

 Domains are first-class index sets

 Specify the size and shape of arrays

 Support iteration, array operations, etc.

D

InnerD

A

B

2Chapel: Domain Maps

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

A: Chapel’s domain maps are designed to give the user
full control over such decisions

dynamically

3Chapel: Domain Maps

 Data Parallelism Revisited

 Domain Maps

 Layouts

 Distributions

 Chapel Standard Layouts and Distributions

 User-defined Domain Maps

4Chapel: Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

…to a locale’s memory and processors:

Chapel: Domain Maps 5

=

+

α •

L0 L1 L2

=

+

α •

=

+

α •

=

+

α •

Domain maps define:
 Ownership of domain indices and array elements

 Underlying representation of indices and elements

 Standard operations on domains and arrays
 E.g, iteration, slicing, access, reindexing, rank change

 How to farm out work
 E.g., forall loops over distributed domains/arrays

Domain maps are built using Chapel concepts
 classes, iterators, type inference, generic types

 task parallelism

 locales and on-clauses

 domains and arrays

Chapel: Domain Maps 6

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for performance, control

 build the higher-level concepts in terms of the lower-

 separate concerns appropriately for clean design

7

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

Chapel: Domain Maps

Domain Maps fall into two major categories:

layouts: target a single shared memory segment
 (that is, a desktop machine or multicore node)

 examples: row- and column-major order, tilings,
compressed sparse row

distributions: target distinct memory segments
 (that is a distributed memory cluster or supercomputer)

 examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, …

8Chapel: Domain Maps

1

var Dom: domain(2) dmapped Block(boundingBox=[1..4, 1..8])

= [1..4, 1..8];

1 8

4

distributed to

var Dom: domain(2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

9Chapel: Domain Maps

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

10Chapel: Domain Maps

 Syntax

 Semantics
 Domain maps specify how a domain and its arrays are

implemented

 Examples

Chapel: Domain Maps 11

dmap-type:

dmap(dmap-class(…))

dmap-value:

new dmap(new dmap-class(…))

use myDMapMod;

var DMap: dmap(myDMap(…)) = new dmap(new myDMap(…));

var Dom: domain(…) dmapped DMap;

var A: [Dom] real;

All domain types can be dmapped.

Semantics are independent of domain map.

(Though performance and parallelism will vary...)

Chapel: Domain Maps 12

Dense Strided Sparse

George

John

Thomas

James

Andrew

Martin

William
AssociativeOpaque

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 Block

 Cyclic

 User-defined Domain Maps

13Chapel: Domain Maps

1

var Dom: domain(2) dmapped Block(boundingBox=[1..4, 1..8])

= [1..4, 1..8];

1 8

4

distributed to

var Dom: domain(2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

14Chapel: Domain Maps

Chapel: Domain Maps 15

def Block(boundingBox: domain,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank = boundingBox.rank,

type idxType = boundingBox.dim(1).eltType)

1

1 8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

Chapel: Domain Maps 16

def Cyclic(startIdx,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank: int = infered from startIdx,

type idxType = infered from startIdx)

distributed to
L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 User-defined Domain Map Descriptors

17Chapel: Domain Maps

Chapel: Domain Maps 18

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

Role: Similar to

layout’s domain map
descriptor

Role: Similar to

layout’s domain
descriptor, but no
Θ(#indices) storage

Size: Θ(1)

Role: Similar to

layout’s array
descriptor, but data
is moved to local

descriptors

Size: Θ(1)

Role: Stores node-

specific domain map
parameters

Role: Stores node’s

subset of domain’s
index set

Size: Θ(1) →
Θ(#indices / #nodes)

Role: Stores node’s

subset of array’s
elements

Size:

Θ(#indices / #nodes)

Chapel: Domain Maps 19

Domain Map Domain Array

Global

one instance

per object

(logically)

Local

one instance

per node

per object

(typically)

var Dom: domain(2) dmapped Block(boundingBox=[1..4, 1..8])

= [1..4, 1..8];
1

boundingBox =

[1..4, 1..8]

targetLocales =
indexSet = [1..4, 1..8]

myIndexSpace =
[3..max, min..2]

myIndices = [3..4, 1..2] myElems =

L0 L1 L2 L3

L4 L5 L6 L7

L4 L4 L4

--

 Full-featured Block- and Cyclic distributions

 Serial COO and CSR Sparse layouts supported

 Serial quadratic probing Associative layout supported

 Block-Cyclic, Associative distributions underway

 Parallel irregular layouts and distributions underway

 Need to finalize user-defined domain map interfaces

Chapel: Domain Maps 20

 More standard distributions and layouts

 Specify interface for user-defined domain maps

 Advanced uses of domain maps:
 GPU programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations

Chapel: Domain Maps 21

 Data Parallelism Revisited

 Domain maps
 Layouts

 Distributions

 The Chapel Standard Distributions
 Block Distribution

 Cyclic Distribution

 User-defined Domain Maps

22Chapel: Domain Maps

