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Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y
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Task Parallel “Hello, world!”

Multicore Hello World

config const numTasks =

writeln (“Hello, world!
“from task 7,

here

coforall tid in O..#numTasks

144
4

tid,

.maxTaskPar;

do

\\

of //,

numTasks) ;




Defining our Terms .o

Task: a unit of computation that can/should execute in
parallel with other tasks ‘

Thread: a system resource that executes tasks
e not exposed in the language
e occasionally exposed in the implementation

Task Parallelism: a style of parallel programming in which
parallelism is driven by programmer-specified tasks

(in contrast with):

Data Parallelism: a style of parallel programming in which
parallelism is driven by computations over collections of
data elements or their indices
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Task Parallelism: Begin Statements

// create a fire-and-forget task for a statement
begin writeln (“hello world”);
writeln (“goodbye”) ;

Possible outputs:

hello world goodbye
goodbye hello world



Cobegins/Serial by Example: QuickSort

proc quickSort (arr: [?D]

depth = 0,
low: int = D.low,
high: int = D.high)
if high - low < 8 {
bubbleSort (arr, low, high);

} else {
const pivotVal = findPivot (arr,
const pivotLoc = partition(arr,

thresh = log2 (here.maxTaskPar),

{

serial (depth >= thresh) do cobegin {
quickSort (arr, thresh, depth+l,
quickSort (arr, thresh, depth+l,

high) ;
high, pivotVal);

pivotLoc-1) ;

pivotLoc+1l, high);

O PEL



Cobegins/Serial by Example: QuickSort

proc quickSort (arr:

low:

bubbleSort (arr,

} else {
const pivotVal
const pivotLoc
serial
cobegin {

depth

high:
if high - low < 8 {

quickSort (arr,
quickSort (arr,

[?D],

int = D.low,
int = D.high)
low, high);

findPivot (arr,
partition (arr,

depth+1,
depth+1,

{

low,

low,
low,

(here.runningTasks > here.maxTaskPar)

pivotLoc-1) ;
pivotLoc+l,

high) ;
high, pivotVal);
do

high) ;




Task Parallelism: Cobegin Statements

A PEL

// create a task per child statement
cobegin {

producer (1) ;

producer (2) ;

consumer (1) ;
Y  // implicit join of the three tasks here

~




Task Parallelism: Coforall Loops

// create a task per iteration
coforall t in O..#numTasks {

writeln (“Hello from task ”, t, ™ of ”, numTasks);
Y // implicit join of the numTasks tasks here

writeln (“All tasks done”);

Sample output:

Hello from task 2
Hello from task O

Hello from task 3
Hello from task 1
All tasks done




What’s worrisome about this loop?

var A: [1..1000000] real;
coforall a in A do
a = 1.0;
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Comparison of Loops: For, Forall, and Coforall SR

For loops: executed using one task |
e use when a loop must be executed serially
e or when one task is sufficient for performance

Forall loops: typically executed using 1 < #tasks << #iters
e use when a loop should be executed in parallel...
e ...but can legally be executed serially
e use when desired # tasks << # of iterations

Coforall loops: executed using a task per iteration
e use when the loop iterations must be executed in parallel
e use when you want # tasks == # of iterations
e use when each iteration has substantial work
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Comparison of Begin, Cobegin, and Coforall SRR '

e \
\

begin: |
e Use to create a dynamic task with an unstructured lifetime
e “fire and forget”

cobegin:
e Use to create a related set of heterogeneous tasks
e ...or a small, finite set of homogenous tasks
e The parent task depends on the completion of the tasks

coforall:
e Use to create a fixed or dynamic # of homogenous tasks
e The parent task depends on the completion of the tasks

Note: All these concepts can be composed arbitrarily
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Task Parallelism: Data-Driven Synchronization =R

L)

1) atomic variables: support atomic operations (as in C++)
e e.g., compare-and-swap; atomic sum, mult, etc.

2) single-assignment variables: reads block until assigned

3) synchronization variables: store full/lempty state
e by default, reads/writes block until the state is full/empty
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Bounded Buffer Producer/Consumer Example

cobegin { producer (); consumer(); }

types store full/empty state along with value

// ‘sync’
var buff$: [0..#buffersize] sync real;
proc producer () {
var i = 0O;
for .. {
i = (1+1) % buffersize;
buffs$[i] = ..; // writes block until empty, leave full
b}
proc consumer () {
var i = 0O;
while ... {
i= (1+1l) % buffersize;

Louffsiil..; // reads block until full, leave empty

)

\

\

\



Synchronization Variables

e Syntax

sync—-type:
sync type

e Semantics
e Stores full/empty state along with normal value
e Defaults to full if initialized, empty otherwise
e Default read blocks until full, leaves empty
e Default write blocks until empty, leaves full
e Examples: Critical sections and futures

var future$: sync real; N var lock$: sync bool;\
begin future$ = compute () ; lock$S = true;

res = computeSomethingElse () critical();
useComputedResults (futureS$S, res); var lockval = lock$;

N cmaer
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Atomic Variables

e Syntax

sync—-type:
atomic type

e Semantics
e Supports operations on variable atomically w.r.t. other tasks
e Based on C/C++ atomic operations

e Example: Trivial barrier

var count: atomic int, done: atomic bool:\\

proc barrier (numTasks) {
const myCount = count.fetchAdd(1l);
if (myCount < numTasks) then
done.waitFor (true) ;
else
done.testAndSet () ;




Atomic Methods .
e read():t return current value
® write(v:t) store v as current value
e exchange (v:t):t store v, returning previous value
e compareExchange (old:t,new:t) :bool

store new iff previous value was old; returns true on success

waitFor (v:t) wait until the stored value is v

add (v:t) add v to the value atomically

fetchAdd (v:t) same, returning pre-sum value
(sub, or, and, xor also supported similarly)

testAndSet () like exchange(true) for atomic

bool

clear () like write(false) for atomic bool



Comparison of Synchronization Types

sync/single:
e Best for producer/consumer style synchronization
e “this task should block until something happens”
e Use single for write-once values

atomic:
e Best for uncoordinated accesses to shared state
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Smith-Waterman Algorithm for
Sequence Alignment
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Smith-Waterman KOO

Goal: Determine the similarities/differences between two ~
protein sequences/nucleotides.
e e.g., ACACACTA and AGCACACA

Basis of Computation: Defined via a recursive formula:

H(i,0)=0  Hiu,
H(0,/)=0 Flae 4
H(lz]) :ﬂH(l'laj'l)a H(l'laj)a H(laf'l)) Hi,jj—- H.

Caveat: This is a classic, rather than cutting-edge sequence alignment algorithm,
but it illustrates an important parallel paradiagm: wavefront computation

*Source of running example: Wikipedia
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Smith-Waterman KOO

Naive Task-Parallel Approach:

proc computeH (1, 7j) {
if (1 == || 7 == 0) then
return O;
else
var H NW, h N, h W: int;

cobegin { Note: Recomputes most
h NW = computeH (i-1, j-1) / subexpressions redundantly
h N = computeH(i-1, 7J); . )
- _ : . . This is a case for dynamic
h W = computeH (1, J-1); :
\ — programming!

return £(h NW, h N, h W);

.



Smith-Waterman

Dynamic Programming Approach:

OPEL

O NO OV H~ WN —-~O0O

01 234 56 78
0/ 0/]0{0|010[{0]0]|O0
0 \\\\
0
0
0
0
0
0
0

Step 1: Initialize
boundaries to 0



Smith-Waterman

Dynamic Programming Approach:

O NO OV H~ WN —-~O0O

01 23 4 56 7 8
000, 0(0]0]0]0|0
O

0 |
0

0 etc.

0

0

0

0




Smith-Waterman .

Dynamic Programming Approach:

01 234 56 7 8
0/0/0,0/0{0]0]0|0|O0
11021 112(1]2]1]0]2
200011111111 1]1]01
3100132323 2]|1
4101212]5/4[5|4|3|4
510/1|14,4/7|6|7]6|5
510236698738
710111458 811109//
81012 |3/6|7 (101101012
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Smith-Waterman .

Dynamic Programming Approach:

01 234 56 7 8
0/0/0,0/0{0]0]0|0|O0
110121 112(1]2]1]0]2
200011111111 1]1]01
310(013/2(3[2({3|2]|1
4101212545434
51011 4,4/7|6|7]6|5
51023/ 6/6[9(8|7|38
710111458 811109//
g1012|3/6|7 (101101012
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Smith-Waterman

Dynamic Programming Approach: / Step 4;t !(?,terp-re-t thle path |
ACAC ACTA against the original sequences
ofo[o[ofofo[o]0]0O
AO0lI2 12112102
GOoj1(111,171]0]|1
C0[{0]3|,2|3[2[3]|2]|1
A 01212 5/4|5/43|4
Clo|1,4(4/7|6|7]6|5
Al023/6(6|9(8| 7|8
clo|1]4/5|8|8(11/10 (9
Al 0|2 3/6|7|10(10102
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Smith-Waterman .

Dynamic Programming Approach:

01 234 56 7 8
0/0/0/0]0]0]0]O0

el Step 2: Compute cells
when we’re able to
etc. How could we do
this in parallel?

i-1)
Hi4 .1 1

Hi,j-f_' Hi,j

O NO OV H~ WN —-~O0O
O O O O 00 0|00 O




Smith-Waterman O
e \\
Data-Parallel Approach: «

proc computeH (H: [0..n —.n] int) { R

for upperDiag in"1..n do __—  FEEn

forall diagPos in 0. .#upperDiag {
const (i,3j) = (diagPos+l, upperDiag-diagPos);
H[irj] = f(H[i_lrj_l]/ H[i_lrj]r H[irj_l]);

} Repeat for lower
for lowerDiag in 1..n-1 do Pl diagonals

forall diagPos in lowerDiag..n-1 by -1 {
const (i,j) = (diagPos+1l, lowerDiag+diagPos);
H[irj] - f(H[i_lrj_l]/ H[i_lrj]/ H[irj_l]);

}

Advantages:

Disadvantages:

* Reasonably clean « Not so great in terms of cache use

(if | got my indexing correct)

« Abit fine-grained
» small number of iterations per task




Smith-Waterman . :

Naive Data-Driven Task-Parallel Approach:

proc computeH (H: [0..n, 0..n] int) {

7N\
L(jfmw
| |‘ CHAPEL

Create a domain describing
const ProbSpace = H.domain.translate(1l,1); —

var NeighborsDone: [ProbSpace] atomic int;

var Ready%: [ProbSpace] sync int; \ Arrays to count how many of our 3

NeighborsDone[1l, ..].add(1l);
NeighborsDone[.., 1].add(l);
I. (1)

NeighborsDOﬁf [1,. 1].add(1); ¥ Set up boundaries: north and west elements
Ready$[1,1] = 1; have a neighbor done; top-left is ready

shifted version of H’s domain

neighbors are done; and to signal
when we can compute

coforall (i,3J) in ProbSpace {——— = HNOCEICEREN Qo TREhg=Illn )

const goNow = Ready3[i,31]; and have it block until ready
H[irj] = f(H[i—l,j—l], H[i_llj] Hl1i, ] 11);
const eastReady = NeighborsDone[i, J+1]. fm
const seReady = NeighborsDone[1+l J+1] . fetchAdd (
const southReady = NeighborsDone[i+1l,7 1. fetchAdd \\L_
if (eastReady == 2) then Ready$[i j+1] Increment our
if (seReady == 2) then Ready$[1+l,j+l] = nelghbors counts
[ ]

if (southReady == 2) then Ready$[i+l, ] = 1; : :
} ISl  Signal our neighbors as
ready if we'’re the third

©



Smith-Waterman

Naive Data-Driven Task-Parallel Approach:

proc computeH (H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1l,1);
var NeighborsDone: [ProbSpace] atomic int;
var Ready$: [ProbSpace] sync int;

« Still not great in cache use

* Most spend most of their

NeighborsDone[1l, ..].add(l); Disadvantaes:
NeighborsDone[.., 1].add(1l);
NeighborsDone[1l, 1].add(1l);
Ready$[1,1] = 1; « Uses n? tasks
coforall (i, ]) in ProbSpace { time blocking
const goNow = Ready$[i,J];
H[lr]] = f(H[i—l,j—l], H[l_ll]] Hl1i, ] 11):
const eastReady = NeighborsDoneli J+1].fetchAdd (1) ;
const seReady = NeighborsDone[1+l Jj+1].fetchAdd (1) ;
const southReady = NeighborsDone[i+1l,7 ].fetchAdd(1l);
if (eastReady == 2) then Ready$[i J+1] = 1;
if (seReady == 2) then Ready$[1+l,j+l] = 1;
if (southReady == 2) then Ready$[i+l,] 1 = 1;

7N\
¢ C mar
| |‘ CHAPEL




Smith-Waterman KOO

Slightly Less Naive Data-Driven Task-Parallel Approach:

proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1l,1);
var NeighborsDone: [ProbSpace] atomic int;

NeighborsDone[1l, ..].add(l);
NeighborsDone[.., 1].add(1l);
NeighborsDone[1l, 1].add(1l);
sync computeHHelp (1,1);
sync to ensure they’re all done before we go on

proc computeHHelp (i,]) |

H[lr]] = f(H[i—l,j—l] ’ H[i_llj]l H[lr] 11):

const eastReady = NeighborsDone[i1, J+1].fetchAdd(1l);

const seReady = NeighborsDone [i+1,j+1].fetchAdd (1) ;

const southReady = NeighborsDone[i+1l,7 ].fetchAdd(1l);

if (eastReady == 2) then begin computeHHelp (i, J+1);

if (seReady == 2) then begin computeHHelp (i+1,J+1);

if (southReady == 2) then begin computeHHelp (i+l,j )
J Rather than create the tasks a priori, fire them

off once we know they’re ready to compute

—~_
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Smith-Waterman . :

Slightly Less Naive Data-Driven Task-Parallel Approach:

proc computeH(H: [0..n, 0..n] int) {
const ProbSpace = H.domain.translate(1l,1);
var NeighborsDone: [ProbSpace] atomic int;

NeighborsDone[1l, ..].add
NeighborsDone[.., 1].add
NeighborsDone[1l, 1].add(1l); -
sync { computeHHelp(1l,1); } - Still uses a lot of tasks

« Each task is very fine-grained

Disadvantages:

proc computeHHelp (i,]J) {

H[lr]] = f(H[i—l,j—l], H[i_llj]l H[i,j—l]),

const eastReady = NeighborsDone[i1, J+1].fetchAdd(1l);
const seReady = NeighborsDone [i+1,j+1].fetchAdd (1) ;
const southReady = NeighborsDone[i+1l,7 1. fetchAdd(l),
if (eastReady == 2) then begin computeHHelp (i, +1);
if (seReady == 2) then begin computeHHelp(1+l,j+l),
if (southReady == 2) then begin computeHHelp (i+l,] ),

—~_
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Smith-Waterman

Coarsening the Parallelism into Chunks:

01 234 56 7 8

0, 0/0/0[0/0]0|O0
]

o

o NO O~ WN -0
o O O O 0 0 0 0o
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Smith-Waterman KOO

Chunked Data-Driven Task-Parallel Approach:

proc computeH (H: [0..n, 0..n] int) {

~__
( EHA:EL
AN J{i 5

const ProbSpace = H.domain.translate(1l,1);
const StrProbSpace = ProbSpace by (rowsPerChunk, colsPerChunk)

var NeighborsDone: [StrProbSpace] atomic int; \
Use strided array for atomics
d
NeighborsDone[.., 1].add
(

NeighborsDone[l, 1].add(1); Change helper to iterate over
sync { computeHHelp(1l,1); } a chunk serially

NeighborsDone[1l, ..].ad

proc computeHHelp (x,vy) {
for (i,J) in ProbSpace([x..#rowsPerChunk, y..#colsPerChunk] do

H[lr]] = f(H[j—_lrj_l]r H[i_llj]l H[l,]—l]),
const eastReady = NeighborsDone[x, ytcolsPerChunk] .fetchAdd (1) ;
const seReady = NeighborsDone [x+rowsPerChunk, y+colsPerChunk].fetchAdd(1);
const southReady = NeighborsDone [x+rowsPerChunk, vy ].fetchAdd (1) ;
if (eastReady == 2) then begin computeHHelp (x, yt+colsPerChunk) ;
if (seReady == 2) then begin computeHHelp (xtrowsPerChunk, yt+colsPerChunk);
if (southReady == 2) then begin computeHHelp (x+rowsPerChunk, vy ) ;

} Stride indices to get to next chunk’s origin —
)



Questions about Task Parallelism in Chapel?
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Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without noftice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
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mark on a worldwide basis. Other trademarks used in this document are the property of their respective
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