Chapel: Domain Maps

(Layouts and Distributions)

C=RA0Y

THE SUPERCOMPUTER COMPANY

Flashback: Data Parallelism

e Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.

InnerD

C=RA0Y

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?

Are regular arrays laid out in row- or column-major order? Or...?

I O o NEERE RN RN RN v I=r |7 |~ mdl | Indl | Ins
I e . il | il | I S mdl | Il | Ina
= n- b &iln b 4 mdl | I | Ina

74 i A A .
D[S ESIESIES

AR AR AR

What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided between the tasks?

| | |

..............

A: Chapel’s domain maps are designed to give the user
full control over such decisions

Outline pase

e Data Parallelism Revisited
e Domain Maps

e Layouts

e Distributions

10

wenenn Chapel: Domain Maps

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation...

...to a locale’s memory and processors:

| |
| |
I I
| |
+ | + | +
I I
| |
| |
1 I

o [T | o T | o -
| | | | | | | | | | | |

C=RA0Y

THE SUPERCOMPUTER COMPANY

Domain Map Definitions

Domain maps define:
e Ownership of domain indices and array elements
e Underlying representation of indices and elements
e Standard operations on domains and arrays
e E.g, iteration, slicing, access, reindexing, rank change

* How to farm out work
e E.g., forall loops over distributed domains/arrays

Domain maps are built using Chapel concepts

e classes, iterators, type inference, generic types > IS D
: ~ Data Parallelism

* task parallelism ' Task Parallelism

* |locales and on-clauses

* other domains and arrays

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps: Layouts and Distributions

Domain Maps fall into two major categories:

layouts: target a single shared memory segment
e (thatis, a desktop machine or multicore node)

e examples: row- and column-major order, tilings,
compressed sparse row

distributions: target distinct memory segments
e (that is a distributed memory cluster or supercomputer)
e examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, ...

C=RA0Y

THE SUPERCOMPUTER COMPANY

Sample Distributions: Block and Cyclic

var Dom: domain (2) dmapped Block (boundingBox=[1..4, 1..8])]

= [1..4, 1..8];
o 10 ‘L1 (12| L3
distributed to
L5 [L6 L7

var Dom: domain (2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];
par 10 (L1 L2 13
distributed to
.L5 L6 L7

N

1 38

CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Strategy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
e to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
e to avoid a performance cliff between “built-in” and user-defined
domain maps
4. Domain maps should only affect implementation and
performance, not semantics
* to support switching between domain maps effortlessly

C=RA0Y

THE SUPERCOMPUTER COMPANY

Using Domain Maps

e Syntax

dmap-type:

dmap (dmap-class(...))
dmap-value:

new dmap (new dmap-class(..))

e Semantics

Domain maps specify how a domain and its arrays are
implemented

e Examples
use myDMapMod; A
var DMap: dmap (myDMap (..)) = new dmap (new myDMap (..)) ;
var Dom: domain(..) dmapped DMap;
var A: [Dom] real;

C=RA0Y

THE SUPERCOMPUTER COMPANY

Domain Map Syntactic Sugar

e The following:

var Dom: domain(..) dmapped new dmap (new myDMap(..)) ;]

* May be written:
var Dom: domain (..) dmapped myDMap(..) ;]

(we also have some plans for cleaning up the non-
sugared syntax a bit...)

C=RA0Y

THE SUPERCOMPUTER COMPANY

Domain Map Types

All domain types support domain maps

Semantics are independent of the domain map, but
performance will vary

- oy Ll

ILI |]
b o g
o—o . A=
E o
o o

131
I T

“steve”

4 lee” _ _.

“sung”

“david”

— —J{Jacab” _ .
“albert”

“brad”

L eResr
Outline ’

p—
e —
I
_ R

e Data Parallelism Revisited
e Domain Maps

e Chapel Standard Layouts and Distributions
e Block
e Cyclic

10

wenenn Chapel: Domain Maps

C=RA0Y

THE SUPERCOMPUTER COMPANY

The Block class constructor

def Block (boundingBox: domain, N\
targetLocales: [] locale = Locales,
dataParTasksPerlLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...,
param rank = boundingBox.rank,
type 1dxType = boundingBox.dim(1l) .eltType)

L2 L3

L6 L7

o 10 L1
distributed to . r

C=RA0Y

THE SUPERCOMPUTER COMPANY

The Cyclic class constructor

def Cyclic (startIdx, N\
targetLocales: [] locale = Locales,
dataParTasksPerlLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...,
param rank: int = infered from startldx,
type 1dxType = infered from startIdx)

1 38

L2 L3

distributed 10 L1
Istributed to .
LS

L6 L7

Domain Maps: Status

e Full-featured Block- and Cyclic distributions
e Single-locale COO and CSR Sparse layouts supported
e Serial quadratic probing Associative layout supported

* Memory currently leaked for distributed arrays
* Need to finalize user-defined domain map interfaces

CRANY

THE SUPERCOMPUTER COMPANY

Future Directions

e Advanced uses of domain maps:
e GPU programming
e Dynamic load balancing
e Resilient computation
* in situ interoperability
e Qut-of-core computations

Questions?

e Data Parallelism Revisited

e Domain maps
e Layouts
e Distributions

e The Chapel Standard Distributions
e Block Distribution
e Cyclic Distribution

e User-defined Domain Maps

10

wenenn Chapel: Domain Maps

CRANY

THE SUPERCOMPUTER COMPANY

Backup Slides

Chapel: Domain Maps

C=RA0Y

THE SUPERCOMPUTER COMPANY

User-Defined Distribution Descriptors

Domain Map Domain Array
@)Ie: Similar to \ @)Ie: Similar to \ Gole: Similar to \
layout’s domain map layout’s domain layout's array
Global descriptor descriptor, butno descriptor, butdata
one instance O(#indices) storage Is moved to local
per object oty descriptors
: Size: O(1
(logically) \ / \ / Q'Z e 0(1) /
Stores node- Stores node’s Stores node’s
Local specificdomainmap subset of domain’s subsetofarray’s
one instance parameters index set elements
er node
per object o) —
P J O(#indices/#nodes) O(#indices/ #nodes)

(typically)

C=RA0Y

THE SUPERCOMPUTER COMPANY

Sample Block Distribution Descriptors

Domain Map Domain Array

@undingBox = \ / \ / \

[1..4,1..8]

Global

- indexSet=[1..4,1..8]
one Instance | targetLocales =

per object
QE y

(logically)

Local
one instance myIndexSpace = myIndices =[3..4, 1..2] myElems =
per node [3..max, min..2] .-
per object L]
(typically)

var Dom: domain (2) dmapped Block (boundingBox=[1..4, 1..81])
= [1..4, 1..8];

