Productive Programming in Chapel:
A Computation-Driven Introduction

Short Introduction to Locality

Michael Ferguson and Lydia Duncan
Cray Inc,
SC15 November 15t, 2015

<

=

cRasyr
cCcHAaARPEL
—

=

15

TX' fransforms.

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y

(%J B Copyright 2015 Cray Inc.

Outline

v Motivation \
Theme 4: Control over
v’ Chapel Background and Themes Locality/Affinity

v Learning the Base Language with n-body

v' Short Introduction to Task Par
v" Hands-On 1: Hello World
» Short Introduction to Locality

¢

e Data Parallelism with Jacobi
e Hands-On 2: Mandelbrot
e Project Status, Next Steps

)

Domain Maps)
Data Parallelism

Task Parallelism

Base Language
Locality Control

Target Machine

The Locale Type . o

Definition: |
e Abstract unit of target architecture

e Supports reasoning about locality
e defines “here vs. there” / “local vs. remote”

e Capable of running tasks and storing variables
e i.e., has processors and memory

Typically: A compute node (multicore processor or SMP)

g COMPUTE | STORE | ANALYZE
C@\““ Copyright 2015 Cray Inc. @

Getting started with locales

e Specify # of locales when running Chapel programs

$ a.out —-—-numLocales=8 $ a.out —nl 8

e Chapel provides built-in locale variables

config const numlLocales: int = ..;
const Locales: [O..#numLocales] locale = ..;
Locales LO L1 L2 L3 L4 L5 L6 L7

e User'smain () begins executing on locale #0

Locale Operations .

e Locale methods support queries about the target system:

proc locale.physicalMemory(..) { .. }\
proc locale.numCores { .. }

proc locale.id { .. }

proc locale.name { .. }

e On-clauses support placement of computations:

writeln ("on locale 0"); \\ on A[i,j] do A

bigComputation (A) ;
on Locales[1l] do

writeln ("now on locale 1"); on node.left do

search (node.left) ;

writeln("on locale 0 again");

®
!
CRAaY |

Parallelism and Locality: Orthogonal in Chapel .o
(Y \\
e This is a parallel, but local program: \
begin writeln ("Hello world!");
writeln ("Goodbye!");
e This Is a distributed, but serial program:
writeln ("Hello from locale 0!");
on Locales[l] do writeln("Hello from locale 1!");
writeln ("Goodbye from locale 0!");
e This is a distributed and parallel program:
begin on Locales[1l] do writeln("Hello from locale 1!");\
on Locales[2] do begin writeln("Hello from locale 2!");
writeln ("Goodbye from locale 0!");

—~_
H‘ EHA:EI—

Partitioned Global Address Space (PGAS) =|=A:v®‘ |

Languages .

(Or perhaps: partitioned global namespace languages)

e abstract concept:

e support a shared namespace on distributed memory
e permit parallel tasks to access remote variables by nhaming them

e establish a strong sense of ownership
e every variable has a well-defined location
e local variables are cheaper to access than remote ones

e traditional PGAS languages have been SPMD in nature
e best-known examples: Co-Array Fortran, UPC

partitioned shared name-/address space

private private private private
space 0 space 1 space 2 space 3 space 4

= COMPUTE | STORE | ANALYZE

@::.I
=/ Copyright 2015 Cray Inc.

\

\
\

\

\
(el — PPN
SPMD PGAS Languages (using a pseudo-language, not Chapel) «
e \\
proc main() { N
var 1i(*): int; // declare a shared variable 1

= COMPUTE | STORE | ANALYZE
C(_c:;;--h Copyright 2015 Cray Inc. @

®
!
cRAY |

SPMD PGAS Languages (using a pseudo-language, not Chapel) «
S \
\
proc main() { N
var 1i(*): int; // declare a shared variable 1

i = 2*this _image(); // each image initializes its copy

COMPUTE | STORE | ANALYZE

=
=/ Copyright 2015 Cray Inc.

®
!
cRAY |

SPMD PGAS Languages (using a pseudo-language, not Chapel) «
S \
\
proc main() { N
var 1i(*): int; // declare a shared variable 1

i = 2*this _image(); // each image initializes its copy

var j: int; // declare a private variable j

COMPUTE | STORE | ANALYZE

DD
= ©
= Copyright 2015 Cray Inc.

®
!
cRAY |

SPM D PGAS Lang uages (using a pseudo-language, not Chapel) «

proc main() { \

var 1i(*): int; // declare a shared variable 1

i = 2*this _image(); // each image initializes its copy

var j: int; // declare a private variable j
J = 1((this_image()+1) % num images());

// *" access our neighbor’s copy of 1
// communication implemented by compiler + runtime

// How did we know our neighbor had an 1i?
// Because 1it’s SPMD — we’re all running the same
// program. (Simple, but restrictive)

COMPUTE | i@ ANALYZE

DD
= ®
= Copyright 2015 Cray Inc.

Chapel and PGAS o

e PGAS: Partitioned Global Address Space !

e support a shared namespace on distributed memory
e but allow reasoning about locality

e Chapel is PGAS, but unlike most, it’s not inherently SPMD
= never think about “the other copies of the program”

= “global name/address space” comes from lexical scoping

e as in traditional languages, each declaration yields one variable
e variables are stored on the locale where the task declaring it is executing

Locales (think: “compute nodes”)

(‘_{\\ COMPUTE | STORE | ANALYZE

CHAaPEL

=/ Copyright 2015 Cray Inc. @

Chapel: Scoping and Locality

var 1i: int;

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
=) Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
=) Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var j: int;

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

DD
@::;:
=) Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {

Locales (think: “compute nodes”)

= COMPUTE | STORE | ANALYZE
@“u Copyright 2015 Cray Inc.

Chapel: Scoping and Locality o

var i: int; |
on Locales[1l] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
// within this scope, i, j, and k can be referenced,
// the implementation manages the communication for i and j

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

=
=/ Copyright 2015 Cray Inc.

Chapel: Scoping and Locality o

var i: int; |
on Locales[1l] {
var j: int;
coforall loc in Locales {
on loc {
var k: int;
// within this scope, i, j, and k can be referenced,
// the implementation manages the communication for i and j
k =1 + 3;

Locales (think: “compute nodes”)

COMPUTE | STORE | ANALYZE

=
=/ Copyright 2015 Cray Inc.

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k =1+ 73;

) OK to access i, j, and k
wherever they live

Images / Threads / Locales / Places / etc. (think: “compute nodes”)

= COMPUTE | STORE
C@\--u Copyright 2015 Cray Inc.

ANALYZE

Chapel: Scoping and Locality

var 1: int;
on Locales[1l] {
var J: int;
coforall loc in Locales {
on loc {
var k: int;
k =1+ 73;
}

}
) i and j are remote, so need
to “get” their values

~o -
~ -
~ -
~ .
S -
=~

Images / Threads / Locales / Places / etc. (think: “compute nodes”)

(‘_{\\ COMPUTE | STORE

CHAaPEL

= Copyright 2015 Cray Inc.

| ANALYZE

Chapel and PGAS: Public vs. Private . o

How public a variable is depends only on scoping |
e who can see it?
e who actually bothers to refer to it non-locally?
var 1i: int;
on lLocales[1] {
var J: int;
coforall loc in Locales {

on loc {
var k = 1 + 73;

Locales (think: “compute nodes”)

>
&~ ®

Querying a Variable's Locale .

e Syntax

expr . locale

locale—query—expr:}

e Semantics
e Returns the locale on which expr is stored

e Example

var 1i: int;
on Locales[1] {

var j: int;

writeln((i.locale.id, j.locale.id)); // outputs (0,1)
}

=D

(==
CHAaPEL
&

Here

e Built-in locale variable

const here: locale;

e Semantics
e Refers to the locale on which the task is executing

e Example

writeln (here.id) ; // outputs 5\
on Locales[1l] do
writeln (here.id); // outputs 1

on myC do
if (here == Locales[0]) then ..

Rearranging Locales

Create locale views with standard array operations: \

A PEL

var TaskALocs = Locales[0..1]; A
var TaskBLocs = Locales[2..];
var Grid2D = reshape (Locales, {1..2, 1..4});

Locales: LO L1 L2 L3 L4 L5 L6 L7

TaskALocs: LS

TaskBLocs: E¥RENR YN NN

LO L1 L2 L3

Grid2D:
L4 L5 L6 L7

Distributed Smith-Waterman

Now, what about distributed memory?

01 234 56 7 8

0/0/]0{0|0]0]0]0]O0
N n

0
0
0
0
0
0
0

O NO OV H~ WN —-~O0O

Distributed Smith-Waterman

Now, what about distributed memory?

01 234 56 7 8

0/0/]0{0|0]0]0]0]O0
N n

0
0
0
0
0
0
0

O NO OV H~ WN —-~O0O

Distributed Smith-Waterman .

Now, what about distributed memory’?

0 1 2 3 4 S 6 7 8 Advantaes

O/0l0|I0IO|Ol0O1IO|O Good cache behavior:
Nice fat blocks of data
— touchable in memory

v N order

* Pipeline parallelism: Good
utilization once pipeline is
filled

0
0
0
0
0
0
0

O NO OV H~ WN —-~O0O

Distributed Smith-Waterman KOO

Reshape the 1D Locales

const Hspace = {0..n, 0..n}; / array into a 2D column

const LocaleGrid = Locales.reshape ({0..#numLocales, 0..0});
const DistHSpace = Hspace dmapped Block (Hspace, LocaleGrid);

var H: [DistHSpace] int;
Block-distribute the data space

proc computeH(H: [] int) { across the column of locales
const ProbSpace = H.domain.translate(1l,1);
const StrProbSpace = ProbSpace by (rowsPerChunk, colsPerChunk);
var NeighborsDone: [StrProbSpace] atomic int;

Compute each chunk on the locale

| proc ComputeHHeM that owns its initial element
on H[x,y] {

for (i,j) in ProbSpace[x..#rowsPerChunk, y..#colsPerChunk] do

H[i,3j] = f(H[i-1,3-1], H[i-1,3], H[i,j-11);
const eastReady = NeighborsDone[x, ytcolsPerChunk] .fetchAdd (1) ;
..etc..
if (eastReady == 2) then begin computeHHelp (x, y+colsPerChunk) ;
..etc..

by

.

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

(&= ®

FEIFIIES P e PPCDDDD® D Do e
2373333333344 133333 TLTTT T T T Bdap !
e P i . o0 L]
2225255000 avcccencccncsccscace ::::z...:. A
L 4 —— S ...

|
’
= —
.-
-~

V"‘MAA‘A

Foe ‘...

,u\:_‘r':"'» - (el % ™ ;.', ¢
R asssannene.t 1 | 14442 T o

http://chapel.cray.com chapel info@cray.com http://github.com/chapel-lang/chapel/

