Hewlett Packard
Enterprise

ONE-DAY CHAPEL TUTORIAL

Chapel Team
October 16, 2023



ONE DAY CHAPEL TUTORIAL

e 9-10:30: Getting started using Chapel for parallel programming
e 10:30-10:45: break

e 10:45-12:15: Chapel basics in the context of the n-body example code

e 12:15-1:15: lunch

e 1:15-2:45:  Distributed and shared-memory parallelism especially w/arrays (data parallelism)
e 2:45-3:00: break

e 3:00-4:30:  More parallelism including for asynchronous parallelism (task parallelism)

e 4:30-5:00:  Wrap-up including gathering further questions from attendees



OUTLINE: OVERVIEW OF PROGRAMMING IN CHAPEL

e Chapel Goals, Usage, and Comparison with other Tools

e Hello World (Hands On)

e Chapel Execution Model and Parallel Hello World (Hands On)

e kmer counting using file 10, config consts, strings, maps (Hands On)
 Parallelizing a program that processes files (Hands On)

 GPU programming support

e Learning goals for rest of tutorial



CHAPEL GOALS, USAGE, AND COMPARISON WITH OTHER TOOLS



CHAPEL PROGRAMMING LANGUAGE

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

5



APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

CHAMPS: 3D Unstructured CFD

CHIUW 2021 CHIUW 2022

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

Chapel- based Hydrologlcal Model Callbratlon

CHIUW 2023

—

Python3 Client ;’:‘0 Chapel Server

Code Modules E E 3
g
t Meta Distributed Array
Distributed
ﬁ Object Store
Platform PP, SMP, Cluster, Laptop, etc.

Arithmetic

Arkouda: Interactlve Data Sclence at Masswe Scale

CHIUW 2020 CHIUW 2023

Low-pass filter with LOWESS (intrinsically parallel)

100

80

0

40

RH (%) at Lake Mcad

0
2010 201 2012 2013 2014 2015
date

CHIUW 2022

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
CHIUW 2021

3] T24] 2l [

ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

apirQ: Mapping Cor iodiv_ers
CHIUW 2023

CHIUW 2020

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
CHIUW 2020 CHIUW 2022

{4

ChapQG: Layered Quasigeostrophic CFD

?

Your Application Here?


https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

HIGHLIGHTS OF CHAPEL USAGE

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
« Professor Eric Laurendeau’s team at Polytechnigue Montreal
« Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.

« Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they d
3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
« Mike Merrill, Bill Reus, et al., US DOD
« Python front end client, Chapel server that processes dozens of terabytes in seconds
o April 2023: 1200 GiB/s for argsort on an HPE EX system

Other recent users

« Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating
distributed watershed hydrologic models", Environmental Modeling and Software.

« Scott Bachman has written some coral reef image analysis applications in Chapel.

— o


https://github.com/Bears-R-Us/arkouda

CHAPEL IS HIGHLY PERFORMANT AND SCALABLE

HPE Apollo (May 2021) e3¢
¥ HDR-100 Infiniband network (100 Gb/s)
¥ 576 compute nodes

¥ 72 TiB of 8-byte values *11

¥ ~480 GiB/s (~150 seconds) %:::

[ Ty

HPE Cray EX (April 202390 < o
¥ Slingshot-11 network (200 Gb/s) &
ool
¥ 896 compute nodes = $|I'I“

¥ 28 TiB of 8-byte values #111
¥ ~1200 GiB/s (~24 seconds) "IN

HPE Cray EX (May 202 3 =g

¥ Slingshot-11 network (200 Gb/s)
¥ 8192 compute nodes

¥ 256 TiB of 8-byte values

¥ ~8500 GiB/s (~31 seconds)

012,3-4 015/,167.18,194:;.

- "HE%&'()*++,-.  /0/12 1/ 3#ASB(67 —¢— - - - - - - - - - - T -
I"#$%8&'()*++89:#"/0/12 1/ 3#45$(67 —o—
= <=*+00 >4, [0/+2 +[? 3#45$(67 —— T T _— T~~~

"1#% #1%) %!~ )" H#

A notable performance achievement in ~100 lines of Chapel

—



COMPARE WITH OTHER PARALLEL PROGRAMMING MODELS

e Shared-memory parallelism Chapel:
- Pthreads: low-level library for creating and managing threads of SIS s E1¢=le Rl il s A IS [k
« OpenMP: pragmas added before loops and other statements in (UGS T o1 N (e Maa I eI A ) [ 1)
« Rust, Julia: programming languages with some threaded parallel
. RAJA, Kokkos; C++ libraries that use template metaprogramming®
e Distributed-memory parallelism and shared-memory parallel
o MPI+X:

—MPI stands for message passing interface
~MPI is a library for sending and receiving messages between processciIBRCL YN sE1E=11 (11K 3

data parallelism,

task parallelism,
map-reduce parallelism,
vector parallelism,

— All processes allocate their own memory and run the same program,

— There are many options for X: OpenMP, Pthreads, Python, Julia, RAJA All can be expressed in the same
« OpenSHMEM: library for implementing a partitioned global addr
« Spark: Python, Scala, and Java accessible library for especially th
« Regent and Legion: programming language and runtime that implements implicit task parallelism
« Kokkos Remote Spaces: extends Kokkos C++ template views to distributed views

programming language.

— .



LET'S COMPARE WITH STREAM TRIAD: A PARALLEL COMPUTATION

"H S8 HEHYHE, | (#) *+ A-IB-IC
O*+,$& Wil L/ mIA =B + | 45

-%.%"/,+0$1&

— .



LET'S COMPARE WITH STREAM TRIAD: A PARALLEL COMPUTATION

Givenn-element vectors A B C
Compute! 1" 1.n, A =B + 045

In pictures, In parallélistributed memory multicore, global-view):

— .



STREAM TRIAD: MPI+OPENMP

#incude < hpcch > %&'()(*+,-%& if (ta || b || 'c) { #define N 2000000 %
#ifdef OPENMP :

if (C) HPCC_free (c);

#include < omp.h> “ if()  HPCC_free (b); int main() { e
#endif . s if@) HPCC._free (a); float* d_a,* d_b,* d_c; O

if ( dolO){ float scalar; - I - IR - B -
static int VectorSize w forintf  ( outFile , "Failed to . ] ]

aimiaia oo memoy i)\, | LA (G G sl (foa)
VectorSize : ek AP AN
int HPCC_StarStream ( HPCC_Params *params) { folose  ( outFiIe) ) cudaMalloc  ((void*)&  d_c, sizeof (float)*N);

int  myRank, commSize; }

dim3 dimBlock (128);

HPC suffers from too many distinct notations for expressing parallelism and loc

This tends to be a result of bottomlanguage design.

PI_Reducer& , & eI‘I’COL’Jt 1, MPI_N, MiDI_SUM, Orb.=12<0 vectorsize e REATriad <<<dimGrid,dimBlock  >>>(d_b, d_c, d_a, scalar, N);
0, comm); U.]: e cudaThreadSynchronize  ();
' : c[j] = 1.0;
return  errCount ; } cudaFree (d_a);
} scalar = 3.0; cudaFree (d_b);
_ cudaFree (d_c);
int HPCC_Stream( HPCC_Params *params, int dolO){ zg?ae;r_ngpim\gZarallel for
register int ; _ #endif __global__ void set array (float*a, float value, int len ) {
double scalar; for (j=0; j< VectorSize ; j++) int idx = threadldx .x + blockldx .x * blockDim .x ;
VectorSize = HPCC_LocalVectorSize  ( params, 3, a[j] = b[jJ+scalar*c(i]; } T ddx < len)al idx ] = value:
sizeof (double), 0);
HPCC_f ;

_ Hpgg—fg 8’, _global  void STREAM_ Triad ( float *a, float *b, float *c,
a=HPCC_XMALLOC( double, VectorS!ze ) HPGC froo (a)f float scalar, int len ) {
b=HPCC_XMALLOC(double,  VectorSize ) — : int idx = threadldx .x + blockldx .x * blockDim .x ;
¢ =HPCC_XMALLOC(double,  VectorSize ), retum 0: } if( idx < len)c[ idx ]=a[ idx ]+scalar*b[ idx ]; }

— .



WHY SO MANY PROGRAMMING MODELS?

HPC tends to approach programming models bottom-up:
Given a system and its core capabilities...
..provide features that permit users to access the available performance.

Type of HWParallelism Programming Model Unit of Parallelism
Internode MPI executable
Intranodemulticore OpenMP pthreads iteration/task
InstructioAevel vectors/threads pragmas iteration
GPU/accelerator CUDA / Open[MP|CL|ACC] SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

— .



The special sauce:

STREAM TRIAD: IN CHAPEL How should this index et
use BlockDist ; and any arrays angl
computations oveiNbe
config const m = 1000, mapped to the system?
alpha = 3.0;
const ProblemSpace =¢DblockDist.createDomain {1..m});

var A, B, C/[ ProblemSpace | real ;

B=2.0;
C=1.0;

A =B + alpha * C;

Philosophy: Top-downlanguage design can tease system-specific implementation
details away from an algorithm, permitting the compiler, runtime, applied scientist, and
HPC expert to each focus on their strengths.

| 14



HELLO WORLD (HANDS ON)



HANDS ON: HOW TO DO THE HANDS ON = 01-hello.chpl

Zip file with example codes and slides
« https://chapel-lang.org/tutorials/Oct2023/ChapelExamplesFromOct2023Tutorial.zip

Using a container on your laptop
« First, install docker for your machine and start it up (see the README.md for more info)
« Then, use the chapel-gasnet docker container

docker pull docker.io /chapel/chapel - gasnet # takes about 5 minutes
cd ChapelTutorialSlidesAndCodes # assuming zip file has been unzipped
docker run - m -it -v"$PWD"/ myapp -w/ myapp chapel/chapel -gasnet /bin/bash

FOOt@XXXXxxxxx :/ myapp# chpl 01- hello.chpl
FOOt@XXXXXXXXX /[ myapp# ./01 -hello -nl 1

Attempt this Online website for running Chapel code ‘
. Go to main Chapel webpage at https://chapel-lang.org/ ODRO

« Click on the little ATO icon on the lower left that is above the YouTube icon

—

16



https://chapel-lang.org/tmp/ChapelTutorialSlidesAndCodes.zip
https://chapel-lang.org/tutorials/Oct2023/ChapelExamplesFromOct2023Tutorial.zip
https://chapel-lang.org/

"HELLO WORLD" IN CHAPEL: TWO VERSIONS

e Fast prototyping

writeln ~ ( );

e “Production-grade”

module Hello {

proc main() {
writeln ~ ( );

}

01-hello.chpl

Ol—hello—producTion.chpI

17




"HELLO WORLD" IN CHAPEL: TWO VERSIONS

e Fast prototyping (configurable)

config const audience = ;
writeln ~ ( . audience, ); % 01-hello-configurable.chpl

e “Production-grade” (configurable)

module Hello { 01-hello-production-configurable.chpl

config const audience = ,

proc main() {
writeln ~ ( , audience, )i

}

}

e To change ‘audience’ for a given run:
/01 - hello - configurable -nl 1 -- audience="y'all"

— .



COMPILING CHAPEL

Chapel
Source
Code

Standard
Modules
(in Chapel)

Chapel
Executable

16



CHAPEL COMPILER ARCHITECTURE

Chapel
Source
Code

Chapel compiler |

and runtime

LLVM IR
Chapel-to-X

—b[ LLVM

Compiler
Generated

Standard
Library
Modules
(in Chapel)

Std C Compiler
& Linker

Chapel

Executable

1 I C Code

Internal Modules
(in Chapel)

Bupse |

1

Runtime Support
Libraries (in C)

uonediunwwo)
AJOWBN




CHAPEL EXECUTION MODEL AND PARALLEL HELLO WORLD
(HANDS ON)



CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

Locales can run tasks and store variables

« Each locale executes on a “compute node” on a parallel system
« User specifies number of locales on executable’s command-line

prompt> ./ myChapelProgram -- numLocales=4 # or Bnl 40

Locales array:

locale 1 locale 2 locale 3

User’s code starts running as a single task on locale O

22



TASK-PARALLEL “HELLO WORLD”

O1-hello-dist-node-names.chpl

tid, numTasks,

const numTasks = here .maxTaskPar ;
coforall tid in 1.numTasks do
writef ("Hell o from task %n of %n on %s

nere .name);

\ n"

23



TASK-PARALLEL “HELLO WORLD”

O1-hello-dist-node-names.chpl

const numTasks = here .maxTaskPar ;

coforall tid in 1.numTasks do
writef ("Hell o from task %n of %g#6n %s

‘here’ refers to the locale on
which we’re currently running

how many concurrent tasks does
this node support (typically the
number of processor cores)?

24



TASK-PARALLEL “HELLO WORLD”

O1-hello-dist-node-names.chpl

const numTasks = here .maxTaskPar

coforall tid In 1.numTasks do
writef  (

tid, numTasks, nere .name);

a 'coforall’ loop executes each
iteration as an independent task

> chpl O01-hello -dist -node-names.chpl
> /01 -hello -dist -node-names -nl 1
Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

|25



TASK-PARALLEL “HELLO WORLD”

O1-hello-dist-node-names.chpl

const numTasks = here .maxTaskPar

coforall tid in 1.numTasks do
writef ("Hell o from task %n of %n on %s \n",
tid, numTasks, nere .name);

> chpl O01-hello -dist -node-names.chpl
> /01 -hello -dist -node-names -nl 1
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032
Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

So far, this is a sharademory program

Nothing refers to remote locales,
explicitly or implicitly

— .




TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

O1-hello-dist-node-names.chpl

coforall loc in Locales
on loc {
const
coforall tid
writef

tid, numTasks,

{

numTasks = here .maxTaskPar :
in 1.numTasks do
("Hell o from task %n of %n on %s

here .name);

\'n

the array of locales we’re running on

Locales array:
locale O locale 1 locale 2 locale 3

27



TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

O1-hello-dist-node-names.chpl

create a task per locale

coforall loc
on loc{
const

coforall tid
writef

in Locales {

In  1.numTasks do
("Hell o from task %n of %n
tid, numTasks,

numTasks = here .maxTaskPar ;

then print @ message per core,
on %s \n", P gep
as before
nere .name);

on which the program is running

have each task run ‘on’ its locale

> chpl 01- hello
> /01 -hello -dist

Hello from task 1 of 4 on n1032
Hello from task 4 of 4 on n1032
Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033
Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035
=

- dist - node - names.chpl
- node - names -nl =4

28



LOCALES AND EXECUTION MODEL IN CHAPEL

In Chapel, a locale refers to a compute resource with...

e Processors, so it can run tasks
« Memory, so it can store variables

For now, think of each compute node as having one locale run on it

Compute
Node O

B

Compute
Node 1

—1 B

Compute
Node 2

Compute
Node 3

Processor Core
[ Memory

29



LOCALES AND EXECUTION MODEL IN CHAPEL

Two key built-in variables for referring to locales in Chapel programs:

¥ Locales

¥ here :

An array of locale values representing the system resources on which the program is running
The locale on which the current task is executing

Locale O

B

Locale 1

b

[] Memory

Locale 2

B

Locale 3

Processor Core

30



GETTING STARTED WITH LOCALES

e Users specify # of locales when running Chapel programs

% a.out -- numLocales =8 % a.out Hnl 8

e Chapel provides built-in locale variables

config const numLocales : int =E; ,
const Locales :[0..#numLocales] locale =E;

« Users main() begins executing on locale #0, i.e. 'Locales[0]'

31



LOCALE OPERATIONS

e Locale methods support queries about the target system:

proc
proc
proc
proc

locale
locale
locale

locale.

.physicalMemory (E) {E}

. maxTaskPar {E}
id {E}
name {E}

o Onclausesupport placement of computations:

writeln

writeln

on Locales [1]
writeln

(

do

on A[ij ] do
bigComputation

on node.left do
search( node.left

(A);

);

32



KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale 1

dhe

0

[]Memory

Locale 2

oo

ooﬁﬁ

Processor Core

33



BASIC FEATURES FOR LOCALITY =] Ol-basics-on.chpl

01-basics-on.chpl All Chapel programs begin running
writeln  ( "Hello from locale " , here .id); as a single fask on locale 0
var A:[1..2,1..2] real ; Variables are stored using the

memory local to the current task

on Locales [1]{

var B:[l1..2,1..2] real ; €= on-clauses move tasks

to other locales
B=2*A;

remote variables can be
accessed directly

This is a serial, but distributed computation

Locale O Locale 1 Locale 2 Locale 3

— B

o

|34



BASIC FEATURES FOR LOCALITY

O1-basics-for.chpl

writeln  ( "Hello from locale " , here .id);
var A:[l1..2,1..2] real
for loc Iin Locales {
on loc {
var B = A;
}
}
This is also a serial, but distributed computatio
Locale O ‘ Locale 1
o — o

Locale 2

e —

=] O1-basics-for.chpl

This loop will serially iterate over

the program’s locales

Locale 3

H]

O

35




MIXING LOCALITY WITH TASK PARALLELISM

O1-basics-coforall.chpl

var A:[1..2,1..2]

var B = A;
}
}

writeln  ( "Hello from locale " , here .id);

real

This results in a parallel distributed computatio

Locale O

o

Locale 1

D) O1-basics-coforall.chpl

. The coforall loop creates
coforall loc In Locales { : )
a parallel task per iteration
on loc {

Locale 2

|
A

Locale 3

O

H]

|t |

36




ARRAY-BASED PARALLELISM AND LOCALITY

O1-basics-distarr.chpl

D) Ol-basics-distarr.chpl

writeln  ( "Hello from locale " , here .id);

var A:[1..2,1..2]

real

use BlockDist

var D = blockDist .createDomain ({1..2, 1..2});
var B:[D] real;
B=A;

They also result in parallel distributed computatio

Locale O

Locale 2

Chapel also supports distributed
domains (index sets) and arrays

O

o

37




HANDS ON: PARALLELISM ACROSS AND WITHIN LOCALES

Parallel hello world
« 01-hellopar.chpl

Things to try
chpl 01- hellopar.chpl

/01 - hellopar -nl 1 -- tasksPerLocale =3
/01 - hellopar -nl 2 -- tasksPerLocale

Key concepts
« 'coforall' over the "Locales™ array with an “on" statement
« 'coforall' creating some number of tasks per locale
« configuration constants, 'config const'
« range expression, '0..<tasksPerLocale'
o 'writeln'
« inline comments start with '//'

—1

01-hellopar.chpl

/I can be set on the command line \wdkksPerLocat®
config const tasksPerLocale =1;

/[ paralléloops over nodes and then over threads

coforall loc in Locales doon loc {
coforall tid in 0..< tasksPerLocale {
writeln  ( :
, tid
. tasksPerLocale ,
, here.id ,
, nhumLocales , );
}
}

|38




PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

e This is a parallel, but local program:

coforall I In 1.msgs do
writeln , )

e This is a distributed, but serial program:

01-parallelism-and-locality.chpl

writeln  ( );
on Locales [1] do writeln (
on Locales [2] {
writeln  ( );
on Locales [0] do writeln (

}

writeln ~ ( );

e This is a distributed parallel program:

coforall I In 1.msgs do
on Locales [i%numLocales ] do
writeln ~ ( |,

, here .id);

—

39




HANDS ON: PARALLELISM AND LOCALITY IN CHAPEL

Goals
e Compile and run some of the examples from the last section

e Experiment some with '01-basics-distarr.chpl’

Compile and run some of the other examples from the last section
chpl 01- parallelism - and - locality.chpl

/01 - parallelism - and - locality -nl 1
/01 - parallelism - and - locality -nl 4

Experiment some with '01-basics-distarr.chpl'
1. what happens when you add a 'writeln(D)' to write out the domain 'D'?
2. what happens when you change 'D's initial value to '{0..3,0..3}"?
3. where does the computation on locales other than locale O happen?

—

40



OUTLINE: OVERVIEW OF PROGRAMMING IN CHAPEL

e Chapel Goals, Usage, and Comparison with other Tools

e Hello World (Hands On)

e Chapel Execution Model and Parallel Hello World (Hands On)

e kmer counting using file 10, config consts, strings, maps (Hands On)
 Parallelizing a program that processes files (Hands On)

 GPU programming support

e Learning goals for rest of tutorial



KMER COUNTING USING FILE 10, CONFIG CONSTS, AND STRINGS
(HANDS ON)



SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

kmer.chpl

use Map, IO;

config const infillename = "kmer large input.txt
config const k =4,

var sequence, line string;

var f =open( inflename , ioMode.r );

var infile = freader ();

while infile  .readLine (line) {

sequence += line .strip ();

}

var nkmerCounts : map( string, int );

for ind in 0.<( sequence .size -K){
nkmerCounts [ sequence [ind ..#K]] += 1,
}

—

kmer.chpl

‘Map’ and 'l0' are two of the standard
libraries provided in Chapel. A 'map'is like a

dictionary in python.

‘config const' indicates a configuration
constant, which result in built-in
command-line parsing

Reading all of the lines from the input
file into the string 'sequence’.

The variable 'nkmerCounts' is being

declared as a dictionary mapping
strings to ints

Counting up each kmer in the sequence

| 43



HANDS ON: EXPERIMENTING WITH THE K-MER EXAMPLE kmer.chpl

Some things to try out with 'kmer.chpl'

chpl kmer.chpl
J kmer -nl 1

J kmer -nl 1 B k=10 # can change k
J kmer -nl 1 -- inflename ="kmer.chpl " # changing Infilename
J kmer -nl 1 -- k=10 -- infilename ="kmer.chpl "# can change both

Key concepts
« 'use' command for including modules
« configuration constants, ‘config const'
« reading from a file
« 'map' data structure

— »



PARALLELIZING A PROGRAM THAT PROCESSES FILES
(HANDS ON)



ANALYZING MULTIPLE FILES USING PARALLELISM

parfilekmer.chpl

use FileSystem , BlockDist ;
config const dir = :
var fList = findFiles  (dir );
var filenames =
blockDist.createArray
fllenames = fList ;

(0..< fList

Il per file word count
forall f in filenames {

// code fronmkmer.chpl

.Size,

string

);

parfilekmer.chpl

parfilekmer.chpl
-nl 1
bnl 4

prompt> chpl -- fast
prompt> ./ parfilekmer
prompt> ./ parfilekmer

shared and distributed-memory
parallelism using 'forall’
I in other words, parallelism within
the locale/node and across

locales/nodes
a distributed array
command line options to indicate
number of locales

|46



BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"flenamel'l "filename?2'| "filename3'l "filename4’} "filename5' "filename6'l "filename7' "filename8'

e Array of strings for filenames is distributed
across locales

e ‘forall' will do parallelism across locales and then
within each locale to take advantage of multicore



HANDS ON: PROCESSING FILES IN PARALLEL

parfilekmer.chpl

Some things to try out with 'parfilekmer.chpl’

chpl parfilekmer.chpl -- fast
[ parfilekmer -nl 2 -- dir =" SomethingElse /" # change dir  with inputs files

[ parfilekmer -nl 2 B k=10 # can also change k

Concepts illustrated
¥'forall' provides distributed and shared memory parallelism when do a 'forall’
over the Block distributed array

¥No remote puts and gets

— .



GPU PROGRAMMING SUPPORT



GPU SUPPORT IN CHAPEL

Generate code for GPUs

« Support for NVIDIA and AMD GPUs
« Exploring Intel support

Key concepts

« Using the 'locale’ concept to indicate execution and data
allocation on GPUs

« 'forall' and 'foreach' loops are converted to kernels

« Arrays declared within GPU sublocale code blocks are
allocated on the GPU

Chapel code calling CUDA examples

¥ https://github.com/chapel-
lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl

gpuExample.chpl

¥ https://github.com/chapel-
lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

For more info...
— https://chapel-lang.org/docs/technotes/gpu.himl

—

use GpuDiagnostics ;
startGpuDiagnostics 0;

var operateOn =
if here.gpus.size >0 then here .gpus

else [ here |];

/| Same code can run on GPU or CPU

coforall loc in operateOn do on loc {
var A :[1..10] int ;
foreach ain A do a+=1;
writeln  (A);
}

stopGpuDiagnostics  ();
writeln  ( getGpuDiagnostics  ());

ISO


https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?

2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

Locale O

_mm

Locale 1

b

Locale 2

B

CPU Core
] Memory

Locale 3

51



KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?

2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

« We represent these as subrlocalesn Chapel

Locale O

GPUO

GPU1

GPU 2

Locale 1

Locale 2

GPUO

GPU1

GPU 2

GPUO

GPU1

Locale 3

GPU Core
CPU Core

] Memory

GPUO

GPU1

52



PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core|[ | GPU Core [| Memory

Q var X =10;

Locale O

on here.gpus [0]{

& var A=[1,2,3,4,5 .];

o foreach a in A do a+=1;
}

Execution/allocation
moves to the sublocale

£ writeln  (x);

|53



PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

GPU Core [7] Memory

Locale O

GPUO

GPU 1

O

var X =10;

on here.gpus [0]{
var A=[1,2, 3,45, ..
foreach

}

writeln

(X);

ain Ado a+=1;

54



PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

GPU Core [7] Memory

Locale O

B .

var X =10;
var AHost =[1,2,3,4,5, ..];

on here.gpus [0]{

var

A =

foreach

}

writeln

(X);

AHost ;
ain Ado a+=1;

55



PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core

GPU Core [7] Memory

var X =10;

Locale O

Q foreach
}

writeln  (X);

on here.gpus [0]{
var A=[1,2, 3,45, ..

ain Ado a+=1;

56



PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core|[ | GPU Core [| Memory

var x=10;

Locale O

coforall g in heregpus doon g {

var A=11,2, 3,4,5, ..
o foreach a in A do a+=1,
}

coforallacross local GPUg

writeln  (X);

— .



PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

inner
coforall §i

CPU Core

GPU Core [7] Memory

Locale 1

Locale O

coforallacross 'Localeq

O

var x=10;

coforall | in Locales doon | {
coforall g in heregpus doon g {
var A=[1,2,3,4,5,..]
foreach a in A do a+=1,
}

}

writeln  (X);

|58



PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

CPU Core|[ | GPU Core [| Memory

parallel statements var x=10; |
with cobegin Locale 1 Locale O coforall | in Locales doon | {

cobegin  {

& coforall g in heregpus doon g {
O var A=11,2, 3,4,5, ..
o foreach a in A do a+=1,
GPU O }
olo[e|o I {
AR AR 2R/
_ olo[o]o var A=[L, 2, 3,4,5,..1
inner ;
- EEUI i o }foreach a in A do a+=1,
AR AR AR AR AR AR
e AR AR 2K/ e AR AR 2K/ }
olololo I 1) [elelele I ]
writeln  (X);

outer coforall
I | 59



LEARNING OBJECTIVES FOR THE REST OF THE TUTORIAL



LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

e Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

e Learn Chapel concepts by compiling and running provided code examples

o Chapel basics in the context of an n-body code

o Distributed parallelism and 2D arrays, (heat diffusion problem)

e How to parallelize histogram

« Using CommDiagnostics for counting remote reads and writes

« Chapel and Arkouda best practices including avoiding races and performance gotchas

e Where to get help and how you can participate in the Chapel community

— ,61



OTHER CHAPEL EXAMPLES & PRESENTATIONS

Primers
« https.//chapel-lang.org/docs/primers/index.html

Blog posts for Advent of Code
« https://chapel-lang.org/blog/index.html

Test directory in main repository
« https.//github.com/chapel-lang/chapel/tree/main/test

Presentations
« https://chapel-lang.org/presentations.htmi

— .


https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test
https://chapel-lang.org/presentations.html

ONE DAY CHAPEL TUTORIAL

e 9-10:30: Getting started using Chapel for parallel programming
e 10:30-10:45: break

e 10:45-12:15: Chapel basics in the context of the n-body example code
e 12:15-1:15: lunch

e 1:15-2:45:  Distributed and shared-memory parallelism especially w/arrays (data parallelism)
e 2:45-3:00: break

e 3:00-4:30:  More parallelism including for asynchronous parallelism (task parallelism)

e 4:30-5:00:  Wrap-up including gathering further questions from attendees

— .



CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
« (points to all other resources)

Social Media:

« Twitter. @ChapelLanguage
« Facebook: @ChapelLanguage
« YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLanguag

Community Discussion / Support:
« Discourse: https://chapel.discourse.group/
« Gitter: https://qgitter.im/chapel-lang/chapel
« Stack Overflow: https://stackoverflow.com/questions/tagged/chapel
« GitHub Issues: https://github.com/chapel-lang/chapel/issues

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIUW
CHUG

Contributors / Credits

chapel_info@cray.com

(PR § 110)
yEiED

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores
+ a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

* read a blog-length or chapter-length introduction to Chapel
« learn about projects powered by Chapel

« check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Locales (x 36 cores / locale)

Locales (x 36 cores / locale)

« browse sample programs or learn how to write distributed programs like this one:

use CyclicDist;
config const n = 100;

// use the Cyclic distribution Llibrary
// use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

—

| 64

The Chapel Parallel Programming Language



https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

