
1

Overview
A. Introduction to PGAS (~ 30 mts)

B. Introduction to Languages

A. UPC (~ 65 mts)

B. X10 (~ 65 mts)

C. Chapel (~ 65 mts)

C. Comparison of Languages (~45 minutes)

A. Comparative Heat transfer Example

B. Comparative Summary of features

C. Discussion

D. Hands-On (90 mts)

Comparison of

Languages

UPC

3

2D Heat Conduction Problem

 Based on the 2D Partial Differential Equation (1),

2D Heat Conduction problem is similar to a 4-point

stencil operation, as seen in (2):

y

x

t

xyT 1,

t

xyT 1,

t

xyT ,1

1

,

t

xyT

t

xyT ,1

t

T

y

T

x

T 1
2

2

2

2

(1)

t

ji

t

ji

t

ji

t

ji

t

ji TTTTT 1,1,,1,1

1

,
4

1
(2)

Because of the time steps,

Typically, two grids are used

4

Heat Transfer in Pictures

A:

1.0

n

n

4

repeat until max

change <

5

2D Heat Conduction Problem
shared [BLOCKSIZE] double grids[2][N][N];

shared double dTmax_local[THREADS], dTmax_shared;

int x, y, nr_iter = 0, finished = 0;

int dg = 1, sg = 0;

double dTmax, dT, T, epsilon = 0.0001;

do {

dTmax = 0.0;

for(y=1; y<N-1; y++){

upc_forall(x=1; x<N-1; x++; &grids[sg][y][x]){

T = (grids[sg][y-1][x] + grids[sg][y+1][x] +

grids[sg][y][x-1] + grids[sg][y][x+1])

/ 4.0;

dT = T – grids[sg][y][x];

grids[dg][y][x] = T;

if(dTmax < fabs(dT))

dTmax = fabs(dT);

}

}

4-pt stencil

Affinity field, used for work

distribution

6

if(dTmax_shared < epsilon)

finished = 1;

else{

/*swapping the source &

destination “pointers”*/

dg = sg;

sg = !sg;

}

nr_iter++;

} while(!finished);

upc_barrier;

dTmax_local[MYTHREAD]=dTmax;

upc_all_reduceD(
&dTmax_shared,
dTmax_local, UPC_MAX,
THREADS, 1, NULL,
UPC_IN_ALLSYNC |
UPC_OUT_ALLSYNC);

2D Heat Conduction Problem

reduction operation using UPC

collectives library

Comparison of

Languages

X10

Heat transfer in X10

 X10 permits smooth variation between multiple concurrency

styles

“High-level” ZPL-style (operations on global arrays)

Chapel “global view” style

Expressible, but relies on “compiler magic” for performance

OpenMP style

Chunking within a single place

MPI-style

SPMD computation with explicit all-to-all reduction

Uses clocks

“OpenMP within MPI” style

 For hierarchical parallelism

 Fairly easy to derive from ZPL-style program.

Heat Transfer in X10 – ZPL style

class Stencil2D {

static type Real=Double;

const n = 6, epsilon = 1.0e-5;

const BigD = Dist.makeBlock([0..n+1, 0..n+1]),

D = BigD | [1..n, 1..n],

LastRow = [0..0, 1..n] to Region;

val A = Array.make[Real](BigD), Temp = Array.make[Real](BigD);

{

A(LastRow) = 1.0D;

}

def run() {

do {

finish ateach (p in D)

Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

val delta = (A(D)–Temp(D)).lift(Math.abs).reduce(Math.max, 0.0);

A(D) = Temp(D);

} while (delta > epsilon);

}

}

Heat Transfer in X10 – ZPL style

 Cast in fork-join style rather than

SPMD style

Compiler needs to transform

into SPMD style

 Compiler needs to chunk

iterations per place

Fine grained iteration has too

much overhead

 Compiler needs to generate code

for distributed array operations

Create temporary global

arrays, hoist them out of loop,

etc.

 Uses implicit syntax to access

remote locations.

Simple to write — tough to implement efficiently

def run() {

val D_Base = Dist.makeUnique(D.places());

do {

finish ateach (z in D_Base)

for (p in D | here)

Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

val delta =(A(D) – Temp(D)).lift(Math.abs).reduce(Math.max, 0.0);

A(D) = Temp(D);

} while (delta > epsilon);

}

Heat Transfer in X10 – II

 Flat parallelism: Assume one activity per place is desired.

 D.places() returns ValRail of places in D.

Dist.makeUnique(D.places()) returns a unique distribution (one point

per place) over the given ValRail of places

 D | x returns sub-region of D at place x.

Explicit Loop Chunking

Heat Transfer in X10 – III

 Hierarchical parallelism: P activities at place x.

Easy to change above code so P can vary with x.

 DistUtil.block(D,P)(x,q) is the region allocated to the q’th activity in place

x. (Block-block division.)

Explicit Loop Chunking with Hierarchical Parallelism

def run() {

val D_Base = Dist.makeUnique(D.places());

val blocks = DistUtil.block(D, P);

do {

finish ateach (z in D_Base)

foreach (q in 1..P)

for (p in blocks(here,q))

Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

val delta =(A(D)–Temp(D)).lift(Math.abs).reduce(Math.max, 0.0);

A(D) = Temp(D);

} while (delta > epsilon);

}

def run() {

finish async {

val c = clock.make();

val D_Base = Dist.makeUnique(D.places());

val diff = Array.make[Real](D_Base),

scratch = Array.make[Real](D_Base);

ateach (z in D_Base) clocked(c)

do {

diff(z) = 0.0D;

for (p in D | here) {

Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

diff(z) = Math.max(diff(z), Math.abs(A(p) - Temp(p)));

}

next;

A(D | here) = Temp(D | here);

reduceMax(z, diff, scratch);

} while (diff(z) > epsilon);

}

}

Heat Transfer in X10 – IV

 reduceMax() performs an all-to-all max reduction.

SPMD with all-to-all reduction == MPI style

One activity per place == MPI task

Akin to UPC barrier

Heat Transfer in X10 – V

―OpenMP within MPI style‖

def run() {

finish async {

val c = clock.make();

val D_Base = Dist.makeUnique(D.places());

val diff = Array.make[Real](D_Base),

scratch = Array.make[Real](D_Base);

ateach (z in D_Base) clocked(c)

foreach (q in 1..P) clocked(c)

do {

if (q==1) diff(z) = 0.0D;

var myDiff: Real = 0.0D;

for (p in blocks(here,q)) {

Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

myDiff = Math.max(myDiff, Math.abs(A(p) – Temp(p)));

}

atomic diff(z) = Math.max(myDiff, diff(z));

next;

A(blocks(here,q)) = Temp(blocks(here,q));

if (q==1) reduceMax(z, diff, scratch);

next;

} while (diff(z) > epsilon);

} }

Heat Transfer in X10 – VI

 All previous versions permit fine-grained remote access

Used to access boundary elements

 Much more efficient to transfer boundary elements in bulk

between clock phases.

 May be done by allocating extra “ghost” boundary at each

place

API extension: Dist.makeBlock(D, P, f)

D: distribution, P: processor grid, f: region region transformer

 reduceMax() phase overlapped with ghost distribution phase

Comparison of

Languages

Chapel

Heat Transfer in Chapel

Chapel (18)

Heat Transfer in Pictures

A:

1.0

n

n

4

repeat until max

change <

Chapel (19)

Heat Transfer in Chapel
config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Chapel (20)

Heat Transfer in Chapel
config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4.0;

const delta = max reduce abs(A(D) - Temp(D));

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Declare program parameters

const can’t change values after initialization

config can be set on executable command-line
prompt> jacobi --n=10000 --epsilon=0.0001

note that no types are given; inferred from initializer

n integer (current default, 32 bits)

epsilon floating-point (current default, 64 bits)

Chapel (21)

Heat Transfer in Chapel
config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

var delta = max reduce abs(A(D) - Temp(D));

A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Declare domains (first class index sets)

domain(2) 2D arithmetic domain, indices are integer 2-tuples

subdomain(P) a domain of the same type as P whose indices

are guaranteed to be a subset of P’s

exterior one of several built-in domain generators

0

n+1

BigD D LastRow

0 n+1

Chapel (22)

Heat Transfer in Chapel
config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

var delta = max reduce abs(A(D) - Temp(D));

A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Declare arrays

var can be modified throughout its lifetime

: T declares variable to be of type T

: [D] T array of size D with elements of type T

(no initializer) values initialized to default value (0.0 for reals)

A TempBigD

Chapel (23)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

var delta = max reduce abs(A(D) - Temp(D));

A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Set Explicit Boundary Condition

indexing by domain slicing mechanism

array expressions parallel evaluation

Heat Transfer in Chapel

A

Chapel (24)

config const n = 6,

config const epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Compute 5-point stencil

[(i,j) in D] parallel forall expression over D’s indices, binding them

to new variables i and j

Note: since (i,j) D and D BigD and Temp: [BigD]

no bounds check required for Temp(i,j)

with compiler analysis, same can be proven for A’s accesses

Heat Transfer in Chapel

4

Chapel (25)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Compute maximum change

op reduce collapse aggregate expression to scalar using op

Promotion: abs() and – are scalar operators, automatically promoted to

work with array operands

Heat Transfer in Chapel

Chapel (26)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Copy data back & Repeat until done

uses slicing and whole array assignment

standard do…while loop construct

Heat Transfer in Chapel

Chapel (27)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1],

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Write array to console

If written to a file, parallel I/O would be used

Heat Transfer in Chapel

Chapel (28)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1] distributed Block,

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4.0;

var delta = max reduce abs(A(D) - Temp(D));

[ij in D] A(ij) = Temp(ij);

} while (delta > epsilon);

writeln(A);

Heat Transfer in Chapel

With this change, same code runs in a distributed manner

Domain distribution maps indices to locales

decomposition of arrays & default location of iterations over locales

Subdomains inherit parent domain’s distribution

BigD D LastRow A Temp

Chapel (29)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1] distributed Block,

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[(i,j) in D] Temp(i,j) = (A(i-1,j) + A(i+1,j)

+ A(i,j-1) + A(i,j+1)) / 4;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Heat Transfer in Chapel

Heat Transfer in Chapel
(Variations)

Chapel (31)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1] distributed Block,

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

var A : [1..2] [BigD] real;

A[..][LastRow] = 1.0;

var src = 1, dst = 2;

do {

[(i,j) in D] A(dst)(i,j) = (A(src)(i-1,j) + A(src)(i+1,j)

+ A(src)(i,j-1) + A(src)(i,j+1)) / 4;

const delta = max reduce abs(A[src] - A[dst]);

src <=> dst;

} while (delta > epsilon);

writeln(A);

Heat Transfer in Chapel (double buffered version)

Chapel (32)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1] distributed Block,

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

const north = (-1,0), south = (1,0), east = (0,1), west = (0,-1);

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[ind in D] Temp(ind) = (A(ind + north) + A(ind + south)

+ A(ind + east) + A(ind + west)) / 4;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Heat Transfer in Chapel (named direction version)

Chapel (33)

Heat Transfer in Chapel (array of offsets version)
config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1] distributed Block,

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

param offset : [1..4] (int, int) = ((-1,0), (1,0), (0,1), (0,-1));

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[ind in D] Temp(ind) = (+ reduce [off in offset] A(ind + off))

/ offset.numElements;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Chapel (34)

config const n = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..n+1, 0..n+1] distributed Block,

D: subdomain(BigD) = [1..n, 1..n],

LastRow: subdomain(BigD) = D.exterior(1,0);

param stencilSpace: domain(2) = [-1..1, -1..1],

offSet: sparse subdomain(stencilSpace)

= ((-1,0), (1,0), (0,1), (0,-1));

var A, Temp : [BigD] real;

A[LastRow] = 1.0;

do {

[ind in D] Temp(ind) = (+ reduce [off in offSet] A(ind + off))

/ offSet.numIndices;

const delta = max reduce abs(A[D] - Temp[D]);

A[D] = Temp[D];

} while (delta > epsilon);

writeln(A);

Heat Transfer in Chapel (sparse offsets version)

Chapel (35)

config const N = 6,

epsilon = 1.0e-5;

const BigD: domain(2) = [0..#N, 0..#N] distributed Block,

D: subdomain(BigD) = D.expand(-1);

var grids : [0..1] [BigD] real;

var sg = 0, dg = 1;

do {

[(x,y) in D] grids(dst)(x,y) = (grids(src)(x-1,y)

+ grids(src)(x+1,y)

+ grids(src)(x,y-1)

+ grids(src)(x,y+1)) / 4;

const dTmax = max reduce abs(grids(src) - grids(dst));

src <=> dst;

} while (dTmax > epsilon);

writeln(A);

Heat Transfer in Chapel (UPC-ish version)

Comparison of

Languages

Comparative Feature Matrix

37

Features Matrix
UPC X10 Chapel

Memory model
PGAS

Programming/Execution

model

SPMD Multithreaded Global-view /

Multithreaded

Base Language

C Java N/A (influences

include C, Modula,

Java, Perl, CLU,

ZPL, MTA, Scala, …)

Nested Parallelism Not supported Supported Supported

Incremental Parallelization

of code

Indirectly supported Supported Supported

Locality Awareness

Yes (Blocking and

affinity)

Yes Yes (affinity of code

and data to locales;

distributed data

aggregates)

Dynamic Parallelism

Still in research Yes – Asynchronous

PGAS

Yes –

Asynchronous

PGAS

38

Features Matrix

UPC X10 Chapel

Implicit/Explicit

Communications

Both Both Implicit; User can

assert locality of a

code block (checked

at compile-/runtime)

Collective Operations

No explicit collective

operations but remote

string functions are

provided

Yes (possibly

nonblocking, initiated

by single activity)

Reductions, scans,

whole-array

operations

Work Sharing

Different affinity

values in upc_forall

Work-stealing

supported on a single

node.

Currently, must be

explicitly done by

the user; future

versions will support

a work-sharing mode

Data Distribution

Block, round-robin Standard distributions,

users may define

more.

Library of standard

distributions + ability

for advanced users

to define their own

Memory Consistency

Model Control

Strict and relaxed

allowed on block

statements or variable

by variable basis

Under development.

(See theory in PPoPP

07)

Strict with respect to

sync/single

variables; relaxed

otherwise

39

Features Matrix

UPC X10 Chapel

Dynamic Memory

Allocation

Private or shared with

or without blocking

Supports objects and

arrays.

No pointers -- all

dynamic allocations

are through objects

& array resizing

Synchronization

Barriers,

split phase barrier,

locks, and memory

consistency control

Conditional atomic

blocks, dynamic

barriers (clocks)

Synchronization and

single variables;

transactional

memory-style atomic

blocks

Type Conversion

C rules

Casting of shared

pointers to private

pointers

Coercions,

conversions

supported as in OO

languages

C#-style rules plus

explicit conversions

Pointers To Shared

Space

Yes Yes Yes

global-view distributed

arrays

Yes, but 1D only Yes Yes

40

Partial Construct Comparison

Constructs UPC X10 Chapel

Parallel loops upc_forall foreach, ateach forall, coforall

Concurrency

spawn
N/A async,future, begin, cobegin,

Termination

detection
N/A finish sync

Distribution

construct

affinity in

upc_forall,

blocksize in

work

distribution

places, regions,

distributions

locales, domains,

distributions

Atomicity

control
N/A

Basic atomic

blocks

TM-based atomic

blocks

Data-flow

synchronization
N/A

Conditional

atomic blocks
single variables

Barriers upc_barrier clocks sync variables

41

You might consider using UPC if...

 you prefer C-based languages

 the SPMD programming/execution model fits your

algorithm

 1D block-cyclic/cyclic global arrays fit your algorithm

 you need to do production work today

42

You might consider using X10 if...

 you prefer Java-style languages

 you require dynamic/nested parallelism than SPMD

 you require multidimensional global arrays

 you're able to work with an emerging technology

43

You might consider using Chapel if...

 you're not particularly tied to any base language

 you require dynamic/nested parallelism than SPMD

 you require multidimensional global arrays

 you're able to work with an emerging technology

Discussion

45

Overview
A. Introduction to PGAS (~ 30 mts)

B. Introduction to Languages

A. UPC (~ 65 mts)

B. X10 (~ 65 mts)

C. Chapel (~ 65 mts)

C. Comparison of Languages (~45 minutes)

A. Comparative Heat transfer Example

B. Comparative Summary of features

C. Discussion

D. Hands-On (90 mts)

D. Hands-On

