
C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism

Copyright 2017 Cray Inc.
2

Task Parallelism
Base Language

Target Machine

Locality Control

Domain Maps
Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Defining our Terms

Copyright 2018 Cray Inc.
3

Task: a unit of computation that can/should execute in
parallel with other tasks

Thread: a system resource that executes tasks
● not exposed in the language
● occasionally exposed in the implementation

Task Parallelism: a style of parallel programming in which
parallelism is driven by programmer-specified tasks

(in contrast with):
Data Parallelism: a style of parallel programming in which

parallelism is driven by computations over collections of
data elements or their indices

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Begin Statements

Copyright 2018 Cray Inc.
4

Possible outputs:

// create a fire-and-forget task for a statement
begin writeln("hello world");
writeln("goodbye");

hello world
goodbye

goodbye
hello world

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Cobegin Statements

Copyright 2018 Cray Inc.
5

// create a task per child statement
cobegin {

producer(1);
producer(2);
consumer(1);

} // implicit join of the three tasks here

C O M P U T E | S T O R E | A N A L Y Z E

Cobegins/Serial by Example: QuickSort

proc quickSort(arr: [?D],
depth = 0,
thresh = log2(here.maxTaskPar),
low: int = D.low,
high: int = D.high) {

if high – low < 8 {
bubbleSort(arr, low, high);

} else {
const pivotVal = findPivot(arr, low, high);
const pivotLoc = partition(arr, low, high, pivotVal);
serial (depth >= thresh) do cobegin {

quickSort(arr, depth+1, thresh, low, pivotLoc-1);
quickSort(arr, depth+1, thresh, pivotLoc+1, high);

}
}

}

6
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Cobegins/Serial by Example: QuickSort

proc quickSort(arr: [?D],
low: int = D.low,
high: int = D.high) {

if high – low < 8 {
bubbleSort(arr, low, high);

} else {
const pivotVal = findPivot(arr, low, high);
const pivotLoc = partition(arr, low, high, pivotVal);
serial (here.runningTasks > here.maxTaskPar) do

cobegin {
quickSort(arr, low, pivotLoc-1);
quickSort(arr, pivotLoc+1, high);

}
}

}

7
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Coforall Loops

Copyright 2018 Cray Inc.
8

Sample output:

// create a task per iteration
coforall t in 0..#numTasks {

writeln("Hello from task ", t, " of ", numTasks);
} // implicit join of the numTasks tasks here

writeln("All tasks done");

Hello from task 2 of 4
Hello from task 0 of 4
Hello from task 3 of 4
Hello from task 1 of 4
All tasks done

C O M P U T E | S T O R E | A N A L Y Z E

begin:
● Use to create a dynamic task with an unstructured lifetime
● “fire and forget” (or at least “leave running for awhile”)

cobegin:
● Use to create a related set of heterogeneous tasks

…or a small, fixed set of homogenous tasks
● The parent task depends on the completion of the tasks

coforall:
● Use to create a fixed or dynamic # of homogenous tasks
● The parent task depends on the completion of the tasks

Note: All these concepts can be composed arbitrarily

Comparison of Begin, Cobegin, and Coforall

9
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism: Data-Driven Synchronization

Copyright 2018 Cray Inc.
10

● sync variables: store full-empty state along with value
● by default, reads/writes block until full/empty, leave in opposite state

● atomic variables: support atomic operations
● e.g., compare-and-swap; atomic sum, multiply, etc.
● similar to C/C++

C O M P U T E | S T O R E | A N A L Y Z E

Bounded Buffer Producer/Consumer Example

Copyright 2018 Cray Inc.
11

begin producer();
consumer();

// ‘sync’ types store full/empty state along with value
var buff$: [0..#buffersize] sync real;

proc producer() {
var i = 0;
for … {
i = (i+1) % buffersize;
buff$[i] = …; // wait for empty, write, leave full

} }

proc consumer() {
var i = 0;
while … {
i = (i+1) % buffersize;
…buff$[i]…; // wait for full, read, leave empty

} }

C O M P U T E | S T O R E | A N A L Y Z E

● Syntax

● Semantics
● Stores full/empty state along with normal value
● Initially full if initialized, empty otherwise
● Default read blocks until full, leaves empty
● Default write blocks until empty, leaves full

● Examples: Critical sections and futures

Synchronization Variables

sync-type:
sync type

var lock$: sync bool;

lock$ = true;
critical();
var lockval = lock$;

var future$: sync real;

begin future$ = compute();
res = computeSomethingElse();
useComputedResults(future$, res);

12
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

● readFE():t block until full, leave empty, return value
● readFF():t block until full, leave full, return value
● readXX():t return value (non-blocking)
● writeEF(v:t) block until empty, set value to v, leave full
● writeFF(v:t) wait until full, set value to v, leave full
● writeXF(v:t) set value to v, leave full (non-blocking)
● reset() reset value, leave empty (non-blocking)
● isFull: bool return true if full else false (non-blocking)

● Defaults: read: readFE, write: writeEF

Synchronization Variable Methods

13
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

● Syntax

● Semantics
● Similar to sync variable, but stays full once written

● Example: Multiple Consumers of a future

Single Variables

single-type:
single type

var future$: single real;

begin future$ = compute();
begin computeSomethingElse(future$);
begin computeSomethingElse(future$);

14
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

● readFE():t block until full, leave empty, return value
● readFF():t block until full, leave full, return value
● readXX():t return value (non-blocking)
● writeEF(v:t) block until empty, set value to v, leave full
● writeFF(v:t) wait until full, set value to v, leave full
● writeXF(v:t) set value to v, leave full (non-blocking)
● reset() reset value, leave empty (non-blocking)
● isFull: bool return true if full else false (non-blocking)

● Defaults: read: readFF, write: writeEF

Single Type Methods

15
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

● Syntax

● Semantics
● Supports operations on variable atomically w.r.t. other tasks
● Based on C/C++ atomic operations

● Example: Trivial barrier

Atomic Variables

atomic-type:
atomic type

var count: atomic int, done: atomic bool;

proc barrier(numTasks) {
const myCount = count.fetchAdd(1);
if (myCount < numTasks - 1) then

done.waitFor(true);
else

done.testAndSet();
}

16
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

● read():t return current value
● write(v:t) store v as current value
● exchange(v:t):t store v, returning previous value
● compareExchange(old:t,new:t):bool

store new iff previous value was old;
returns true on success

● waitFor(v:t) wait until the stored value is v
● add(v:t) add v to the value atomically
● fetchAdd(v:t) same, returning pre-sum value

(sub, or, and, xor also supported similarly)

● testAndSet() like exchange(true) for atomic bool
● clear() like write(false) for atomic bool

Atomic Methods

17
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

sync/single:
● Best for producer/consumer style synchronization

● “this task should block until something happens”
● use single for write-once values

atomic:
● Best for uncoordinated accesses to shared state

● “these tasks are unlikely to interfere with each other, at
least for very long…”

Comparison of Synchronization Types

18
Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Task Intents

Copyright 2018 Cray Inc.
19

● Tells how to “pass” variables from outer scopes to tasks
● Similar to argument intents in syntax and philosophy

● also adds a “reduce intent”, similar to OpenMP
● Design principles:

● ”principle of least surprise”
● avoid simple race conditions
● avoid copies of (potentially) expensive data structures
● support coordination via sync/atomic variables

● Congruent to forall intents, but for task-parallel constructs

C O M P U T E | S T O R E | A N A L Y Z E

Task Intent Examples

Copyright 2018 Cray Inc.
20

var sum: real;
coforall i in 1..n do // default task intent of scalars is ‘const in’

sum += computeMyResult(i); // so this is illegal: (and avoids a race)

var sum: real;
coforall i in 1..n with (ref sum) do // override default task intent

sum += computeMyResult(i); // we’ve now requested a race

var sum: real;
coforall i in 1..n with (+ reduce sum) do // override default intent

sum += computeMyResult(i); // per-task sums will be reduced on task exit

var sum: atomic real;
coforall i in 1..n do // default task intent of atomics is ‘ref’

sum.add(computeMyResult(i)); // so this is legal, meaningful, and safe

C O M P U T E | S T O R E | A N A L Y Z E

Task-Private Variables

Copyright 2018 Cray Inc.
21

● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real; // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n {

var onePerIteration: real;
}

C O M P U T E | S T O R E | A N A L Y Z E

Task-Private Variables

Copyright 2018 Cray Inc.
22

● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real; // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n with (var onePerTask: real) {

var onePerIteration: real;
}

C O M P U T E | S T O R E | A N A L Y Z E

Task-Private Variables

Copyright 2018 Cray Inc.
23

● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real; // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n with (var onePerTask = 3.14) {

var onePerIteration: real;
}

C O M P U T E | S T O R E | A N A L Y Z E

Task-Private Variables

Copyright 2018 Cray Inc.
24

● Task-parallel features support task-private variables easily
coforall i in 1..numTasks {

var mySum: real; // each task gets its own copy of mySum
for j in 1..n do

mySum += A[i][j];
}

● Forall loops need special support for task-private variables
var oneSingleVariable: real;
forall i in 1..n with (ref myLocArr = A[localInds]) {

var onePerIteration: real;
}

C O M P U T E | S T O R E | A N A L Y Z E

Joining Sub-Tasks: Sync-Statements

25

● Syntax

● Definition
● Executes stmt
● Waits for all dynamically-scoped begins to complete

● Examples

sync-statement:
sync stmt

sync {
for i in 1..numConsumers {

begin consumer(i);
}
producer();

}

proc search(N: TreeNode) {
if (N != nil) {

begin search(N.left);
begin search(N.right);

}
}
sync { search(root); }

Copyright 2018 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Questions about Task Parallelism in Chapel?

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

28

