


 Definition

 Abstract unit of target architecture

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Supports reasoning about locality

 Properties

 a locale’s tasks have ~uniform access to local vars

 Other locale’s vars are accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node

2



 Multi-locale Hello World

3

coforall loc in Locales do

on loc do

writeln(“Hello, world! “,

“from node ”, loc.id, “ of ”, numLocales);



 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

 main() begins as a single task on locale #0 (Locales[0])

4

% a.out --numLocales=8

config const numLocales: int;

const LocaleSpace: domain(1) = [0..numLocales-1];

const Locales: [LocaleSpace] locale;

LocaleSpace:

L0 L1 L2 L3 L4 L5 L6 L7Locales:

numLocales: 8

% a.out –nl 8



Create locale views with standard array operations:

5

var TaskALocs = Locales[0..1];

var TaskBLocs = Locales[2..numLocales-1];

var Grid2D = Locales.reshape([1..2, 1..4]);

L0 L1 L2 L3 L4 L5 L6 L7Locales:

L0 L1TaskALocs:

L2 L3 L4 L5 L6 L7TaskBLocs:

L0 L1 L2 L3

L4 L5 L6 L7
Grid2D:





Returns locale’s index in LocaleSpace



Returns name of locale, if available (like uname -a)



Returns number of processor cores available to locale



Returns physical memory available to user programs on locale

Example

6

proc locale.id: int { ... }

proc locale.name: string { ... }

proc locale.numCores: int { ... }

proc locale.physicalMemory(...) { ... }

const totalPhysicalMemory =

+ reduce Locales.physicalMemory();



 Syntax

 Semantics

 Executes stmt on the locale that stores expr

 Example

7

on-stmt:

on expr { stmt }

writeln(“start on locale 0”);

on Locales(1) do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);



 On-clauses do not introduce any parallelism

 But can be combined with constructs that do:

 (the final three writeln()s might print in any order)

8

writeln(“start on locale 0”);

on Locales(1) do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

writeln(“start on locale 0”);

begin on Locales(1) do

writeln(“now on locale 1”);

on Locales(2) do begin

writeln(“now on locale 2”);

writeln(“on locale 0 again”);



 A language may support both global- and local-view 
programming — in particular, Chapel does

proc main() {

coforall loc in Locales do

on loc do

MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(me, p) {

...

}

9



 Syntax

 Semantics

 Returns the locale on which expr is stored

 Example

10

locale-query-expr:

expr . locale

var i: int;

on Locales(1) {

var j: int;

writeln(i.locale.id, j.locale.id);  // outputs 01

}

L0 L1i j



 Built-in locale value

 Semantics

 Refers to the locale on which the task is executing

 Example

11

const here: locale;

writeln(here.id);    // outputs 0

on Locales(1) do

writeln(here.id);  // outputs 1



12

var x, y: real;     // x and y allocated on locale 0

on Locales(1) {     // migrate task to locale 1

var z: real;      // z allocated on locale 1

z = x + y;        // remote reads of x and y

on Locales(0) do // migrate back to locale 0

z = x + y;      // remote write to z

// migrate back to locale 1

on x do // data-driven migration to locale 0

z = x + y;      // remote write to z

// migrate back to locale 1

}                   // migrate back to locale 0

L0 L1x
y

z



 Syntax

 Semantics

 Asserts to the compiler that all operations are local

 Example

13

on Locales(1) {

var x: int = …;

var y: int = …;

local {

x += y;

}

writeln(x);  // outputs 1

}

local-stmt:

local { stmt };



14

var x, y: real;     // x and y allocated on locale 0

on Locales(1) {     // migrate task to locale 1

var z: real;      // z allocated on locale 1

z = x + y;        // remote reads of x and y

on Locales(0) {   // migrate back to locale 0

var tz: real;

local tz = x+y; // no “checks” performed

z = tz;         // remote write to z

}                 // migrate back to locale 1

...

}                   // migrate back to locale 0

L0 L1x
y

z



 Everything should be functioning perfectly

 The compiler is currently conservative about 
assuming variables may be remote

 Impact: scalar performance overhead

 The compiler is currently lacking several important 
communication optimizations

 Impact: scalability tends to be limited for programs 
with structured communication

15



 Hierarchical Locales (joint work with GaTech, UIUC, LTS)

 Support ability to expose hierarchy, heterogeneity within 
locales

 Particularly important in next-generation nodes
 CPU+GPU hybrids

 tiled processors

 manycore processors

 (For more details, talk to Tom or come see his poster at the 
PGAS booth)

16



 Multi-Locale Basics
 Locales

 on

 here

 local

17


