

 Domains are first-class index sets

 Specify the size and shape of arrays

 Support iteration, array operations, etc.

D

InnerD

A

B

2Chapel: Domain Maps

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

A: Chapel’s domain maps are designed to give the user
full control over such decisions

dynamically

3Chapel: Domain Maps

 Data Parallelism Revisited

 Domain Maps

 Layouts

 Distributions

4Chapel: Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

…to a locale’s memory and processors:

Chapel: Domain Maps 5

=

+

α •

L0 L1 L2

=

+

α •

=

+

α •

=

+

α •

Domain maps define:
 Ownership of domain indices and array elements

 Underlying representation of indices and elements

 Standard operations on domains and arrays
 E.g, iteration, slicing, access, reindexing, rank change

 How to farm out work
 E.g., forall loops over distributed domains/arrays

Domain maps are built using Chapel concepts
 classes, iterators, type inference, generic types

 task parallelism

 locales and on-clauses

 other domains and arrays

Chapel: Domain Maps 6

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Domain Maps fall into two major categories:

layouts: target a single shared memory segment
 (that is, a desktop machine or multicore node)

 examples: row- and column-major order, tilings,
compressed sparse row

distributions: target distinct memory segments
 (that is a distributed memory cluster or supercomputer)

 examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, …

7Chapel: Domain Maps

1

var Dom: domain(2) dmapped Block(boundingBox=[1..4, 1..8])

= [1..4, 1..8];

1 8

4

distributed to

var Dom: domain(2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

8Chapel: Domain Maps

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

9Chapel: Domain Maps

 Syntax

 Semantics
 Domain maps specify how a domain and its arrays are

implemented

 Examples

Chapel: Domain Maps 10

dmap-type:

dmap(dmap-class(…))

dmap-value:

new dmap(new dmap-class(…))

use myDMapMod;

var DMap: dmap(myDMap(…)) = new dmap(new myDMap(…));

var Dom: domain(…) dmapped DMap;

var A: [Dom] real;

 The following:

 May be written:

(we also have some plans for cleaning up the non-
sugared syntax a bit…)

Chapel: Domain Maps 11

var Dom: domain(…) dmapped new dmap(new myDMap(…));

var Dom: domain(…) dmapped myDMap(…);

All domain types support domain maps

Semantics are independent of the domain map, but
performance will vary

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

Chapel: Domain Maps

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 Block

 Cyclic

13Chapel: Domain Maps

Chapel: Domain Maps 14

def Block(boundingBox: domain,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank = boundingBox.rank,

type idxType = boundingBox.dim(1).eltType)

1

1 8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

Chapel: Domain Maps 15

def Cyclic(startIdx,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank: int = infered from startIdx,

type idxType = infered from startIdx)

distributed to
L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

 Full-featured Block- and Cyclic distributions

 Single-locale COO and CSR Sparse layouts supported

 Serial quadratic probing Associative layout supported

 Block-Cyclic, Associative distributions underway

 Parallel irregular layouts and distributions underway

 Memory currently leaked for distributed arrays

 Need to finalize user-defined domain map interfaces

Chapel: Domain Maps 16

 Advanced uses of domain maps:
 GPU programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations

Chapel: Domain Maps 17

 Data Parallelism Revisited

 Domain maps
 Layouts

 Distributions

 The Chapel Standard Distributions
 Block Distribution

 Cyclic Distribution

 User-defined Domain Maps

18Chapel: Domain Maps

Chapel: Domain Maps 19

Chapel: Domain Maps 20

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

Role: Similar to

layout’s domain map
descriptor

Role: Similar to

layout’s domain
descriptor, but no
Θ(#indices) storage

Size: Θ(1)

Role: Similar to

layout’s array
descriptor, but data
is moved to local

descriptors

Size: Θ(1)

Role: Stores node-

specific domain map
parameters

Role: Stores node’s

subset of domain’s
index set

Size: Θ(1) →
Θ(#indices / #nodes)

Role: Stores node’s

subset of array’s
elements

Size:

Θ(#indices / #nodes)

Chapel: Domain Maps 21

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

var Dom: domain(2) dmapped Block(boundingBox=[1..4, 1..8])

= [1..4, 1..8];
1

boundingBox =

[1..4, 1..8]

targetLocales =
indexSet = [1..4, 1..8]

myIndexSpace =
[3..max, min..2]

myIndices = [3..4, 1..2] myElems =

L0 L1 L2 L3

L4 L5 L6 L7

L4 L4 L4

--

