
C O M P U T E | S T O R E | A N A L Y Z E

Locality/Affinity Features

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

What is a Locale?

Copyright 2016 Cray Inc.
3

Definition:
● Abstract unit of target architecture
● Supports reasoning about locality

● defines “here vs. there” / “local vs. remote”
● Capable of running tasks and storing variables

● i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

C O M P U T E | S T O R E | A N A L Y Z E

Getting started with locales

Copyright 2016 Cray Inc.
4

● Specify # of locales when running Chapel programs

● Chapel provides built-in locale variables

● User’s main() begins executing on locale #0

% a.out --numLocales=8

config const numLocales: int = …;
const Locales: [0..#numLocales] locale = …;

L0 L1 L2 L3 L4 L5 L6 L7Locales:

% a.out –nl 8

C O M P U T E | S T O R E | A N A L Y Z E

Locale Operations

Copyright 2016 Cray Inc.
5

● Locale methods support queries about the target system:

● On-clauses support placement of computations:

proc locale.physicalMemory(…) { … }
proc locale.numPUs() { … }
proc locale.id { … }
proc locale.name { … }

writeln("on locale 0");

on Locales[1] do
writeln("now on locale 1");

writeln("on locale 0 again");

on A[i,j] do
bigComputation(A);

on node.left do
search(node.left);

C O M P U T E | S T O R E | A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2016 Cray Inc.
6

● This is a parallel, but local program:

● This is a distributed, but serial program:

● This is a distributed and parallel program:

writeln("Hello from locale 0!");
on Locales[1] do writeln("Hello from locale 1!");
writeln("Goodbye from locale 0!");

begin writeln("Hello world!");
writeln("Goodbye!");

begin on Locales[1] do writeln("Hello from locale 1!");
on Locales[2] do begin writeln("Hello from locale 2!");
writeln("Goodbye from locale 0!");

C O M P U T E | S T O R E | A N A L Y Z E

Partitioned Global Address Space (PGAS)
Languages

Copyright 2016 Cray Inc.
7

(Or perhaps: partitioned global namespace languages)
● abstract concept:

● support a shared namespace on distributed memory
● permit parallel tasks to access remote variables by naming them

● establish a strong sense of ownership
● every variable has a well-defined location
● local variables are cheaper to access than remote ones

● traditional PGAS languages have been SPMD in nature
● best-known examples: Co-Array Fortran, UPC

private
space 0

private
space 1

private
space 2

private
space 3

private
space 4

partitioned shared name-/address space

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2016 Cray Inc.
8

iiiii

shared var i(*): int; // declare a shared variable i

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2016 Cray Inc.
9

86420

shared var i(*): int; // declare a shared variable i

proc main() {

i = 2*this_image(); // each image initializes its copy

i=

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2016 Cray Inc.
10

86420

jjjjj

shared var i(*): int; // declare a shared variable i

proc main() {

i = 2*this_image(); // each image initializes its copy

var j: int; // declare a private variable j

i=

C O M P U T E | S T O R E | A N A L Y Z E

SPMD PGAS Languages (using a pseudo-language, not Chapel)

Copyright 2016 Cray Inc.
11

proc main() {

var i(*): int; // declare a shared variable i

i = 2*this_image(); // each image initializes its copy

barrier();

var j: int; // declare a private variable j

j = i((this_image()+1) % num_images());
// ^^ access our neighbor’s copy of i
// communication implemented by compiler + runtime

// How did we know our neighbor had an i?
// Because it’s SPMD – we’re all running the same
// program. (Simple, but restrictive)

86420

08642j=

i=

C O M P U T E | S T O R E | A N A L Y Z E

Chapel and PGAS

Copyright 2016 Cray Inc.
12

● Chapel is PGAS, but unlike most, it’s not inherently SPMD
● never think about “the other copies of the program”
● “global name/address space” comes from lexical scoping

● as in traditional languages, each declaration yields one variable
● variables are stored on the locale where the task declaring it is executing

0 1 2 3 4
Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
13

var i: int;

0 1 2 3 4

i

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
14

var i: int;
on Locales[1] {

0 1 2 3 4

i

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
15

var i: int;
on Locales[1] {
var j: int;

0 1 2 3 4

i j

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
16

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {

0 1 2 3 4

i j

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
17

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
…

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
18

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

OK to access i, j, and k
wherever they live k = 2*i + j;

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Scoping and Locality

Copyright 2016 Cray Inc.
19

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
k = 2*i + j;

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

here, i and j are remote, so
the compiler + runtime will

transfer their values
k = 2*i + j;

(j)

(i)

C O M P U T E | S T O R E | A N A L Y Z E

0 1 2 3 4

Chapel: Locality queries

Copyright 2016 Cray Inc.
20

var i: int;
on Locales[1] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;

…here… // query the locale on which this task is running
…j.locale… // query the locale on which j is stored

}
}

}

i j kkkkk

Locales (think: “compute nodes”)

C O M P U T E | S T O R E | A N A L Y Z E

● Syntax

● Semantics
● Returns the locale on which expr is stored

● Example

Querying a Variable's Locale

locale-query-expr:
expr . locale

var i: int;
on Locales[1] {
var j: int;
writeln((i.locale.id, j.locale.id)); // outputs (0,1)

}

21
Copyright 2016 Cray Inc.

0 1
i j

C O M P U T E | S T O R E | A N A L Y Z E

● Built-in locale variable

● Semantics
● Refers to the locale on which the task is executing

● Example

Here

const here: locale;

writeln(here.id); // outputs 0
on Locales[1] do
writeln(here.id); // outputs 1

on myC do
if (here == Locales[0]) then …

22
Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Reasoning about Communication

Copyright 2016 Cray Inc.
23

● Though implicit, users can reason about communication
● semantic model is explicit about where data is placed / tasks execute
● execution-time queries support reasoning about locality

● e.g., here, x.locale
● tools should also play a role here

● e.g., chplvis, contained in the release (developed by Phil Nelson, WWU)

C O M P U T E | S T O R E | A N A L Y Z E

Create locale views with standard array operations:

Rearranging Locales

var TaskALocs = Locales[0..1];
var TaskBLocs = Locales[2..];

var Grid2D = reshape(Locales, {1..2, 1..4});

L0 L1 L2 L3 L4 L5 L6 L7Locales:

L0 L1TaskALocs:

L2 L3 L4 L5 L6 L7TaskBLocs:

L0 L1 L2 L3

L4 L5 L6 L7
Grid2D:

24
Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

25

