Chapel: Hands-on
Chapel Directory Structure (Partial)

chapel-1.2.0/
 chapel/
 README – quick-start instructions for building & using chpl
 – also, pointers to possible next steps
 README.files – complete directory structure description
 bin/ – location of the Chapel compiler
 doc/ – language spec, READMEs, quick reference
 examples/ – sample codes written in Chapel
 lib/ – location of the Chapel runtime libraries
 man/ – man page
Chapel Environment

- **Minimal:**

 $\textit{CHPL_HOME}$: points to Chapel installation (chapel-*/chapel)
 $\textit{CHPL_HOST_PLATFORM}$: indicates host system

- **Others:**

 $\textit{CHPL_HOST_COMPILER}$: C compiler to use
 $\textit{CHPL_COMM}$: Communication implementation to use
 $\textit{CHPL_COMM_SUBSTRATE}$: Underlying communication layer

This tutorial’s instructions will help you set these values

See $\textit{CHPL_HOME/doc/README.chplenv}$ for advanced details
Hands-on Session

• **Goals:**
 - Get everyone up and running with Chapel
 - Try out base language and data parallel features

• **Chapel versions**
 - Use the classroom version
 - Or install your own

• **Things to do**
 - Read and execute sample programs (`$CHPL_HOME/examples`)
 - Work through Monte Carlo exercises
 - Write your own parallel program of interest

• **Further Instructions Here:**
Using Chapel on MareNostrum

- Environment Settings:
 - CHPL_HOST_PLATFORM: marenostrum
 - CHPL_COMM: gasnet
 - OBJECT_MODE: 64
 - CHPL_HOME: ~pws10020/chapel-1.2.0/chapel
 - add to PATH:
 - $CHPL_HOME/bin/$CHPL_HOST_PLATFORM
 - $CHPL_HOME/util
 - MPIRUN_CMD: ‘srun --kill-on-bad-exit %C’
 - MPIRUN_CMD_OK: true
- Output for a program ‘foo’ will appear in ‘foo_%jobid.out’
- Jobs will be run in the debug queue with a 10 minute time limit
- Errors often occur at program shutdown but can be ignored