

 Definition

 Abstract unit of target architecture

 Capacity for processing and storage (memory)

 Supports reasoning about locality

 Properties

 Locale’s tasks have uniform access to local memory

 Other locale’s memory is accessible, but at a price

 Examples

 A multi-core processor

 An XMT

Chapel: Multi-Locale Execution 2

 Execution Context

 Specify # of locales when running executable

 Execution begins as a single task on a locale 0

Chapel: Multi-Locale Execution 3

% a.out --numLocales=8

config const numLocales: int;

const LocaleSpace: domain(1) = [0..numLocales-1];

const Locales: [LocaleSpace] locale;

LocaleSpace:

L0 L1 L2 L3 L4 L5 L6 L7Locales:

numLocales: 8

% a.out –nl 8

Returns index in LocaleSpace

Returns name of locale (like uname -a)

Returns number of cores available to locale

Returns physical memory available to user programs on locale

Example

Chapel: Multi-Locale Execution 4

def locale.id: int { ... }

def locale.name: string { ... }

def locale.numCores: int { ... }

def locale.physicalMemory(...) { ... }

const totalPhysicalMemory =

+ reduce Locales.physicalMemory();

 Syntax

 Semantics

 Executes stmt on the locale that stores expr

 Does not introduce concurrency

 Example

Chapel: Multi-Locale Execution 5

on-stmt:

on expr { stmt }

var A: [LocaleSpace] int;

coforall loc in Locales do

on loc do

A(loc.id) = compute(loc.id);

 Syntax

 Semantics

 Returns the locale on which expr is stored

 Example

Chapel: Multi-Locale Execution 6

locale-query-expr:

expr . locale

var i: int;

on Locales(1) {

var j: int;

writeln(i.locale.id, j.locale.id); // outputs 01

}

L0 L1i j

 Built-in locale

 Semantics

 Refers to the locale on which the task is executing

 Example

Chapel: Multi-Locale Execution 7

const here: locale;

writeln(here.id); // outputs 0

on Locales(1) do

writeln(here.id); // outputs 1

Chapel: Multi-Locale Execution 8

var x, y: real; // x and y allocated on locale 0

on Locales(1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = x + y; // remote reads of x and y

on Locales(0) do // migrate back to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

on x do // data-driven migration to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

} // migrate back to locale 0

L0 L1x
y

z

 examples/primers/multilocale.chpl

Chapel: Multi-Locale Execution 9

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 User-defined Domain Maps

10Chapel: Multi-Locale Execution

 Domain are first class index sets

 Specifies size and shape of arrays

 Supports iteration, array operations, etc.

 Arrays are defined using Domains

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

A: Chapel’s domain maps are designed to give the user
full control over such decisions

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Layouts

 Distributions

 Chapel Standard Layouts and Distributions

 User-defined Domain Maps

13Chapel: Multi-Locale Execution

Domain maps are a “recipe” that instructs the compiler
how to map the global view…

…to memory and/or locales

Chapel: Multi-Locale Execution 14

=

+

α •

L0 L1 L2

=

+

α •

=

+

α •

=

+

α •

A domain map defines:

 Ownership of domain indices and array elements

 Underlying representation

 Standard set of operations on domains and arrays
 E.g, slicing, reindexing, rank change

 How to farm out work
 E.g., forall loops over distributed domains/arrays

Domain maps are built using language-level constructs

Chapel: Multi-Locale Execution 15

Domain Maps fall into two categories:

layouts: target a single shared memory segment
 e.g., a desktop machine or multicore node

distributions: target multiple distinct memory segments
 e.g., a distributed memory cluster or supercomputer

 Most of our work to date has focused on distributions

Layouts are single-locale domain maps
 Uses task parallel constructs to implement data parallelism

 May take advantage of locale resources, e.g., multiple cores

Examples
 Sparse CSR

 GPU

Chapel: Multi-Locale Execution 17

Distributions are multi-locale domain maps
 Uses task parallel constructs to implement data parallelism

 Uses on to control data and task locality

 May use layouts for per-locale implementation

Examples
 Block

 Cyclic

 Block-Cyclic

 Block CSR

 Recursive bisection

Chapel: Multi-Locale Execution 18

 Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

 Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

 Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

 Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

 Syntax

 Semantics
 Domain map classes are defined in Chapel

 Examples

Chapel: Multi-Locale Execution 20

dmap-type:

dmap(dmap-class(...))

dmap-value:

new dmap(new dmap-class(...))

use myDMapMod;

var DMap: dmap(myDMap(...)) = new dmap(new myDMap(...));

var Dom: domain(...) dmapped DMap;

var A: [Dom] real;

All domain types can be dmapped.

Semantics are independent of domain map.

(Though performance and parallelism will vary...)

Chapel: Multi-Locale Execution 21

Dense Strided Sparse

George

John

Thomas

James

Andrew

Martin

William
AssociativeOpaque

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 Block

 Cyclic

 User-defined Domain Maps

22Chapel: Multi-Locale Execution

Chapel provides a number of standard layouts and
distributions

 All are written in Chapel

Examples

 Block distribution

 Cyclic distribution

Chapel: Multi-Locale Execution 23

The Block Distribution maps the indices of a domain in
a dense fashion across the target Locales according to
the boundingBox argument

Chapel: Multi-Locale Execution 24

const Dist = new dmap(new Block(boundingBox=[1..4, 1..8]));

var Dom: domain(2) dmapped Dist = [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7
distributed over

Chapel: Multi-Locale Execution 25

def Block(boundingBox: domain,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank = boundingBox.rank,

type idxType = boundingBox.dim(1).eltType)

The Cyclic Distribution maps the indices of a domain in
a round-robin fashion across the target Locales
according to the startIdx argument

Chapel: Multi-Locale Execution 26

const Dist = new dmap(new Cyclic(startIdx=(1,1)));

var Dom: domain(2) dmapped Dist = [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7
distributed over

Chapel: Multi-Locale Execution 27

def Cyclic(startIdx,

targetLocales: [] locale = Locales,

dataParTasksPerLocale = ...,

dataParIgnoreRunningTasks = ...,

dataParMinGranularity = ...,

param rank: int = infered from startIdx,

type idxType = infered from startIdx)

 examples/primers/distributions.chpl

Chapel: Multi-Locale Execution 28

 Multi-Locale Basics

 Data Parallelism Revisited

 Domain Maps

 Chapel Standard Layouts and Distributions

 User-defined Domain Maps

29Chapel: Multi-Locale Execution

(Advanced) programmers can write domain maps

 The compiler uses a structural interface to build
domain maps:
 Create domains and arrays

 Map indices to locales

 Access array elements

 Iterate over indices/elements sequentially, in parallel, zippered

 ...

Standard Domain Maps are user-defined domain maps
Design goal: User-defined domain maps should perform as

well as the Chapel Standard Domain Maps

Chapel: Multi-Locale Execution 30

 Heterogeneous locales

 Hierarchical locales

 GPU support via locales

 More standard distributions and layouts

 Specify interface for user-defined domain maps

Chapel: Multi-Locale Execution 31

 Multi-Locale Basics
 Locales

 On, here, local, and communication

 Data Parallelism Revisited

 Domain maps
 Layouts

 Distributions

 The Chapel Standard Distributions
 Block Distribution

 Cyclic Distribution

 User-defined Domain Maps

32Chapel: Multi-Locale Execution

