
Brad Chamberlain

Cray Inc.

Discovery 2015: September 16 th, 2011

 A new parallel programming language

 Design and development led by Cray Inc.

 Started under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

2

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids, manycore, …)

3

Dynamic, arbitrary, multithreaded execution
 Contrast with UPC/SHMEM: single-threaded SPMD

Explicit parallel concepts in source code for
(composable) data and task parallelism
 Contrast with UPC/SHMEM: all parallelism stems from

implicitly running multiple copies of the program

Distinct concepts for locality vs. parallelism
 Contrast with UPC/SHMEM in which the program images

represent locality in addition to parallelism

Productivity Features
 type inference, iterator functions, rich array types, OOP, …

4

A

B
C

A

A

A

A

This Session’s Goals:
 Teach you about Chapel

 current status

 future directions

 Give you a chance to program in Chapel

 Answer your questions

 Get your feedback and suggestions

But realistically speaking…?
 You’re about to be hit with a firehose of information

 You’ll likely leave knowing just enough to be dangerous
Plug: Come to our SC11 tutorial in Seattle for a more in-depth

introduction!

5

Chapel Motivation

Quick Tour of Some Chapel Features

 Project Status and Summary

 Bonus Topics

6

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower

 Permit users to intermix layers arbitrarily

7

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

8

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

const pi = 3.14, // pi is a real

coord = 1.2 + 3.4i, // coord is a complex…

coord2 = pi*loc, // …as is coord2

name = “brad”, // name is a real

verbose = false; // verbose is boolean

proc addem(x, y) { // addem() is generic

return x + y;

}

var sum = addem(1, pi), // sum is a real

fullname = addem(name, “ford”); // fullname is a string

writeln((sum, fullname));

9

(4.14, bradford)

10

param intSize = 32;

type elementType = real(32);

const epsilon = 0.01:elementType;

var start = 1:int(intSize);

11

config param intSize = 32;

config type elementType = real(32);

config const epsilon = 0.01:elementType;

config var start = 1:int(intSize);

% chpl myProgram.chpl -sintSize=64 -selementType=real

% a.out --start=2 --epsilon=0.00001

12

iter fibonacci(n) {

var current = 0,

next = 1;

for 1..n {

yield current;

current += next;

current <=> next;

}

}

for f in fibonacci(7) do

writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do

for ij in D[tile + base] do

yield ij;

}

for ij in tiledRMO(D, 2) do

write(ij);

(1,1)(1,2)(2,1)(2,2)(

1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

13

const r = 1..10;

printVals(r # 3);

printVals(r # -3);

printVals(r by 2);

printVals(r by 2 align 2);

printVals(r by -2);

printVals(r by 2 # 3);

printVals(r # 3 by 2);

proc printVals(r) {

for i in r do

write(r, “ “);

writeln();

}

1 2 3

8 9 10

1 3 5 7 9

2 4 6 8 10

10 8 6 4 2

1 3 5

1 3

14

var A: [0..9] real;

for (i,j,a) in (1..10, 2..20 by 2, A) do

a = j + i/10.0;

writeln(A);

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0

15

proc foo(name=“joe”, weight=175, age) {

…

}

foo(“brad”, age=101);

 tuple types

 compile-time features for meta-programming
 e.g., compile-time functions to compute types and params

 rank-independent programming features

 value- and reference-based OOP

 overloading, where clauses

 modules (for namespace management)

 …

16

17

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

 Definition

 Abstract unit of target architecture

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Supports reasoning about locality

 Properties

 a locale’s tasks have ~uniform access to local data

 Other locales’ data is also accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node

18

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

19

% ./a.out --numLocales=8

config const numLocales: int = …;

const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale;

L0 L1 L2 L3 L4 L5 L6 L7Locales:

% ./a.out –nl 8

 Locale methods support reasoning about machine
resources:

 On-clauses support placement of computations:

20

proc locale.physicalMemory(…) { … }

proc locale.numCores(…) { … }

proc locale.name(…) { … }

writeln(“on locale 0”);

on Locales[1] do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do

begin bigComputation(A);

on node.left do

begin search(node.left);

21

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

begin myNewTask(); // fire-and-forget

whileOriginalTaskContinues();

cobegin {

myFirstTask();

mySecondTask();

} // wait for these two tasks to complete

coforall tid in 0..#numTasks {

executeTask(tid);

} // wait for these numTasks tasks to complete

22

// ‘sync’ types store full/empty state along with value

var result$: sync int; // initially empty

result$ = begin computeSomething(); // writes fill

computeSomethingElse();

computeThirdThingUsingResult(result$); // reads empty

23

cobegin {

producer();

consumer();

}

var buff$: [0..#buffersize] sync real;

proc producer() {

var i = 0;

for … {

i = (i+1) % buffersize;

buff$[i] = …; // reads block until empty, leave full

} }

proc consumer() {

var i = 0;

while … {

i= (i+1) % buffersize;

…buff$[i]…; // writes block until full, leave empty

} }

24

25

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

26

=

α·
+

 Parallel and Serial Iteration

 Array Slicing; Domain Algebra

 Promotion of Scalar Functions and Operators

 And several other operations: indexing, reallocation,
set operations, reindexing, aliasing, queries, …

27

4.3 4.44.1 4.2 4.5 4.6 4.7 4.8

1.3 1.41.1 1.2 1.5 1.6 1.7 1.8

2.3 2.42.1 2.2 2.5 2.6 2.7 2.8

3.3 3.43.1 3.2 3.5 3.6 3.7 3.8

A = forall (i,j) in D do (i + j/10.0);

A[InnerD] = B[InnerD+(0,1)]; =

A = B + alpha * C; A = exp(B, C);

Chapel supports several types of domains and arrays:

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

28

29

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

30

dynamically

…?

…?

Q3: How are arrays distributed between locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

Q4: What architectural features will be used?
 Can/Will the computation be executed using CPUs? GPUs? both?

 What memory type(s) is the array stored in? CPU? GPU? texture? …?

A1: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

31

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

32

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

A = B + alpha * C;

…to the target locales’ memory and processors:

Domain Maps: “recipes for implementing parallel/

distributed arrays and domains”

They define data storage:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in each locale’s memory

…as well as operations:
 random access, iteration, slicing, reindexing, rank change, …

 the Chapel compiler generates calls to these methods to
implement the user’s array operations

33

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

34

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = [1..m]

dmapped Block(boundingBox=[1..m]);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

35

=

α·
+

const ProblemSpace = [1..m]

dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

36

=

α·
+

startIdx = 1

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

37

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

38

Chapel Motivation

Quick Tour of Some Chapel Features

Project Status and Summary

 Bonus Topics

39

 Everything you’ve heard about today works in the
current compiler
 (which is not to say that it’s bug-free or feature-complete)

 Performance can still be hit or miss
 a number of optimizations remain

 some low-hanging, some more aggressive

 generally speaking…
…lower dimensional arrays perform better than higher-dimensional

…single-locale performs better than multi-locale

…multi-locale performs best with fine-grain, demand-driven
communication patterns or embarrassingly parallel computations

40

No-brainers:

 Performance Optimizations

 Feature Improvements/Bug Fixes

 Complete HPCS deliverables

 Develop post-HPCS strategy/funding

 Support Collaborations and Users

Advanced Topics:

 Hierarchical Locales to target next-gen nodes
 e.g., manycore, CPU+GPU hybrids, tiled processors, …

 additional hierarchy and heterogeneity warrants it

 Atomic Operations Library (local and remote)
41

 Resiliency/Fault Tolerance

 Task Teams
 with collective operations: reductions, barriers, eurekas

 permitting distinct scheduling policies

 Improved Interoperability, Libraries

 Re-work warts based on user feedback
 strings

 syntax: domain/array literals, zipper iteration

 Improved Tools:
 performance analysis, debugging, editor support

 Chapel interpreter

 …
42

 Cray:

 External

Collaborators:

 Interns:

4343

Brad Chamberlain Sung-Eun Choi Greg Titus Vass Litvinov

Albert Sidelnik Jonathan Turner Srinivas Sridharan

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You? Your

Friend/Student/

Colleague?

Tom Hildebrandt

 Sandia (Kyle Wheeler, Rich Murphy): Chapel over Qthreads user threading

 LTS (Michael Ferguson): Improved I/O and strings

 LLNL (Tom Epperly et al.): Interoperability via Babel

 UIUC (David Padua, Albert Sidelnik, Maria Garzarán): CPU-GPU computing

 U. Malaga (Rafael Asenio, Maria Gonzales, Rafael Larossa): Parallel file I/O

 CU Boulder (Jeremy Siek, Jonathan Turner): Interfaces, concepts, generics

 ORNL/Notre Dame (Srinivas Sridharan, Jeff Vetter, Peter Kogge):
Asynchronous software transactional memory over distributed memory

 ORNL/ESSC (Steve Poole, Matt Baker, …): portability, performance tuning

 BSC/UPC (Alex Duran): Chapel over Nanos++ user-level tasking

 Argonne (Rusty Lusk, Rajeev Thakur, Pavan Balaji): Chapel over MPICH

 (your name + idea here?)

44

http://chapel.cray.com/collaborations.html

 Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

 Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

 General Questions/Info:
chapel_info@cray.com (or SourceForge chapel-users list)

 Upcoming Events:
SC11 (November, Seattle WA):

Monday, Nov 14th: full-day comprehensive tutorial

Wednesday, Nov 16th: Chapel Lightning Talks BOF

Friday, Nov 18th: half-day broader engagement tutorial

PGAS11 (October, Galveston, TX): leader/follower iterator talk
45

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com

Chapel Motivation

Quick Tour of Some Chapel Features

Project Status and Summary

Bonus Topics

 graph representations

 atomic operations

 collectives

 I/O

 tools

46

 Graphs can be stored in a variety of ways in Chapel:
 Edge lists

 e.g., a 1D array of vertex objects, each of which stores an array of edges

 Adjacency matrices
 e.g., a 2D sparse v x v array whose entries represent connecting edges

 “Pointer-based” representations
 e.g., an unstructured/opaque array in which domain indices represent

vertices and arrays of indices are used to represent edges

 or, alternatively, a network of distributed, linked objects

 …or any other sensible thing you can conceive of

 As with any data structure selection, choice should be
motivated by use cases, expected operations
 and at present, maturity of implementation

47

Chapel currently has two main concepts for atomicity:

1) sync vars (low-level)
 use a sync var’s full/empty state to guard critical sections

 essentially a sugared lock
enum owner = {foo, bar};

var lock$: sync owner;

proc foo() { proc bar() {

lock$.writeEF(owner.foo); lock$ = owner.bar;

…critical operations… …critical operations…

lock$.readFE(); lock$;

} }

 in many cases, these locks can be logically associated with
algorithmic data (e.g., see earlier bounded buffer example)

48

2) atomic statements (high-level, not yet available)
 designed to execute a section of code atomically w.r.t. other

tasks
atomic {

newNode.next = node;

newNode.prev = node.prev; atomic A[i] += 1;

node.prev.next = newNode;

node.prev = newNode;

}

 intended that compiler would use HW-based mechanisms
when applicable and fall back on SW when not (i.e., STM)

 but STM is very much an open research area (one that we
have been pursuing jointly with U. Notre Dame & ORNL)

49

Due to…
…the level of effort required to get general atomics working

…the desire to support lock-free programming now

…the observation that some HW atomic ops are awkward to
code and have compilers recognize automatically (e.g., CAS)

…I’ve recently proposed pursuing a third, intermediate
solution: a library of standard atomic ops
 e.g., atomic increments, compare and swap, math, …

 local and remote (use processor/network atomic ops.)

 intended as a stopgap until atomic statement is complete
 though I expect it will continue to have utility then

 main challenges: portability, design

50

 Many traditional collective operations don’t make
sense in a non-SPMD execution model
 which of the arbitrarily many tasks should be involved?

 Some collective ops are supported via keywords on
aggregates: reduce, scan
 e.g., sum = + reduce A;

 Future work:
 Introduction notion of task teams

 Support collectives on teams
 reductions, barriers, broadcasts, eurekas(?)

51

 Output
 write(expr-list): writes the argument expressions

 writeln(…) variant: writes a linefeed after the arguments

 Input
 read(expr-list): reads values into the argument expressions

 read(type-list): reads values of given types, returns as tuple

 readln(…) variant: same, but skips through next linefeed

 Example:

 I/O to files and strings also supported
52

var first, last: string;

write(“what is your name? ”);

read(first);

last = read(string);

writeln(“Hi ”, first, “ ”, last);

What is your name?

Chapel User

Hi Chapel User

While our current I/O story is for simple cases, it’s a bit
impoverished for real applications
 (moral: to get rich I/O, create benchmarks that require it)

Some of our collaborations are striving to improve this
 Michael Ferguson (LTS): Re-engineering the underpinnings

of Chapel I/O to support I/O to memory buffers, sockets,
data streams, etc. in addition to files and strings
 existing console I/O interface unchanged; file I/O cleaned up

 designed with parallel access in mind

 initial version should be available in next 1-7 months

 Rafael Asenjo (U. Malaga): Working on adding support for
writing distributed arrays to parallel file systems efficiently

53

 Tools have not been a major focus in the project so far

 Current status:

 IDEs: vim and emacs Chapel modes available
 see $CHPL_HOME/etc

 performance tuning / correctness debugging:
existing C tools can be applied to the generated code
 Utility varies with style of code, sophistication of user

 e.g., Codes with heavy overloading result in name mangling

 Compiling with --cpp-lines supports Chapel source line numbers

 libraries/visualization: little/no intrinsic support;
support for ‘extern’ calls provides a path forward

54

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel-info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

