


 STREAM and RA HPC Challenge Benchmarks
 simple, regular 1D computations

 results from SC ’09 competition

 AMR Computations
 hierarchical, regular computation

 SSCA #2
 unstructured graph computation
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 Two classes of competition:
 Class 1: “best performance”

 Class 2: “most productive”
 Judged on: 50% performance 50% elegance

 Four recommended benchmarks: STREAM, RA, FFT, HPL

 Use of library routines: discouraged

 Why you may care:
 provides an alternative to the top-500’s focus on peak performance

 Recent Class 2 Winners:
2008: performance: IBM (UPC/X10)

productive: Cray (Chapel), IBM (UPC/X10), Mathworks (Matlab)

2009: performance: IBM (UPC+X10)

elegance: Cray (Chapel)
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Benchmark 2008 2009 Improvement

Global STREAM
1.73 TB/s
(512 nodes)

10.8 TB/s
(2048 nodes)

6.2x

EP STREAM
1.59 TB/s
(256 nodes)

12.2 TB/s
(2048 nodes)

7.7x

Global RA
0.00112 GUPs
(64 nodes)

0.122 GUPs
(2048 nodes)

109x

Global FFT
single-threaded
single-node 

multi-threaded multi-
node

multi-node parallel

Global HPL
single-threaded 
single-node

multi-threaded single-
node 

single-node parallel

All timings on ORNL Cray XT4:

• 4 cores/node

• 8 GB/node

• no use of library routines
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const ProblemSpace: domain(1, int(64))

dmapped Block([1..m])

= [1..m];

var A, B, C: [ProblemSpace] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;
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This loop should eventually be written:
A = B + alpha * C;

(and can be today, but performance is worse)



coforall loc in Locales do

on loc {

local {

var A, B, C: [1..m] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

}

}
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const TableDist = new dmap(new Block([0..m-1])),

UpdateDist = new dmap(new Block([0..N_U-1]));

const TableSpace: domain … dmapped TableDist = …,

Updates: domain … dmapped UpdateDist = …;

var T: [TableSpace] uint(64);

forall ( ,r) in (Updates,RAStream()) do

on TableDist.idxToLocale(r & indexMask) {

const myR = r;

local T(myR & indexMask) ^= myR;

}
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This body should eventually simply be written:
on T(r&indexMask) do

T(r&indexMask) ^= r;

(and again, can be today, but performance is worse)
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 STREAM and RA HPC Challenge Benchmarks
 simple, regular 1D computations

 results from SC ’09 competition

 AMR Computations
 hierarchical, regular computation

 SSCA #2
 unstructured graph computation
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Adaptive Mesh Refinement in Chapel

What’s so great about domains?

 Ability to reason about unions of rectangular index spaces

(as unions of domains)

 Trivial shared-memory 

parallelism; easy access 

to distributed parallelism with 

distributions

 Fewer nested loops, and no

bounds to mess up

 Striding allows much better

description of grids (vertices,

edges, cell centers)

 Dimension-independent code

coarse 

grid
finer grids

finest grids
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Strided grid description
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Strided grid description

var cell_centers     = [1..7 by 2, 1..5 by 2];
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Strided grid description

var cell_centers     = [1..7 by 2, 1..5 by 2];

var vertical_edges   = [0..8 by 2, 1..5 by 2];
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Strided grid description

var cell_centers     = [1..7 by 2, 1..5 by 2];

var vertical_edges   = [0..8 by 2, 1..5 by 2];

var horizontal_edges = [1..7 by 2, 0..6 by 2];
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Strided grid description

var cell_centers     = [1..7 by 2, 1..5 by 2];

var vertical_edges   = [0..8 by 2, 1..5 by 2];

var horizontal_edges = [1..7 by 2, 0..6 by 2];

var vertices         = [0..8 by 2, 0..6 by 2];
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Dimension-free stencils

Tasks:

1. Create an N-dimensional grid.

2. Evaluate the function

on the grid.

3. Approximate the Laplacian,
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1. Create an N-dimensional grid

config param N: int = 2;

const dimensions = [1..N];
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1. Create an N-dimensional grid
num_points

dx

config const num_points = 20;

const dx = 1.0 / (num_points-1);
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1. Create an N-dimensional grid

var grid_points: domain(N);

var ranges: N*range;

for d in dimensions do

ranges(d) = 1..num_points;

grid_points = ranges;
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2. Evaluate the function

var f: [grid_points] real = 1.0;

forall point in points {

for d in dimensions do

f(point) *= sin( (point(d)-1)*dx );  

}
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2. Evaluate the function

var f: [grid_points] real = 1.0;

forall point in points {

for d in dimensions do

f(point) *= sin( (point(d)-1)*dx );  

}

Calculates real

coordinate xd



Chapel (26)

3. Approximate the Laplacian,

var interior_points = grid_points.expand(-1);

var laplacian: [interior_points] real;
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3. Approximate the Laplacian,

var interior_points = grid_points.expand(-1);

var laplacian: [interior_points] real;

Laplacian is only defined 

on the interior of the grid
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3. Approximate the Laplacian,

forall point in interior_points {

var shift: N*int;

for d in dimensions {

shift(d) = 1;

laplacian(point) += (    f(point+shift) 

- 2*f(point)    

+   f(point-shift)

)/ dx**2;

shift(d) = 0;

}

}
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3. Approximate the Laplacian,

forall point in interior_points {

var shift: N*int;

for d in dimensions {

shift(d) = 1;

laplacian(point) += (    f(point+shift) 

- 2*f(point)    

+   f(point-shift)

)/ dx**2;

shift(d) = 0;

}

}
Approximates
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3. Approximate the Laplacian,

forall point in interior_points {

var shift: N*int;

for d in dimensions {

shift(d) = 1;

laplacian(point) += (    f(point+shift) 

- 2*f(point)    

+   f(point-shift)

)/ dx**2;

shift(d) = 0;

}

}

Translates in 
dimension d
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3. Approximate the Laplacian,

forall point in interior_points {

var shift: N*int;

for d in dimensions {

shift(d) = 1;

laplacian(point) += (    f(point+shift) 

- 2*f(point)    

+   f(point-shift)

)/ dx**2;

shift(d) = 0;

}

}

Translates in 
dimension d

point
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3. Approximate the Laplacian,

forall point in interior_points {

var shift: N*int;

for d in dimensions {

shift(d) = 1;

laplacian(point) += (    f(point+shift) 

- 2*f(point)    

+   f(point-shift)

)/ dx**2;

shift(d) = 0;

}

}

Translates in 
dimension d

point

+shift
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3. Approximate the Laplacian,

forall point in interior_points {

var shift: N*int;

for d in dimensions {

shift(d) = 1;

laplacian(point) += (    f(point+shift) 

- 2*f(point)    

+   f(point-shift)

)/ dx**2;

shift(d) = 0;

}

}

Translates in 
dimension d

point

+shift

-shift



 STREAM and RA HPC Challenge Benchmarks
 simple, regular 1D computations

 results from SC ’09 competition

 AMR Computations
 hierarchical, regular computation

 SSCA #2
 unstructured graph computation
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Given a set of heavy edges HeavyEdges in directed graph G, find

sub-graphs of outgoing paths with length ≤ maxPathLength
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Given a set of heavy edges HeavyEdges in directed graph G, find

sub-graphs of outgoing paths with length ≤ maxPathLength

maxPathLength = 0
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Given a set of heavy edges HeavyEdges in directed graph G, find

sub-graphs of outgoing paths with length ≤ maxPathLength

maxPathLength = 0     maxPathLength = 1
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Given a set of heavy edges HeavyEdges in directed graph G, find

sub-graphs of outgoing paths with length ≤ maxPathLength

maxPathLength = 0     maxPathLength = 1     maxPathLength = 2
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def rootedHeavySubgraphs(

G,

type vertexSet; 

HeavyEdges : domain,

HeavyEdgeSubG : [],

in maxPathLength: int ) {

forall (e, subgraph) in

(HeavyEdges, HeavyEdgeSubG) {

const (x,y) = e;

var ActiveLevel: vertexSet;

ActiveLevel += y;

subgraph.edges += e;

subgraph.nodes += x;

subgraph.nodes += y;

for pathLength in 1..maxPathLength {

var NextLevel: vertexSet;

forall v in ActiveLevel do

forall w in G.Neighbors(v) do

atomic {

if !subgraph.nodes.member(w) {

NextLevel += w;

subgraph.nodes += w;

subgraph.edges += (v, w);

}

}

if (pathLength < maxPathLength) then

ActiveLevel = NextLevel;

}

}

}
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def rootedHeavySubgraphs(

G,

type vertexSet; 

HeavyEdges : domain,

HeavyEdgeSubG : [],

in maxPathLength: int ) {

forall (e, subgraph) in

(HeavyEdges, HeavyEdgeSubG) {

const (x,y) = e;

var ActiveLevel: vertexSet;

ActiveLevel += y;

subgraph.edges += e;

subgraph.nodes += x;

subgraph.nodes += y;

for pathLength in 1..maxPathLength {

var NextLevel: vertexSet;

forall v in ActiveLevel do

forall w in G.Neighbors(v) do

atomic {

if !subgraph.nodes.member(w) {

NextLevel += w;

subgraph.nodes += w;

subgraph.edges += (v, w);

}

}

if (pathLength < maxPathLength) then

ActiveLevel = NextLevel;

}

}

}
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Generic Implementation of Graph G

G.Vertices: A domain whose indices represent the vertices
• For toroidal graphs, a domain(d), so vertices are d-tuples
• For other graphs, a domain(1), so vertices are integers

G.Neighbors: An array over G.Vertices
• For toroidal graphs, a fixed-size array over the domain [1..2*d]
• For other graphs…

…an associative domain with indices of type index(G.vertices)
…a sparse subdomain of G.Vertices

This kernel and the others are generic w.r.t. these decisions!



def rootedHeavySubgraphs(

G,

type vertexSet; 

HeavyEdges : domain,

HeavyEdgeSubG : [],

in maxPathLength: int ) {

forall (e, subgraph) in

(HeavyEdges, HeavyEdgeSubG) {

const (x,y) = e;

var ActiveLevel: vertexSet;

ActiveLevel += y;

subgraph.edges += e;

subgraph.nodes += x;

subgraph.nodes += y;

for pathLength in 1..maxPathLength {

var NextLevel: vertexSet;

forall v in ActiveLevel do

forall w in G.Neighbors(v) do

atomic {

if !subgraph.nodes.member(w) {

NextLevel += w;

subgraph.nodes += w;

subgraph.edges += (v, w);

}

}

if (pathLength < maxPathLength) then

ActiveLevel = NextLevel;

}

}

}
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Generic with respect to vertex sets

vertexSet: A type argument specifying how to 
represent vertex subsets

Requirements:
• Parallel iteration
• Ability to add members, test for membership

Options:
• An associative domain over vertices
domain(index(G.vertices))

• A sparse subdomain of the vertices
sparse subdomain(G.vertices) 



def rootedHeavySubgraphs(

G,

type vertexSet; 

HeavyEdges : domain,

HeavyEdgeSubG : [],

in maxPathLength: int ) {

forall (e, subgraph) in

(HeavyEdges, HeavyEdgeSubG) {

const (x,y) = e;

var ActiveLevel: vertexSet;

ActiveLevel += y;

subgraph.edges += e;

subgraph.nodes += x;

subgraph.nodes += y;

for pathLength in 1..maxPathLength {

var NextLevel: vertexSet;

forall v in ActiveLevel do

forall w in G.Neighbors(v) do

atomic {

if !subgraph.nodes.member(w) {

NextLevel += w;

subgraph.nodes += w;

subgraph.edges += (v, w);

}

}

if (pathLength < maxPathLength) then

ActiveLevel = NextLevel;

}

}

}
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The same genericity applies to subgraphs



def rootedHeavySubgraphs(

G,

type vertexSet; 

HeavyEdges : domain,

HeavyEdgeSubG : [],

in maxPathLength: int ) {

forall (e, subgraph) in

(HeavyEdges, HeavyEdgeSubG) {

const (x,y) = e;

var ActiveLevel: vertexSet;

ActiveLevel += y;

subgraph.edges += e;

subgraph.nodes += x;

subgraph.nodes += y;

for pathLength in 1..maxPathLength {

var NextLevel: vertexSet;

forall v in ActiveLevel do

forall w in G.Neighbors(v) do

atomic {

if !subgraph.nodes.member(w) {

NextLevel += w;

subgraph.nodes += w;

subgraph.edges += (v, w);

}

}

if (pathLength < maxPathLength) then

ActiveLevel = NextLevel;

}

}

}
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 STREAM and RA HPC Challenge Benchmarks
 simple, regular 1D computations

 results from SC ’09 competition

 AMR Computations
 hierarchical, regular computation

 SSCA #2
 unstructured graph computation
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