
Sung-Eun Choi and Steve Deitz

Cray Inc.

 Primitive Task-Parallel Constructs

 The begin statement

 The sync types

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

 Implementation Notes and Examples

2Chapel: Task Parallelism

 Syntax

 Semantics

 Creates a concurrent task to execute stmt

 Control continues immediately (no join)

 Example

 Possible output

Chapel: Task Parallelism 3

begin-stmt:

begin stmt

begin writeln(“hello world”);

writeln(“good bye”);

hello world

good bye

good bye

hello world

 Syntax

 Semantics

 Default read blocks until written (until “full”)

 Default write blocks until read (until “empty”)

 Examples: Critical sections and futures

Chapel: Task Parallelism 4

sync-type:

sync type

var lock$: sync bool;

lock$ = true;

critical();

lock$;

var future$: sync real;

begin future$ = compute();

computeSomethingElse();

useComputeResults(future$);

 Syntax

 Semantics

 Default read blocks until written (until “full”)

 Write once

 Example: Multiple consumers

Chapel: Task Parallelism 5

single-type:

single type

var future$: single real;

begin { computeTaskA(); useResult1(future$); }

begin { computeTaskB(); useResult2(future$); }

future$ = computeResult();

 readFE():t wait until full, leave empty, return value

 readFF():t wait until full, leave full, return value

 readXX():t non-blocking, return value

 writeEF(v:t) wait until empty, leave full, set value to v

 writeFF(v:t) wait until full, leave full, set value to v

 writeXF(v:t) non-blocking, leave full, set value to v

 reset() non-blocking, leave empty, reset value

 isFull: bool non-blocking, return true if full else false

 Defaults – read: readFE, write: writeEF

Chapel: Task Parallelism 6

 readFE():t wait until full, leave empty, return value

 readFF():t wait until full, leave full, return value

 readXX():t non-blocking, return value

 writeEF(v:t) wait until empty, leave full, set value to v

 writeFF(v:t) wait until full, leave full, set value to v

 writeXF(v:t) non-blocking, leave full, set value to v

 reset() non-blocking, leave empty, reset value

 isFull: bool non-blocking, return true if full else false

 Defaults – read: readFF, write: writeEF

Chapel: Task Parallelism 7

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 The cobegin statement

 The coforall loop

 The sync statement

 The serial statement

 Atomic Transactions and Memory Consistency

 Implementation Notes and Examples

8Chapel: Task Parallelism

 Syntax

 Semantics

 Invokes a concurrent task for each listed stmt

 Control waits to continue – implicit join

 Example

Chapel: Task Parallelism 9

cobegin-stmt:

cobegin { stmt-list }

cobegin {

consumer(1);

consumer(2);

producer();

}

Any cobegin statement

can be rewritten in terms of begin statements

but the compiler may miss out on optimizations.

Chapel: Task Parallelism 10

cobegin {

stmt1();

stmt2();

stmt3();

}

var s1$, s2$, s3$: sync bool;

begin { stmt1(); s1$ = true; }

begin { stmt2(); s2$ = true; }

begin { stmt3(); s3$ = true; }

s1$; s2$; s3$;

 Syntax

 Semantics

 Loop over iteratable-expr invoking concurrent tasks

 Control waits to continue – implicit join

 Example

Chapel: Task Parallelism 11

coforall-loop:

coforall index-expr in iteratable-expr { stmt }

begin producer();

coforall i in 1..numConsumers {

consumer(i);

}

Chapel: Task Parallelism 12

coforall i in 1..n do stmt();

var count$: sync int = 0, flag$: sync bool = true;

for i in 1..n {

const count = count$;

if count == 0 then flag$;

count$ = count + 1;

begin {

stmt();

const count = count$;

if count == 1 then flag$ = true;

count$ = count - 1;

}

}

flag$;

 Use begin when
 Creating tasks with unbounded lifetimes

 Load balancing requires dynamic task creation

 Cobegin and coforall are insufficient for task structuring

 Use cobegin when
 Invoking a fixed # of tasks (potentially heterogeneous)

 The tasks have bounded lifetimes

 Use coforall when
 Invoking a fixed or dynamic # of homogeneous task

 The tasks have bounded lifetimes

Chapel: Task Parallelism 13

 Syntax

 Semantics

 Executes stmt

 Waits on all dynamically-encountered begins

 Example

Chapel: Task Parallelism 14

sync-statement:

sync stmt

sync {

for i in 1..numConsumers {

begin consumer(i);

}

producer();

}

Where the cobegin statement is static,

the sync statement is dynamic.

Program termination is defined by an implicit sync.

Chapel: Task Parallelism 15

cobegin {

functionWithBegin();

functionWithoutBegin();

}

sync {

begin functionWithBegin();

begin functionWithoutBegin();

}

sync main();

 Syntax

 Semantics

 Evaluates expr and then executes stmt

 Squelches dynamically-encountered concurrency

 Example

Chapel: Task Parallelism 16

serial-statement:

serial expr { stmt }

def search(i: int) {

// search node i

serial i > 8 do cobegin {

search(i*2);

search(i*2+1);

}

}

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

 The atomic statement

 Races and memory consistency

 Implementation Notes and Examples

17Chapel: Task Parallelism

 Syntax

 Semantics

 Executes stmt so it appears as a single operation

 No other task sees a partial result

 Example

Chapel: Task Parallelism 18

atomic-statement:

atomic stmt

atomic A(i) = A(i) + 1; atomic {

newNode.next = node;

newNode.prev = node.prev;

node.prev.next = newNode;

node.prev = newNode;

}

 Example

 Could the output be 10? Or 42?

Chapel: Task Parallelism 19

var x = 0, y = 0;

cobegin {

{

x = 1;

y = 1;

}

{

write(y);

write(x);

}

}

x = 1;

y = 1;

write(y); // 1

write(x); // 1

x = 1;

y = 1;

write(y); // 0

write(x); // 0

x = 1;

y = 1;

write(y); // 0

write(x); // 1

Task 1 Task 2

A program without races is sequentially consistent.

A multi-processing system has sequential consistency if “the results of

any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor appear in this sequence in the order specified by its
program.” – Leslie Lamport

The behavior of a program with races is undefined.

Synchronization is achieved in two ways:

 By reading or writing sync (or single) variables

 By executing atomic statements

Chapel: Task Parallelism 20

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 Atomic Transactions and Memory Consistency

 Implementation Notes and Examples

 Using Chapel version 1.1

 Quicksort example

21Chapel: Task Parallelism

 Concurrency limiter: maxThreadsPerLocale
 Use --maxThreadsPerLocale=<i> for at most i threads

 Use --maxThreadsPerLocale=0 for a system limit (default)

 Current task-to-thread scheduling policy
 Once a thread gets a task, it runs to completion

 Cobegin/coforall parent threads execute subtasks

 If an execution runs out of threads, it may deadlock

Chapel: Task Parallelism 22

Chapel: Task Parallelism 23

def quickSort(arr: [],

thresh: int,

low: int = arr.domain.low,

high: int = arr.domain.high) {

if high – low < 8 {

bubbleSort(arr, low, high);

} else {

const pivotVal = findPivot(arr, low, high);

const pivotLoc = partition(arr, low, high, pivotVal);

serial thresh <= 0 do cobegin {

quickSort(arr, thresh-1, low, pivotLoc-1);

quickSort(arr, thresh-1, pivotLoc+1, high);

}

}

}

Chapel: Task Parallelism 24

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)

Value of “thresh”

Performance of QuickSort in Chapel
(Array Size: 2**21, Machine: 2 dual-core Opterons)

maxThreads=0

maxThreads=4

 Task teams

 Suspendable tasks

 Work stealing, load balancing

 Eurekas

 Task-private variables

Chapel: Task Parallelism 25

 Primitive Task-Parallel Constructs

 The begin statement

 The sync types

 Structured Task-Parallel Constructs

 The cobegin statement

 The coforall loop

 The sync statement

 The serial statement

 Atomic Transactions and Memory Consistency

 The atomic statement

 Races and memory consistency

 Implementation Notes and Examples

 Using Chapel version 1.1

 Quicksort example

26Chapel: Task Parallelism

