More Data Parallelism: Domain Maps

COMPUTE | STORE | ANALYZE

Safe Harbor Statement

This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts. These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements.

Data Parallelism Implementation Qs

Q1: How are arrays laid out in memory?

• Are regular arrays laid out in row- or column-major order? Or...?

	4444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

• How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)

Q2: How are arrays stored by the locales?

• Completely local to one locale? Or distributed?

COMPUTE

• If distributed... In a blocked manner? cyclically? block-cyclically? recursively bisected? dynamically rebalanced? ...?

| STORE | AN

Copyright 2016 Cray Inc.

ANALYZE

Data Parallelism Implementation Qs

Q1: How are arrays laid out in memory?

• Are regular arrays laid out in row- or column-major order? Or...?

|--|

• How are sparse arrays stored? (COO, CSR, CSC, block-structured, ...?)

Q2: How are arrays stored by the locales?

- Completely local to one locale? Or distributed?
- If distributed... In a blocked manner? cyclically? block-cyclically? recursively bisected? dynamically rebalanced? ...?

A: Chapel's domain maps are designed to give the user full control over such decisions

By default, domains and their arrays are mapped to a single locale. Any data parallelism over such domains/ arrays will be executed by the cores on that locale. Thus, this is a shared-memory parallel program.

```
Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;
```

```
const delta = max reduce abs(A[D] - Temp[D]);
A[D] = Temp[D];
while (delta > epsilon);
```

writeln(A);

Jacobi Iteration in Chapel

With this simple change, we specify a mapping from the domains and arrays to locales Domain maps describe the mapping of domain indices and array elements to *locales* specifies how array data is distributed across locales specifies how iterations over domains/arrays are mapped to locales

Jacobi Iteration in Chapel

```
config const n = 6,
             epsilon = 1.0e-5;
const BigD = {0...n+1, 0...n+1} dmapped Block({1...n, 1...n}),
         D = BiqD[1..n, 1..n],
   LastRow = D.exterior(1, 0);
var A, Temp : [BiqD] real;
A[LastRow] = 1.0;
do {
  forall (i,j) in D do
    Temp[i,j] = (A[i-1,j] + A[i+1,j] + A[i,j-1] + A[i,j+1]) / 4;
  const delta = max reduce abs(A[D] - Temp[D]);
  A[D] = Temp[D];
} while (delta > epsilon);
writeln(A);
use BlockDist;
```


STREAM Triad: Chapel

<u>Philosophy:</u> Good, *top-down* language design can tease system-specific implementation details away from an algorithm, permitting the compiler, runtime, applied scientist, and HPC expert to each focus on their strengths.

COMPUTE | STORE

ANALYZE

STREAM Triad in Chapel

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

COMPUTE | STORE | ANALYZE

STREAM Triad in Chapel (multicore)

STREAM Triad in Chapel (multilocale, cyclic)

const ProblemSpace = {1..m}

dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

COMPUTE | STORE | ANALYZE

COMPUTE | STORE | ANALYZE

12

Domain Maps

Domain maps are "recipes" that instruct the compiler how to map the global view of a computation...

...to the target locales' memory and processors:

Chapel's Domain Map Philosophy

- **1.** Chapel provides a library of standard domain maps
 - to support common array implementations effortlessly

2. Expert users can write their own domain maps in Chapel

• to cope with any shortcomings in our standard library

3. Chapel's standard domain maps are written using the same end-user framework

• to avoid a performance cliff between "built-in" and user-defined cases

Domain Map Roles

They define data storage:

- Mapping of domain indices and array elements to locales
- Layout of arrays and index sets in each locale's memory

...as well as operations:

• random access, iteration, slicing, reindexing, rank change,

• • •

• the Chapel compiler generates calls to these methods to implement the user's array operations

Layouts and Distributions

Domain Maps fall into two major categories:

layouts:

- e.g., a desktop machine or multicore node
- **examples:** row- and column-major order, tilings, compressed sparse row, space-filling curves

distributions:

- e.g., a distributed memory cluster or supercomputer
- **examples:** Block, Cyclic, Block-Cyclic, Recursive Bisection, ...

Sample Distributions: Block and Cyclic

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));

COMPUTE | STORE | ANALYZE Copyright 2016 Cray Inc.

All Domain Types Support Domain Maps

"brad"

associative

COMPUTE

STORE

ANALYZE

unstructured

LULESH: a DOE Proxy Application

COMPUTE

Goal: Solve one octant of the spherical Sedov problem (blast wave) using Lagrangian hydrodynamics for a single material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

STORE Copyright 2016 Cray Inc. ANALYZE

LULESH in Chapel

_____ "MUSAZZHO. TABBLEGENE: _____ -----------····· VERP ARTICIPATION -·----_____ 'Whe likks: -----National States ----TELAPI.

Y-

..... -----...... ------0 -----чата Ж ----Î. TRANSING ____ ¥. Weer --------____

has reason as the second

-----gager. 10002020----1999 Managar. -----..... Ĵazer-18181------YEAREN teraz. -----..... Yeller 14111 -----THEF. WARRAN CO 12:00:00:0 Wanger

13120-0H.L...

And an approximately and a second sec

..... ***** W07 72227

...... 100 2 21 111112768181. la core Maria Mariana Washingson. Margan 18.125 - SERVE. TRATING. the sector -

..... WEAK: 191

----YEALED

```
Manage .....
No.
-
____
----
a====.
•••••
`•••
  _____
-----
Y200....
******
------
```

Witney. Money-

12070 -----129----------------

2010 ------

COMPUTE

STORE

ANALYZE

١

LULESH in Chapel

LULESH in Chapel

Copyright 2016 Cray Inc.

STORE

COMPUTE

ANALYZE

For More Information on Domain Maps

HotPAR'10: User-Defined Distributions and Layouts in Chapel: Philosophy and Framework Chamberlain, Deitz, Iten, Choi; June 2010

CUG 2011: *Authoring User-Defined Domain Maps in Chapel* Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

- Documentation of current domain maps: <u>http://chapel.cray.com/docs/latest/modules/layoutdist.html</u>
- Technical notes detailing the domain map interface for implementers: <u>http://chapel.cray.com/docs/latest/technotes/dsi.html</u>

Two Other Thematically Similar Features

1) **parallel iterators:** Permit users to specify the parallelism and work decomposition used by forall loops

• including zippered forall loops

2) **locale models:** Permit users to model the target architecture and how Chapel should be implemented on it

• e.g., how to manage memory, create tasks, communicate, ...

Like domain maps, these are...

...written in Chapel by expert users using lower-level features

- e.g., task parallelism, on-clauses, base language features, ...
- ...available to the end-user via higher-level abstractions
 - e.g., forall loops, on-clauses, lexically scoped PGAS memory, ...

Summary of this Section

 Chapel avoids locking crucial implementation decisions into the language specification

- local and distributed parallel array implementations
- parallel loop scheduling policies
- target architecture models
- Instead, these can be...

...specified in the language by an advanced user ...swapped between with minimal code changes

• The result cleanly separates the roles of domain scientist, parallel programmer, and compiler/runtime

Any Questions about Domain Maps?

COMPUTE | STORE | ANALYZE

Overarching Example:

Smith-Waterman Algorithm for Sequence Alignment

Goal: Determine the similarities/differences between two protein sequences/nucleotides.

• e.g., ACACACTA and AGCACACA*

COMPUTE

Basis of Computation: Defined via a recursive formula:

$$\begin{aligned} H(i,0) &= 0 & H_{i-1,j-1} \\ H(0,j) &= 0 & \\ H(i,j) &= f(H(i-1,j-1), H(i-1,j), H(i,j-1)) & H_{i,j-1} \end{aligned}$$

Caveat: This is a classic, rather than cutting-edge sequence alignment algorithm, but it illustrates an important parallel paradiagm: wavefront computation

*Source of running example: Wikipedia

ANALYZE

 $H_{i-1,i}$

Naïve Task-Parallel Approach:

```
proc computeH(i, j) {
  if (i == 0 || j == 0) then
    return 0;
  else
    var h NW, h N, h W: int;
                                             Note: Recomputes most
    cobegin {
                                             subexpressions redundantly
      h NW = computeH(i-1, j-1);
      h N = computeH(i-1, j);
                                               This is a case for dynamic
      h W = computeH(i, j-1);
                                                    programming!
    return f(h NW, h N, h W);
```


Dynamic Programming Approach:

Step 1: Initialize boundaries to 0

Dynamic Programming Approach:

Dynamic Programming Approach:

0 1 2 3 4 5 6 7 8

0	0	0	0	0	0	0	0	0	0	
1	0	2	1	2	1	2	1	0	2	
2	0	1	1	1	1	1	1	0	1	
3	0	0	3	2	3	2	3	2	1	
4	0	2	2	5	4	5	4	3	4	
5	0	1	4	4	7	6	7	6	5	
6	0	2	3	6	6	9	8	7	8	
7	0	1	4	5	8	8	11	10	9	
8	0	2	3	6	7	10	10	10	12	

Step 3: Follow trail of breadcrumbs back

СОМРИТЕ

STORE

| ANALYZE

Dynamic Programming Approach:

0 1 2 3 4 5 6 7 8

0	0	0	0	0	0	0	0	0	0	
1	0	2	1	2	1	2	1	0	2	
2	0	1	1	1	1	1	1	0	1	
3	0	0	3	2	3	2	3	2	1	
4	0	2	2	5	4	5	4	3	4	
5	0	1	4	4	7	6	7	6	5	
6	0	2	3	6	6	9	8	7	8	
7	0	1	4	5	8	8	11	10	9	
8	0	2	3	6	7	10	10	10	12	

Step 3: Follow trail of breadcrumbs back

COMPUTE | STORE

ANALYZE

Dynamic Programming Approach:

 \mathbf{O} () () () () ()Α ()G Α Α 10 10 () Д

ACACAC⁄

Step 4: Interpret the path against the original sequences

AGCACAC-A A-CACACTA

Ĉ

COMPUTE

STORE

ANALYZE

Α

Dynamic Programming Approach:

Copyright 2016 Cray Inc.

STORE

ANALYZE

COMPUTE

Naïve Data-Driven Task-Parallel Approach:

Naïve Data-Driven Task-Parallel Approach:

```
proc computeH(H: [0..n, 0..n] int) {
  const ProbSpace = H.domain.translate(1,1);
  var NeighborsDone: [ProbSpace] atomic int;
  var Ready$: [ProbSpace] sync int;
```

```
NeighborsDone[1, ..].add(1);
NeighborsDone[.., 1].add(1);
NeighborsDone[1, 1].add(1);
Ready$[1,1] = 1;
```

Disadvantages:

- Still not great in cache use
- Uses n² tasks
- Most spend most of their time blocking

```
coforall (i,j) in ProbSpace {
   const goNow = Ready$[i,j];
   H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);
   const eastReady = NeighborsDone[i, j+1].fetchAdd(1);
   const seReady = NeighborsDone[i+1,j+1].fetchAdd(1);
   const southReady = NeighborsDone[i+1,j] .fetchAdd(1);
   if (eastReady == 2) then Ready$[i, j+1] = 1;
   if (seReady == 2) then Ready$[i+1,j+1] = 1;
   if (southReady == 2) then Ready$[i+1,j] = 1;
   if (southReady == 2) then Ready$[i+1
```


ANALYZE

Slightly Less Naïve Data-Driven Task-Parallel Approach:

proc computeH(H: [0...n, 0...n] **int**) { **const** ProbSpace = H.domain.translate(1,1); var NeighborsDone: [ProbSpace] atomic int;

sync to ensure they're all done before we go on

Slightly Less Naïve Data-Driven Task-Parallel Approach:

proc computeH(H: [0..n, 0..n] int) {
 const ProbSpace = H.domain.translate(1,1);
 var NeighborsDone: [ProbSpace] atomic int;

```
NeighborsDone[1, ..].add(1);
NeighborsDone[.., 1].add(1);
NeighborsDone[1, 1].add(1);
sync { computeHHelp(1,1); }
```

Disadvantages:

- Still uses a lot of tasks
- Each task is very fine-grained

```
proc computeHHelp(i,j) {
    H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);
    const eastReady = NeighborsDone[i, j+1].fetchAdd(1);
    const seReady = NeighborsDone[i+1,j+1].fetchAdd(1);
    const southReady = NeighborsDone[i+1,j].fetchAdd(1);
    if (eastReady == 2) then begin computeHHelp(i, j+1);
    if (seReady == 2) then begin computeHHelp(i+1,j+1);
    if (southReady == 2) then begin computeHHelp(i+1,j);
```


Coarsening the Parallelism into Chunks:

Chunked Data-Driven Task-Parallel Approach:

COMPUTE | STORE | ANALYZE

Now, what about distributed memory?

Now, what about distributed memory?

Now, what about distributed memory?

Advantages:

- Good cache behavior: Nice fat blocks of data touchable in memory order
- Pipeline parallelism: Good utilization once pipeline is filled

Distributed Chunked Data-Driven Task-Parallel Approach:

```
Reshape the 1D Locales
                                                          array into a 2D column
const Hspace = {0...n, 0...n};
const LocaleGrid = Locales.reshape({0..#numLocales, 0..0});
const DistHSpace = Hspace dmapped Block (Hspace, LocaleGrid);
var H: [DistHSpace] int;
                                                     Block-distribute the data space
                                                     across the column of locales
proc computeH(H: [] int) {
  const ProbSpace = H.domain.translate(1,1);
  const StrProbSpace = ProbSpace by (rowsPerChunk, colsPerChunk):
                                                     Compute each chunk on the locale
  var NeighborsDone: [StrProbSpace] atomic int;
                                                     that owns its initial element
  proc computeHHelp(x, y)
    on H[x, y] {
      for (i,j) in ProbSpace[x..#rowsPerChunk, y..#colsPerChunk] do
        H[i,j] = f(H[i-1,j-1], H[i-1,j], H[i,j-1]);
                                                        y+colsPerChunk].fetchAdd(1);
    const eastReady = NeighborsDone[x,
    ...etc...
    if (eastReady == 2) then begin computeHHelp(x,
                                                                     y+colsPerChunk);
    ...etc...
                   COMPUTE
                                                     ANALYZE
                                      STORE
                                   Copyright 2016 Cray Inc.
```

Any Questions about Smith-Waterman?

COMPUTE | STORE | ANALYZE

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners.

