
October 16, 2023
Chapel Team

ONE-DAY CHAPEL TUTORIAL

• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees

2

ONE DAY CHAPEL TUTORIAL

OUTLINE: OVERVIEW OF PROGRAMMING IN CHAPEL

• Chapel Goals, Usage, and Comparison with other Tools
• Hello World (Hands On)
• Chapel Execution Model and Parallel Hello World (Hands On)
• kmer counting using file IO, config consts, strings, maps (Hands On)
• Parallelizing a program that processes files (Hands On)
• GPU programming support
• Learning goals for rest of tutorial

CHAPEL GOALS, USAGE, AND COMPARISON WITH OTHER TOOLS

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

5

CHAPEL PROGRAMMING LANGUAGE

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

6(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHIUW 2023CHIUW 2022CHIUW 2021 CHIUW 2020 CHIUW 2021 CHIUW 2023 CHIUW 2022CHIUW 2020

CHIUW 2022 CHIUW 2022 CHIUW 2023

CHIUW 2023 CHIUW 2021 CHIUW 2020

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.
• Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in

3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
• Mike Merrill, Bill Reus, et al., US DOD
• Python front end client, Chapel server that processes dozens of terabytes in seconds
• April 2023: 1200 GiB/s for argsort on an HPE EX system

Other recent users
• Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating

distributed watershed hydrologic models", Environmental Modeling and Software.
• Scott Bachman has written some coral reef image analysis applications in Chapel.

7

HIGHLIGHTS OF CHAPEL USAGE

https://github.com/Bears-R-Us/arkouda

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

CHAPEL IS HIGHLY PERFORMANT AND SCALABLE

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

8

• Shared-memory parallelism
• Pthreads: low-level library for creating and managing threads of execution that share memory
• OpenMP: pragmas added before loops and other statements in C/C++/Fortran programs
• Rust, Julia: programming languages with some threaded parallelism constructs
• RAJA, Kokkos: C++ libraries that use template metaprogramming to express parallel policies

• Distributed-memory parallelism and shared-memory parallelism
• MPI+X:

– MPI stands for message passing interface
– MPI is a library for sending and receiving messages between processes
– All processes allocate their own memory and run the same program, SPMD: Single Program Multiple Data
– There are many options for X: OpenMP, Pthreads, Python, Julia, RAJA, Kokkos, Chapel, ...

• OpenSHMEM: library for implementing a partitioned global address space
• Spark: Python, Scala, and Java accessible library for especially the map-reduce parallelism
• Regent and Legion: programming language and runtime that implements implicit task parallelism
• Kokkos Remote Spaces: extends Kokkos C++ template views to distributed views

9

COMPARE WITH OTHER PARALLEL PROGRAMMING MODELS

Chapel:
• shared memory parallelism,
• distributed-memory parallelism,
• data parallelism,
• task parallelism,
• map-reduce parallelism,
• vector parallelism,
• GPU parallelism, ...

All can be expressed in the same
programming language.

Given: m-element vectors A, B, C

Compute: ∀i ∈ 1..m, Ai = Bi + α⋅Ci

In pictures:

10

LET'S COMPARE WITH STREAM TRIAD: A PARALLEL COMPUTATION

=

α

+

A

B

C
·

Given: n-element vectors A, B, C

Compute: ∀i ∈ 1..n, Ai = Bi + α⋅Ci
In pictures, in parallel (distributed memory multicore, global-view):

LET'S COMPARE WITH STREAM TRIAD: A PARALLEL COMPUTATION

A

B

C
·

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

11

12

STREAM TRIAD: IN MPI+OPENMP

#define N 2000000

int main() {
 float *d_a, *d_b, *d_c;
 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);
 cudaMalloc((void**)&d_b, sizeof(float)*N);
 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);
 dim3 dimGrid(N/dimBlock.x);
 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;
 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
 cudaThreadSynchronize();

 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);
}

__global__ void set_array(float *a, float value, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) a[idx] = value;
}

__global__ void STREAM_Triad(float *a, float *b, float *c,
 float scalar, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
 int myRank, commSize;
 int rv, errCount;
 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);
 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);
 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
 register int j;
 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);
 b = HPCC_XMALLOC(double, VectorSize);
 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
 if (c) HPCC_free(c);
 if (b) HPCC_free(b);
 if (a) HPCC_free(a);
 if (doIO) {
 fprintf(outFile, "Failed to
 allocate memory (%d).\n",
 VectorSize);
 fclose(outFile);
 }
 return 1;
 }

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 b[j] = 2.0;
 c[j] = 1.0;
 }
 scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++)
 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);
 HPCC_free(b);
 HPCC_free(a);

 return 0; }

HPC suffers from too many distinct notations for expressing parallelism and locality.
This tends to be a result of bottom-up language design.

HPC tends to approach programming models bottom-up:
Given a system and its core capabilities…

…provide features that permit users to access the available performance.

13

WHY SO MANY PROGRAMMING MODELS?

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable

Intra-node/multicore OpenMP / pthreads iteration/task

Instruction-level vectors/threads pragmas iteration

GPU/accelerator CUDA / Open[MP|CL|ACC] SIMD function/task

#define N 2000000

int main() {
 float *d_a, *d_b, *d_c;
 float scalar;

 cudaMalloc((void**)&d_a, sizeof(float)*N);
 cudaMalloc((void**)&d_b, sizeof(float)*N);
 cudaMalloc((void**)&d_c, sizeof(float)*N);

 dim3 dimBlock(128);
 dim3 dimGrid(N/dimBlock.x);
 if(N % dimBlock.x != 0) dimGrid.x+=1;

 set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
 set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

 scalar=3.0f;
 STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
 cudaThreadSynchronize();

 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);
}

__global__ void set_array(float *a, float value, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) a[idx] = value;
}

__global__ void STREAM_Triad(float *a, float *b, float *c,
 float scalar, int len) {
 int idx = threadIdx.x + blockIdx.x * blockDim.x;
 if (idx < len) c[idx] = a[idx]+scalar*b[idx]; }

CUDA#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
 int myRank, commSize;
 int rv, errCount;
 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);
 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);
 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
 register int j;
 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);
 b = HPCC_XMALLOC(double, VectorSize);
 c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP if (!a || !b || !c) {
 if (c) HPCC_free(c);
 if (b) HPCC_free(b);
 if (a) HPCC_free(a);
 if (doIO) {
 fprintf(outFile, "Failed to
 allocate memory (%d).\n",
 VectorSize);
 fclose(outFile);
 }
 return 1;
 }

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++) {
 b[j] = 2.0;
 c[j] = 1.0;
 }
 scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
 for (j=0; j<VectorSize; j++)
 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);
 HPCC_free(b);
 HPCC_free(a);

 return 0; }

14

STREAM TRIAD: IN CHAPEL

Philosophy: Top-down language design can tease system-specific implementation
details away from an algorithm, permitting the compiler, runtime, applied scientist, and
HPC expert to each focus on their strengths.

use BlockDist;

config const m = 1000,
 alpha = 3.0;

const ProblemSpace = blockDist.createDomain({1..m});

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

The special sauce:
How should this index set—
and any arrays and
computations over it—be
mapped to the system?

HELLO WORLD (HANDS ON)

Zip file with example codes and slides
• https://chapel-lang.org/tutorials/Oct2023/ChapelExamplesFromOct2023Tutorial.zip

Using a container on your laptop
• First, install docker for your machine and start it up (see the README.md for more info)
• Then, use the chapel-gasnet docker container

 docker pull docker.io/chapel/chapel-gasnet # takes about 5 minutes
 cd ChapelTutorialSlidesAndCodes # assuming zip file has been unzipped
 docker run --rm -it -v "$PWD":/myapp -w /myapp chapel/chapel-gasnet /bin/bash
 root@xxxxxxxxx:/myapp# chpl 01-hello.chpl
 root@xxxxxxxxx:/myapp# ./01-hello -nl 1

Attempt this Online website for running Chapel code
• Go to main Chapel webpage at https://chapel-lang.org/
• Click on the little ATO icon on the lower left that is above the YouTube icon

16

HANDS ON: HOW TO DO THE HANDS ON 01-hello.chpl

https://chapel-lang.org/tmp/ChapelTutorialSlidesAndCodes.zip
https://chapel-lang.org/tutorials/Oct2023/ChapelExamplesFromOct2023Tutorial.zip
https://chapel-lang.org/

• Fast prototyping

• “Production-grade”

17

"HELLO WORLD" IN CHAPEL: TWO VERSIONS

writeln("Hello, world!");

module Hello {

 proc main() {
 writeln("Hello, world!");
 }

}

01-hello.chpl

01-hello-production.chpl

• Fast prototyping (configurable)

• “Production-grade” (configurable)

• To change ‘audience’ for a given run:
./01-hello-configurable -nl 1 --audience="y'all"

18

"HELLO WORLD" IN CHAPEL: TWO VERSIONS

config const audience = "world";
writeln("Hello, ", audience, "!");

module Hello {
 config const audience = "world";

 proc main() {
 writeln("Hello, ", audience, "!");
 }
}

01-hello-configurable.chpl

01-hello-production-configurable.chpl

16

COMPILING CHAPEL

Chapel
Source
Code

Chapel
Executable

Standard
Modules

(in Chapel)

chpl

20

CHAPEL COMPILER ARCHITECTURE

Generated
C Code

Chapel
Source
Code Std C Compiler

& Linker

Chapel
Executable

Chapel-to-X
Compiler

Standard
Library

Modules
(in Chapel)

Internal Modules
(in Chapel)

Runtime Support
Libraries (in C)

T
asking

Com
m

unication

M
em

ory

…

LLVM IR LLVM

Chapel compiler
and runtime

CHAPEL EXECUTION MODEL AND PARALLEL HELLO WORLD
(HANDS ON)

Locales can run tasks and store variables
• Each locale executes on a “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

22

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’

locale 0 locale 1 locale 2 locale 3

Locales array:

System has many nodes

. . .

23

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

01-hello-dist-node-names.chpl

24

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

‘here’ refers to the locale on
which we’re currently running

how many concurrent tasks does
this node support (typically the

number of processor cores)?

what’s my locale’s name?

01-hello-dist-node-names.chpl

25

TASK-PARALLEL “HELLO WORLD”

> chpl 01-hello-dist-node-names.chpl
> ./01-hello-dist-node-names -nl 1
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

a 'coforall’ loop executes each
iteration as an independent task

01-hello-dist-node-names.chpl

26

TASK-PARALLEL “HELLO WORLD”

 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

01-hello-dist-node-names.chpl

> chpl 01-hello-dist-node-names.chpl
> ./01-hello-dist-node-names -nl 1
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

27

coforall loc in Locales {
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

the array of locales we’re running on

01-hello-dist-node-names.chpl

locale 0 locale 1 locale 2 locale 3

Locales array:

28

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
 on loc {
 const numTasks = here.maxTaskPar;
 coforall tid in 1..numTasks do
 writef("Hello from task %n of %n on %s\n",
 tid, numTasks, here.name);
 }
}

create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

> chpl 01-hello-dist-node-names.chpl
> ./01-hello-dist-node-names -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033
Hello from task 3 of 4 on n1034

Hello from task 1 of 4 on n1035

…

01-hello-dist-node-names.chpl

In Chapel, a locale refers to a compute resource with…
• processors, so it can run tasks
• memory, so it can store variables

For now, think of each compute node as having one locale run on it

29

LOCALES AND EXECUTION MODEL IN CHAPEL

Processor Core

Memory

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

Two key built-in variables for referring to locales in Chapel programs:

•Locales: An array of locale values representing the system resources on which the program is running
•here: The locale on which the current task is executing

LOCALES AND EXECUTION MODEL IN CHAPEL

Locale 0 Locale 1 Locale 2 Locale 3

30

Processor Core

Memory

• Users specify # of locales when running Chapel programs

• Chapel provides built-in locale variables

• User’s main() begins executing on locale #0, i.e. 'Locales[0]'

31

GETTING STARTED WITH LOCALES

% a.out --numLocales=8

config const numLocales: int = …;
const Locales: [0..#numLocales] locale = …;

% a.out –nl 8

• Locale methods support queries about the target system:

• On-clauses support placement of computations:

32

LOCALE OPERATIONS

proc locale.physicalMemory(…) { … }
proc locale.maxTaskPar { … }
proc locale.id { … }
proc locale.name { … }

writeln("on locale 0");

on Locales[1] do
 writeln("now on locale 1");

writeln("on locale 0 again");

on A[i,j] do
 bigComputation(A);

on node.left do
 search(node.left);

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

33

Processor Core

Memory

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

on Locales[1] {
 var B: [1..2, 1..2] real;

 B = 2 * A;
}

01-basics-on.chpl

34

All Chapel programs begin running
as a single task on locale 0

Locale 0 Locale 1 Locale 2 Locale 3

Variables are stored using the
memory local to the current task

on-clauses move tasks
to other locales

remote variables can be
 accessed directlyThis is a serial, but distributed computation

01-basics-on.chpl

BASIC FEATURES FOR LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

for loc in Locales {
 on loc {
 var B = A;
 }
}

01-basics-for.chpl

35

This loop will serially iterate over
the program’s locales

Locale 0 Locale 1 Locale 2 Locale 3

This is also a serial, but distributed computation

01-basics-for.chpl

MIXING LOCALITY WITH TASK PARALLELISM

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

coforall loc in Locales {
 on loc {
 var B = A;
 }
}

01-basics-coforall.chpl

36

The coforall loop creates
a parallel task per iteration

Locale 0 Locale 1 Locale 2 Locale 3

This results in a parallel distributed computation

01-basics-coforall.chpl

ARRAY-BASED PARALLELISM AND LOCALITY

writeln("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

use BlockDist;

var D = blockDist.createDomain({1..2, 1..2});
var B: [D] real;
B = A;

01-basics-distarr.chpl

37

Chapel also supports distributed
domains (index sets) and arrays

Locale 0 Locale 1 Locale 2 Locale 3

They also result in parallel distributed computation

01-basics-distarr.chpl

Parallel hello world
• 01-hellopar.chpl

Things to try

Key concepts
• 'coforall' over the `Locales` array with an `on` statement
• 'coforall' creating some number of tasks per locale
• configuration constants, 'config const'
• range expression, '0..<tasksPerLocale'
• 'writeln'
• inline comments start with '//'

38

HANDS ON: PARALLELISM ACROSS AND WITHIN LOCALES
// can be set on the command line with --tasksPerLocale=2

config const tasksPerLocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
 coforall tid in 0..<tasksPerLocale {

 writeln("Hello world! ",
 "(from task ", tid,
 " of ", tasksPerLocale,
 " on locale ", here.id,
 " of ", numLocales, ")");
 }
}

01-hellopar.chpl

chpl 01-hellopar.chpl
./01-hellopar -nl 1 --tasksPerLocale=3
./01-hellopar -nl 2 --tasksPerLocale=3

• This is a parallel, but local program:

• This is a distributed, but serial program:

• This is a distributed parallel program:

39

PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

writeln("Hello from locale 0!");
on Locales[1] do writeln("Hello from locale 1!");
on Locales[2] {
 writeln("Hello from locale 2!");
 on Locales[0] do writeln("Hello from locale 0!");
}
writeln("Back on locale 0");

coforall i in 1..msgs do
 writeln("Hello from task ", i);

coforall i in 1..msgs do
 on Locales[i%numLocales] do
 writeln("Hello from task ", i, " running on locale ", here.id);

01-parallelism-and-locality.chpl

Goals
• Compile and run some of the examples from the last section
• Experiment some with '01-basics-distarr.chpl'

Compile and run some of the other examples from the last section

Experiment some with '01-basics-distarr.chpl'
1. what happens when you add a 'writeln(D)' to write out the domain 'D'?
2. what happens when you change 'D's initial value to '{0..3,0..3}'?
3. where does the computation on locales other than locale 0 happen?

40

HANDS ON: PARALLELISM AND LOCALITY IN CHAPEL

chpl 01-parallelism-and-locality.chpl
./01-parallelism-and-locality -nl 1
./01-parallelism-and-locality -nl 4

OUTLINE: OVERVIEW OF PROGRAMMING IN CHAPEL

• Chapel Goals, Usage, and Comparison with other Tools
• Hello World (Hands On)
• Chapel Execution Model and Parallel Hello World (Hands On)
• kmer counting using file IO, config consts, strings, maps (Hands On)
• Parallelizing a program that processes files (Hands On)
• GPU programming support
• Learning goals for rest of tutorial

KMER COUNTING USING FILE IO, CONFIG CONSTS, AND STRINGS
(HANDS ON)

43

SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

use Map, IO;

config const infilename = "kmer_large_input.txt";
config const k = 4;

var sequence, line : string;
var f = open(infilename, ioMode.r);
var infile = f.reader();
while infile.readLine(line) {
 sequence += line.strip();
}

var nkmerCounts : map(string, int);

for ind in 0..<(sequence.size-k) {
 nkmerCounts[sequence[ind..#k]] += 1;
}

kmer.chpl
‘Map’ and 'IO' are two of the standard

libraries provided in Chapel. A 'map' is like a
dictionary in python.

'config const' indicates a configuration
constant, which result in built-in

command-line parsing

The variable 'nkmerCounts' is being
declared as a dictionary mapping

strings to ints

Counting up each kmer in the sequence

Reading all of the lines from the input
file into the string 'sequence'.

kmer.chpl

Some things to try out with 'kmer.chpl'
chpl kmer.chpl
./kmer -nl 1

./kmer -nl 1 –-k=10 # can change k

./kmer -nl 1 --infilename="kmer.chpl" # changing infilename

./kmer -nl 1 --k=10 --infilename="kmer.chpl" # can change both

Key concepts
• 'use' command for including modules
• configuration constants, 'config const'
• reading from a file
• 'map' data structure

44

HANDS ON: EXPERIMENTING WITH THE K-MER EXAMPLE kmer.chpl

PARALLELIZING A PROGRAM THAT PROCESSES FILES
(HANDS ON)

ANALYZING MULTIPLE FILES USING PARALLELISM

use FileSystem, BlockDist;
config const dir = "DataDir";
var fList = findFiles(dir);
var filenames =
 blockDist.createArray(0..<fList.size,string);
filenames = fList;

// per file word count
forall f in filenames {
 ...
 // code from kmer.chpl
 ...
}

46

parfilekmer.chpl prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer –nl 4

• shared and distributed-memory
parallelism using 'forall'
• in other words, parallelism within

the locale/node and across
locales/nodes

• a distributed array
• command line options to indicate

number of locales

parfilekmer.chpl

47

BLOCK DISTRIBUTION OF ARRAY OF STRINGS

"filename1" "filename2" "filename3" "filename4" "filename5" "filename6" "filename7" "filename8"

• Array of strings for filenames is distributed
across locales

• 'forall' will do parallelism across locales and then
within each locale to take advantage of multicore

Locale 0 Locale 1

Some things to try out with 'parfilekmer.chpl’

chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files

./parfilekmer -nl 2 –-k=10 # can also change k

Concepts illustrated
• 'forall' provides distributed and shared memory parallelism when do a 'forall'

over the Block distributed array
• No remote puts and gets

48

HANDS ON: PROCESSING FILES IN PARALLEL
parfilekmer.chpl

GPU PROGRAMMING SUPPORT

Generate code for GPUs
• Support for NVIDIA and AMD GPUs
• Exploring Intel support

Key concepts
• Using the 'locale' concept to indicate execution and data

allocation on GPUs
• 'forall' and 'foreach' loops are converted to kernels
• Arrays declared within GPU sublocale code blocks are

allocated on the GPU

Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

For more info...
– https://chapel-lang.org/docs/technotes/gpu.html

50

GPU SUPPORT IN CHAPEL

use GpuDiagnostics;
startGpuDiagnostics();

var operateOn =
if here.gpus.size>0 then here.gpus
 else [here,];

// Same code can run on GPU or CPU

coforall loc in operateOn do on loc {
 var A : [1..10] int;
 foreach a in A do a+=1;
 writeln(A);
}

stopGpuDiagnostics();
writeln(getGpuDiagnostics());

gpuExample.chpl

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

51

CPU Core

Memory

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

• complicating matters, compute nodes now often have GPUs with their own processors and memory
• we represent these as sub-locales in Chapel

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

Locale 0 Locale 1 Locale 2 Locale 3

52

CPU Core

Memory

GPU Core

53

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

Execution/allocation
moves to the sublocale

A

x

var x = 10;

 on here.gpus[0] {
 var A = [1, 2, 3, 4, 5, ...];
 foreach a in A do a += 1;
 }

writeln(x);

GPU Core MemoryCPU Core

54

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

 on here.gpus[0] {
 var A = [1, 2, 3, 4, 5, ...];
 foreach a in A do a += 1;
 }

writeln(x);

A

GPU Core MemoryCPU Core

55

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

A
H

os
t

GPU 0

GPU 1

var x = 10;
var AHost = [1, 2, 3, 4, 5, ...];

 on here.gpus[0] {
 var A = AHost;
 foreach a in A do a += 1;
 }

writeln(x);

A

GPU Core MemoryCPU Core

56

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

 on here.gpus[0] {
 var A = [1, 2, 3, 4, 5, ...];
 foreach a in A do a += 1;
 }

writeln(x);

A

GPU Core MemoryCPU Core

57

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;

 coforall g in here.gpus do on g {
 var A = [1, 2, 3, 4, 5, ...];
 foreach a in A do a += 1;
 }

writeln(x);

A

A

coforall across local GPUs

GPU Core MemoryCPU Core

58

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

var x = 10;
coforall l in Locales do on l {

 coforall g in here.gpus do on g {
 var A = [1, 2, 3, 4, 5, ...];
 foreach a in A do a += 1;
 }

}
writeln(x);

A

A

Locale 1

GPU 0

GPU 1

A

A

coforall across 'Locales'

inner
coforall

GPU Core MemoryCPU Core

var x = 10;
coforall l in Locales do on l {
 cobegin {
 coforall g in here.gpus do on g {
 var A = [1, 2, 3, 4, 5, ...];
 foreach a in A do a += 1;
 }
 {
 var A = [1, 2, 3, 4, 5, ...];
 foreach a in A do a += 1;
 }
 }
}
writeln(x);

59

PARALLELISM AND LOCALITY IN THE CONTEXT OF GPUS

Locale 0

GPU 0

GPU 1

GPU Core Memory

A

A

Locale 1

GPU 0

GPU 1

A

A

A A

CPU Core

parallel statements
with cobegin

outer coforall

inner
coforall

LEARNING OBJECTIVES FOR THE REST OF THE TUTORIAL

• Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

• Learn Chapel concepts by compiling and running provided code examples
üSerial code using map/dictionary, (k-mer counting from bioinformatics)
üParallelism and locality in Chapel
üDistributed parallelism and 1D arrays, (processing files in parallel)
• Chapel basics in the context of an n-body code
• Distributed parallelism and 2D arrays, (heat diffusion problem)
• How to parallelize histogram
• Using CommDiagnostics for counting remote reads and writes
• Chapel and Arkouda best practices including avoiding races and performance gotchas

• Where to get help and how you can participate in the Chapel community

61

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

Primers
• https://chapel-lang.org/docs/primers/index.html

Blog posts for Advent of Code
• https://chapel-lang.org/blog/index.html

Test directory in main repository
• https://github.com/chapel-lang/chapel/tree/main/test

Presentations
• https://chapel-lang.org/presentations.html

62

OTHER CHAPEL EXAMPLES & PRESENTATIONS

https://chapel-lang.org/docs/primers/index.html
https://chapel-lang.org/blog/index.html
https://github.com/chapel-lang/chapel/tree/main/test
https://chapel-lang.org/presentations.html

• 9-10:30: Getting started using Chapel for parallel programming
• 10:30-10:45: break
• 10:45-12:15: Chapel basics in the context of the n-body example code
• 12:15-1:15: lunch
• 1:15-2:45: Distributed and shared-memory parallelism especially w/arrays (data parallelism)
• 2:45-3:00: break
• 3:00-4:30: More parallelism including for asynchronous parallelism (task parallelism)
• 4:30-5:00: Wrap-up including gathering further questions from attendees

63

ONE DAY CHAPEL TUTORIAL

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

64

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

