
SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

SC08: Tutorial S07 – 11/16/08

Chapel: Hands-On Session

Chapel Team

Chapel: Hands-on Session (2)

Outline

 Overview of the release structure
• overall structure

• documentation structure

• examples structure

 Getting started with the hands-on session

 Chapel environment settings

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (3)

Release Directory Structure

Example codes

Standard and Internal Chapel modules

Utility scripts

Runtime support library source code

Runtime support libraries

Makefiles

Compiler source code

Chapel compiler

Documentation

Top-level README files

Man pages

Third party software

Chapel: Hands-on Session (4)

Top-Level Documentation

Changes from previous releases

Project contributors

User agreement

Copyright statement

License agreement (BSD)

top-level Makefile

top-level README (START HERE!)

a map of the file structure (like this one)

known bugs and

unimplemented features

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (5)

Man Page
man page for the Chapel compiler

Chapel: Hands-on Session (6)

Doc Directory: Main files

Quick Reference Sheet

Chapel Language Specification

Chapel environment variables

details on how to build the compiler

details on using the Chapel compiler

executing Chapel programs

executing using multiple locales

executing using multiple threads

HPC Challenge Documentation

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (7)

Doc Directory: Other files

map of this directory (like these slides)

how to report bugs

notes for Cygwin users

technical note on stopgap measure for

calling external C routines

technical note on stopgap measure for

formatting string conversions

prerequisites for using Chapel

technical notes for Cray XT users

Chapel: Hands-on Session (8)

Examples Directory: Notable files
example Chapel source code

expected output for test system

Makefile to build all examples

directory structure and overview of

example codes

feature grid mapping examples to

language features

information about the Chapel

testing system

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (9)

Examples Directory: Feature Grid

| Data Parallel Features

|

test | frall | prmte | slice | reind | reduc | scan | xxxxx | xxxxx

---------------+-------+-------+-------+-------+-------+-------+-------+-------

hello | | | | | | | |

hello-module | | | | | | | |

beer | x | | | | | | |

blockLU | x | | x | * | x | | |

fileIO | | | | | x | | |

genericStack | | | | | | | |

iterators | | | | | | | |

jacobi | * | | * | | * | | |

linkedList | | | | | | | |

norm | x | x | | | | | |

prodCons | | | | | | | |

quicksort | | | x | | | | |

reductions | | * | * | | x | | |

slices | * | * | x | x | | | |

sparse | x | | | | x | | |

tree | | | | | | | |

hpcc/stream | x | * | | | x | | |

hpcc/ra | x | | | | x | | |

hpcc/fft | x | x | x | | x | | |

key:

frall = uses forall loops

prmte = uses promotion and/or whole-array operators/assignment

slice = uses array slices

reind = uses array reindexing/array views

reduc = uses reductions

scan = uses scans

Chapel: Hands-on Session (10)

Outline

 Overview of the release structure

 Getting started with the hands-on session
• platform notes

• getting started

• then what?

 Chapel environment settings

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (11)

Supported Platforms for hands-on session

 Linux, Mac, UNIX users: should have no problems

 Windows users: have three options:
• use Cygwin (UNIX emulation environment)

 works fairly well in practice, particularly for experienced users

 get a copy of README.cygwin from us before getting started

 we can help you install Cygwin if you’re not familiar with it

• ssh/telnet into a UNIX platform and work there

• find someone to buddy up with

 No computer? find someone to buddy up with

Chapel: Hands-on Session (12)

Steps to getting started (from the README)

1. Make sure you’re in the chapel/ directory

2. Build the compiler and runtime libraries using gmake
• or make if your copy is GNU-make-compatible (as on Cygwin)

3. Set up your shell’s environment to use Chapel
• if you use… then type…

…csh, tcsh source util/setchplenv.csh

…bash source util/setchplenv.bash

…sh . util/setchplenv.sh

…something else? Come talk to us

4. Compile an example program using:
chpl -o hello examples/hello.chpl

5. Execute the resulting program:

./hello

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (13)

Then what?

 Whatever you like:
• Look at, compile, execute other example programs

• Explore the release -- see the bottom of the README for pointers

• Try coding up an algorithm of interest to you

• Work through some of the exercises we’ve prepared

 Please ask us questions if you have any difficulties
• (or simply questions)

 Reminders:
• break at 3pm

• we’ll reconvene at 4:30pm for a final Q&A and to get your feedback

Chapel: Hands-on Session (14)

Outline

 Overview of the release structure

 Getting started with the hands-on session

 Chapel environment settings
• main settings

• cross-compilation settings

• other settings

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (15)

Main Chapel Environment Settings

CHPL_HOME: points to location of chapel/ directory

• default: none

• typical values: ~/chapel, /cygdrive/c/chapel, or any path

CHPL_HOST_PLATFORM: architecture on which compiler is built, run
• default: a best guess is made using uname -a

• typical values: cygwin, darwin, linux, linux64, sunos

PATH: the Chapel compiler’s path should be added to yours
• default: none

• typical value: $CHPL_HOME/bin/$CHPL_HOST_PLATFORM

MANPATH: Chapel’s man page path should be added to yours
• default: none

• typical value: $CHPL_HOME/man

(See $CHPL_HOME/doc/README.chplenv for more detail)

Chapel: Hands-on Session (16)

Cross-Compilation Environment Variables

CHPL_TARGET_PLATFORM: architecture for which Chapel is compiled
• default: $CHPL_HOST_PLATFORM

• typical values: mta, x1, x2, xmt, xt-cnl

CHPL_HOST_COMPILER: compiler to use for the host platform

CHPL_TARGET_COMPILER: compiler to use for the target platform
• default: a best guess is made using the corresponding PLATFORM variable

• typical values: gnu, intel, pathscale, pgi, cray-mta, cray-vec, cray-xt-gnu,

cray-xt-pathscale, cray-xt-pgi

CHPL_MAKE: the GNU-compatible make utility to use for the target
• default: a best guess is made using the PLATFORM variables

• typical values: gmake, make

(See $CHPL_HOME/doc/README.chplenv for more detail)

SC08: Tutorial S07 -- 11/16/08 Introduction to Chapel:

the Cascade High-Productivity Language

Brad Chamberlain, Steve Deitz,

Samuel Figueroa, David Iten; Cray Inc.

Chapel: Hands-on Session (17)

Other Environment Variables

CHPL_THREADS: threading layer to use for the generated code
• default: a best guess is made using $CHPL_TARGET_PLATFORM

• typical values: none, pthreads, mta

CHPL_COMM: communication layer to use for the generated code
• default: none

• typical values: none, gasnet, armci

CHPL_*: most compiler options can be set using an environment variable
• see chpl --help-env and --help for details

(See $CHPL_HOME/doc/README.chplenv for more detail)

Questions?

