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Chapel Team

ONE-DAY CHAPEL TUTORIAL
SESSION 3: PARALLELISM IN CHAPEL



• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees
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ONE DAY CHAPEL TUTORIAL



OUTLINE: PARALLELISM IN CHAPEL

• Recall processing files in parallel
• Data parallelism concepts and examples including multi-locale parallelism with distributions
• Domains
• Forall Loops
• Domain Distributions
• Using a Different Domain Distribution
• Implicit Communication: Remote writes/Puts and Reads/Gets
• Parallelizing a 1D heat diffusion solver (Hands On)
• Heat 2D example with CommDiagnostics (Hands On)



RECALL PROCESSING FILES IN PARALLEL



RECALL: ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem;
config const dir = “DataDir”;              
var fList = findFiles(dir);
var filenames = 
  blockDist.createArray(0..<fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
  ...
  // code from kmer.chpl
  ...
}
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parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer –nl 4

• shared and distributed-memory 
parallelism using 'forall'

• in other words, parallelism within 
the locale/node and across 
locales/nodes

• a distributed array
• command line options to indicate 

number of locales

parfilekmer.chpl
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RECALL: BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"filename1" "filename2" "filename3" "filename4" "filename5" "filename6" "filename7" "filename8"

• Array of strings for filenames is distributed 
across locales

• 'forall' will do parallelism across locales and then 
within each locale to take advantage of multicore

Locale 0 Locale 1

prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 2



DATA PARALLELISM CONCEPTS AND EXAMPLES INCLUDING 
MULTI-LOCALE PARALLELISM WITH DISTRIBUTIONS



Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures:
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STREAM TRIAD: A PARALLEL COMPUTATION 
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Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures, in parallel (shared memory / multicore):
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STREAM TRIAD: A PARALLEL COMPUTATION 
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Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures, in parallel (distributed memory):
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STREAM TRIAD: A PARALLEL COMPUTATION 
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Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures, in parallel (distributed memory multicore):
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STREAM TRIAD: A PARALLEL COMPUTATION 
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CUDA

12

STREAM TRIAD: CHAPEL

Philosophy: Good, top-down language design can tease system-specific implementation 
details away from an algorithm, permitting the compiler, runtime, applied scientist, and 
HPC expert to each focus on their strengths.

use BlockDist;

config const m = 1000,
            alpha = 3.0;

const ProblemSpace = blockDist.createDomain({1..m});

var A, B, C: [ProblemSpace] real;

B = 2.0;          
C = 1.0;

A = B + alpha * C;

The special sauce:
How should this index set—
and any arrays and 
computations over it—be 
mapped to the system?



DATA PARALLELISM, BY EXAMPLE

prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5                
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);
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03-domain-distributions.chpl



DOMAINS



DATA PARALLELISM, BY EXAMPLE
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prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5                
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

Domains (Index Sets)

03-domain-distributions.chpl



Domain:
• A first-class index set
• The fundamental Chapel concept for data parallelism
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DOMAINS

config const m = 4, n = 8;

const D = {1..m, 1..n};
const Inner = {2..m-1, 2..n-1};

D

Inner



Domain:
• A first-class index set
• The fundamental Chapel concept for data parallelism
• Useful for declaring arrays and computing with them
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DOMAINS

config const m = 4, n = 8;

const D = {1..m, 1..n};
const Inner = {2..m-1, 2..n-1};

var A, B, C: [D] real;

A
B

C



DATA PARALLELISM, BY EXAMPLE
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prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5                
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

Arrays

03-domain-distributions.chpl



FORALL LOOPS



DATA PARALLELISM, BY EXAMPLE
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prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5                
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

Data-Parallel Forall Loops

03-domain-distributions.chpl



Forall loops: Central concept for data parallel computation
• Like for-loops, but parallel
• Implementation details determined by iterand (e.g., D below)

– specifies number of tasks, which tasks run which iterations, …
– in practice, typically uses a number of tasks appropriate for target HW

Forall loops assert…
…parallel safety: OK to execute iterations simultaneously
…order independence: iterations could occur in any order
…serializability: all iterations could be executed by one task
– e.g., can’t have synchronization dependences between iterations
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FORALL LOOPS

4.3 4.44.1 4.2 4.5 4.6 4.7 4.8

1.3 1.41.1 1.2 1.5 1.6 1.7 1.8

2.3 2.42.1 2.2 2.5 2.6 2.7 2.8

3.3 3.43.1 3.2 3.5 3.6 3.7 3.8

forall (i,j) in D with (ref A) do
  A[i,j] = i + j/10.0;



For loops: executed using one task
• use when a loop must be executed serially
• or when one task is sufficient for performance

Forall loops: typically executed using 1 < #tasks << #iters
• use when a loop should be executed in parallel…
• …but can legally be executed serially
• use when desired # tasks  <<  # of iterations

Coforall loops: executed using a task per iteration
• use when the loop iterations must be executed in parallel
• use when you want # tasks  ==  # of iterations
• use when each iteration has substantial work

22

COMPARISON OF LOOPS: FOR, FORALL, AND COFORALL
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DATA PARALLELISM, BY EXAMPLE

This is a shared memory program

Nothing has referred to remote
locales, explicitly or implicitly

prompt> chpl dataParallel.chpl
prompt> ./dataParallel -nl 1 –-n=5                
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

03-domain-distributions.chpl



DOMAIN DISTRIBUTIONS
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DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

Domain Distribution 
(Map Data Parallelism to the System)

prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 -nl 4                
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = cyclicDist.createDomain({1..n, 1..n});

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

03-domain-distributions.chpl



DISTRIBUTED DATA PARALLELISM, BY EXAMPLE
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prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 --nl 4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9
5.1 5.3 5.5 5.7 5.9

Provides programmability and control
• Lowering of code is well-defined
• User can control details
• Part of Chapel‘s multiresolution 

philosophy…

use CyclicDist;
config const n = 1000;

var D = cyclicDist.createDomain({1..n, 1..n});

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

High-level distributed and shared 
memory parallelism

03-domain-distributions.chpl



Multiresolution Design: Support multiple tiers of features

• higher levels for programmability, productivity
• lower levels for greater degrees of control
• build the higher-level concepts in terms of the lower
• permit users to intermix layers arbitrarily

27

CHAPEL’S MULTIRESOLUTION PHILOSOPHY

Domain Distributions
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control
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DISTRIBUTED DATA PARALLELISM, BY EXAMPLE

prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 -nl 1
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9
3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

forall (i,j) in D do…

⇒ invoke and inline D’s
    default parallel iterator
• defined by D’s type /
   domain distribution

default domain distribution
• create a task per local core
• block indices across tasks

Chapel’s prescriptive approach: 

config const n = 1000;
var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

03-domain-distributions.chpl



use CyclicDist;
config const n = 1000;
var D = cyclicDist.createDomain({1..n, 1..n});

var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE
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prompt> chpl dataParallel.chpl
prompt> ./dataParallel –-n=5 -nl=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9
4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

forall (i,j) in D do…

⇒ invoke and inline D’s
    default parallel iterator

• defined by D’s type /
   domain distribution

cyclic domain distribution
on each target locale…
• create a task per core
• block local indices across tasks

Chapel’s prescriptive approach: 

03-domain-distributions.chpl



use CyclicDist;
config const n = 1000;
var D = cyclicDist.createDomain({1..n, 1..n});
var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE
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forall (i,j) in D do…
Chapel’s prescriptive approach: 

What if I don’t like D’s 
iteration strategy?

Write and call your own parallel iterator:

forall (i,j) in myParIter(D) do…

03-domain-distributions.chpl



use CyclicDist;
config const n = 1000;
var D = cyclicDist.createDomain({1..n, 1..n}); 
var A: [D] real;
forall (i,j) in D with (ref A) do
  A[i,j] = i + (j - 0.5)/n;

writeln(A);

DISTRIBUTED DATA PARALLELISM, BY EXAMPLE
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forall (i,j) in D do…
Chapel’s prescriptive approach: 

What if I don’t like D’s 
iteration strategy?

Write and call your own parallel iterator:

Or use a different domain distribution:

forall (i,j) in myParIter(D) do…

var D = blockDist.createDomain({1..n, 1..n});

03-domain-distributions.chpl



USING A DIFFERENT DOMAIN DISTRIBUTION



Domain distributions are “recipes” that instruct the compiler how to map the global view of a 
computation…
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DOMAIN DISTRIBUTIONS: A MULTIRESOLUTION FEATURE

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:

A = B + alpha * C;



Domain distributions are “recipes” that instruct the compiler how to map the global view of a 
computation…
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DOMAIN DISTRIBUTIONS: A MULTIRESOLUTION FEATURE

=
+

α •

Locale 0

=
+

α •

=
+

α •

=
+

α •

Locale 1 Locale 2

…to the target locales’ memory and processors:

A = B + alpha * C;

Domain Distributions specify…
…mapping of indices to locales
…layout of domains / arrays in memory
…parallel iteration strategies
…core operations on arrays / domains



1
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SAMPLE DOMAIN DISTRIBUTIONS: BLOCK AND CYCLIC

var Dom = blockDist.createDomain({1..4, 1..8});

1 8

4

distributed to

var Dom = cyclicDist.createDomain({1..4, 1..8});

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1



IMPLICIT COMMUNICATION:
REMOTE WRITES/PUTS AND READS/GETS



Note 1: Variables are allocated on the locale where the task is running
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
    done = false; 

…

on Locales[1] {
  var x, y, z: int;
  …

}

03-onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

    x

    y

    z
  

locale 1

0

0

0
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03-onClause.chpl



Note 2: Tasks can refer to lexically visible variables, whether local or remote
CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

config const verbose = false;
var total = 0,
    done = false; 

…

on Locales[1] {
  if !done {
    if verbose then
      writef("Adding locale 1’s contribution");
    total += computeMyContribution();
  }
}

03-onClause.chpl
 verbose

 total

 done

locale 0

false

0

false

 

  

  
locale 1

if !done {
  if verbose then
    writef("Adding…
  total += computi…
}

code runs on locale 1, 
but refers to values 
stored on locale 0
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03-onClause.chpl



ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = blockDist.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

03-basics-distarr.chpl

39

Chapel also supports distributed 
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

03-basics-distarr.chpl



PARALLELIZING A 1D HEAT DIFFUSION SOLVER (HANDS ON)



Differential equation:  
!"
!#
= 𝛼 !!"

!$!

Discretized (finite difference) equation: 𝑢%&'( = 𝑢%& + 	𝛼 𝑢%)(& − 2𝑢%& + 𝑢%'(&

• where 𝑖 ∈ Ω ⊂ ℝ! are discrete points in space, and 𝑛, 𝑛 + 1,…  are discrete instances in time

Finite difference algorithm:
• define Ω to be a set of discrete points along the x-axis
• define +Ω over the same points, excluding the boundaries
• define an array 𝑢 to over Ω
• set some initial conditions
• create a temporary copy of 𝑢, named 𝑢𝑛
• for 𝑁 timesteps: 
    (1) swap 𝑢 and 𝑢𝑛
    (2) compute 𝑢 in terms of 𝑢𝑛 over +Ω
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1D HEAT EQUATION EXAMPLE

𝑡 = 0 𝑡 = 𝑇

𝑛 = 0 𝑛 = 𝑁

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
      omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
  un <=> u;
  forall i in omegaHat do
    u[i] = un[i] + alpha *
    (un[i-1] – 2*un[i] + un[i+1]);
}

heat-1D.chpl



𝑖 𝑖 +
1

𝑖 −
1

This pattern is often referred to as a Stencil Computation
• The values in the array can be computed by applying a "stencil" to its previous state
• Note that in this case, the stencil can be applied to the entire array in parallel

– each value in 𝑢𝑛 depends strictly on values in 𝑢
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1D HEAT EQUATION EXAMPLE

𝑛 = 0

𝑛 = 1

𝑛 = 𝑁

𝑢"#$% = 𝑢"# + 	𝛼 𝑢"&%# − 2𝑢"# + 𝑢"$%#

𝑖

. . .

"stencil"

𝑢

𝑢𝑛

7
 8
 9
10
11

...
  forall i in omegaHat do
    u[i] = un[i] + alpha *
    (un[i-1] – 2*un[i] + un[i+1]);
...

heat-1D.chpl



Imagine we want to simulate a very large domain
• We could use the Block distribution to distribute 𝑢 and 𝑢𝑛 across multiple locales

– taking advantage of their memory and compute resources

Look at heat-1D-block.chpl and fill in the blanks to make the arrays block-distributed
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HANDS ON: DISTRIBUTING THE 1D HEAT EQUATION

Locale 0 Locale 1 Locale 2 Locale 3

𝑢𝑛

𝑢

use BlockDist;
...
const myBlockDom = blockDist.createDomain({1..10});

Hint | Define a block-distributed domain:

heat-1D-block.chpl

. . . . . . . . . . . .



Solution: make 'omega' block-distributed:
omega = blockDist.createDomain({0..<nx});

Why does this work?
• 'omegaHat' inherits 'omega's distribution
• 'u' is block-distributed
• 'un' inherits 'u's domain (and distribution)
• 'omegaHat' invokes 'blockDist's parallel/distr. iterator

– the body of the loop is automatically split across multiple 
tasks on each locale

• Communication occurs automatically when a loop 
references a value stored on a remote locale
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HANDS ON: DISTRIBUTING THE 1D HEAT EQUATION
1

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

const omega =          
blockDist.createDomain({0..<nx}),

      omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
  un <=> u;
  forall i in omegaHat do
    u[i] = un[i] + alpha *
    (un[i-1] – 2*un[i] + un[i+1]);
}

u[i+1]

𝑢𝑛

𝑢

heat-1D-block-solution.chpl



HEAT 2D EXAMPLE WITH COMMDIAGNOSTICS (HANDS ON)



2D and 3D stencil codes are more common and practical
• They also present more interesting considerations for parallelization and distribution

2D heat / diffusion PDE:

Discretized (finite-difference) form: 
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2D HEAT EQUATION EXAMPLE

𝜕𝑢
𝜕𝑡

= 𝛼∆𝑢 = 𝛼
𝜕"𝑢
𝜕𝑥"

+
𝜕"𝑢
𝜕𝑦"

𝑢",(#$% = 𝑢",(# + 𝛼 𝑢"$%,(# + 𝑢"&%,(# − 4𝑢",(# + 𝑢",($%# + 𝑢",(&%#

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

const omega = {0..<nx, 0..<ny},
      omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
  un <=> u
  forall (i, j) in omegaHat do
    u[i, j] = un[i, j] + alpha * (

        un[i-1, j] + un[i, j-1] +
        un[i+1, j] + un[i, j+1] –
        4 * un[i, j]);

}

𝑛 = 0 𝑛 = 𝑁

heat-2D.chpl



• This computation uses a "5 point stencil"
• Each point in 'u' can be computed in parallel

• this is accomplished using a 'forall' loop
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PARALLEL 2D HEAT EQUATION

𝑢",(#$% = 𝑢",(# + 𝛼 𝑢"&%,(# + 𝑢",(&%# + 𝑢"$%,(# + 𝑢",($%# − 4𝑢",(#

𝑢# 𝑢#$%

Stored in uStored in un

Fixed 
boundary 

values

7
 8
 9
10
11
12
13

...
  forall (i, j) in omegaHat do
    u[i, j] = un[i, j] + alpha * (

        un[i-1, j] + un[i, j-1] +
        un[i+1, j] + un[i, j+1] –
        4 * un[i, j]);

...

heat-2D.chpl



• Declaring distributed domains with the block distribution

• Distributed & Parallel loop over 'OmegaHat'
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BLOCK DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%
Stored in uStored in un

heat-2D-block.chpl

const Omega = blockDist.createDomain(0..<nx, 0..<ny),
      OmegaHat = Omega.expand(-1);

for 1..nt {
  u <=> un; 

  forall (i, j) in OmegaHat do
    u[i, j] = un[i, j] + alpha * (

      un[i-1, j] + un[i, j-1] +
      un[i+1, j] + un[i, j+1] –
      4 * un[i, j]);

}

Array access across locale 
boundaries automatically 
invokes communication   

un[i-1, j]



• Declaring distributed domains with the stencil distribution

• Distributed & Parallel loop including buffer updates
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STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%
Stored in uStored in un

heat-2D-stencil.chpl

const Omega = stencilDist.createDomain(
                {0..<nx, 0..<ny}, fluff=(1,1)),
      OmegaHat = Omega.expand(-1);

Array access across locale 
boundaries (within the fluff 

region) results in a local 
buffer access — no 

communication is required

The buffers must be updated 
explicitly during each time 

step by calling 'updateFluff'

for 1..nt {
  u <=> un; 

un.updateFluff();
  forall (i, j) in OmegaHat do
    u[i, j] = un[i, j] + alpha * (

      un[i-1, j] + un[i, j-1] +
      un[i+1, j] + un[i, j+1] –
      4 * un[i, j]);

}



• Each locale owns a region of the array 
surrounded by a "fluff" (buffer) region

• Calling 'updateFluff' copies values from 
neighboring regions of the array into 
the local buffered region

• Subsequent accesses of those values 
result in a local memory access, rather 
than a remote communication 
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STENCIL DISTRIBUTED & PARALLEL 2D HEAT EQUATION

𝑢# 𝑢#$%

heat-2D-stencil.chpl



The 'CommDiagnostics' module provides functions for tracking comm between locales
• the following is a common pattern:

• which results in a table summarizing comm counts between the start and stop calls, e.g.,
| locale | get | put | execute_on | execute_on_nb |

| -----: | --: | --: | ---------: | ------------: |
|      0 | 10  |   0 |          6 |     12 |
|      1 | 105 |   5 |          0 |             0 |
|      2 | 105 |   4 |          0 |             0 |
|      3 | 105 |   7 |          0 |             0 |

• Compiling with '--no-cache-remote' before collecting comm diagnostics is recommended
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COMM DIAGNOSTICS

use CommDiagnostics;
...
startCommDiagnostics();
potentiallyCommHeavyOperation();
stopCommDiagnostics();
...
printCommDiagnosticsTable();



• Comparing comm diagnostics for:
• heat-2D-block.chpl
• heat-2D-stencil.chpl

• Compilation:

 

• Execution:

• Block: number of gets scales with size
• Stencil: static number of gets per iteration
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HANDS ON: HEAT 2D COMM DIAGNOSTICS RESULTS
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Number of Gets on 4 Locales – Block vs. Stencil

Stencil (256x256) Stencil (512x512) Block (256x256) Block (512x512)

heat-2D-block.chpl, heat-2D-stencil.chpl

number of remote gets doubles 
with quadrupled problem size

chpl heat-2D-block.chpl --fast
   --no-cache-remote –sRunCommDiag=true

chpl heat-2D-stencil.chpl –fast
   --no-cache-remote –sRunCommDiag=true

./heat-2D-block –nl4 --nx=256 --ny=256

./heat-2D-stencil –nl4 --nx=512 --ny=512



OUTLINE: PARALLELISM IN CHAPEL

• Recall processing files in parallel
• Data parallelism concepts and examples including multi-locale parallelism with distributions
• Domains
• Forall Loops
• Domain Distributions
• Using a Different Domain Distribution
• Implicit Communication: Remote writes/Puts and Reads/Gets
• Parallelizing a 1D heat diffusion solver (Hands On)
• Heat 2D example with CommDiagnostics (Hands On)



• Data parallelism session
• Provides shared memory and distributed memory parallelism
• Distributions like block and cyclic can be applied to arrays of any dimension
• Main control abstraction is the 'forall' loop
• 'forall' loop uses default iterator over provided array or domain, but can use own iterator

–This is an example of multi-resolution design in Chapel, i.e., the 'forall' loop is mapped down to lower-
level abstractions like 'coforall'

• CommDiagnostics module can be used to observe the number of remote puts/writes and gets/reads 
at runtime
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SUMMARIZING WHAT WE LEARNED IN SESSION 3



• Familiarity with the Chapel execution model including how to run codes in parallel on a single 
node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
üDistributed parallelism and 1D arrays, (processing files in parallel)
üChapel basics in the context of an n-body code
üDistributed parallelism and 2D arrays, (heat diffusion problem)
• How to parallelize histogram
• Using CommDiagnostics for counting remote reads and writes
• Chapel and Arkouda best practices including avoiding races and performance gotchas

• Where to get help and how you can participate in the Chapel community
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LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL



• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees
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ONE DAY CHAPEL TUTORIAL



Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage 

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel 
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues
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CHAPEL RESOURCES
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