Chapel Background and Motivation

=

=Rasyr
cCcHAaARPRPEL
—

=/

L1454

New Orleans, |hpc
LA |matters.

COMPUTE | STORE | ANALYZE

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements. Y

(%:A B Copyright 2014 Cray Inc.

Chapel’s Origins: HPCS .o

DARPA HPCS: High Productivity Computing Systems \

e Goal: improve productivity by a factor of 10x
e Timeframe: summer 2002 — fall 2012

e Cray developed a new system architecture, network, software, ...
e this became the very successful Cray XC30™ Supercomputer Series

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures:

D A A S B
BLITTTTTTTTTTTTTTIITTTI]T]
4
CCITTTTT T T T T TTTTTT[TTT]
o H

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel:

Z,
@H::::
-2

STREAM Triad: a trivial parallel computation =R

e \
\

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory):

| | |

i i i

| | |
« @ P B ! B | m

Z_...
G= ®

®
!
CRAaY |

STREAM Triad: a trivial parallel computation .o

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory multicore):

| | |

i - i

| | |
« B P B ! & | m

Z_...
G= o

STREAM Triad: MPI

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm_size(comm, &commSize);
MPI Comm rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm) ;

return errCount;

int HPCC_Stream(HPCC_ Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

/7\ cRese
| CHaPEL
\—J

if ('a || 'b || 'e) {

if (c) HPCC_free(c);
if (b) HPCC free(b):;
if (a) HPcc:free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).
\n", VectorSize);
fclose(outFile);

}

return 1;

}

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
alj]l = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP et N

#include <hpcc.h>

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm_size(comm, &commSize);
MPI Comm rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm) ;

return errCount;

int HPCC_Stream(HPCC_ Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
¢ = HPCC_XMALLOC(double, VectorSize);

7N cman
| CHaPEL

BB @@ g
MPI + OpenMP . . .

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC free(b); \
if (a) HPcc:free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).
\n", VectorSize);
fclose(outFile);
}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;
}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++)
alj]l = b[jl+scalar*c[j];

HPCC_free(c) ;
HPCC_free (b) ;
HPCC_free(a) ;

STREAM Triad: MPI+OpenMP vs. CUDA S

MPI1 + OpenMP m

#ifdef _OPENMP

#include <omp.h>
#endif
static int VectorSize; - - - -
static double *a, *b, *c; . I . I . I .
]]]
int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;

int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI Comm size(comm,
MPI_Comm_rank (comm,

&commSize) ;
&myRank) ;

rv = HPCC_Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

#define N 2000000
int main() {
float *d_a, *d b, *d_c;

float scalar;

cudaMalloc((void**)&d a,
cudaMalloc((void**)&d b,
cudaMalloc((void**)&d c,

A A ar__w _ _1_s11AnN

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a
b
c

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);

if (ta || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile,
fclose(outFile);

"Failed to allocate memory (%d).\n", VectorSize);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
c[j] = 0.0;

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return O;

/5\v==Aw
CHAaPEL
kﬁ?

set_array<<<dimGrid,dimBlock>>>(d b,
set_array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;

.5£, N);
.5£, N);

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar, N);
cudaThreadSynchronize () ;
cudaFree (d_a);
cudaFree (d_b) ;
cudaFree(d_c);
__global void set_array(float *a, float value, int len) ({
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;
}
__global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];
}

Why so many programming models? . o

HPC has traditionally given users... \
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware
...ones that support only a single type of parallelism

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable
Intra-node/multicore OpenMP/pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA/OpenCL/OpenACC SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

N mar
cHaPEL

Rewinding a few slides...

MPI1 + OpenMP %

#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c; . I . I . I .
]]
int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;

MPI_Comm comm = MPI_COMM_WORLD;

MPI Comm size(comm, &commSize);
MPI_Comm_rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;

T ITITIEIrITTrao

#define N

int main() {

2000000

float *d a, *d b, *d_c; s!'s ! 8! S
float scalar;

cudaMalloc((void**) &d a, sizeof (float) *N);
cudaMalloc((void**) &d b, sizeof (float) *N);
cudaMalloc((void**) &d c, sizeof (float) *N);

A A ar__w _ _1_s11AnN

HPC suffers from too many distinct notations for expressing parallelism and locality

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a
b
c

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);

if (ta || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j]l = 2.0;
c[j] = 0.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j]l = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return O;

/5\ e
CHAPEL
N

}

set_array<<<dimGrid,dimBlock>>>(d b,
set_array<<<dimGrid,dimBlock>>>(d c,

.5£, N);
.5£, N);

scalar=3.0f;
STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronize () ;

N) ;

cudaFree (d_a);
cudaFree (d_b) ;
cudaFree(d_c);

global void set_array(float *a, float value,
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;

int len) {

global void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < len) c[idx] = a[idx]+scalar*b[idx];

STREAM Triad: Chapel

config const m = 1000,
alpha = 3.0;

var A, B, C: [ProblemSpace]
B =2.0;
C = 3.0;

A =B + alpha * C;

const ProblemSpace = {1l..m}(dmapped ..;

real;

. the special
sauce

Philosophy: Good language design can tease details of locality and
parallelism away from an algorithm, permitting the compiler, runtime,
applied scientist, and HPC expert to each focus on their strengths.

Motivating Chapel Themes

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC — Mainstream Language Gap

~__

1) General Parallel Programming

With a unified set of concepts...

...express any parallelism desired in a user’s program
e Styles: data-parallel, task-parallel, concurrency, nested, ...

e Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware

e Types: machines, nodes, cores, instructions

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node

Intra-node/multicore
Instruction-level vectors/threads
GPU/accelerator

N cmaer
cHaPEL
=

Chapel
Chapel
Chapel
Chapel

executable/task
iteration/task
iteration

SIMD function/task

2) Global-View Abstractions

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View Local-View
| |
I I
[|
+ (D) 2 i |
) I |

~__

2) Global-View Abstractions

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View Local-View
(I T |
+ [T) 2 | !
| |
| |
(B 0 G o e
I |
+C2 1 +CTI)2 '+
W -0 |- 0O
| |

Z,
@H::::
-2

2) Global-View Abstractions

In code: “Apply a 3-Point Stencil to a vector”

Global-View

.

proc main () {
var n = 1000;
var A, B: [1l..n] real;
forall i in 2..n-1 do
B[i] = (A[i-1]

+ A[i+11)/2;

\4

Local-View (SPMD)
proc main() {
var n = 1000;

}

var p = numProcs(),
me = myProc(),
myN = n/p,

var A, B: [0..myN+1] real;

if (me < p-1) {
send (me+1, A[myN]);
recv (me+1l, A[myN+1]);
}
if (me > 0) {
send (me-1, A[l]);
recv (me-1, A[O0]);
}
forall i in 1..myN do
B[i] = (A[1i-1] + A[i+1])/2;

Bug: Refers to uninitialized values at ends of A /

7N\
¢ C mar
| |‘ CHAPEL

2) Global-View Abstractions

In code: “Apply a 3-Point Stencil to a vector”

Global-View

.

proc main () {
var n = 1000;
var A, B: [l..n] real;

forall i in 2..n-1 do
B[1i]

(A[i-1] + A[i+1])/2;

Communication becomes
geometrically more complex
for higher-dimensional arrays

proc maan ()

Local-View (SPMD)

_ 1000; | Assumes p divides n

= numProcs (),
= myProc(),
myN = n/p,

myLo = 1,

myHi = myN;

var A, B: [0..myN+1] real;

if

(me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+11]);

forall 1 in mylLo..myHi1 do

B[i] = (A[i-1]1 + A[i+1]1)/2;

2) Global-View Programming: A Final Note .o

e A language may support both global- and local-view \
programming — in particular, Chapel does

proc main () {
coforall loc in Locales do
on loc do
MySPMDProgram(loc.1d, Locales.numElements);

proc MySPMDProgram (myImageID, numlImages) {

}

3) Multiresolution Design: Motivation .

EEA™ High-Level
(ZPL | Abstractions

Low-Level

Implementation OpenMP

Concepts
Target Machine Target Machine

“Why is everything so tedious/difficult?”
“Why don’t my programs port trivially?”

“Why don’t | have more control?”

3) Multiresolution Design: Concept

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity
e |ower levels for greater degrees of control
Chapel language concepts

(Domain Maps)
Data Parallelism

Task Parallelism
Base Language

Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

! cmas
CHAPEL
=

4) Control over Locality/Affinity N

Consider: \
e Scalable architectures package memory near processors
e Remote accesses take longer than local accesses

Therefore:
e Placement of data relative to tasks affects scalability
e Give programmers control of data and task placement

Note:
e Increasingly, locality matters more and more within a
compute node as well

— COMPUTE | STORE | ANALYZE
N e
@E.L Copyright 2014 Cray Inc. @

®
b
CRANY

Partitioned Global Address Space Languages N

L)
\

(Or perhaps: partitioned global namespace languages)

abstract concept:

e support a shared namespace on distributed memory
e permit any parallel task to access any lexically visible variable
e doesn’t matter if it's local or remote

shared name-/address space

private private private private private
space 0 space 1 space 2 space 3 space 4

= COMPUTE | STORE | ANALYZE

n
\\

\

\

(o
X= Copyright 2014 Cray Inc.

®
!
CRANY |

Partitioned Global Address Space Languages ot

e \
\

(Or perhaps: partitioned global namespace languages) \

abstract concept:

e support a shared namespace on distributed memory
e permit any parallel task to access any lexically visible variable
e doesn’t matter if it's local or remote

e establish a strong sense of ownership
e every variable has a well-defined location
e local variables are cheaper to access than remote ones

partitioned shared name-/address space

private private private private
space 0 space 1 space 2 space 3 space 4

COMPUTE | STORE | ANALYZE

=
B ®
= Copyright 2014 Cray Inc.

Chapel and PGAS

e Chapel is a PGAS language...

...but unlike most, it’s not restricted to SPMD
= never think in terms of “the other copies of the program”

Locales (think: “compute nodes”)

= COMPUTE | STORE | ANALYZE
CG_/;/AE.L Copyright 2014 Cray Inc.

5) Reduce HPC — Mainstream Language Gap =|=A:Yf ~

e \
\

Consider: \
e Students graduate with training in Java, Matlab, Python, etc.
e Yet HPC programming is dominated by Fortran, C/C++, MPI

We'd like to narrow this gulf with Chapel:
e to leverage advances in modern language design
e to better utilize the skills of the entry-level workforce...

e ...while not alienating the traditional HPC programmer
e e.g., support object-oriented programming, but make it optional

COMPUTE | STORE | ANALYZE

B ®
=% Copyright 2014 Cray Inc.

Questions about Context and Motivation?

=

=Rasyr
cCcHAaARPRPEL
—

=/

L1454

New Orleans, |hpc
LA | matters.

COMPUTE | STORE | ANALYZE

\
- . (el — PPN
Legal Disclaimer . o
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ \

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without noftice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use
codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the
sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other

countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray
Inc.: ACE, APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark
LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

(&= ®

CRANY

THE SUPERCOMPUTER COMPANY

"'_rav.com chapel info

