Chapel Hands-On

Brad Chamberlain
Cray Inc.
Discovery 2015: September 16", 2011

EEEEEEEEEEEEEEEEEEEEEEE



CRANY
What is Cha pe |? e ST TR

* A new parallel programming language
e Design and development led by Cray Inc.
e Started under the DARPA HPCS program

e Overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

e A work-in-progress
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e Being developed as open source at SourceForge
e Licensed as BSD software

e Target Architectures:
e multicore desktops and laptops
e commodity clusters
e Cray architectures
e systems from other vendors
* (in-progress: CPU+accelerator hybrids, manycore, ...)



Why Chapel? nnnnnnnnnnnnnnnnnnnnnnn
Dynamic, arbitrary, multithreaded execution @
e Contrast with UPC/SHMEM: single-threaded SPMD

Explicit parallel concepts in source code for
(composable) data and task parallelism
e Contrast with UPC/SHMEM: all parallelism stems from
implicitly running multiple copies of the program
Distinct concepts for locality vs. parallelism
e Contrast with UPC/SHMEM in which the program images
represent locality in addition to parallelism
Productivity Features
» type inference, iterator functions, rich array types, OOP, ...

((erarel
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Goals

This Session’s Goals:

e Teach you about Chapel
® current status
e future directions

e Give you a chance to program in Chapel
e Answer your questions
e Get your feedback and suggestions

But realistically speaking...?
e You’'re about to be hit with a firehose of information

* You'll likely leave knowing just enough to be dangerous

Plug: Come to our SC11 tutorial in Seattle for a more in-depth
introduction!
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v'Chapel Motivation
> Quick Tour of Some Chapel Features
e Project Status and Summary

e Bonus Topics
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Chapel’s Multiresolution Design

Multiresolution Design: Support multiple tiers of features
higher levels for programmability, productivity
lower levels for greater degrees of control

Chapel language concepts

C »

Domain Maps

Base Language
Locality Control

Target Machine

build the higher-level concepts in terms of the lower
Permit users to intermix layers arbitrarily



Base Language Features

C Domain Maps D
Data Parallelism

)4 Base Language

Locality Control

Target Machine



Static Type Inference
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const pi1 = 3.14,

coord = 1.2 + 3.41,
coord?2 = pi*loc,
name = “brad”,
verbose = false;

proc addem(x, y) {
return x + y;

}

var sum = addem(l, p1i),
fullname = addem (name,

writeln((sum, fullname)) ;

// pl is a real

//
//
//
//

//

\\fordll) ;

coord 1s a complex..

...as 1s coordZ?
name 1s a real
verbose 1s boolean

addem () 1s generic

// sum is a real
// fullname is a string

~

(4.14, bradford)



Configs

param intSize =
type elementType
const epsilon =

32;
= real (32) ;
0.01l:elementType;

var start = l:int(intSize);
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Configs

config param intSize = 32; h
config type elementType = real (32);
config const epsilon = 0.0l:elementType;
config var start = l:int(1intSize);

o® o\

a.out --start=2 --epsilon=0.00001

chpl myProgram.chpl -sintSize=64 -selementType=real ]

=~
(=
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Ilterators

var current =
next = 1;
for 1..n {
yield current;
current += next;
current <=> next;

iter fibonacci(n) { \\\
0,
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for £ in fibonacci(7)
writeln (f) ;

do ]

iter tiledRMO (D,

yield 17;

tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do
for i1ij in D[tile + base] do

\

for 17 in tiledRMO (D,
write (ij);

2) do]

(1,1)(1,2) (2,1) (2,2) (
1,3)(1,4)(2,3)(2,4)
(1,5) (1,6) (2,5) (2,6)

(3,1)(3,2) (4,1) (4,2)
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Range Types and Algebra

const r = 1..10; ‘\\\

printVals (r

printVals (r

printVals (r

printVals (r by 2 align 2);
(r
(r
(r

printVals by -2);
printVals by 2 # 3);
printVals # 3 by 2);

proc printVals(r) {
for 1 in r do
write(r, “ “);
writeln () ;
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Zipper Iteration

var A: [0..9] real; )

for (i1,3,a) in (1..10, 2..20 by 2, A) do
a= 73 + 1/10.0;

writeln (A) ;

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0

iﬂcn‘ﬁ-
6 ~~~~~
=
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Default and Named Arguments

proc foo (name=%“joe”, weight=175, age) {\

}

foo (“brad”, age=101);
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Other Base Language Features

e tuple types

e compile-time features for meta-programming
e e.g., compile-time functions to compute types and params

* rank-independent programming features
e value- and reference-based OOP

e overloading, where clauses

* modules (for namespace management)



Locality Features

( Domain Maps D
Data Parallelism

Base Language

‘ Locality Control

Target Machine




The Locale

e Definition
e Abstract unit of target architecture

e Capable of running tasks and storing variables
* j.e., has processors and memory

e Supports reasoning about locality

* Properties
* a locale’s tasks have ~uniform access to local data
* Other locales’ data is also accessible, but at a price

* Locale Examples
* A multi-core processor
* An SMP node



Coding with Locales
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e Specify # of locales when running Chapel programs

% ./a.out ——numLocales=8]

$ ./a.out —nl 8]

e Chapel provides built-in locale variables

config const numlLocales:

int = ..;
const LocaleSpace = [0..#numLocales];
const Locales: [LocaleSpace] locale;




Locale Operations
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e Locale methods support reasoning about machine

}

resources:

proc locale.physicalMemory(..)
proc locale.numCores(..) { ..
proc locale.name(..) { .. }

e On-clauses support placement of computations:

writeln (Yon locale 07);
on Locales[l] do

writeln (“‘now on locale 17);
writeln (“on locale 0 again”);

\

on A[i, j] do )
begin bigComputation (A) ;

on node.left do
begin search (node.left);




Task Parallel Features

C Domain Maps D
D I—

Data Parallelism

Base Language
Locality Control

Target Machine
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Task Creation
begin myNewTask (); // fire-and-forget ‘\\\
whileOriginalTaskContinues () ;

cobegin {
myFirstTask () ;
mySecondTask () ;

} // wait for these two tasks to complete

coforall tid in O..#numTasks /{
executeTask (tid) ;

}  // wait for these numTasks tasks to complete
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Task Synchronization: Sync Vars

// ‘sync’ types store full/empty state along with value )

var result$: sync int; // initially empty
result$ = begin computeSomething(); // writes fill
computeSomethingElse () ;
computeThirdThingUsingResult (result$); // reads empty




Bounded Buffer Producer/Consumer Example
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cobegin {
producer () ;
consumer () ;

}

proc producer ()

bl

proc consumer ()

var 1 = 0;
while .. {
i= (i+1) %

Lbuff£s[i]..;
b}

var 1 = 0;

for .. {
1= (i+1l) %
buffs[i] = ..;

var buff$: [0..#buffersize] sync real;

{

buffersize;

{

buffersize;

// reads block until empty, leave full

// writes block until full, leave empty




Data Parallel Features

Domain Maps D
Data Parallelism

Base Language
Locality Control

Target Machine



STREAM Triad: Chapel (multicore)

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

BB + alpha * C;

+
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Chapel Domain/Array Operations

e Parallel and Serial Iteration
A - forall (i,j) in D do (i + 3/10.0); |

1.11.21314151.61.7 1.8
2.12.2232.4252.62728

3.13.23.33.43.53.63.7 3.8
4.14.2434.44.5 4.6 4.7 4.8

e Array Slicing; Domain Algebra

A[InnerD] = B[InnerD+(0,1)]; ]

e Promotion of Scalar Functions and Operators
A =B + alpha * C;] A = exp (B, C);]

* And several other operations: indexing, reallocation,
set operations, reindexing, aliasing, queries, ...
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Chapel Domain/Array Types

Chapel supports several types of domains and arrays:

H| | ] | ] || || || | HEEENI |HEEEENI
:l D D D D D = L1 L] ] 1 =
u| | | | | | - -
u| | | | | |
0 0 O O O O U = = = = = - o
dense strided sparse
“steve”
“Iee”
“Sun.g”
“.daVId”
“JaCOb”
“albert”
“brad”
unstructured associative

iﬂcn‘ﬁ-
6 ~~~~~
=



Data Parallel Features

ﬂ Domain Maps D

Data Parallelism

Base Language
Locality Control

Target Machine
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Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

—— = - = = | A IEI I EIIES
o s | Zp [ 2p |2 1113113 S
) o s o =z lpl=> =d | B |3 B2 ..o
. P re L‘» re L‘» < = [ <>

What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided be.tw_eer] the tasks?

dynamiecglly ?
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Data Parallelism: Implementation Qs

Q3: How are arrays distributed between locales?

e Completely local to one locale? Or distributed?

o If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Q4: What architectural features will be used?

e Can/Will the computation be executed using CPUs? GPUs? both?
e What memory type(s) is the array stored in? CPU? GPU? texture? ...?

Al: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions
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Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation...

(LTI I Il
ol [TTTTTTTTIIITTITI Il T]

A =B + alpha * C;

...to the target locales” memory and processors:

Locale O
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Domain Maps

Domain Maps: “recipes for implementing parallel/
distributed arrays and domains”

They define data storage:

e Mapping of domain indices and array elements to locales
e Layout of arrays and index sets in each locale’s memory

...as well as operations:
* random access, iteration, slicing, reindexing, rank change, ...

* the Chapel compiler generates calls to these methods to
implement the user’s array operations
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STREAM Triad: Chapel (multicore)

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

No domain map specified => use default layout
* current locale owns all indices and values
e computation will execute using local processors only
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STREAM Triad: Chapel (multinode, blocked)

O OO T I TLIIII] I

const ProblemSpace = [1..m]

dmapped Block (boundingBox=[1..m]) ;

var A, B, C: [ProblemSpace] real;
| = |
EEEENEEEEENENEEENEN

+ 1l

BB + alpha * C;



STREAM Triad: Chapel (multinode, cyclic)

H ﬂ::: H

- EIEEIEEEEEEIEEIDIIEEEE[EDDIZIEIEED 0

const ProblemSpace = [1..m]
dmapped Cyclic (startIdx=1);
|
|

LI—lJ——IJJ——LI—IJJJ—LEFFFEIEFI:'

var A, B, C: [ProblemSpace] real;

N SRSEERSENSSESNTEENTEEE

+
o

EEE + alpha * C;
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All Domain Types Support Domain Maps

- oy Ll

] | ] |I_| | ] L | ]

0 o b o b o g
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"densé strided sparsé

“steve”
4 lee” _ _.
“sung”
“david”
— —J{Jacab” _ .
“albert”
“brad”

assoclative

/
unstructured

=~
(=



CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
e to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework

e to avoid a performance cliff between “built-in” and user-defined
domain maps

4. Domain maps should only affect implementation and
performance, not semantics
* to support switching between domain maps effortlessly
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Status

e Everything you’'ve heard about today works in the
current compiler
e (which is not to say that it’s bug-free or feature-complete)

e Performance can still be hit or miss

* a number of optimizations remain
e some low-hanging, some more aggressive

e generally speaking...
...lower dimensional arrays perform better than higher-dimensional
...single-locale performs better than multi-locale

...multi-locale performs best with fine-grain, demand-driven
communication patterns or embarrassingly parallel computations



Next Steps

No-brainers:
e Performance Optimizations
* Feature Improvements/Bug Fixes
e Complete HPCS deliverables
» Develop post-HPCS strategy/funding
e Support Collaborations and Users

Advanced Topics:

* Hierarchical Locales to target next-gen nodes
e e.g., manycore, CPU+GPU hybrids, tiled processors, ...
e additional hierarchy and heterogeneity warrants it

» Atomic Operations Library (local and remote)
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Potential Future Work (pending interest/funding)

» Resiliency/Fault Tolerance

e Task Teams
e with collective operations: reductions, barriers, eurekas
e permitting distinct scheduling policies

e Improved Interoperability, Libraries
e Re-work warts based on user feedback

e strings

» syntax: domain/array literals, zipper iteration
e Improved Tools:

e performance analysis, debugging, editor support
* Chapel interpreter
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Our Team

e Cray:

Brad Chamberlain ~ Sung-Eun Choi Greg Titus

e External
000 «—
Collaborators:
_ ‘ 2 / You? Your
Albert Sidelnik Jonathan Turner Srinivas Sridharan Friend/Student/
Colleague?

e |nterns:

¢ ’ N ' 7
Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner
000
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Featu red COl |a bO rat| ons (see http://chapel.cray.com/collaborations.html for more)

e Sandia (Kyle Wheeler, Rich Murphy): Chapel over Qthreads user threading
e LTS (Michael Ferguson): Improved |/O and strings

e LLNL (Tom Epperly et al.): Interoperability via Babel

e UIUC (David Padua, Albert Sidelnik, Maria Garzaran): CPU-GPU computing
* U. Malaga (Rafael Asenio, Maria Gonzales, Rafael Larossa): Parallel file I/O
e CU Boulder (Jeremy Siek, Jonathan Turner): Interfaces, concepts, generics

* ORNL/Notre Dame (Srinivas Sridharan, Jeff Vetter, Peter Kogge):
Asynchronous software transactional memory over distributed memory

* ORNL/ESSC (Steve Poole, Matt Baker, ...): portability, performance tuning
e BSC/UPC (Alex Duran): Chapel over Nanos++ user-level tasking
e Argonne (Rusty Lusk, Rajeev Thakur, Pavan Balaji): Chapel over MPICH

* (your name + idea here?)


http://chapel.cray.com/collaborations.html

For Further Information

e Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

e Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

e General Questions/Info:
chapel info@cray.com (or SourceForge chapel-users list)

* Upcoming Events:
SC11 (November, Seattle WA):
Monday, Nov 14t: full-day comprehensive tutorial
Wednesday, Nov 16%": Chapel Lightning Talks BOF
Friday, Nov 18™: half-day broader engagement tutorial

PGAS11 (October, Galveston, TX): leader/follower iterator talk
@;“.'r.


http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
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» Bonus Topics
e graph representations
e atomic operations
e collectives
e |/O
* tools
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Graph Representation

e Graphs can be stored in a variety of ways in Chapel:
e Edge lists
e e.g., a 1D array of vertex objects, each of which stores an array of edges

e Adjacency matrices
e e.g., a 2D sparse v x varray whose entries represent connecting edges

e “Pointer-based” representations

e e.g., an unstructured/opaque array in which domain indices represent
vertices and arrays of indices are used to represent edges

e or, alternatively, a network of distributed, linked objects

e ...or any other sensible thing you can conceive of

e As with any data structure selection, choice should be
motivated by use cases, expected operations
* and at present, maturity of implementation



CRANY

THE SUPERCOMPUTER COMPANY

Atomic Operations: Low-level

Chapel currently has two main concepts for atomicity:

1) sync vars (low-level)
e use a sync var’s full/empty state to guard critical sections
e essentially a sugared lock

enum owner = {foo, bar};

var lock$S: sync owner;

proc foo ()

{

proc bar ()

{

lockS.writeEF (owner.foo) ;
...critical operations...
lockS$S.readFE () ;

}

}

locksS =
...critical operations...
lock$S;

owner .bar;

* in many cases, these locks can be logically associated with
algorithmic data (e.g., see earlier bounded buffer example)
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Atomic Operations: High-level

2) atomic statements (high-level, not yet available)
» designed to execute a section of code atomically w.r.t. other

tasks
atomic { N\
newNode.next = node;
newNode.prev = node.prev; atomic A[i] += 1; ]
node.prev.next = newNode;
node.prev = newNode;
}

e intended that compiler would use HW-based mechanisms
when applicable and fall back on SW when not (i.e., STM)

e but STM is very much an open research area (one that we
have been pursuing jointly with U. Notre Dame & ORNL)



Atomic Operations: A Third Option?

Due to...

...the level of effort required to get general atomics working
...the desire to support lock-free programming now

...the observation that some HW atomic ops are awkward to
code and have compilers recognize automatically (e.g., CAS)

...I've recently proposed pursuing a third, intermediate
solution: a library of standard atomic ops
* e.g., atomic increments, compare and swap, math, ...
* |ocal and remote (use processor/network atomic ops.)

* intended as a stopgap until atomic statement is complete
e though | expect it will continue to have utility then

* main challenges: portability, design
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Collectives

 Many traditional collective operations don’t make
sense in a non-SPMD execution model
e which of the arbitrarily many tasks should be involved?

e Some collective ops are supported via keywords on
aggregates: reduce, scan
e e.g.,sum = + reduce A;

e Future work:
e Introduction notion of task teams

e Support collectives on teams
e reductions, barriers, broadcasts, eurekas(?)



Input/Output

e Output
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write(expr-list): writes the argument expressions
writeln(...) variant: writes a linefeed after the arguments

e Input

read(expr-list): reads values into the argument expressions
read(type-list): reads values of given types, returns as tuple
readln(...) variant: same, but skips through next linefeed

e Example:

var first, last: string;

read (first) ;

last = read(string) ;
writeln (“Hi 7, first, “ ”

write (“what 1s your name? ”);

, last);

What 1s your name?

Chapel User
Hi Chapel User

» |/O to files and strings also supported
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Input/Output: Current Work

While our current |/O story is for simple cases, it’s a bit
impoverished for real applications
e (moral: to get rich I/O, create benchmarks that require it)

Some of our collaborations are striving to improve this

e Michael Ferguson (LTS): Re-engineering the underpinnings
of Chapel I/O to support I/0O to memory buffers, sockets,
data streams, etc. in addition to files and strings

e existing console I/0 interface unchanged; file I/O cleaned up
e designed with parallel access in mind
e initial version should be available in next 1-7 months

» Rafael Asenjo (U. Malaga): Working on adding support for

writing distributed arrays to parallel file systems efficiently

((erarel
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Tools

e Tools have not been a major focus in the project so far

e Current status:

e |IDEs: vim and emacs Chapel modes available
e see SCHPL_HOME/etc
e performance tuning / correctness debugging:

existing C tools can be applied to the generated code

e Utility varies with style of code, sophistication of user
e e.g., Codes with heavy overloading result in name mangling
e Compiling with --cpp-lines supports Chapel source line numbers

* libraries/visualization: little/no intrinsic support;
support for ‘extern’ calls provides a path forward
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