

 Primitive Task-Parallel Constructs

 The begin statement

 The sync types

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

2Chapel: Task Parallelism

 Syntax

 Semantics

 Creates a concurrent task to execute stmt

 Control continues immediately (no join)

 Example

 Possible output

Chapel: Task Parallelism 3

begin-stmt:

begin stmt

begin writeln(“hello world”);

writeln(“good bye”);

hello world

good bye

good bye

hello world

 Combine begin and on

 Possible output

Chapel: Task Parallelism 4

begin on Locale(1) do

writeln(“Hi from “, here.id);

writeln(“Bye from “,here.id);

Hi from 1

Bye from 0

Bye from 0

Hi from 1

 Syntax

 Semantics

 Variable has a value and state (full or empty)

 Default read blocks until written (until full)

 Default write blocks until read (until empty)

 Examples: Critical sections

Chapel: Task Parallelism 5

sync-type:

sync type

var lock$: sync bool; // state is empty

lock$ = true; // state is full

critical();

lock$; // state is empty

 readFE():t wait until full, leave empty, return value

 readFF():t wait until full, leave full, return value

 readXX():t non-blocking, return value

 writeEF(v:t) wait until empty, leave full, set value to v

 writeFF(v:t) wait until full, leave full, set value to v

 writeXF(v:t) non-blocking, leave full, set value to v

 reset() non-blocking, leave empty, reset value

 isFull: bool non-blocking, return true if full else false

 Defaults – read: readFE, write: writeEF

Chapel: Task Parallelism 6

 examples/primers/taskParallel.chpl

 examples/programs/prodCons.chpl

Chapel: Task Parallelism 7

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 The cobegin statement

 The coforall loop

 The sync statement

 Atomic Transactions and Memory Consistency

 Implementation Notes and Examples

8Chapel: Task Parallelism

 Syntax

 Semantics

 Invokes a concurrent task for each listed stmt

 Control waits to continue – implicit join

 Example

Chapel: Task Parallelism 9

cobegin-stmt:

cobegin { stmt-list }

cobegin {

consumer(1);

consumer(2);

producer();

}

Any cobegin statement

can be rewritten in terms of begin statements

but the compiler may miss out on optimizations.

Chapel: Task Parallelism 10

cobegin {

stmt1();

stmt2();

stmt3();

}

var s1$, s2$, s3$: sync bool;

begin { stmt1(); s1$ = true; }

begin { stmt2(); s2$ = true; }

begin { stmt3(); s3$ = true; }

s1$; s2$; s3$;

 Syntax

 Semantics

 Loop over iteratable-expr invoking concurrent tasks

 Control waits to continue – implicit join

 Example

Chapel: Task Parallelism 11

coforall-loop:

coforall index-expr in iteratable-expr { stmt }

begin producer();

coforall i in 1..numConsumers {

consumer(i);

}

 Use begin when
 Creating tasks with unbounded lifetimes

 Load balancing requires dynamic task creation

 Cobegin and coforall are insufficient for task structuring

 Use cobegin when
 Invoking a fixed # of tasks (potentially heterogeneous)

 The tasks have bounded lifetimes

 Use coforall when
 Invoking a fixed or dynamic # of homogeneous task

 The tasks have bounded lifetimes

Chapel: Task Parallelism 12

 Use for when
 A loop must be executed serially

 One task is sufficient for performance

 Use forall when
 The loop can be executed in parallel

 The loop can be executed serially

 Degree of concurrency << # of iterations

 Use coforall when
 The loop must be executed in parallel

(And not just for performance reasons!)

 Each iteration has substantial work

Chapel: Data Parallelism 13

 Syntax

 Semantics

 Executes stmt

 Waits on all dynamically-encountered begins

 Example

Chapel: Task Parallelism 14

sync-statement:

sync stmt

sync {

for i in 1..numConsumers {

begin consumer(i);

}

producer();

}

Where the cobegin statement is static,

the sync statement is dynamic.

Program termination is defined by an implicit sync.

Chapel: Task Parallelism 15

cobegin {

functionWithBegin();

functionWithoutBegin();

}

sync {

begin functionWithBegin();

begin functionWithoutBegin();

}

sync main();

 examples/primers/taskParallel.chpl

Chapel: Task Parallelism 16

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

 The atomic statement

 Races and memory consistency

 Implementation Notes and Examples

17Chapel: Task Parallelism

 Syntax

 Semantics

 Executes stmt so it appears as a single operation

 No other task sees a partial result

 Example

Chapel: Task Parallelism 18

atomic-statement:

atomic stmt

atomic A(i) = A(i) + 1; atomic {

newNode.next = node;

newNode.prev = node.prev;

node.prev.next = newNode;

node.prev = newNode;

}

 Example

 Could the output be 10? Or 42?

Chapel: Task Parallelism 19

var x = 0, y = 0;

cobegin {

{

x = 1;

y = 1;

}

{

write(y);

write(x);

}

}

x = 1;

y = 1;

write(y); // 1

write(x); // 1

x = 1;

y = 1;

write(y); // 0

write(x); // 0

x = 1;

y = 1;

write(y); // 0

write(x); // 1

Task 1 Task 2

A program without races is sequentially consistent.

A multi-processing system has sequential consistency if “the results of

any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its
program.” – Leslie Lamport

The behavior of a program with races is undefined.

Synchronization is achieved in two ways:

 By reading or writing sync (or single) variables

 By executing atomic statements

Chapel: Task Parallelism 20

 Task teams

 Suspendable tasks

 Work stealing, load balancing

 Eurekas

 Task-private variables

Chapel: Task Parallelism 21

 Primitive Task-Parallel Constructs

 The begin statement

 The sync types

 Structured Task-Parallel Constructs

 The cobegin statement

 The coforall loop

 The sync statement

 Atomic Transactions and Memory Consistency

 The atomic statement

 Races and memory consistency

22Chapel: Task Parallelism

