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 Syntax

 Semantics

 Creates a concurrent task to execute stmt

 Control continues immediately (no join)

 Example

 Possible output
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begin-stmt:

begin stmt

begin writeln(“hello world”);

writeln(“good bye”);

hello world

good bye

good bye

hello world



 Combine begin and on

 Possible output
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begin on Locale(1) do

writeln(“Hi from “, here.id);

writeln(“Bye from “,here.id);

Hi from 1

Bye from 0

Bye from 0

Hi from 1



 Syntax

 Semantics

 Variable has a value and state (full or empty)

 Default read blocks until written (until full)

 Default write blocks until read (until empty)

 Examples: Critical sections
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sync-type:

sync type

var lock$: sync bool; // state is empty

lock$ = true; // state is full

critical();

lock$;        // state is empty



 readFE():t wait until full, leave empty, return value

 readFF():t wait until full, leave full, return value

 readXX():t non-blocking, return value

 writeEF(v:t) wait until empty, leave full, set value to v

 writeFF(v:t) wait until full, leave full, set value to v

 writeXF(v:t) non-blocking, leave full, set value to v

 reset() non-blocking, leave empty, reset value

 isFull: bool non-blocking, return true if full else false

 Defaults – read: readFE, write: writeEF
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 examples/primers/taskParallel.chpl

 examples/programs/prodCons.chpl
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 Syntax

 Semantics

 Invokes a concurrent task for each listed stmt

 Control waits to continue – implicit join

 Example
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cobegin-stmt:

cobegin { stmt-list }

cobegin {

consumer(1);

consumer(2);

producer();

}



Any cobegin statement

can be rewritten in terms of begin statements

but the compiler may miss out on optimizations.
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cobegin {

stmt1();

stmt2();

stmt3();

}

var s1$, s2$, s3$: sync bool;

begin { stmt1(); s1$ = true; }

begin { stmt2(); s2$ = true; }

begin { stmt3(); s3$ = true; }

s1$; s2$; s3$;



 Syntax

 Semantics

 Loop over iteratable-expr invoking concurrent tasks

 Control waits to continue – implicit join

 Example
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coforall-loop:

coforall index-expr in iteratable-expr { stmt }

begin producer();

coforall i in 1..numConsumers {

consumer(i);

}



 Use begin when
 Creating tasks with unbounded lifetimes

 Load balancing requires dynamic task creation

 Cobegin and coforall are insufficient for task structuring

 Use cobegin when
 Invoking a fixed # of tasks (potentially heterogeneous)

 The tasks have bounded lifetimes

 Use coforall when
 Invoking a fixed or dynamic # of homogeneous task

 The tasks have bounded lifetimes
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 Use for when
 A loop must be executed serially

 One task is sufficient for performance

 Use forall when
 The loop can be executed in parallel

 The loop can be executed serially

 Degree of concurrency << # of iterations

 Use coforall when
 The loop must be executed in parallel

(And not just for performance reasons!)

 Each iteration has substantial work
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 Syntax

 Semantics

 Executes stmt

 Waits on all dynamically-encountered begins

 Example
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sync-statement:

sync stmt

sync {

for i in 1..numConsumers {

begin consumer(i);

}

producer();

}



Where the cobegin statement is static,

the sync statement is dynamic.

Program termination is defined by an implicit sync.
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cobegin {

functionWithBegin();

functionWithoutBegin();

}

sync {

begin functionWithBegin();

begin functionWithoutBegin();

}

sync main();



 examples/primers/taskParallel.chpl
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 Syntax

 Semantics

 Executes stmt so it appears as a single operation

 No other task sees a partial result

 Example
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atomic-statement:

atomic stmt

atomic A(i) = A(i) + 1; atomic {

newNode.next = node;

newNode.prev = node.prev;

node.prev.next = newNode;

node.prev = newNode;

}



 Example

 Could the output be 10? Or 42?
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var x = 0, y = 0;

cobegin {

{

x = 1;

y = 1;

}

{

write(y);

write(x);

}

}

x = 1;

y = 1;

write(y); // 1

write(x); // 1

x = 1;

y = 1;

write(y); // 0

write(x); // 0

x = 1;

y = 1;

write(y); // 0

write(x); // 1

Task 1 Task 2



A program without races is sequentially consistent.

A multi-processing system has sequential consistency if “the results of 

any execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each 
individual processor appear in this sequence in the order specified by its 
program.” – Leslie Lamport

The behavior of a program with races is undefined.

Synchronization is achieved in two ways:

 By reading or writing sync (or single) variables

 By executing atomic statements
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 Task teams

 Suspendable tasks

 Work stealing, load balancing

 Eurekas

 Task-private variables
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