
October 16, 2023
Chapel Team

ONE-DAY CHAPEL TUTORIAL
SESSION 4: MORE PARALLELISM

• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees

2

ONE DAY CHAPEL TUTORIAL

OUTLINE: MORE PARALLELISM AND SOME BEST PRACTICES

• Spectrum of Chapel loops
• Task intents including reduce intents, and atomics
• Parallelizing histogram (Hands On)
• Story of index gather parallelization
• Other parallel constructs: 'cobegin', 'begin', 'sync',
• Avoiding races with task intents and task-private variables
• Performance gotchas
• Memory in Chapel and Arkouda
• Using CommDiagnostics

SPECTRUM OF CHAPEL LOOPS

for loop: each iteration is executed serially by the current task
• predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order
• a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order
• implemented using one or more tasks, locally or distributed, as determined by the iterand expression

coforall loop: each iteration is executed concurrently by a distinct task
• explicit parallelism; supports synchronization between iterations (tasks)

5

SPECTRUM OF CHAPEL FOR-LOOP STYLES

forall i in 1..n do … // forall loops over ranges use local tasks only
forall (i,j) in {1..n, 1..n} do … // ditto for local domains…
forall elem in myLocArr do … // …and local arrays
forall elem in myDistArr do … // distributed arrays use tasks on each locale owning part of the array
forall i in myParIter(…) do … // you can also write your own iterators that use the policy you want

See https://chapel-lang.org/docs/primers/loops.html
for more details on loops.

https://chapel-lang.org/docs/primers/loops.html

• Any function or operator that takes scalar arguments can be called with array expressions instead

• Interpretation is similar to that of a zippered forall loop, thus:

 is equivalent to:

 as is:

6

IMPLICIT LOOPS: PROMOTION OF SCALAR SUBROUTINES & ARRAY OPS

proc foo(x: real, y: real, z: real) {
 return x**y + 10*z;
}

C = foo(A, 2, B);

forall (c, a, b) in zip(C, A, B) do
 c = foo(a, 2, b);

C = A**2 + 10*B;

TASK INTENTS INCLUDING REDUCE INTENTS

Procedure argument intents (https://chapel-lang.org/docs/primers/procedures.html?highlight=intents#argument-intents)

• Tell how to pass a symbol actual argument into a formal parameter
• Default intent is 'const', which means formal can't be modified in procedure body
• 'ref' means formal can be changed AND that change will be visible elsewhere, e.g., at the callsite
• Others: 'in', 'out', and 'inout' refer to copying the actual argument in, the formal out, or both

Task intents in loops
• Similar to argument intents in syntax and philosophy
• Also have a 'reduce' intent similar to OpenMP
• 'reduce' intent means each task has its own copy and specified operation like '+' will combine at end of loop

Design principles
• Avoid common race conditions
• Avoid copies of (potentially) large data structures

8

USING TASK INTENTS IN LOOPS

https://chapel-lang.org/docs/primers/procedures.html?highlight=intents

var sum: real;
forall i in 1..n with (ref sum) do
 sum += computeMyResult(i);

var sum: real;
forall i in 1..n with (+ reduce sum) do
 sum += computeMyResult(i);

9

TASK INTENTS IN FORALL LOOPS: SCALARS

Default intent of scalars is 'const in' so this
is illegal (and avoids a race)

var sum: real;
forall i in 1..n do
 sum += computeMyResult(i);

With 'ref' intent, we are
requesting a race

Override default intent so that each
task accumulates its own copy. On
loop exit, all tasks combine their

results into original ‘sum’

04-task-intents-forall.chpl

var bucketCount: [0..<m] real;
forall i in 1..n with (in bucketCount) do
 bucketCount[i % m] += 1;

var bucketCount : [0..<m] real;
forall i in 1..n with (+ reduce bucketCount) do
 bucketCount[i % m] += 1;

10

FORALL INTENT EXAMPLES: ARRAYS

'ref' intent avoids array copies,
but can result in data races

var bucketCount: [0..<m] real;
forall i in 1..n with (ref bucketCount) do
 bucketCount[i % m] += 1;

'in' intent will result in
each task having its own

copy

'reduce' intent will result in
each task having own copy,
but then on loop exit tasks

combine their results into the
original 'bucketCount' variable

04-task-intents-forall.chpl

ATOMIC VARIABLES

Meaning
• Atomic means 'indivisible'
• An atomic operation is indivisible.
• A thread of computation cannot interfere with another thread that is doing an atomic operation.

Atomic Type Semantics in Chapel
• Supports operations on variable atomically w.r.t. other tasks
• Based on C/C++ atomic operations

Example: Counting barrier

12

ATOMIC VARIABLES

var count: atomic int, done: atomic bool;

proc barrier(numTasks) {
 const myCount = count.fetchAdd(1);
 if (myCount < numTasks - 1) then
 done.waitFor(true);
 else
 done.testAndSet();
}

04-atomic-type.chpl

13

ARRAY OF ATOMIC

var bucketCount: [0..<m] atomic real;
forall i in 1..n with (ref bucketCount) do
 bucketCount[i % m].add(1);

Make the 'bucketCount' array
contain 'atomic real's

var bucketCount: [0..<m] atomic real;
forall i in 1..n do
 bucketCount[i % m].add(1);

Can leave off 'ref' intent, since that
is the default for 'atomic' types

Use the atomic 'add' operation

04-atomic-type.chpl

PARALLELIZING HISTOGRAM (HANDS ON)

Goals
• Parallelize a program that computes a histogram using reductions
• Parallelize it using an array of atomic integers
• Compare the performance of both versions versus each other and the serial version

Parallelize 'histogram-serial.chpl' using a 'forall' loop and a 'reduction' intent
1. Copy 'histogram-serial.chpl' into 'histogram-reduce.chpl'
2. Parallelize the serial 'for' loop using concepts from '04-task-intents.chpl'

Parallelize 'histogram-serial.chpl' using an array of atomic integers
1. Copy 'histogram-serial.chpl' into 'histogram-atomic.chpl'
2. Parallelize the serial 'for' loop using concepts from '04-atomic-type.chpl'

Compare the performance of all three
./histogram-serial --numNumbers=100000000 --printRandomNumbers=false --useRandomSeed=false
./histogram-reduce --numNumbers=100000000 --printRandomNumbers=false --useRandomSeed=false
./histogram-atomic --numNumbers=100000000 --printRandomNumbers=false --useRandomSeed=false

15

HANDS ON: PARALLELIZING HISTOGRAM histogram-serial.chpl

Goals and Questions to Answer
• Parallelize as many loops in n-body as possible
• Determine when a 'reduce' intent or 'atomic' variable type is needed
• How can you check if you got the same answer?
• Is it possible for floating-point roundoff differences to change what the answers are slightly? For which loops?
• Did you get a performance improvement by doing the parallelization?

16

HANDS ON EXTRA CREDIT: PARALLELIZE N-BODY nbody.chpl

•read():t return current value
•write(v:t) store v as current value
•exchange(v:t):t store v, returning previous value
•compareExchange(old:t,new:t):bool

store new iff previous value was old; returns true on success
•waitFor(v:t) wait until the stored value is v
•add(v:t) add v to the value atomically
•fetchAdd(v:t) same, returning pre-sum value

 (sub, or, and, xor also supported similarly)

•testAndSet() like exchange(true) for atomic bool
•clear() like write(false) for atomic bool

17

ATOMIC METHODS

• Recall the following snippet of code from the histogram exercise

• Standard reductions supported by default:
+, *, min, max, &, |, &&, ||, minloc, maxloc, …

• Reductions can reduce arbitrary iterable expressions:

const total = + reduce Arr,
factN = * reduce 1..n,
biggest = max reduce (forall i in myIter() do foo(i));

18

REDUCTIONS IN CHAPEL

// verify number of items in histogram is equal to number of random
// numbers and output timing results

if + reduce histogram != numNumbers then
 halt(“Number of items in histogram does not match number of random numbers”);
writeln(“Histogram computed in ", timer.elapsed(), “ seconds\n”);

STORY OF INDEX GATHER PARALLELIZATION

• Computation in Bale that gathers spread out data into a packed array

• Parallelize over threads using a 'forall'

• Parallelize by distributing the D2 domain and using a 'forall'

20

STORY ABOUT PARALLELIZING INDEX GATHER

for i in D do
 Dest[i] = Src[Inds[i]];

const D = blockDist.createDomain({0..numUpdates-1});
var Inds: [D] int;

forall i in D with (ref Dest) do
 Dest[i] = Src[Inds[i]];

forall i in D with (ref Dest) do
 Dest[i] = Src[Inds[i]];

forall (d, i) in zip(Dest, Inds) with (var agg = new SrcAggregator(int)) do
 agg.copy(d, Src[i]);

Manually Tuned Chapel version (using explicit aggregator type)

21

CHAPEL TENDS TO BE COMPACT, CLEAN, AND FAST (BALE INDEX-GATHER)

i=0;
while(exstack_proceed(ex, (i==l_num_req))) {
 i0 = i;
 while(i < l_num_req) {
 l_indx = pckindx[i] >> 16;
 pe = pckindx[i] & 0xffff;
 if(!exstack_push(ex, &l_indx, pe))
 break;
 i++;
 }

 exstack_exchange(ex);

 while(exstack_pop(ex, &idx , &fromth)) {
 idx = ltable[idx];
 exstack_push(ex, &idx, fromth);
 }
 lgp_barrier();
 exstack_exchange(ex);

 for(j=i0; j<i; j++) {
 fromth = pckindx[j] & 0xffff;
 exstack_pop_thread(ex, &idx, (uint64_t)fromth);
 tgt[j] = idx;
 }
 lgp_barrier();
}

i = 0;
while (more = convey_advance(requests, (i == l_num_req)),
 more | convey_advance(replies, !more)) {

 for (; i < l_num_req; i++) {
 pkg.idx = i;
 pkg.val = pckindx[i] >> 16;
 pe = pckindx[i] & 0xffff;
 if (! convey_push(requests, &pkg, pe))
 break;
 }

 while (convey_pull(requests, ptr, &from) == convey_OK) {
 pkg.idx = ptr->idx;
 pkg.val = ltable[ptr->val];
 if (! convey_push(replies, &pkg, from)) {
 convey_unpull(requests);
 break;
 }
 }

 while (convey_pull(replies, ptr, NULL) == convey_OK)
 tgt[ptr->idx] = ptr->val;
}

forall (d, i) in zip(Dst, Inds) do
 d = Src[i];

Conveyors versionExstack version

Elegant Chapel version (compiler-optimized w/ ‘--auto-aggregation’)

Cray XC (Aries)

OTHER PARALLEL CONSTRUCTS

Task: a unit of computation that can/should execute in parallel with other tasks

Thread: a system resource that executes tasks
• not exposed in the language
• occasionally exposed in the implementation

Task Parallelism: a style of parallel programming in which parallelism is driven by programmer-specified
tasks

(in contrast with):

Data Parallelism: a style of parallel programming in which parallelism is driven by computations over
collections of data elements or their indices

23

DEFINING OUR TERMS

Synchronous task parallellism
• 'coforall', parallel task per iteration
• 'cobegin', executes all statements in block in parallel

Asynchronous task parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination

Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

24

PARALLELISM SUPPORTED BY CHAPEL

begin

begin

stmt
 begin

stmt

stmt

iteration
iteration

coforall
iteration

...

stmt

stmt

cobegin

Synchronous task parallellism
• 'coforall', parallel task per iteration
• 'cobegin', executes all statements in block in parallel

Asynchronous task parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination

Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

25

PARALLELISM SUPPORTED BY CHAPEL
coforall loc in Locales do on loc { /* ... */ }
coforall tid in 0..<numTasks { /* ... */ }

cobegin { doTask0(); doTask1(); ... doTaskN(); }

var x : atomic int = 0, y : sync int;
sync {
 begin x.add(1);
 begin y.writeEF(1);
 begin x.sub(1);
 begin { y.readFE(); y.writeEF(0); }
}
assert(x.read() == 0);
assert(y.readFE() == 0);

var n = [i in 1..10] i*i;
forall x in n do x += 1;

var nPartialSums = + scan n;
var nSum = + reduce n;

04-parallelism-in-chapel.chpl

• begin / cobegin statements: the two other ways of creating tasks

• atomic / synchronized variables: types for safe data sharing & coordination between tasks

• task intents / task-private variables: control how variables and tasks relate

26

OTHER TASK PARALLEL FEATURES

begin stmt; // fire off an asynchronous task to run ‘stmt’

cobegin { // fire off a task for each of ‘stmt1’, ‘stmt2’, …
 stmt1;
 stmt2;
 stmt3;
 …
} // wait here for these tasks to complete before proceeding

var sum: atomic int; // supports various atomic methods like .add(), .compareExchange(), …
var cursor: sync int; // stores a full/empty bit governing reads/writes, supporting .readFE(), .writeEF()

coforall i in 1..niters with (ref x, + reduce y, var z: int) { … }

27

USE OF PARALLELISM IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic
vars

forall scan

Arkouda ✔ ✔ ✔ ✔ ✔

CHAMPS ✔ ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Possible outputs:

28

TASK PARALLELISM: BEGIN STATEMENTS

// create a fire-and-forget task for a statement
begin writeln("hello world");
writeln("goodbye");

hello world
goodbye

goodbye
hello world

Syntax

Definition
• Executes stmt
• Waits for all dynamically-scoped begins to complete

Examples

29

JOINING SUB-TASKS: SYNC-STATEMENTS

sync-statement:
 sync stmt

sync {
 for i in 1..numConsumers {
 begin consumer(i);
 }
 producer();
}

proc search(node: TreeNode) {
 if (node != nil) {
 begin search(node.left);
 begin search(node.right);
 }
}
sync { search(root); }

30

TASK PARALLELISM: COBEGIN STATEMENTS

// create a task per child statement
cobegin {
 producer(1);
 producer(2);
 consumer(1);
} // implicit join of the three tasks here

31

COBEGINS/SERIAL BY EXAMPLE: QUICKSORT

proc quickSort(arr: [?D],
 low: int = D.low,
 high: int = D.high) {
 if high - low < 8 {
 bubbleSort(arr, low, high);
 } else {
 const pivotLoc = partition(arr, low, high);
 serial (here.runningTasks() > here.maxTaskPar) do
 cobegin {
 quickSort(arr, low, pivotLoc-1);
 quickSort(arr, pivotLoc+1, high);
 }
 }
}

'cobegin' will start both
'quickSort' calls in parallel

unless the number of running
tasks would exceed the
available HW parallelism

04-quicksort.chpl

Sample output:

32

TASK PARALLELISM: COFORALL LOOPS

// create a task per iteration
coforall t in 0..#numTasks {
 writeln("Hello from task ", t, " of ", numTasks);
} // implicit join of the numTasks tasks here

writeln("All tasks done");

Hello from task 2 of 4
Hello from task 0 of 4
Hello from task 3 of 4
Hello from task 1 of 4
All tasks done

begin:
• Use to create a dynamic task with an unstructured lifetime
• “fire and forget” (or at least “leave running for awhile”)

cobegin:
• Use to create a related set of heterogeneous tasks

 …or a small, fixed set of homogenous tasks
• The parent task depends on the completion of the tasks

coforall:
• Use to create a fixed or dynamic # of homogenous tasks
• The parent task depends on the completion of the tasks

Note: All these concepts can be composed arbitrarily

33

COMPARISON OF BEGIN, COBEGIN, AND COFORALL

SYNCHRONIZATION VARIABLES

• sync variables: store full-empty state along with value

• atomic variables: support atomic operations
• e.g., compare-and-swap; atomic sum, multiply, etc.
• similar to C/C++

35

TASK PARALLELISM: DATA-DRIVEN SYNCHRONIZATION

// ‘sync’ types store full/empty state along with value
var buff: [0..#buffersize] sync real;

begin producer();
consumer();

proc producer() {
 var i = 0;
 for … {
 i = (i+1) % buffersize;
 buff[i].writeEF(...); // wait for empty, write, leave full
} }

proc consumer() {
 var i = 0;
 while … {
 i = (i+1) % buffersize;
 …buff[i].readFE()…; // wait for full, read, leave empty
} }

36

BOUNDED BUFFER PRODUCER/CONSUMER EXAMPLE 04-bounded-buffer-with-sync.chpl

Syntax

Semantics
• Stores full/empty state along with normal value
• Initially full if initialized, empty otherwise

Examples: Critical sections and futures

37

SYNCHRONIZATION VARIABLES

sync-type:
 sync type

var lock: sync bool;

lock.writeEF(true);
critical();
lock.readFE();

var future: sync real;

begin future.writeEF(compute());
res = computeSomethingElse();
useComputedResults(future.readFE(), res);

04-sync-vars.chpl

•readFE():t block until full, leave empty, return value
•readFF():t block until full, leave full, return value
•writeEF(v:t) block until empty, set value to v, leave full

38

SYNCHRONIZATION VARIABLE METHODS

sync:
• Best for producer/consumer style synchronization

–“this task should block until something happens”
–use single for write-once values

atomic:
• Best for uncoordinated accesses to shared state

–“these tasks are unlikely to interfere with each other, at least for very long…”

39

COMPARISON OF SYNCHRONIZATION TYPES

AVOIDING RACES WITH TASK INTENTS
AND TASK PRIVATE VARIABLES

• Tells how to “pass” variables from outer scopes to tasks
• Similar to argument intents in syntax and philosophy

– also adds a “reduce intent”, similar to OpenMP

• Design principles:
– ”principle of least surprise”
– avoid simple race conditions
– avoid copies of (potentially) expensive data structures
– support coordination via sync/atomic variables

41

TASK INTENTS

var sum: real;
coforall i in 1..n do
 sum += computeMyResult(i);

var sum: real;
coforall i in 1..n with (ref sum) do
 sum += computeMyResult(i);

var sum: real;
coforall i in 1..n with (+ reduce sum) do
 sum += computeMyResult(i);

var sum: atomic real;
coforall i in 1..n do
 sum.add(computeMyResult(i));

42

TASK INTENT EXAMPLES

Default task intent of scalars is 'const in' so
this is illegal (and avoids a race)

Use a 'ref' task intent for 'sum' variable.
We've now requested a race.

Use a 'reduce' task intent. Per-task sums
will be reduced on task exit.

Default task intent of atomics is 'ref' so this
is legal, meaningful, and safe

04-task-intents-coforall.chpl

• Task-parallel features support task-private variables easily

coforall i in 1..numTasks {
 var mySum: real; // each task gets its own copy of mySum
 for j in 1..n do
 mySum += A[i][j];
}

• Forall loops need special support for task-private variables

var oneSingleVariable: real;
forall i in 1..n {
 var onePerIteration: real;
}

43

TASK-PRIVATE VARIABLES 04-task-private-variables.chpl

• Task-parallel features support task-private variables easily

coforall i in 1..numTasks {
 var mySum: real; // each task gets its own copy of mySum
 for j in 1..n do
 mySum += A[i][j];
}

• Forall loops need special support for task-private variables

var oneSingleVariable: real;
forall i in 1..n with (var onePerTask: real) {
 var onePerIteration: real;
}

44

TASK-PRIVATE VARIABLES 04-task-private-varriables.chpl

• Task-parallel features support task-private variables easily

coforall i in 1..numTasks {
 var mySum: real; // each task gets its own copy of mySum
 for j in 1..n do
 mySum += A[i][j];
}

• Forall loops need special support for task-private variables

var oneSingleVariable: real;
forall i in 1..n with (var onePerTask = 3.14) {
 var onePerIteration: real;
}

45

TASK-PRIVATE VARIABLES 04-task-private-varriables.chpl

PERFORMANCE / ARKOUDA ROADMAP

• Chapel best practices: General and for performance
• Tips for compiling Arkouda faster

• Performance gotchas
• Memory in Chapel and Arkouda
• Stopwatches and benchmarks
• Using CommDiagnostics

CHAPEL BEST PRACTICES

The three most common ways to build Chapel
• ‘quickstart’ configuration

– Low performance, quickest build time, minimal dependency requirements
– Not recommended for testing performance, not a fully-featured version of Chapel

• ‘CHPL_COMM=none’ local configuration
– Fully featured and best performance when running on a non-distributed system (e.g., your laptop)
– Can potentially hit scaling issues when extending to multi-locale, as communication does not factor in
– When comparing performance against non-distributed code from other languages, typically preferred configuration

• ‘CHPL_COMM=gasnet’ multi-locale configuration
– Enables multi-locale features, inserts code for remote accesses, works everywhere, but not always most optimized
– Can be run on laptop for debugging purposes, but distribution is only simulated, so performance doesn’t mean much

• See https://chapel-lang.org/docs/usingchapel/QUICKSTART.html for more info

Make sure you are in the correct configuration for your system when testing performance
• Ask for help in the Chapel Discourse if you need help determining correct configuration!

48

CHAPEL BEST PRACTICES: GENERAL AND FOR PERFORMANCE

https://chapel-lang.org/docs/usingchapel/QUICKSTART.html

Quick, 1-step compilation time improvements that all developers should be using
• ‘export ARKOUDA_QUICK_COMPILE=1’

– Disable optimizations, but performance will be worse (does not compile with ‘--fast’)
– Recommended when developing new features or running correctness tests

• ‘export ARKOUDA_SKIP_CHECK_DEPS=1’
– Skip compiling and running each of the Arkouda dependency tests when building Arkouda
– Typically, the dependency tests only need to be run once per-machine, once you know they pass, they can be disabled

• Make sure that ‘CHPL_DEVELOPER’ is unset
– If the ‘chpl’ compiler was built when ‘CHPL_DEVELOPER’ was set, this can have an adverse effect on compilation times
– If this was set when ‘chpl’ was built, ‘chpl’ should be rebuilt without it (doesn’t apply to brew installs)

Effectively use the modular build system, only compiling features necessary for what is being tested
• See https://bears-r-us.github.io/arkouda/setup/MODULAR.html for more info

See https://github.com/Bears-R-Us/arkouda/issues/2073 for more tips on speeding up compilation

49

TIPS FOR COMPILING ARKOUDA FASTER

https://bears-r-us.github.io/arkouda/setup/MODULAR.html
https://github.com/Bears-R-Us/arkouda/issues/2073

PERFORMANCE GOTCHAS

• Compile with ‘--fast’

• Locate bottlenecks using stopwatches to identify which portion of code is running slowly

• Check the slow portion of the code for…
…algorithmic overheads or tight-loop complexity
…excessive remote accesses (use ‘CommDiagnostics’ to assess)

– Are arrays distributed that should be? Are all locales accessing a variable declared on locale 0? Can you use aggregators?

…extraneous dynamic (i.e., class object) allocations (use ‘MemDiagnostics’ to assess)
– Could class allocations be reused in loops? Could a record be used instead of a class?

• Can be informative to compare standalone Chapel program to equivalent C/C++ code for local codes
• Is Chapel slower than the same code in other languages?

51

PERFORMANCE GOTCHAS

MEMORY IN CHAPEL AND ARKOUDA

Arkouda’s Memory Tracking
• Arkouda uses MemDiagnostics to estimate the total memory available and the total memory used

• The maximum memory usage is set as 90% of Chapel’s estimated available memory
• Only allocations larger than 1 MB are tracked

• Tracking all allocations would have too large a performance impact

Most Common Memory Allocation Modes in Chapel
• simple: comm none, gasnet-everything

• Fragmentation is handled completely by allocator, can use virtual memory and mmap for large arrays

• fixed-heap: gasnet-ibv, ofi-cxi
• At program startup, a fixed segment of memory is allocated from comm layer
• Allocator can only use provided memory region and not entire virtual address range

53

MEMORY IN CHAPEL AND ARKOUDA

Fragmentation
• Fragmentation can occur when allocating and freeing large blocks of memory

• Common pattern in Arkouda

1. Allocate 3 arrays that are 25% of maximum memory each (25% memory available)
2. Free the second array (50% memory available)
3. Attempt to allocate an array that is 33% of maximum memory

• Oh no! Our memory is fragmented, so we can’t satisfy allocation, even though 50% of memory is available

54

MEMORY IN CHAPEL AND ARKOUDA

Physical Memory

Array 1 (25%) Array 3 (25%)Array 2 (25%) Free memory (25%)

Array 1 (25%) Array 3 (25%)Free memory (25%) Free memory (25%)

33% does not fit! 33% does not fit!

STOPWATCHES AND BENCHMARKS

Benchmarks
• The Arkouda repository runs a number of performance tests that time Arkouda operations nightly

• See https://chapel-lang.org/perf/arkouda/
• Benchmarks are useful for tracking historical performance data and gauging overall performance

Stopwatches
• Stopwatches can be used to segment out portions of Chapel code and identify bottlenecks
• Rather than trying to guess what part of a function is slow, can isolate the code to optimize

56

BENCHMARKS AND STOPWATCHES

https://chapel-lang.org/perf/arkouda/

USING COMMDIAGNOSTICS

Chapel provides a comm table as well as a more advanced verbose comm mode
• Let’s look at some code…

58

USING COMMDIAGNOSTICS

var a = 0; // allocated on locale 0

on Locales[1] do
 for i in 0..#5 do
 a += 1;

writeln(a); // print on locale 0

commTable.chpl

Locale 0
Memory

‘get’ data

‘put’ data

a += 1

Locale 1
Memory

Locale 0
Execution

Locale 1
Execution

writeln(a)

a 0

a 1

……

a 2

a 3

a 0

a 1

a 2

a 3

‘get’ data

‘put’ data

a += 2
…

1 2 3

4

5
6

59

USING COMMDIAGNOSTICS

use CommDiagnostics;
var a = 0; // allocated on locale 0

startCommDiagnostics();
on Locales[1] do
 for i in 0..#5 do
 a += 1;
stopCommDiagnostics();
printCommDiagnosticsTable();

writeln(a); // print on locale 0

commTable.chpl

5 ‘get’s = 5 remote reads

5 ‘put’s = 5 remote writes

prompt> chpl commTabl.chpl --no-cache-remote
prompt> ./commTable -nl 2

locale	get	put	execute_on
0	0	0	1
1	5	5	0

prompt> chpl commTable.chpl
prompt> ./commTable -nl 2

| locale | get_nb | put_nb | execute_on | cache_get_hits | cache_get_misses | cache_put_hits | cache_put_misses |

| -----: | -----: | -----: | ---------: | -------------: | ---------------: | -------------: | ---------------: |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

| 1 | 1 | 1 | 0 | 4 | 1 | 4 | 1 |

60

USING COMMDIAGNOSTICS

var a = 0; // allocated on locale 0

startVerboseComm();
on Locales[1] do
 for i in 0..#5 do
 a += 1;
stopVerboseComm();

writeln(a); // print on locale 0

verboseComm.chpl prompt> chpl verboseComm.chpl --no-cache-remote
prompt> ./verboseComm -nl 2

0: verboseComm.chpl:6: remote executeOn, node 1

1: verboseComm.chpl:8: remote get, node 0, 8 bytes, commid 5

1: verboseComm.chpl:8: remote put, node 0, 8 bytes, commid 6

1: verboseComm.chpl:8: remote get, node 0, 8 bytes, commid 5

1: verboseComm.chpl:8: remote put, node 0, 8 bytes, commid 6

1: verboseComm.chpl:8: remote get, node 0, 8 bytes, commid 5

1: verboseComm.chpl:8: remote put, node 0, 8 bytes, commid 6
1: verboseComm.chpl:8: remote get, node 0, 8 bytes, commid 5

1: verboseComm.chpl:8: remote put, node 0, 8 bytes, commid 6

1: verboseComm.chpl:8: remote get, node 0, 8 bytes, commid 5

1: verboseComm.chpl:8: remote put, node 0, 8 bytes, commid 6

61

USING COMMDIAGNOSTICS

use CommDiagnostics;
use BlockDist;

config const size = 5;
var D = blockDist.createDomain(0..#size);
var a = 0;
startCommDiagnostics();
forall i in D with (ref a) do
 a += 1; // race condition!
stopCommDiagnostics();
printCommDiagnosticsTable();

writeln(a); // print on locale 0

commOverDom.chpl

• A more interesting example…

prompt> chpl commOverDom.chpl --no-cache-remote
prompt> ./commOverDom -nl 2

locale	get	put	execute_on_nb
0	0	0	1
1	2	2	0

prompt> chpl commOverDom.chpl --no-cache-remote
prompt> ./commOverDom -nl 4 --size=100

locale	get	put	execute_on_nb
0	0	0	3
1	25	25	0
2	25	25	0
3	25	25	0

Online documentation is here: https://chapel-lang.org/docs/
• The primers can be particularly valuable for learning a concept: https://chapel-lang.org/docs/primers/index.html

– These are also available from a Chapel release in ‘$CHPL_HOME/examples/primers/’
or ‘$CHPL_HOME/test/release/examples/primers/’ if you clone from GitHub

When debugging, almost anything in Chapel can be printed out with ‘writeln(expr1, expr2, expr3);’
• Types can be printed after being cast to strings, e.g. ‘writeln(”Type of “, expr, “ is “, expr.type:string);’
• A quick way to print a bunch of values out clearly is to print a tuple made up of them ‘writeln((x, y, z));’

Once your code is correct, before doing any performance timings, be sure to re-compile with ‘--fast’
• Turns on optimizations, turns off safety checks, slows down compilation, speeds up execution significantly
• Then, when you go back to making modifications, be sure to stop using ‘—fast’ in order to turn checks back on

For vim / emacs users, syntax highlighters are in $CHPL_HOME/highlight
• Imperfect, but typically better than nothing
• Emacs MELPA users may want to use the chapel-mode available there (better in many ways, weird in others)

62

GENERAL TIPS WHEN GETTING STARTED WITH CHAPEL

https://chapel-lang.org/docs/
https://chapel-lang.org/docs/primers/index.html

OUTLINE: MORE PARALLELISM AND SOME BEST PRACTICES

• Spectrum of Chapel loops
• Task intents including reduce intents, and atomics
• Parallelizing histogram (Hands On)
• Story of index gather parallelization
• Other parallel constructs: 'cobegin', 'begin', 'sync',
• Avoiding races with task intents and task-private variables
• Performance gotchas
• Memory in Chapel and Arkouda
• Using CommDiagnostics

• Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
üDistributed parallelism and 1D arrays, (processing files in parallel)
üChapel basics in the context of an n-body code
üDistributed parallelism and 2D arrays, (heat diffusion problem)
üHow to parallelize histogram
üUsing CommDiagnostics for counting remote reads and writes
üChapel and Arkouda best practices including avoiding races and performance gotchas

• Where to get help and how you can participate in the Chapel community

64

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• Takeaways
• Chapel is a general-purpose programming language designed to leverage parallelism
• It is being used in some large production codes
• Our team is responsive to user questions and would enjoy having you participate in our community

• How to get more help and engage with the community
• Ask us questions on discourse, gitter, or stack overflow
• Share your sample codes with us and your research community!
• Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.html

• Potential follow-on topics
• Using classes in Chapel including memory management
• Generics in Chapel: enabling the same code to work for multiple types
• Chapel interoperability with C
• Your suggestions?

65

TUTORIAL SUMMARY

https://chapel-lang.org/CHIUW.html

• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees

66

ONE DAY CHAPEL TUTORIAL

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

67

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

