

 Definition

 Abstract unit of target architecture

 Capacity for processing and storage (memory)

 Supports reasoning about locality

 Properties

 Locale’s tasks have uniform access to local memory

 Other locale’s memory is accessible, but at a price

 Examples

 A multi-core processor

 An XMT

Chapel: Multi-Locale Execution 2

 Execution Context

 Specify # of locales when running executable

 Execution begins as a single task on a locale 0

Chapel: Multi-Locale Execution 3

% a.out --numLocales=8

config const numLocales: int;

const LocaleSpace: domain(1) = [0..numLocales-1];

const Locales: [LocaleSpace] locale;

LocaleSpace:

L0 L1 L2 L3 L4 L5 L6 L7Locales:

numLocales: 8

% a.out –nl 8



Returns index in LocaleSpace



Returns name of locale (like uname -a)



Returns number of cores available to locale



Returns physical memory available to user programs on locale

Example

Chapel: Multi-Locale Execution 4

def locale.id: int { ... }

def locale.name: string { ... }

def locale.numCores: int { ... }

def locale.physicalMemory(...) { ... }

const totalPhysicalMemory =

+ reduce Locales.physicalMemory();

 Syntax

 Semantics

 Executes stmt on the locale that stores expr

 Does not introduce concurrency

 Example

Chapel: Multi-Locale Execution 5

on-stmt:

on expr { stmt }

var A: [LocaleSpace] int;

coforall loc in Locales do

on loc do

A(loc.id) = compute(loc.id);

 Syntax

 Semantics

 Returns the locale on which expr is stored

 Example

Chapel: Multi-Locale Execution 6

locale-query-expr:

expr . locale

var i: int;

on Locales(1) {

var j: int;

writeln(i.locale.id, j.locale.id); // outputs 01

}

L0 L1i j

 Built-in locale

 Semantics

 Refers to the locale on which the task is executing

 Example

Chapel: Multi-Locale Execution 7

const here: locale;

writeln(here.id); // outputs 0

on Locales(1) do

writeln(here.id); // outputs 1

Chapel: Multi-Locale Execution 8

var x, y: real; // x and y allocated on locale 0

on Locales(1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = x + y; // remote reads of x and y

on Locales(0) do // migrate back to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

on x do // data-driven migration to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

} // migrate back to locale 0

L0 L1x
y

z

 examples/primers/multilocale.chpl

Chapel: Multi-Locale Execution 9

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 User-defined Domain Maps

10Chapel: Multi-Locale Execution

 Domain are first class index sets

 Specifies size and shape of arrays

 Supports iteration, array operations, etc.

 Arrays are defined using Domains

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

A: Chapel’s domain maps are designed to give the user
full control over such decisions

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Layouts

 Distributions

 Chapel Standard Layouts and Distributions

 User-defined Domain Maps

13Chapel: Multi-Locale Execution

Domain maps are a “recipe” that instructs the compiler
how to map the global view…

…to memory and/or locales

Chapel: Multi-Locale Execution 14

=

+

α •

L0 L1 L2

=

+

α •

=

+

α •

=

+

α •

A domain map defines:

 Ownership of domain indices and array elements

 Underlying representation

 Standard set of operations on domains and arrays
 E.g, slicing, reindexing, rank change

 How to farm out work
 E.g., forall loops over distributed domains/arrays

Domain maps are built using language-level constructs

Chapel: Multi-Locale Execution 15

Domain Maps fall into two categories:

layouts: target a single shared memory segment
 e.g., a desktop machine or multicore node

distributions: target multiple distinct memory segments
 e.g., a distributed memory cluster or supercomputer

 Most of our work to date has focused on distributions

Layouts are single-locale domain maps
 Uses task parallel constructs to implement data parallelism

 May take advantage of locale resources, e.g., multiple cores

Examples
 Sparse CSR

 GPU

Chapel: Multi-Locale Execution 17

Distributions are multi-locale domain maps
 Uses task parallel constructs to implement data parallelism

 Uses on to control data and task locality

 May use layouts for per-locale implementation

Examples
 Block

 Cyclic

 Block-Cyclic

 Block CSR

 Recursive bisection

Chapel: Multi-Locale Execution 18

 Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

 Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

 Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

 Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

 Syntax

 Semantics
 Domain map classes are defined in Chapel

 Examples

Chapel: Multi-Locale Execution 20

dmap-type:

dmap(dmap-class(...))

dmap-value:

new dmap(new dmap-class(...))

use myDMapMod;

var DMap: dmap(myDMap(...)) = new dmap(new myDMap(...));

var Dom: domain(...) dmapped DMap;

var A: [Dom] real;

All domain types can be dmapped.

Semantics are independent of domain map.

(Though performance and parallelism will vary...)

Chapel: Multi-Locale Execution 21

Dense Strided Sparse

George

John

Thomas

James

Andrew

Martin

William
AssociativeOpaque

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 Block

 Cyclic

 User-defined Domain Maps

22Chapel: Multi-Locale Execution

Chapel provides a number of standard layouts and
distributions

 All are written in Chapel

Examples

 Block distribution

 Cyclic distribution

Chapel: Multi-Locale Execution 23

The Block Distribution maps the indices of a domain in
a dense fashion across the target Locales according to
the boundingBox argument

Chapel: Multi-Locale Execution 24

const Dist = new dmap(new Block(boundingBox=[1..4, 1..8]));

var Dom: domain(2) dmapped Dist = [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7
distributed over

Chapel: Multi-Locale Execution 25

def Block(boundingBox: domain,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank = boundingBox.rank,

type idxType = boundingBox.dim(1).eltType)

The Cyclic Distribution maps the indices of a domain in
a round-robin fashion across the target Locales
according to the startIdx argument

Chapel: Multi-Locale Execution 26

const Dist = new dmap(new Cyclic(startIdx=(1,1)));

var Dom: domain(2) dmapped Dist = [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7
distributed over

Chapel: Multi-Locale Execution 27

def Cyclic(startIdx,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank: int = infered from startIdx,

type idxType = infered from startIdx)

 examples/primers/distributions.chpl

Chapel: Multi-Locale Execution 28

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 User-defined Domain Maps

29Chapel: Multi-Locale Execution

(Advanced) programmers can write domain maps

 The compiler uses a structural interface to build
domain maps:
 Create domains and arrays

 Map indices to locales

 Access array elements

 Iterate over indices/elements sequentially, in parallel, zippered

 ...

Standard Domain Maps are user-defined domain maps
Design goal: User-defined domain maps should perform as

well as the Chapel Standard Domain Maps

Chapel: Multi-Locale Execution 30

 Heterogeneous locales

 Hierarchical locales

 GPU support via locales

 More standard distributions and layouts

 Specify interface for user-defined domain maps

Chapel: Multi-Locale Execution 31

 Multi-Locale Basics
 Locales

 On, here, local, and communication

 Data Parallelism Revisited

 Domain maps
 Layouts

 Distributions

 The Chapel Standard Distributions
 Block Distribution

 Cyclic Distribution

 User-defined Domain Maps

32Chapel: Multi-Locale Execution

