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 Syntax

 Semantics

 Creates a concurrent task to execute stmt

 Control continues immediately (no join)

 Example

 Possible output
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begin-stmt:

begin stmt

begin writeln(“hello world”);

writeln(“good bye”);

hello world

good bye

good bye

hello world



 Syntax

 Semantics

 Default read blocks until written (until “full”)

 Default write blocks until read (until “empty”)

 Examples: Critical sections and futures
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sync-type:

sync type

var lock$: sync bool;

lock$ = true;

critical();

lock$;

var future$: sync real;

begin future$ = compute();

computeSomethingElse();

useComputeResults(future$);



 Syntax

 Semantics

 Default read blocks until written (until “full”)

 Write once

 Example: Multiple consumers
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single-type:

single type

var future$: single real;

begin { computeTaskA(); useResult1(future$); }

begin { computeTaskB(); useResult2(future$); }

future$ = computeResult();



 readFE():t wait until full, leave empty, return value

 readFF():t wait until full, leave full, return value

 readXX():t non-blocking, return value

 writeEF(v:t) wait until empty, leave full, set value to v

 writeFF(v:t) wait until full, leave full, set value to v

 writeXF(v:t) non-blocking, leave full, set value to v

 reset() non-blocking, leave empty, reset value

 isFull: bool non-blocking, return true if full else false

 Defaults – read: readFE, write: writeEF
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 readFE():t wait until full, leave empty, return value

 readFF():t wait until full, leave full, return value

 readXX():t non-blocking, return value

 writeEF(v:t) wait until empty, leave full, set value to v

 writeFF(v:t) wait until full, leave full, set value to v

 writeXF(v:t) non-blocking, leave full, set value to v

 reset() non-blocking, leave empty, reset value

 isFull: bool non-blocking, return true if full else false

 Defaults – read: readFF, write: writeEF
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 Syntax

 Semantics

 Invokes a concurrent task for each listed stmt

 Control waits to continue – implicit join

 Example
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cobegin-stmt:

cobegin { stmt-list }

cobegin {

consumer(1);

consumer(2);

producer();

}



Any cobegin statement

can be rewritten in terms of begin statements

but the compiler may miss out on optimizations.
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cobegin {

stmt1();

stmt2();

stmt3();

}

var s1$, s2$, s3$: sync bool;

begin { stmt1(); s1$ = true; }

begin { stmt2(); s2$ = true; }

begin { stmt3(); s3$ = true; }

s1$; s2$; s3$;



 Syntax

 Semantics

 Loop over iteratable-expr invoking concurrent tasks

 Control waits to continue – implicit join

 Example
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coforall-loop:

coforall index-expr in iteratable-expr { stmt }

begin producer();

coforall i in 1..numConsumers {

consumer(i);

}
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coforall i in 1..n do stmt();

var count$: sync int = 0, flag$: sync bool = true;

for i in 1..n {

const count = count$;

if count == 0 then flag$;

count$ = count + 1;

begin {

stmt();

const count = count$;

if count == 1 then flag$ = true;

count$ = count - 1;

}

}

flag$;



 Use begin when
 Creating tasks with unbounded lifetimes

 Load balancing requires dynamic task creation

 Cobegin and coforall are insufficient for task structuring

 Use cobegin when
 Invoking a fixed # of tasks (potentially heterogeneous)

 The tasks have bounded lifetimes

 Use coforall when
 Invoking a fixed or dynamic # of homogeneous task

 The tasks have bounded lifetimes
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 Syntax

 Semantics

 Executes stmt

 Waits on all dynamically-encountered begins

 Example
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sync-statement:

sync stmt

sync {

for i in 1..numConsumers {

begin consumer(i);

}

producer();

}



Where the cobegin statement is static,

the sync statement is dynamic.

Program termination is defined by an implicit sync.
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cobegin {

functionWithBegin();

functionWithoutBegin();

}

sync {

begin functionWithBegin();

begin functionWithoutBegin();

}

sync main();



 Syntax

 Semantics

 Evaluates expr and then executes stmt

 Squelches dynamically-encountered concurrency

 Example
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serial-statement:

serial expr { stmt }

def search(i: int) {

// search node i

serial i > 8 do cobegin {

search(i*2);

search(i*2+1);

}

}
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 Syntax

 Semantics

 Executes stmt so it appears as a single operation

 No other task sees a partial result

 Example
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atomic-statement:

atomic stmt

atomic A(i) = A(i) + 1; atomic {

newNode.next = node;

newNode.prev = node.prev;

node.prev.next = newNode;

node.prev = newNode;

}



 Example

 Could the output be 10? Or 42?
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var x = 0, y = 0;

cobegin {

{

x = 1;

y = 1;

}

{

write(y);

write(x);

}

}

x = 1;

y = 1;

write(y); // 1

write(x); // 1

x = 1;

y = 1;

write(y); // 0

write(x); // 0

x = 1;

y = 1;

write(y); // 0

write(x); // 1

Task 1 Task 2



A program without races is sequentially consistent.

A multi-processing system has sequential consistency if “the results of 

any execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each 
individual processor appear in this sequence in the order specified by its 
program.” – Leslie Lamport

The behavior of a program with races is undefined.

Synchronization is achieved in two ways:

 By reading or writing sync (or single) variables

 By executing atomic statements
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 Concurrency limiter: maxThreadsPerLocale
 Use --maxThreadsPerLocale=<i> for at most i threads

 Use --maxThreadsPerLocale=0 for a system limit (default)

 Current task-to-thread scheduling policy
 Once a thread gets a task, it runs to completion

 Cobegin/coforall parent threads execute subtasks

 If an execution runs out of threads, it may deadlock
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def quickSort(arr: [],

thresh: int,

low: int = arr.domain.low,

high: int = arr.domain.high) {

if high – low < 8 {

bubbleSort(arr, low, high);

} else {

const pivotVal = findPivot(arr, low, high);

const pivotLoc = partition(arr, low, high, pivotVal);

serial thresh <= 0 do cobegin {

quickSort(arr, thresh-1, low, pivotLoc-1);

quickSort(arr, thresh-1, pivotLoc+1, high);

}

}

}
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 Task teams

 Suspendable tasks

 Work stealing, load balancing

 Eurekas

 Task-private variables
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