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

use BlockDist;

Copyright 2016 Cray Inc.
7



C O M P U T E      |      S T O R E      |      A N A L Y Z E

STREAM Triad: Chapel

Copyright 2016 Cray Inc.
8

#define N       2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x );
if( N % dimBlock.x != 0 ) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar,  N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a,  float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad( float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size( comm, &commSize );
MPI_Comm_rank( comm, &myRank );

rv = HPCC_Stream( params, 0 == myRank);
MPI_Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm );

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double  scalar;

VectorSize = HPCC_LocalVectorSize( params, 3, sizeof(double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf( outFile, "Failed to allocate memory (%d).\n", VectorSize );
fclose( outFile );

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;          
C = 1.0;

A = B + alpha * C;

the special
sauce

Chapel

Philosophy: Good, top-down language design can tease system-specific 
implementation details away from an algorithm, permitting the compiler, 
runtime, applied scientist, and HPC expert to each focus on their strengths.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

STREAM Triad in Chapel

Copyright 2016 Cray Inc.
9

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+



C O M P U T E      |      S T O R E      |      A N A L Y Z E

STREAM Triad in Chapel (multicore)

Copyright 2016 Cray Inc.
10

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

No domain map specified ⇒ use default layout
• current locale owns all domain indices and array values
• computation will execute using local processors only



C O M P U T E      |      S T O R E      |      A N A L Y Z E

STREAM Triad in Chapel (multilocale, cyclic)

Copyright 2016 Cray Inc.
11

const ProblemSpace = {1..m}
dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

startIdx = 1



C O M P U T E      |      S T O R E      |      A N A L Y Z E

STREAM Triad in Chapel (multilocale, blocked)

Copyright 2016 Cray Inc.
12

const ProblemSpace = {1..m}
dmapped Block(boundingBox={1..m});

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

=

α·
+

boundingBox



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Domain Maps

Copyright 2016 Cray Inc.
13

Domain maps are “recipes” that instruct the compiler how to 
map the global view of a computation…

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:

A = B + alpha * C;



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Chapel’s Domain Map Philosophy

Copyright 2016 Cray Inc.
14

1. Chapel provides a library of standard domain maps
● to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel
● to cope with any shortcomings in our standard library

3. Chapel’s standard domain maps are written using the 
same end-user framework
● to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps
Data Parallelism
Task Parallelism
Base Language
Locality Control



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Domain Map Roles

Copyright 2016 Cray Inc.
15

They define data storage:
● Mapping of domain indices and array elements to locales
● Layout of arrays and index sets in each locale’s memory

…as well as operations:
● random access, iteration, slicing, reindexing, rank change, 

…
● the Chapel compiler generates calls to these methods to 

implement the user’s array operations



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Layouts and Distributions

Copyright 2016 Cray Inc.
16

Domain Maps fall into two major categories:
layouts: target a single locale (memory)

● e.g., a desktop machine or multicore node
● examples: row- and column-major order, tilings, 

compressed sparse row, space-filling curves
distributions: target distinct locales (memories)

● e.g., a distributed memory cluster or supercomputer
● examples: Block, Cyclic, Block-Cyclic, Recursive 

Bisection, …



C O M P U T E      |      S T O R E      |      A N A L Y Z E

1

Sample Distributions: Block and Cyclic

Copyright 2016 Cray Inc.
17

var Dom = {1..4, 1..8} dmapped Block( {1..4, 1..8} );

1 8

4

distributed to

var Dom = {1..4, 1..8} dmapped Cyclic( startIdx=(1,1) );

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1



C O M P U T E      |      S T O R E      |      A N A L Y Z E

All Chapel domain types support domain maps

All Domain Types Support Domain Maps

Copyright 2016 Cray Inc.
18

dense strided sparse

unstructured

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

associative



C O M P U T E      |      S T O R E      |      A N A L Y Z E

LULESH: a DOE Proxy Application

Copyright 2016 Cray Inc.
19

Goal: Solve one octant of the spherical Sedov problem (blast 
wave) using Lagrangian hydrodynamics for a single 
material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL



C O M P U T E      |      S T O R E      |      A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
20



C O M P U T E      |      S T O R E      |      A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
21

(the corresponding C+MPI+OpenMP version is nearly 4x bigger)

This can be found in the Chapel release under examples/benchmarks/lulesh/*.chpl

1288 lines of source code
plus 266 lines of comments

487 blank lines



C O M P U T E      |      S T O R E      |      A N A L Y Z E

LULESH in Chapel

Copyright 2016 Cray Inc.
22

This is all of the representation dependent code.
It specifies:

• data structure choices
• structured vs. unstructured mesh
• local vs. distributed data
• sparse vs. dense materials arrays

• a few supporting iterators



C O M P U T E      |      S T O R E      |      A N A L Y Z E

For More Information on Domain Maps

Copyright 2016 Cray Inc.
23

HotPAR’10: User-Defined Distributions and Layouts in Chapel:   
Philosophy and Framework
Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
● Documentation of current domain maps:

http://chapel.cray.com/docs/latest/modules/layoutdist.html
● Technical notes detailing the domain map interface for implementers: 

http://chapel.cray.com/docs/latest/technotes/dsi.html



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Two Other Thematically Similar Features

Copyright 2016 Cray Inc.
24

1) parallel iterators:  Permit users to specify the parallelism and 
work decomposition used by forall loops
● including zippered forall loops

2) locale models:  Permit users to model the target architecture 
and how Chapel should be implemented on it
● e.g., how to manage memory, create tasks, communicate, …

Like domain maps, these are…
…written in Chapel by expert users using lower-level features

● e.g., task parallelism, on-clauses, base language features, …
…available to the end-user via higher-level abstractions

● e.g., forall loops, on-clauses, lexically scoped PGAS memory, …



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Summary of this Section

Copyright 2016 Cray Inc.
25

● Chapel avoids locking crucial implementation decisions 
into the language specification
● local and distributed parallel array implementations
● parallel loop scheduling policies
● target architecture models

● Instead, these can be…
…specified in the language by an advanced user
…swapped between with minimal code changes

● The result cleanly separates the roles of domain scientist, 
parallel programmer, and compiler/runtime



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Any Questions about Domain Maps?

Copyright 2016 Cray Inc.
26



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Overarching Example:

Smith-Waterman Algorithm for Sequence Alignment



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Goal: Determine the similarities/differences between two 
protein sequences/nucleotides.

● e.g., ACACACTA and AGCACACA*

Basis of Computation: Defined via a recursive formula:

H(i,0) = 0
H(0,j) = 0
H(i,j) = f(H(i-1, j-1), H(i-1, j), H(i, j-1))

Caveat: This is a classic, rather than cutting-edge sequence alignment algorithm, 
but it illustrates an important parallel paradiagm: wavefront computation

*Source of running example: Wikipedia

28
Copyright 2016 Cray Inc.

Hi,j

Hi-1,jHi-1,j-1

Hi,j-1



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Naïve Task-Parallel Approach:

proc computeH(i, j) {
if (i == 0 || j == 0) then
return 0;

else
var h_NW, h_N, h_W: int;

cobegin {
h_NW = computeH(i-1, j-1);
h_N = computeH(i-1, j);
h_W = computeH(i,   j-1);

}

return f(h_NW, h_N, h_W);
}

Note: Recomputes most 
subexpressions redundantly

This is a case for dynamic 
programming!

29
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Dynamic Programming Approach:

0
1
2
3
4
5
6
7
8

0   1    2   3   4    5   6    7   8

Step 1: Initialize 
boundaries to 0

0   0    0   0   0    0   0    0   0
0
0
0
0
0
0
0
0

30
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Dynamic Programming Approach:

0
1
2
3
4
5
6
7
8

0   1    2   3   4    5   6    7   8

Step 2: Compute cells 
when we’re able to

0   0    0   0   0    0   0    0   0
0
0
0
0
0
0
0
0

Hi,j

Hi-1,jHi-1,j-1

Hi,j-1

etc.

31
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

0   0    0   0   0    0   0    0   0
0   2    1   2   1    2   1    0   2
0   1    1   1   1    1   1    0   1
0   0    3   2   3    2   3    2   1
0   2    2   5   4    5   4    3   4
0   1    4   4   7    6   7    6   5
0   2    3   6   6    9   8    7   8
0   1    4   5   8    8  11 10  9
0   2    3   6   7   10 10 10 12

Smith-Waterman

Dynamic Programming Approach:

0
1
2
3
4
5
6
7
8

0   1    2   3   4    5   6    7   8

Step 3: Follow trail of 
breadcrumbs back

32
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

0   0    0   0   0    0   0    0   0
0   2    1   2   1    2   1    0   2
0   1    1   1   1    1   1    0   1
0   0    3   2   3    2   3    2   1
0   2    2   5   4    5   4    3   4
0   1    4   4   7    6   7    6   5
0   2    3   6   6    9   8    7   8
0   1    4   5   8    8  11 10  9
0   2    3   6   7   10 10 10 12

Smith-Waterman

Dynamic Programming Approach:

0
1
2
3
4
5
6
7
8

0   1    2   3   4    5   6    7   8

Step 3: Follow trail of 
breadcrumbs back

33
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

0   0    0   0   0    0   0    0   0
0   2    1   2   1    2   1    0   2
0   1    1   1   1    1   1    0   1
0   0    3   2   3    2   3    2   1
0   2    2   5   4    5   4    3   4
0   1    4   4   7    6   7    6   5
0   2    3   6   6    9   8    7   8
0   1    4   5   8    8  11 10  9
0   2    3   6   7   10 10 10 12

Smith-Waterman

Dynamic Programming Approach:

0
A
G
C
A
C
A
C
A

0 A   C   A   C    A   C    T   A
Step 4: Interpret the path 
against the original sequences

AGCACAC–A
A–CACACTA

34
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Dynamic Programming Approach:

0
1
2
3
4
5
6
7
8

0   1    2   3   4    5   6    7   8
0   0    0   0   0    0   0    0   0
0
0
0
0
0
0
0
0

Hi,j

Hi-1,jHi-1,j-1

Hi,j-1

etc.

35
Copyright 2016 Cray Inc.

How could we do 
this in parallel?

Step 2: Compute cells 
when we’re able to



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Data-Parallel Approach:
proc computeH(H: [0..n, 0..n] int) {
for upperDiag in 1..n do
forall diagPos in 0..#upperDiag {
const (i,j) = (diagPos+1, upperDiag-diagPos);
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);

}
for lowerDiag in 1..n-1 do
forall diagPos in lowerDiag..n-1 by -1 {
const (i,j) = (diagPos+1, lowerDiag+diagPos);
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);

}
}

Loop over upper diagonals serially

Process each diagonal in
parallel

Disadvantages:
• Not so great in terms of cache use
• A bit fine-grained

• small number of iterations per task

Advantages:
• Reasonably clean 

(if I got my indexing correct)

Repeat for lower 
diagonals

36
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Naïve Data-Driven Task-Parallel Approach:
proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1,1);
var NeighborsDone: [ProbSpace] atomic int;
var Ready$: [ProbSpace] sync int;

NeighborsDone[1, ..].add(1);
NeighborsDone[.., 1].add(1);
NeighborsDone[1, 1].add(1);
Ready$[1,1] = 1;

coforall (i,j) in ProbSpace {
const goNow = Ready$[i,j];
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);
const eastReady =  NeighborsDone[i,  j+1].fetchAdd(1);
const seReady =    NeighborsDone[i+1,j+1].fetchAdd(1);
const southReady = NeighborsDone[i+1,j  ].fetchAdd(1);
if (eastReady == 2)  then Ready$[i,  j+1] = 1;
if (seReady == 2)    then Ready$[i+1,j+1] = 1;
if (southReady == 2) then Ready$[i+1,j  ] = 1;

}
}

Create a domain describing 
shifted version of H’s domain

Arrays to count how many of our 
3 neighbors are done; and to 
signal when we can compute 

Set up boundaries: north and west elements 
have a neighbor done; top-left is ready

Create a task per matrix element 
and have it block until ready

Compute our element

Increment our 
neighbors’ counts

Signal our neighbors as 
ready if we’re the third

37
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Naïve Data-Driven Task-Parallel Approach:
proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1,1);
var NeighborsDone: [ProbSpace] atomic int;
var Ready$: [ProbSpace] sync int;

NeighborsDone[1, ..].add(1);
NeighborsDone[.., 1].add(1);
NeighborsDone[1, 1].add(1);
Ready$[1,1] = 1;

coforall (i,j) in ProbSpace {
const goNow = Ready$[i,j];
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);
const eastReady = NeighborsDone[i,  j+1].fetchAdd(1);
const seReady = NeighborsDone[i+1,j+1].fetchAdd(1);
const southReady = NeighborsDone[i+1,j  ].fetchAdd(1);
if (eastReady == 2) then Ready$[i,  j+1] = 1;
if (seReady == 2) then Ready$[i+1,j+1] = 1;
if (southReady == 2) then Ready$[i+1,j  ] = 1;

}
}

Disadvantages:
• Still not great in cache use
• Uses n2 tasks
• Most spend most of their 

time blocking

38
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Slightly Less Naïve Data-Driven Task-Parallel Approach:
proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1,1);
var NeighborsDone: [ProbSpace] atomic int;

NeighborsDone[1, ..].add(1);
NeighborsDone[.., 1].add(1);
NeighborsDone[1, 1].add(1);
sync { computeHHelp(1,1); }

proc computeHHelp(i,j) {
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);
const eastReady =  NeighborsDone[i,  j+1].fetchAdd(1);
const seReady =    NeighborsDone[i+1,j+1].fetchAdd(1);
const southReady = NeighborsDone[i+1,j  ].fetchAdd(1);
if (eastReady == 2)  then begin computeHHelp(i,  j+1);
if (seReady == 2)    then begin computeHHelp(i+1,j+1);
if (southReady == 2) then begin computeHHelp(i+1,j  );

}
}

Rather than create the tasks a priori, fire them 
off once we know they’re ready to compute

sync to ensure they’re all done before we go on

39
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Slightly Less Naïve Data-Driven Task-Parallel Approach:
proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1,1);
var NeighborsDone: [ProbSpace] atomic int;

NeighborsDone[1, ..].add(1);
NeighborsDone[.., 1].add(1);
NeighborsDone[1, 1].add(1);
sync { computeHHelp(1,1); }

proc computeHHelp(i,j) {
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);
const eastReady = NeighborsDone[i,  j+1].fetchAdd(1);
const seReady = NeighborsDone[i+1,j+1].fetchAdd(1);
const southReady = NeighborsDone[i+1,j  ].fetchAdd(1);
if (eastReady == 2) then begin computeHHelp(i,  j+1);
if (seReady == 2) then begin computeHHelp(i+1,j+1);
if (southReady == 2) then begin computeHHelp(i+1,j  );

}
}

Disadvantages:
• Still uses a lot of tasks
• Each task is very fine-grained

40
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Coarsening the Parallelism into Chunks:

0
1
2
3
4
5
6
7
8

0   1    2   3   4    5   6    7   8
0   0    0   0   0    0   0    0   0

0
0
0
0
0
0
0
0

41
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Smith-Waterman

Chunked Data-Driven Task-Parallel Approach:
proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1,1);
const StrProbSpace = ProbSpace by (rowsPerChunk, colsPerChunk);
var NeighborsDone: [StrProbSpace] atomic int;

NeighborsDone[1, ..].add(1);
NeighborsDone[.., 1].add(1);
NeighborsDone[1, 1].add(1);
sync { computeHHelp(1,1); }

proc computeHHelp(x,y) {
for (i,j) in ProbSpace[x..#rowsPerChunk, y..#colsPerChunk] do
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);

const eastReady =  NeighborsDone[x, y+colsPerChunk].fetchAdd(1);
const seReady =    NeighborsDone[x+rowsPerChunk, y+colsPerChunk].fetchAdd(1);
const southReady = NeighborsDone[x+rowsPerChunk, y ].fetchAdd(1);
if (eastReady == 2)  then begin computeHHelp(x,              y+colsPerChunk);
if (seReady == 2)    then begin computeHHelp(x+rowsPerChunk, y+colsPerChunk);
if (southReady == 2) then begin computeHHelp(x+rowsPerChunk, y             );

}
}

Use strided array for atomics

Change helper to iterate over 
a chunk serially

Stride indices to get to next chunk’s origin

42
Copyright 2016 Cray Inc.



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Distributed Smith-Waterman

Copyright 2016 Cray Inc.
43



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Distributed Smith-Waterman

Now, what about distributed memory?

0
1
2
3
4
5
6
7
8

0
0
0
0
0
0
0
0

44
Copyright 2016 Cray Inc.

0   1    2   3   4    5   6    7   8
0   0    0   0   0    0   0    0   0



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Distributed Smith-Waterman

Now, what about distributed memory?

0
1
2
3
4
5
6
7
8

0
0
0
0
0
0
0
0

45
Copyright 2016 Cray Inc.

0   1    2   3   4    5   6    7   8
0   0    0   0   0    0   0    0   0



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Distributed Smith-Waterman

Now, what about distributed memory?

0
1
2
3
4
5
6
7
8

0
0
0
0
0
0
0
0

Advantages:
• Good cache behavior: 

Nice fat blocks of data 
touchable in memory 
order

• Pipeline parallelism: Good 
utilization once pipeline is 
filled

etc.

46
Copyright 2016 Cray Inc.

0   1    2   3   4    5   6    7   8
0   0    0   0   0    0   0    0   0



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Distributed Smith-Waterman

Distributed Chunked Data-Driven Task-Parallel Approach:

const Hspace = {0..n, 0..n};
const LocaleGrid = Locales.reshape({0..#numLocales, 0..0});
const DistHSpace = Hspace dmapped Block(Hspace, LocaleGrid);
var H: [DistHSpace] int;

proc computeH(H: [] int) {
const ProbSpace = H.domain.translate(1,1);
const StrProbSpace = ProbSpace by (rowsPerChunk, colsPerChunk);
var NeighborsDone: [StrProbSpace] atomic int;

…
proc computeHHelp(x,y) {
on H[x,y] {
for (i,j) in ProbSpace[x..#rowsPerChunk, y..#colsPerChunk] do
H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);

const eastReady =  NeighborsDone[x, y+colsPerChunk].fetchAdd(1);
…etc…
if (eastReady == 2)  then begin computeHHelp(x,              y+colsPerChunk);
…etc…

} } }
47

Copyright 2016 Cray Inc.

Reshape the 1D Locales 
array into a 2D column

Block-distribute the data space 
across the column of locales

Compute each chunk on the locale 
that owns its initial element



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Any Questions about Smith-Waterman?

Copyright 2016 Cray Inc.
48



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or 
implied, to any intellectual property rights is granted by this document. 

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to 
change without notice. 

Cray hardware and software products may contain design defects or errors known as errata, which may 
cause the product to deviate from published specifications. Current characterized errata are available on 
request. 

Cray uses codenames internally to identify products that are in development and not yet publically 
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames 
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the 
user. 

Performance tests and ratings are measured using specific systems and/or components and reflect the 
approximate performance of Cray Inc. products as measured by those tests. Any difference in system 
hardware or software design or configuration may affect actual performance. 

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY 
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, 
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, 
THREADSTORM. The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used 
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a 
worldwide basis. Other trademarks used in this document are the property of their respective owners.

49


