SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

Chapel: Hands-On Session

Chapel Team

~& SCO08: Tutorial SO7 — 11/16/08

Outline

= QOverview of the release structure
overall structure
documentation structure
examples structure

= Getting started with the hands-on session
= Chapel environment settings

f’? Chapel: Hands-on Session (2) @ M

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

SCO08: Tutorial SO7 -- 11/16/08

Introduction to Chapel:
the Cascade High-Productivity Language

Release Directory Structure

a | chapel

|| AGREEMENT

|| CHANGES

|| CONTRIBUTORS

|| COPYRIGHT

|| LICEMSE

|| Makefile

|| README

|| README files

|_|STATUS
bin

lik

| Top-level README files |

| Chapel compiler |

| Compiler source code |

| Documentation |

> |Example codes |

> | compiler
. do/l Runtime support libraries |
. examples

e ey
> | make

, man
. modules

>)i runtime
. third-party

f? Chapel: Hands-on Session (3)

|Standard and Internal Chapel modules |

| util \| Runtime support library source code |
\l Third party software |

T wpes

Top-Level Documentation

4 | chapel

/_l User agreement |
|| AGREEMENT

|| CHANGES

|| CONTRIBUTORS

| Changes from previous releases |

\ . .
L_| COPYRIGHT | Project contributors |

|| LICENSE
| Makefile
|| README
|| README files
L | STATUS

. bin

. compiler

J doc
> . examples

J lib

. make

man

. modules

J runtime

, third-party

J util

f? Chapel: Hands-on Session (4)

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

| Copyright statement |

| License agreement (BSD) |

|t0p—|eve| Makefile |
| top-level README (START HERE!) |

| a map of the file structure (like this one) |
known bugs and

unimplemented features

T upes

SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

Man Page

a | chapel

|| AGREEMENT
|| CHANGES
|| CONTRIBUTORS
|| COPYRIGHT
|| LICEMSE
|| Makefile
|| README
|| README files
|_|STATUS
/ bin
. compiler

man page for the Chapel compiler

crel) ehpl 1)

'
chpl - Cray Tnc, conpiler for the Chaeel parallel language
smopsts

s
hpl (-0 cutfile) (—no-bourds—checks) [-0)

J doc

. examples
J lib

. make
., man
. modules

J runtime

. third-party
. util

f? Chapel: Hands-on Session (5)

Doc Directory: Main files

[chadpel /_ | Chapel Language Specification |
oc
EchapelLansuageSPEiidf/_ | HPC Challenge Documentation |
- hpccOverview.pdf
= hpecTutorial. pdf

S et - | Quick Reference Sheet |

| | README - - -
|| README bugs /_ | details on how to build the compiler |
|| README.building

L README.chplenv | Chapel environment variables |
|| README.compiling

|| README.cyguin e
|| README.executing
|| README. extern \

| details on using the Chapel compiler |

| README format | executing Chapel programs |
I_.READI\c’IE.multwlucaIE\ - - .

|| README prereqs |execut|ng using multiple locales |
|| README.threads

|| README xt-cnl

|executing using multiple threads |

f? Chapel: Hands-on Session (6) @ M

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

Doc Directory: Other files

a | chapel

doc

2. chapelLanguageSpec.pdf

T hpecOverview.pdf | map of this directory (like these slides) |
= hpecTutorial.pdf

EquickReference'/_l how to report bugs |

|| README

DML buae | notes for Cygwin users |
|| README.building

|| README.chpleny

ey e technicz_;ll note on stopgap_measure for
|_| README.cygwin calling external C routines

|| README.executing

|| README.extern

e technical note on stopgap measure for

|| README multilocale formatting string conversions
|| README.preregs P——

|| README threads prerequisites for using Chapel

|| README xt-cnl \

| technical notes for Cray XT users

f? Chapel: Hands-on Session (7) @ M

Examples Directory: Notable files

/|l chapel / |example Chapel source code |
. examples

| hello.chpl

e | expected output for test system |
L hello.goo
e | Makefile to build all examples |

| |README
oM e directory structure and overview of

|| README testing
|| start_test example codes
feature grid mapping examples to

language features

information about the Chapel
testing system

f? Chapel: Hands-on Session (8) @ M

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

CRANY

Examples Directory: Feature Grid

a | chapel

> Ju examples
| hello.chpl
__| hello.good
|| Makefile
|| README
|| README features
|| README.testing
|| start_test

f? Chapel: Hands-on Session (9) @ M

Outline

= Getting started with the hands-on session
° platform notes
° getting started
° then what?

= Chapel environment settings

f? Chapel: Hands-on Session (10) @ M

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

Supported Platforms for hands-on session
® Linux, Mac, UNIX users: should have no problems

= Windows users: have three options:
° use Cygwin (UNIX emulation environment)
works fairly well in practice, particularly for experienced users
get a copy of README.cygwin from us before getting started
we can help you install Cygwin if you’re not familiar with it
* ssh/telnet into a UNIX platform and work there
¢ find someone to buddy up with

= No computer? find someone to buddy up with

f? Chapel: Hands-on Session (11) @ M

Steps to getting started (from the README)

1. Make sure you're in the chapel/ directory

2. Build the compiler and runtime libraries using gmake
° ormake if your copy is GNU-make-compatible (as on Cygwin)

3. Set up your shell’s environment to use Chapel

* if you use... then type...
...csh, tcsh source util/setchplenv.csh
...bash source util/setchplenv.bash
...sh . util/setchplenv.sh

...something else? Come talk to us

4. Compile an example program using:
chpl -o hello examples/hello.chpl

5. Execute the resulting program:
./hello

ff? Chapel: Hands-on Session (12) [DareA) M

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

Then what?

= Whatever you like:
° Look at, compile, execute other example programs
° Explore the release -- see the bottom of the README for pointers
° Try coding up an algorithm of interest to you
* Work through some of the exercises we’ve prepared

® Please ask us questions if you have any difficulties
* (or simply questions)

®= Reminders:
° break at 3pm
* we’ll reconvene at 4:30pm for a final Q&A and to get your feedback

f? Chapel: Hands-on Session (13) @ M

Outline

u
= Chapel environment settings
° main settings

° cross-compilation settings
° other settings

f? Chapel: Hands-on Session (14) @ M

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

Main Chapel Environment Settings

CHPL_HOME: points to location of chapel/ directory
* default: none
° typical values: ~/chapel, /cygdrive/c/chapel, or any path

CHPL_HOST_PLATFORM: architecture on which compiler is built, run
* default: a best guess is made using uname -a
° typical values: cygwin, darwin, linux, linux64, sunos

PATH: the Chapel compiler’s path should be added to yours
° default: none
° typical value: $CHPL_HOME/bin/$CHPL_HOST PLATFORM

MANPATH: Chapel’s man page path should be added to yours
* default: none
° typical value: SCHPL HOME/man

(See $CHPL HOME/doc/README.chplenv for more detail)

f? Chapel: Hands-on Session (15) @ M

Cross-Compilation Environment Variables

CHPL_TARGET_PLATFORM: architecture for which Chapel is compiled
* default: $CHPL_HOST_PLATFORM
° typical values: mta, x1, x2, xmt, xt-cnl

CHPL_HOST_COMPILER: compiler to use for the host platform

CHPL_TARGET_COMPILER: compiler to use for the target platform
* default: a best guess is made using the corresponding PLATFORM variable
° typical values: gnu, intel, pathscale, pgi, cray-mta, cray-vec, cray-xt-gnu,
cray-xt-pathscale, cray-xt-pgi

CHPL_MAKE: the GNU-compatible make utility to use for the target
° default: a best guess is made using the PLATFORM variables
° typical values: gmake, make

(See $SCHPL HOME/doc/README.chplenv for more detail)

f? Chapel: Hands-on Session (16) [DareA) M

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

SCO08: Tutorial S07 -- 11/16/08 Introduction to Chapel:
the Cascade High-Productivity Language

Other Environment Variables

CHPL_THREADS: threading layer to use for the generated code
default: a best guess is made using $CHPL_TARGET_PLATFORM
typical values: none, pthreads, mta

CHPL_COMM: communication layer to use for the generated code
default: none
typical values: none, gasnet, armci

CHPL_*: most compiler options can be set using an environment variable
see chpl --help-env and --help for details

(See $CHPL HOME/doc/README.chplenv for more detail)

}% Chapel: Hands-on Session (17) @ M

Questions?

Brad Chamberlain, Steve Deitz,
Samuel Figueroa, David Iten; Cray Inc.

