
October 16, 2023
Chapel Team

ONE-DAY CHAPEL TUTORIAL
SESSION 3: PARALLELISM IN CHAPEL

• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees

2

ONE DAY CHAPEL TUTORIAL

OUTLINE: PARALLELISM IN CHAPEL

• Recall processing files in parallel
• Data parallelism concepts and examples including multi-locale parallelism with distributions
• Domains
• Forall Loops
• Domain Distributions
• Using a Different Domain Distribution
• Implicit Communication: Remote writes/Puts and Reads/Gets
• Parallelizing a 1D heat diffusion solver (Hands On)
• Heat 2D example with CommDiagnostics (Hands On)

RECALL PROCESSING FILES IN PARALLEL

RECALL: ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem;
config const dir = “DataDir”;
var fList = findFiles(dir);
var filenames =
 blockDist.createArray(0..<fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
 ...
 // code from kmer.chpl
 ...
}

5

parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer –nl 4

• shared and distributed-memory
parallelism using 'forall'

• in other words, parallelism within
the locale/node and across
locales/nodes

• a distributed array
• command line options to indicate

number of locales

parfilekmer.chpl

6

RECALL: BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"filename1" "filename2" "filename3" "filename4" "filename5" "filename6" "filename7" "filename8"

• Array of strings for filenames is distributed
across locales

• 'forall' will do parallelism across locales and then
within each locale to take advantage of multicore

Locale 0 Locale 1

prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 2

DATA PARALLELISM CONCEPTS AND EXAMPLES INCLUDING
MULTI-LOCALE PARALLELISM WITH DISTRIBUTIONS

Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures:

8

STREAM TRIAD: A PARALLEL COMPUTATION

=

α

+

A

B

C
·

Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures, in parallel (shared memory / multicore):

9

STREAM TRIAD: A PARALLEL COMPUTATION

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures, in parallel (distributed memory):

10

STREAM TRIAD: A PARALLEL COMPUTATION

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures, in parallel (distributed memory multicore):

11

STREAM TRIAD: A PARALLEL COMPUTATION

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

CUDA

12

STREAM TRIAD: CHAPEL

Philosophy: Good, top-down language design can tease system-specific implementation
details away from an algorithm, permitting the compiler, runtime, applied scientist, and
HPC expert to each focus on their strengths.

use BlockDist;

config const m = 1000,
 alpha = 3.0;

const ProblemSpace = blockDist.createDomain({1..m});

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

The special sauce:
How should this index set—
and any arrays and
computations over it—be
mapped to the system?

DATA PARALLELISM, BY EXAMPLE

prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

11

03-domain-distributions.chpl

DOMAINS

DATA PARALLELISM, BY EXAMPLE

12

prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

Domains (Index Sets)

03-domain-distributions.chpl

Domain:
• A first-class index set
• The fundamental Chapel concept for data parallelism

16

DOMAINS

config const m = 4, n = 8;

const D = {1..m, 1..n};
const Inner = {2..m-1, 2..n-1};

D

Inner

Domain:
• A first-class index set
• The fundamental Chapel concept for data parallelism
• Useful for declaring arrays and computing with them

17

DOMAINS

config const m = 4, n = 8;

const D = {1..m, 1..n};
const Inner = {2..m-1, 2..n-1};

var A, B, C: [D] real;

A
B

C

DATA PARALLELISM, BY EXAMPLE

15

prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

Arrays

03-domain-distributions.chpl

FORALL LOOPS

DATA PARALLELISM, BY EXAMPLE

16

prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

Data-Parallel Forall Loops

03-domain-distributions.chpl

Forall loops: Central concept for data parallel computation
• Like for-loops, but parallel
• Implementation details determined by iterand (e.g., D below)

– specifies number of tasks, which tasks run which iterations, …
– in practice, typically uses a number of tasks appropriate for target HW

Forall loops assert…
…parallel safety: OK to execute iterations simultaneously
…order independence: iterations could occur in any order
…serializability: all iterations could be executed by one task
– e.g., can’t have synchronization dependences between iterations

21

FORALL LOOPS

4.3 4.44.1 4.2 4.5 4.6 4.7 4.8

1.3 1.41.1 1.2 1.5 1.6 1.7 1.8

2.3 2.42.1 2.2 2.5 2.6 2.7 2.8

3.3 3.43.1 3.2 3.5 3.6 3.7 3.8

forall (i,j) in D with (ref A) do
 A[i,j] = i + j/10.0;

For loops: executed using one task
• use when a loop must be executed serially
• or when one task is sufficient for performance

Forall loops: typically executed using 1 < #tasks << #iters
• use when a loop should be executed in parallel…
• …but can legally be executed serially
• use when desired # tasks << # of iterations

Coforall loops: executed using a task per iteration
• use when the loop iterations must be executed in parallel
• use when you want # tasks == # of iterations
• use when each iteration has substantial work

22

COMPARISON OF LOOPS: FOR, FORALL, AND COFORALL

19

DATA PARALLELISM, BY EXAMPLE

This is a shared memory program

Nothing has referred to remote
locales, explicitly or implicitly

prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

03-domain-distributions.chpl

DOMAIN DISTRIBUTIONS

20

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

Domain Distribution
(Map Data Parallelism to the System)

prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 -nl 4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = cyclicDist.createDomain({1..n, 1..n});

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

03-domain-distributions.chpl

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

22

prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 --nl 4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

Provides programmability and control
• Lowering of code is well-defined
• User can control details
• Part of Chapel‘s multiresolution

philosophy…

use CyclicDist;
config const n = 1000;

var D = cyclicDist.createDomain({1..n, 1..n});

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

High-level distributed and shared
memory parallelism

03-domain-distributions.chpl

Multiresolution Design: Support multiple tiers of features

• higher levels for programmability, productivity
• lower levels for greater degrees of control
• build the higher-level concepts in terms of the lower
• permit users to intermix layers arbitrarily

27

CHAPEL’S MULTIRESOLUTION PHILOSOPHY

Domain Distributions
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

24

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 -nl 1
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

forall (i,j) in D do…

⇒ invoke and inline D’s
 default parallel iterator
• defined by D’s type /
 domain distribution

default domain distribution
• create a task per local core
• block indices across tasks

Chapel’s prescriptive approach:

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

03-domain-distributions.chpl

use CyclicDist;
config const n = 1000;
var D = cyclicDist.createDomain({1..n, 1..n});

var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

25

prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 -nl=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

forall (i,j) in D do…

⇒ invoke and inline D’s
 default parallel iterator

• defined by D’s type /
 domain distribution

cyclic domain distribution
on each target locale…
• create a task per core
• block local indices across tasks

Chapel’s prescriptive approach:

03-domain-distributions.chpl

use CyclicDist;
config const n = 1000;
var D = cyclicDist.createDomain({1..n, 1..n});
var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

26

forall (i,j) in D do…
Chapel’s prescriptive approach:

What if I don’t like D’s
iteration strategy?

Write and call your own parallel iterator:

forall (i,j) in myParIter(D) do…

03-domain-distributions.chpl

use CyclicDist;
config const n = 1000;
var D = cyclicDist.createDomain({1..n, 1..n});
var A: [D] real;
forall (i,j) in D with (ref A) do
 A[i,j] = i + (j - 0.5)/n;

writeln(A);

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

27

forall (i,j) in D do…
Chapel’s prescriptive approach:

What if I don’t like D’s
iteration strategy?

Write and call your own parallel iterator:

Or use a different domain distribution:

forall (i,j) in myParIter(D) do…

var D = blockDist.createDomain({1..n, 1..n});

03-domain-distributions.chpl

USING A DIFFERENT DOMAIN DISTRIBUTION

Domain distributions are “recipes” that instruct the compiler how to map the global view of a
computation…

33

DOMAIN DISTRIBUTIONS: A MULTIRESOLUTION FEATURE

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:

A = B + alpha * C;

Domain distributions are “recipes” that instruct the compiler how to map the global view of a
computation…

34

DOMAIN DISTRIBUTIONS: A MULTIRESOLUTION FEATURE

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:

A = B + alpha * C;

Domain Distributions specify…
…mapping of indices to locales
…layout of domains / arrays in memory
…parallel iteration strategies
…core operations on arrays / domains

1

35

SAMPLE DOMAIN DISTRIBUTIONS: BLOCK AND CYCLIC

var Dom = blockDist.createDomain({1..4, 1..8});

1 8

4

distributed to

var Dom = cyclicDist.createDomain({1..4, 1..8});

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

IMPLICIT COMMUNICATION:
REMOTE WRITES/PUTS AND READS/GETS

Note 1: Variables are allocated on the locale where the task is running
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 var x, y, z: int;
 …

}

03-onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

 x

 y

 z

locale 1

0

0

0

37

03-onClause.chpl

Note 2: Tasks can refer to lexically visible variables, whether local or remote
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
 done = false;

…

on Locales[1] {
 if !done {
 if verbose then
 writef("Adding locale 1’s contribution");
 total += computeMyContribution();
 }
}

03-onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

locale 1

if !done {
 if verbose then
 writef("Adding…
 total += computi…
}

code runs on locale 1,
but refers to values
stored on locale 0

38

03-onClause.chpl

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = blockDist.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

03-basics-distarr.chpl

39

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

03-basics-distarr.chpl

PARALLELIZING A 1D HEAT DIFFUSION SOLVER (HANDS ON)

Differential equation:
!"
!#
= 𝛼 !!"

!$!

Discretized (finite difference) equation: 𝑢%&'(= 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

• where 𝑖 ∈ Ω ⊂ ℝ! are discrete points in space, and 𝑛, 𝑛 + 1,… are discrete instances in time

Finite difference algorithm:
• define Ω to be a set of discrete points along the x-axis
• define +Ω over the same points, excluding the boundaries
• define an array 𝑢 to over Ω
• set some initial conditions
• create a temporary copy of 𝑢, named 𝑢𝑛
• for 𝑁 timesteps:
 (1) swap 𝑢 and 𝑢𝑛
 (2) compute 𝑢 in terms of 𝑢𝑛 over +Ω

41

1D HEAT EQUATION EXAMPLE

𝑡 = 0 𝑡 = 𝑇

𝑛 = 0 𝑛 = 𝑁

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

heat-1D.chpl

𝑖 𝑖 +
1

𝑖 −
1

This pattern is often referred to as a Stencil Computation
• The values in the array can be computed by applying a "stencil" to its previous state
• Note that in this case, the stencil can be applied to the entire array in parallel

– each value in 𝑢𝑛 depends strictly on values in 𝑢

42

1D HEAT EQUATION EXAMPLE

𝑛 = 0

𝑛 = 1

𝑛 = 𝑁

𝑢"#$% = 𝑢"# + 	𝛼 𝑢"&%# − 2𝑢"# + 𝑢"$%#

𝑖

. . .

"stencil"

𝑢

𝑢𝑛

7
 8
 9
10
11

...
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
...

heat-1D.chpl

Imagine we want to simulate a very large domain
• We could use the Block distribution to distribute 𝑢 and 𝑢𝑛 across multiple locales

– taking advantage of their memory and compute resources

Look at heat-1D-block.chpl and fill in the blanks to make the arrays block-distributed

43

HANDS ON: DISTRIBUTING THE 1D HEAT EQUATION

Locale 0 Locale 1 Locale 2 Locale 3

𝑢𝑛

𝑢

use BlockDist;
...
const myBlockDom = blockDist.createDomain({1..10});

Hint | Define a block-distributed domain:

heat-1D-block.chpl

.

Solution: make 'omega' block-distributed:
omega = blockDist.createDomain({0..<nx});

Why does this work?
• 'omegaHat' inherits 'omega's distribution
• 'u' is block-distributed
• 'un' inherits 'u's domain (and distribution)
• 'omegaHat' invokes 'blockDist's parallel/distr. iterator

– the body of the loop is automatically split across multiple
tasks on each locale

• Communication occurs automatically when a loop
references a value stored on a remote locale

44

HANDS ON: DISTRIBUTING THE 1D HEAT EQUATION
1

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

const omega =
blockDist.createDomain({0..<nx}),

 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

u[i+1]

𝑢𝑛

𝑢

heat-1D-block-solution.chpl

HEAT 2D EXAMPLE WITH COMMDIAGNOSTICS (HANDS ON)

2D and 3D stencil codes are more common and practical
• They also present more interesting considerations for parallelization and distribution

2D heat / diffusion PDE:

Discretized (finite-difference) form:

46

2D HEAT EQUATION EXAMPLE

𝜕𝑢
𝜕𝑡

= 𝛼∆𝑢 = 𝛼
𝜕"𝑢
𝜕𝑥"

+
𝜕"𝑢
𝜕𝑦"

𝑢",(#$% = 𝑢",(# + 𝛼 𝑢"$%,(# + 𝑢"&%,(# − 4𝑢",(# + 𝑢",($%# + 𝑢",(&%#

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

const omega = {0..<nx, 0..<ny},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u
 forall (i, j) in omegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

𝑛 = 0 𝑛 = 𝑁

heat-2D.chpl

• This computation uses a "5 point stencil"
• Each point in 'u' can be computed in parallel

• this is accomplished using a 'forall' loop

47

PARALLEL 2D HEAT EQUATION

𝑢",(#$% = 𝑢",(# + 𝛼 𝑢"&%,(# + 𝑢",(&%# + 𝑢"$%,(# + 𝑢",($%# − 4𝑢",(#

𝑢# 𝑢#$%

Stored in uStored in un

Fixed
boundary

values

7
 8
 9
10
11
12
13

...
 forall (i, j) in omegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

...

heat-2D.chpl

• Declaring distributed domains with the block distribution

• Distributed & Parallel loop over 'OmegaHat'

48

BLOCK DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%
Stored in uStored in un

heat-2D-block.chpl

const Omega = blockDist.createDomain(0..<nx, 0..<ny),
 OmegaHat = Omega.expand(-1);

for 1..nt {
 u <=> un;

 forall (i, j) in OmegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

Array access across locale
boundaries automatically
invokes communication

un[i-1, j]

• Declaring distributed domains with the stencil distribution

• Distributed & Parallel loop including buffer updates

49

STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%
Stored in uStored in un

heat-2D-stencil.chpl

const Omega = stencilDist.createDomain(
 {0..<nx, 0..<ny}, fluff=(1,1)),
 OmegaHat = Omega.expand(-1);

Array access across locale
boundaries (within the fluff

region) results in a local
buffer access — no

communication is required

The buffers must be updated
explicitly during each time

step by calling 'updateFluff'

for 1..nt {
 u <=> un;

un.updateFluff();
 forall (i, j) in OmegaHat do
 u[i, j] = un[i, j] + alpha * (

 un[i-1, j] + un[i, j-1] +
 un[i+1, j] + un[i, j+1] –
 4 * un[i, j]);

}

• Each locale owns a region of the array
surrounded by a "fluff" (buffer) region

• Calling 'updateFluff' copies values from
neighboring regions of the array into
the local buffered region

• Subsequent accesses of those values
result in a local memory access, rather
than a remote communication

50

STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%

heat-2D-stencil.chpl

The 'CommDiagnostics' module provides functions for tracking comm between locales
• the following is a common pattern:

• which results in a table summarizing comm counts between the start and stop calls, e.g.,
| locale | get | put | execute_on | execute_on_nb |

| -----: | --: | --: | ---------: | ------------: |
| 0 | 10 | 0 | 6 | 12 |
| 1 | 105 | 5 | 0 | 0 |
| 2 | 105 | 4 | 0 | 0 |
| 3 | 105 | 7 | 0 | 0 |

• Compiling with '--no-cache-remote' before collecting comm diagnostics is recommended

51

COMM DIAGNOSTICS

use CommDiagnostics;
...
startCommDiagnostics();
potentiallyCommHeavyOperation();
stopCommDiagnostics();
...
printCommDiagnosticsTable();

• Comparing comm diagnostics for:
• heat-2D-block.chpl
• heat-2D-stencil.chpl

• Compilation:

• Execution:

• Block: number of gets scales with size
• Stencil: static number of gets per iteration

52

HANDS ON: HEAT 2D COMM DIAGNOSTICS RESULTS

0

5000

10000

15000

20000

25000

30000

Locale 0 Locale 1 Locale 2 Locale 3

Number of Gets on 4 Locales – Block vs. Stencil

Stencil (256x256) Stencil (512x512) Block (256x256) Block (512x512)

heat-2D-block.chpl, heat-2D-stencil.chpl

number of remote gets doubles
with quadrupled problem size

chpl heat-2D-block.chpl --fast
 --no-cache-remote –sRunCommDiag=true

chpl heat-2D-stencil.chpl –fast
 --no-cache-remote –sRunCommDiag=true

./heat-2D-block –nl4 --nx=256 --ny=256

./heat-2D-stencil –nl4 --nx=512 --ny=512

OUTLINE: PARALLELISM IN CHAPEL

• Recall processing files in parallel
• Data parallelism concepts and examples including multi-locale parallelism with distributions
• Domains
• Forall Loops
• Domain Distributions
• Using a Different Domain Distribution
• Implicit Communication: Remote writes/Puts and Reads/Gets
• Parallelizing a 1D heat diffusion solver (Hands On)
• Heat 2D example with CommDiagnostics (Hands On)

• Data parallelism session
• Provides shared memory and distributed memory parallelism
• Distributions like block and cyclic can be applied to arrays of any dimension
• Main control abstraction is the 'forall' loop
• 'forall' loop uses default iterator over provided array or domain, but can use own iterator

–This is an example of multi-resolution design in Chapel, i.e., the 'forall' loop is mapped down to lower-
level abstractions like 'coforall'

• CommDiagnostics module can be used to observe the number of remote puts/writes and gets/reads
at runtime

54

SUMMARIZING WHAT WE LEARNED IN SESSION 3

• Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
üDistributed parallelism and 1D arrays, (processing files in parallel)
üChapel basics in the context of an n-body code
üDistributed parallelism and 2D arrays, (heat diffusion problem)
• How to parallelize histogram
• Using CommDiagnostics for counting remote reads and writes
• Chapel and Arkouda best practices including avoiding races and performance gotchas

• Where to get help and how you can participate in the Chapel community

55

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees

56

ONE DAY CHAPEL TUTORIAL

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

57

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

