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Defining our Terms
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Task: a unit of computation that can/should execute in 
parallel with other tasks

Thread: a system resource that executes tasks
● not exposed in the language
● occasionally exposed in the implementation

Task Parallelism: a style of parallel programming in which 
parallelism is driven by programmer-specified tasks

(in contrast with):
Data Parallelism: a style of parallel programming in which 

parallelism is driven by computations over collections of 
data elements or their indices
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Task Parallelism: Begin Statements
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Possible outputs:

// create a fire-and-forget task for a statement
begin writeln("hello world");
writeln("goodbye");

hello world
goodbye

goodbye
hello world
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Task Parallelism: Cobegin Statements
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// create a task per child statement
cobegin {

producer(1);
producer(2);
consumer(1);

} // implicit join of the three tasks here
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Cobegins/Serial by Example: QuickSort

proc quickSort(arr: [?D],
depth = 0,
thresh = log2(here.maxTaskPar),
low: int = D.low,
high: int = D.high) {

if high – low < 8 {
bubbleSort(arr, low, high);

} else {
const pivotVal = findPivot(arr, low, high);
const pivotLoc = partition(arr, low, high, pivotVal);
serial (depth >= thresh) do cobegin {

quickSort(arr, depth+1, thresh, low, pivotLoc-1);
quickSort(arr, depth+1, thresh, pivotLoc+1, high);

}
}

}
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Cobegins/Serial by Example: QuickSort

proc quickSort(arr: [?D],
low: int = D.low,
high: int = D.high) {

if high – low < 8 {
bubbleSort(arr, low, high);

} else {
const pivotVal = findPivot(arr, low, high);
const pivotLoc = partition(arr, low, high, pivotVal);
serial (here.runningTasks > here.maxTaskPar) do

cobegin {
quickSort(arr, low, pivotLoc-1);
quickSort(arr, pivotLoc+1, high);

}
}

}
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Task Parallelism: Coforall Loops
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Sample output:

// create a task per iteration
coforall t in 0..#numTasks {  

writeln("Hello from task ", t, " of ", numTasks);
} // implicit join of the numTasks tasks here

writeln("All tasks done");

Hello from task 2 of 4
Hello from task 0 of 4
Hello from task 3 of 4
Hello from task 1 of 4
All tasks done
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begin:
● Use to create a dynamic task with an unstructured lifetime
● “fire and forget” (or at least “leave running for awhile”)

cobegin:
● Use to create a related set of heterogeneous tasks

…or a small, fixed set of homogenous tasks
● The parent task depends on the completion of the tasks

coforall:
● Use to create a fixed or dynamic # of homogenous tasks
● The parent task depends on the completion of the tasks

Note: All these concepts can be composed arbitrarily

Comparison of Begin, Cobegin, and Coforall
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Task Parallelism: Data-Driven Synchronization
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● sync variables: store full-empty state along with value
● by default, reads/writes block until full/empty, leave in opposite state

● atomic variables: support atomic operations
● e.g., compare-and-swap; atomic sum, multiply, etc.
● similar to C/C++
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Bounded Buffer Producer/Consumer Example
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begin producer();
consumer();

// ‘sync’ types store full/empty state along with value
var buff$: [0..#buffersize] sync real;

proc producer() {
var i = 0;
for … {
i = (i+1) % buffersize;
buff$[i] = …;  // wait for empty, write, leave full

} }

proc consumer() {
var i = 0;
while … {
i = (i+1) % buffersize;
…buff$[i]…;   // wait for full, read, leave empty

} }
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● Syntax

● Semantics
● Stores full/empty state along with normal value
● Initially full if initialized, empty otherwise
● Default read blocks until full, leaves empty
● Default write blocks until empty, leaves full

● Examples: Critical sections and futures

Synchronization Variables

sync-type:
sync type

var lock$: sync bool;

lock$ = true;
critical();
var lockval = lock$;

var future$: sync real;

begin future$ = compute();
res = computeSomethingElse();
useComputedResults(future$, res);
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● readFE():t block until full, leave empty, return value
● readFF():t block until full, leave full, return value
● readXX():t return value (non-blocking)
● writeEF(v:t) block until empty, set value to v, leave full
● writeFF(v:t) wait until full, set value to v, leave full
● writeXF(v:t) set value to v, leave full (non-blocking)
● reset() reset value, leave empty (non-blocking)
● isFull: bool return true if full else false (non-blocking)

● Defaults: read: readFE, write: writeEF

Synchronization Variable Methods
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● Syntax

● Semantics
● Similar to sync variable, but stays full once written

● Example: Multiple Consumers of a future

Single Variables

single-type:
single type

var future$: single real;

begin future$ = compute();
begin computeSomethingElse(future$);
begin computeSomethingElse(future$);
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● readFE():t block until full, leave empty, return value
● readFF():t block until full, leave full, return value
● readXX():t return value (non-blocking)
● writeEF(v:t) block until empty, set value to v, leave full
● writeFF(v:t) wait until full, set value to v, leave full
● writeXF(v:t) set value to v, leave full (non-blocking)
● reset() reset value, leave empty (non-blocking)
● isFull: bool return true if full else false (non-blocking)

● Defaults: read: readFF, write: writeEF

Single Type Methods
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● Syntax

● Semantics
● Supports operations on variable atomically w.r.t. other tasks
● Based on C/C++ atomic operations

● Example: Trivial barrier

Atomic Variables

atomic-type:
atomic type

var count: atomic int, done: atomic bool;

proc barrier(numTasks) {
const myCount = count.fetchAdd(1);
if (myCount < numTasks - 1) then

done.waitFor(true);
else

done.testAndSet();
}
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● read():t return current value
● write(v:t) store v as current value
● exchange(v:t):t store v, returning previous value
● compareExchange(old:t,new:t):bool

store new iff previous value was old; 
returns true on success

● waitFor(v:t) wait until the stored value is v
● add(v:t) add v to the value atomically
● fetchAdd(v:t) same, returning pre-sum value

(sub, or, and, xor also supported similarly)

● testAndSet() like exchange(true) for atomic bool
● clear() like write(false) for atomic bool

Atomic Methods
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sync/single:
● Best for producer/consumer style synchronization

● “this task should block until something happens”
● use single for write-once values

atomic:
● Best for uncoordinated accesses to shared state

● “these tasks are unlikely to interfere with each other, at 
least for very long…”

Comparison of Synchronization Types
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Task Intents

Copyright 2018 Cray Inc.
19

● Tells how to “pass” variables from outer scopes to tasks
● Similar to argument intents in syntax and philosophy

● also adds a “reduce intent”, similar to OpenMP
● Design principles:

● ”principle of least surprise”
● avoid simple race conditions
● avoid copies of (potentially) expensive data structures
● support coordination via sync/atomic variables

● Congruent to forall intents, but for task-parallel constructs
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Task Intent Examples
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var sum: real;
coforall i in 1..n do          // default task intent of scalars is ‘const in’

sum += computeMyResult(i);   // so this is illegal: (and avoids a race)

var sum: real;
coforall i in 1..n with (ref sum) do  // override default task intent

sum += computeMyResult(i);          // we’ve now requested a race

var sum: real;
coforall i in 1..n with (+ reduce sum) do // override default intent

sum += computeMyResult(i);  // per-task sums will be reduced on task exit

var sum: atomic real;
coforall i in 1..n do           // default task intent of atomics is ‘ref’

sum.add(computeMyResult(i));  // so this is legal, meaningful, and safe



C O M P U T E      |      S T O R E      |      A N A L Y Z E

Task-Private Variables
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● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real;  // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n {

var onePerIteration: real;
}
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Task-Private Variables
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● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real;  // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n with (var onePerTask: real) {

var onePerIteration: real;
}
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● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real;  // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n with (var onePerTask = 3.14) {

var onePerIteration: real;
}
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Task-Private Variables
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● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real;  // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n with (ref myLocArr = A[localInds]) {

var onePerIteration: real;
}
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Joining Sub-Tasks: Sync-Statements
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● Syntax

● Definition
● Executes stmt
● Waits for all dynamically-scoped begins to complete

● Examples

sync-statement:
sync stmt

sync {
for i in 1..numConsumers {

begin consumer(i);
}
producer();

}

proc search(N: TreeNode) {
if (N != nil) {

begin search(N.left);
begin search(N.right);

}
}
sync { search(root); }
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Questions about Task Parallelism in Chapel?
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