

Task: a unit of parallel work in a Chapel program

 all Chapel parallelism is implemented using tasks

Thread: a system-level concept for executing tasks

 not exposed in the language

 sometimes exposed in the implementation

Chapel: Task Parallelism 2

 Multicore

 Multi-node

Chapel: Task Parallelism 3

config const numTasks = here.numCores;

coforall tid in 0..#numTasks do

writeln(“Hello, world! ”,

“from task ”, tid, “ of ”, numTasks);

coforall loc in Locales do

on loc do

writeln(“Hello, world! “,

“from node ”, loc.id, “ of ”, numLocales);

 Primitive Task-Parallel Constructs

 The begin statement

 The sync types

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

4Chapel: Task Parallelism

 Syntax

 Semantics

 Creates a task to execute stmt

 Original (“parent”) task continues without waiting

 Example

 Possible output

Chapel: Task Parallelism 5

begin-stmt:

begin stmt

begin writeln(“hello world”);

writeln(“good bye”);

hello world

good bye

good bye

hello world

 Syntax

 Semantics
 Stores full/empty state along with normal value

 Defaults to full if initialized, empty otherwise

 Default read blocks until full, leaves empty

 Default write blocks until empty, leaves full

 Examples: Critical sections and futures

Chapel: Task Parallelism 6

sync-type:

sync type

var lock$: sync bool;

lock$ = true;

critical();

var lockval = lock$;

var future$: sync real;

begin future$ = compute();

computeSomethingElse();

useComputedResults(future$);

 Syntax

 Semantics

 Similar to sync variable, but stays full once written

 Example: Multiple Consumers of a future

Chapel: Task Parallelism 7

single-type:

single type

var future$: single real;

begin future$ = compute();

begin computeSomethingElse(future$);

begin computeSomethingEls(future$);

 readFE():t block until full, leave empty, return value

 readFF():t block until full, leave full, return value

 readXX():t return value (non-blocking)

 writeEF(v:t) block until empty, set value to v, leave full

 writeFF(v:t) wait until full, set value to v, leave full

 writeXF(v:t) set value to v, leave full (non-blocking)

 reset() reset value, leave empty (non-blocking)

 isFull: bool return true if full else false (non-blocking)

 Defaults: read: readFE, write: writeEF

Chapel: Task Parallelism 8

 readFE():t block until full, leave empty, return value

 readFF():t block until full, leave full, return value

 readXX():t return value (non-blocking)

 writeEF(v:t) block until empty, set value to v, leave full

 writeFF(v:t) wait until full, set value to v, leave full

 writeXF(v:t) set value to v, leave full (non-blocking)

 reset() reset value, leave empty (non-blocking)

 isFull: bool return true if full else false (non-blocking)

 Defaults: read: readFF, write: writeEF

Chapel: Task Parallelism 9

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 The cobegin statement

 The coforall loop

 The sync statement

 The serial statement

 Atomic Transactions and Memory Consistency

 Implementation Notes and Examples

10Chapel: Task Parallelism

 Syntax

 Semantics

 Creates a task for each statement in stmt-list

 Parent task waits for stmt-list tasks to complete

 Example

Chapel: Task Parallelism 11

cobegin-stmt:

cobegin { stmt-list }

cobegin {

consumer(1);

consumer(2);

producer();

}

Any cobegin statement…

…can be rewritten in terms of begin statements…

…but cobegin is supported as an important common
case and to enable compiler optimizations.

Chapel: Task Parallelism 12

cobegin {

stmt1();

stmt2();

stmt3();

}

var s1$, s2$, s3$: sync bool;

begin { stmt1(); s1$ = true; }

begin { stmt2(); s2$ = true; }

begin { stmt3(); s3$ = true; }

s1$; s2$; s3$;

 Syntax

 Semantics

 Create a task for each iteration in iteratable-expr

 Parent task waits for all iteration tasks to complete

 Example

Chapel: Task Parallelism 13

coforall-loop:

coforall index-expr in iteratable-expr { stmt-list }

begin producer();

coforall i in 1..numConsumers {

consumer(i);

}

Chapel: Task Parallelism 14

coforall i in 1..n do stmt();

var count$: sync int = 0, flag$: sync bool = true;

for i in 1..n {

const count = count$;

if count == 0 then flag$;

count$ = count + 1;

begin {

stmt();

const count = count$;

if count == 1 then flag$ = true;

count$ = count - 1;

}

}

flag$;

 For loops: executed using one task
 use when a loop must be executed serially

 or when one task is sufficient for performance

 Forall loops: typically executed using 1 #tasks #iters

 # tasks typically controlled by variables or arguments

 use when a loop should be executed in parallel…

 …but can legally be executed serially

 use when desired # tasks << # of iterations

 Coforall loops: executed using a task per iteration
 Use when the loop iterations must be executed in parallel

 Use when iteration has substantial work

Chapel: Task Parallelism 15

 begin:
 Use to create a dynamic task with an unstructured lifetime

 “fire and forget”

 cobegin:
 Use to create a related set of heterogeneous tasks

 The parent task depends on the completion of the tasks

 coforall:
 Use to create a fixed or dynamic # of homogenous tasks

 The parent task depends on the completion of the tasks

Note: All these concepts can be composed arbitrarily

Chapel: Task Parallelism 16

var buff$: [0..#buffersize] sync real;

cobegin{

producer();

consumer();

}

def producer() {

var i = 0;

for … {

i = (i+1) % buffersize;

buff$(i) = …;

}

}

def consumer() {

var i = 0;

while … {

i= (i+1) % buffersize;

…buff$(i)…;

}

}
Chapel: Task Parallelism 17

 Syntax

 Semantics
 Executes stmt

 Waits for all dynamically-scoped begins to complete

 Example

Chapel: Task Parallelism 18

sync-statement:

sync stmt

sync {

for i in 1..numConsumers {

begin consumer(i);

}

producer();

}

def search(N: TreeNode) {

if (N != nil) {

begin search(N.left);

begin search(N.right);

}

}

sync { search(root); }

Where the cobegin statement is static,

the sync statement is dynamic.

Program termination is defined by an implicit sync on
the main() procedure:

Chapel: Task Parallelism 19

cobegin {

functionWithBegin();

functionWithoutBegin();

} // waits on these two tasks, but not any others

sync {

begin functionWithBegin();

begin functionWithoutBegin();

} // waits on these tasks and any other descendents

sync main();

 Syntax

 Semantics
 Evaluates expr and then executes stmt

 Suppresses any dynamically-encountered concurrency

 Example

Chapel: Task Parallelism 20

serial-statement:

serial expr { stmt }

def search(N: TreeNode, depth = 0) {

if (N != nil) then

serial (depth > 4) do cobegin {

search(N.left, depth+1);

search(N.right, depth+1);

}

}

search(root);

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

 The atomic statement

 Races and memory consistency

 Implementation Notes and Examples

21Chapel: Task Parallelism

 Syntax

 Semantics

 Executes stmt so it appears as a single operation

 No other task sees a partial result

 Example

Chapel: Task Parallelism 22

atomic-statement:

atomic stmt

atomic A(i) += 1; atomic {

newNode.next = node;

newNode.prev = node.prev;

node.prev.next = newNode;

node.prev = newNode;

}

 Example

 Could the output be 10? Or 42?

Chapel: Task Parallelism 23

var x = 0, y = 0;

cobegin {

{

x = 1;

y = 1;

}

{

write(y);

write(x);

}

}

x = 1;

y = 1;

write(y); // 1

write(x); // 1

x = 1;

y = 1;

write(y); // 0

write(x); // 0

x = 1;

y = 1;

write(y); // 0

write(x); // 1

Task 1 Task 2

A program without races is sequentially consistent.

A multi-processing system has sequential consistency if “the results of

any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its
program.” – Leslie Lamport

The behavior of a program with races is undefined.

Synchronization is achieved in two ways:

 By reading or writing sync (or single) variables

 By executing atomic statements

Chapel: Task Parallelism 24

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

 Implementation Notes and Examples

25Chapel: Task Parallelism

 Concurrency limiter: maxThreadsPerLocale
 Use --maxThreadsPerLocale=<i> for at most i threads

 Use --maxThreadsPerLocale=0 for a system limit (default)

 Current task scheduling policy
 Once a thread starts running a task, it runs to completion

 If an execution runs out of threads, it may deadlock

 Cobegin/coforall parent threads help with child tasks

Chapel: Task Parallelism 26

Chapel: Task Parallelism 27

def quickSort(arr: [?D],

thresh = log2(here.numCores()),

depth = 0,

low: int = D.low,

high: int = D.high) {

if high – low < 8 {

bubbleSort(arr, low, high);

} else {

const pivotVal = findPivot(arr, low, high);

const pivotLoc = partition(arr, low, high, pivotVal);

serial (depth >= thresh) do cobegin {

quickSort(arr, thresh, depth+1, low, pivotLoc-1);

quickSort(arr, thresh, depth+1, pivotLoc+1, high);

}

}

}

Chapel: Task Parallelism 28

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

Value of “thresh”

Performance of QuickSort in Chapel
(Array Size: 2**21, Machine: 2 dual-core Opterons)

maxThreads=0

maxThreads=4

 Most features working very well

 Tasking advances would be helpful

 ability for threads to set blocked tasks aside

 lighter-weight tasking (joint work with BSC, Sandia)

 work-stealing, load-balancing

 atomic statements unimplemented in release

Chapel: Task Parallelism 29

 Task teams

 to provide a means of “coloring” different tasks
 for the purposes of specifying policies or semantics

 to support team-based collective operations
 barriers, reductions, eurekas

 Task-private variables and task-reduction variables

 Work-stealing and/or load-balancing tasking layers

Chapel: Task Parallelism 30

 Primitive Task-Parallel Constructs

 The begin statement

 The sync types

 Structured Task-Parallel Constructs

 The cobegin statement

 The coforall loop

 The sync statement

 Atomic Transactions and Memory Consistency

 The atomic statement

 Races and memory consistency

 Implementation Notes and Examples

31Chapel: Task Parallelism

