Chapel Hands-On

Brad Chamberlain
Cray Inc.
Discovery 2015: September 16", 2011

EEEEEEEEEEEEEEEEEEEEEEE

CRANY
What is Cha pe |? e ST TR

* A new parallel programming language
e Design and development led by Cray Inc.
e Started under the DARPA HPCS program

e Overall goal: Improve programmer productivity
e Improve the programmability of parallel computers
e Match or beat the performance of current programming models
e Support better portability than current programming models
e Improve the robustness of parallel codes

e A work-in-progress

CRANY
Cha pells I m ple me ntation THE SUPERCOMPUTER COMPANY

e Being developed as open source at SourceForge
e Licensed as BSD software

e Target Architectures:
e multicore desktops and laptops
e commodity clusters
e Cray architectures
e systems from other vendors
* (in-progress: CPU+accelerator hybrids, manycore, ...)

Why Chapel? nnnnnnnnnnnnnnnnnnnnnnn
Dynamic, arbitrary, multithreaded execution @
e Contrast with UPC/SHMEM: single-threaded SPMD

Explicit parallel concepts in source code for
(composable) data and task parallelism
e Contrast with UPC/SHMEM: all parallelism stems from
implicitly running multiple copies of the program
Distinct concepts for locality vs. parallelism
e Contrast with UPC/SHMEM in which the program images
represent locality in addition to parallelism
Productivity Features
» type inference, iterator functions, rich array types, OOP, ...

((erarel

CRANY

THE SUPERCOMPUTER COMPANY

Goals

This Session’s Goals:

e Teach you about Chapel
® current status
e future directions

e Give you a chance to program in Chapel
e Answer your questions
e Get your feedback and suggestions

But realistically speaking...?
e You’'re about to be hit with a firehose of information

* You'll likely leave knowing just enough to be dangerous

Plug: Come to our SC11 tutorial in Seattle for a more in-depth
introduction!

L eRex
Outline —

v'Chapel Motivation
> Quick Tour of Some Chapel Features
e Project Status and Summary

e Bonus Topics

C=RA0Y

THE SUPERCOMPUTER COMPANY

Chapel’s Multiresolution Design

Multiresolution Design: Support multiple tiers of features
higher levels for programmability, productivity
lower levels for greater degrees of control

Chapel language concepts

C »

Domain Maps

Base Language
Locality Control

Target Machine

build the higher-level concepts in terms of the lower
Permit users to intermix layers arbitrarily

Base Language Features

C Domain Maps D
Data Parallelism

)4 Base Language

Locality Control

Target Machine

Static Type Inference

C=RA0Y

THE SUPERCOMPUTER COMPANY

const pi1 = 3.14,

coord = 1.2 + 3.41,
coord?2 = pi*loc,
name = “brad”,
verbose = false;

proc addem(x, y) {
return x + y;

}

var sum = addem(l, p1i),
fullname = addem (name,

writeln((sum, fullname)) ;

// pl is a real

//
//
//
//

//

\\fordll) ;

coord 1s a complex..

...as 1s coordZ?
name 1s a real
verbose 1s boolean

addem () 1s generic

// sum is a real
// fullname is a string

~

(4.14, bradford)

Configs

param intSize =
type elementType
const epsilon =

32;
= real (32) ;
0.01l:elementType;

var start = l:int(intSize);

C=RA0Y

THE SUPERCOMPUTER COMPANY

Configs

config param intSize = 32; h
config type elementType = real (32);
config const epsilon = 0.0l:elementType;
config var start = l:int(1intSize);

o® o\

a.out --start=2 --epsilon=0.00001

chpl myProgram.chpl -sintSize=64 -selementType=real]

=~
(=

=

Ilterators

var current =
next = 1;
for 1..n {
yield current;
current += next;
current <=> next;

iter fibonacci(n) { \\\
0,

CRRANY

THE SUPERCOMPUTER COMPANY

for £ in fibonacci(7)
writeln (f) ;

do]

iter tiledRMO (D,

yield 17;

tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do
for i1ij in D[tile + base] do

\

for 17 in tiledRMO (D,
write (ij);

2) do]

(1,1)(1,2) (2,1) (2,2) (
1,3)(1,4)(2,3)(2,4)
(1,5) (1,6) (2,5) (2,6)

(3,1)(3,2) (4,1) (4,2)

CRRANY

THE SUPERCOMPUTER COMPANY

Range Types and Algebra

const r = 1..10; ‘\\\

printVals (r

printVals (r

printVals (r

printVals (r by 2 align 2);
(r
(r
(r

printVals by -2);
printVals by 2 # 3);
printVals # 3 by 2);

proc printVals(r) {
for 1 in r do
write(r, “ “);
writeln () ;

CRRANY

THE SUPERCOMPUTER COMPANY

Zipper Iteration

var A: [0..9] real;)

for (i1,3,a) in (1..10, 2..20 by 2, A) do
a= 73 + 1/10.0;

writeln (A) ;

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0

iﬂcn‘ﬁ-
6 ~~~~~
=

C=RA0Y

THE SUPERCOMPUTER COMPANY

Default and Named Arguments

proc foo (name=%“joe”, weight=175, age) {\

}

foo (“brad”, age=101);

CRANY

THE SUPERCOMPUTER COMPANY

Other Base Language Features

e tuple types

e compile-time features for meta-programming
e e.g., compile-time functions to compute types and params

* rank-independent programming features
e value- and reference-based OOP

e overloading, where clauses

* modules (for namespace management)

Locality Features

(Domain Maps D
Data Parallelism

Base Language

‘ Locality Control

Target Machine

The Locale

e Definition
e Abstract unit of target architecture

e Capable of running tasks and storing variables
* j.e., has processors and memory

e Supports reasoning about locality

* Properties
* a locale’s tasks have ~uniform access to local data
* Other locales’ data is also accessible, but at a price

* Locale Examples
* A multi-core processor
* An SMP node

Coding with Locales

C=RA0Y

THE SUPERCOMPUTER COMPANY

e Specify # of locales when running Chapel programs

% ./a.out ——numLocales=8]

$./a.out —nl 8]

e Chapel provides built-in locale variables

config const numlLocales:

int = ..;
const LocaleSpace = [0..#numLocales];
const Locales: [LocaleSpace] locale;

Locale Operations

C=RA0Y

THE SUPERCOMPUTER COMPANY

e Locale methods support reasoning about machine

}

resources:

proc locale.physicalMemory(..)
proc locale.numCores(..) { ..
proc locale.name(..) { .. }

e On-clauses support placement of computations:

writeln (Yon locale 07);
on Locales[l] do

writeln (“‘now on locale 17);
writeln (“on locale 0 again”);

\

on A[i, j] do)
begin bigComputation (A) ;

on node.left do
begin search (node.left);

Task Parallel Features

C Domain Maps D
D I—

Data Parallelism

Base Language
Locality Control

Target Machine

C=RA0Y

Task Creation
begin myNewTask (); // fire-and-forget ‘\\\
whileOriginalTaskContinues () ;

cobegin {
myFirstTask () ;
mySecondTask () ;

} // wait for these two tasks to complete

coforall tid in O..#numTasks /{
executeTask (tid) ;

} // wait for these numTasks tasks to complete

C=RA0Y

THE SUPERCOMPUTER COMPANY

Task Synchronization: Sync Vars

// ‘sync’ types store full/empty state along with value)

var result$: sync int; // initially empty
result$ = begin computeSomething(); // writes fill
computeSomethingElse () ;
computeThirdThingUsingResult (result$); // reads empty

Bounded Buffer Producer/Consumer Example

C=RA0Y

THE SUPERCOMPUTER COMPANY

cobegin {
producer () ;
consumer () ;

}

proc producer ()

bl

proc consumer ()

var 1 = 0;
while .. {
i= (i+1) %

Lbuff£s[i]..;
b}

var 1 = 0;

for .. {
1= (i+1l) %
buffs[i] = ..;

var buff$: [0..#buffersize] sync real;

{

buffersize;

{

buffersize;

// reads block until empty, leave full

// writes block until full, leave empty

Data Parallel Features

Domain Maps D
Data Parallelism

Base Language
Locality Control

Target Machine

STREAM Triad: Chapel (multicore)

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

BB + alpha * C;

+

CRANY

THE SUPERCOMPUTER COMPANY

C=RA0Y

THE SUPERCOMPUTER COMPANY

Chapel Domain/Array Operations

e Parallel and Serial Iteration
A - forall (i,j) in D do (i + 3/10.0); |

1.11.21314151.61.7 1.8
2.12.2232.4252.62728

3.13.23.33.43.53.63.7 3.8
4.14.2434.44.5 4.6 4.7 4.8

e Array Slicing; Domain Algebra

A[InnerD] = B[InnerD+(0,1)];]

e Promotion of Scalar Functions and Operators
A =B + alpha * C;] A = exp (B, C);]

* And several other operations: indexing, reallocation,
set operations, reindexing, aliasing, queries, ...

CRRANY

THE SUPERCOMPUTER COMPANY

Chapel Domain/Array Types

Chapel supports several types of domains and arrays:

H| |] |] || || || | HEEENI |HEEEENI
:l D D D D D = L1 L]] 1 =
u| | | | | | - -
u| | | | | |
0 0 O O O O U = = = = = - o
dense strided sparse
“steve”
“Iee”
“Sun.g”
“.daVId”
“JaCOb”
“albert”
“brad”
unstructured associative

iﬂcn‘ﬁ-
6 ~~~~~
=

Data Parallel Features

ﬂ Domain Maps D

Data Parallelism

Base Language
Locality Control

Target Machine

C=RA0Y

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

—— = - = = | A IEI I EIIES
o s | Zp [2p |2 1113113 S
) o s o =z lpl=> =d | B |3 B2 ..o
. P re L‘» re L‘» < = [<>

What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided be.tw_eer] the tasks?

dynamiecglly ?

CRANY

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q3: How are arrays distributed between locales?

e Completely local to one locale? Or distributed?

o If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Q4: What architectural features will be used?

e Can/Will the computation be executed using CPUs? GPUs? both?
e What memory type(s) is the array stored in? CPU? GPU? texture? ...?

Al: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation...

(LTI I Il
ol [TTTTTTTTIIITTITI Il T]

A =B + alpha * C;

...to the target locales” memory and processors:

Locale O

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain Maps: “recipes for implementing parallel/
distributed arrays and domains”

They define data storage:

e Mapping of domain indices and array elements to locales
e Layout of arrays and index sets in each locale’s memory

...as well as operations:
* random access, iteration, slicing, reindexing, rank change, ...

* the Chapel compiler generates calls to these methods to
implement the user’s array operations

C=RA0Y

THE SUPERCOMPUTER COMPANY

STREAM Triad: Chapel (multicore)

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

No domain map specified => use default layout
* current locale owns all indices and values
e computation will execute using local processors only

C=RA0Y

THE SUPERCOMPUTER COMPANY

STREAM Triad: Chapel (multinode, blocked)

O OO T I TLIIII] I

const ProblemSpace = [1..m]

dmapped Block (boundingBox=[1..m]) ;

var A, B, C: [ProblemSpace] real;
| = |
EEEENEEEEENENEEENEN

+ 1l

BB + alpha * C;

STREAM Triad: Chapel (multinode, cyclic)

H ﬂ::: H

- EIEEIEEEEEEIEEIDIIEEEE[EDDIZIEIEED 0

const ProblemSpace = [1..m]
dmapped Cyclic (startIdx=1);
|
|

LI—lJ——IJJ——LI—IJJJ—LEFFFEIEFI:'

var A, B, C: [ProblemSpace] real;

N SRSEERSENSSESNTEENTEEE

+
o

EEE + alpha * C;

CRRANY

THE SUPERCOMPUTER COMPANY

All Domain Types Support Domain Maps

- oy Ll

] |] |I_| |] L |]

0 o b o b o g
b o p_o . J1=

0 o o E o

0 o E oD 0o o

1111

[|
I T

"densé strided sparsé

“steve”
4 lee” _ _.
“sung”
“david”
— —J{Jacab” _ .
“albert”
“brad”

assoclative

/
unstructured

=~
(=

CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
e to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework

e to avoid a performance cliff between “built-in” and user-defined
domain maps

4. Domain maps should only affect implementation and
performance, not semantics
* to support switching between domain maps effortlessly

Outline

v'Chapel Motivation
v Quick Tour of Some Chapel Features
» Project Status and Summary

e Bonus Topics

CRANY

THE SUPERCOMPUTER COMPANY

Status

e Everything you’'ve heard about today works in the
current compiler
e (which is not to say that it’s bug-free or feature-complete)

e Performance can still be hit or miss

* a number of optimizations remain
e some low-hanging, some more aggressive

e generally speaking...
...lower dimensional arrays perform better than higher-dimensional
...single-locale performs better than multi-locale

...multi-locale performs best with fine-grain, demand-driven
communication patterns or embarrassingly parallel computations

Next Steps

No-brainers:
e Performance Optimizations
* Feature Improvements/Bug Fixes
e Complete HPCS deliverables
» Develop post-HPCS strategy/funding
e Support Collaborations and Users

Advanced Topics:

* Hierarchical Locales to target next-gen nodes
e e.g., manycore, CPU+GPU hybrids, tiled processors, ...
e additional hierarchy and heterogeneity warrants it

» Atomic Operations Library (local and remote)

CRANY

THE SUPERCOMPUTER COMPANY

Potential Future Work (pending interest/funding)

» Resiliency/Fault Tolerance

e Task Teams
e with collective operations: reductions, barriers, eurekas
e permitting distinct scheduling policies

e Improved Interoperability, Libraries
e Re-work warts based on user feedback

e strings

» syntax: domain/array literals, zipper iteration
e Improved Tools:

e performance analysis, debugging, editor support
* Chapel interpreter

C=RA0Y

THE SUPERCOMPUTER COMPANY

Our Team

e Cray:

Brad Chamberlain ~ Sung-Eun Choi Greg Titus

e External
000 «—
Collaborators:
_ ‘ 2 / You? Your
Albert Sidelnik Jonathan Turner Srinivas Sridharan Friend/Student/
Colleague?

e |nterns:

¢ ’ N ' 7
Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner
000

CRANY

THE SUPERCOMPUTER COMPANY

Featu red COl |a bO rat| ons (see http://chapel.cray.com/collaborations.html for more)

e Sandia (Kyle Wheeler, Rich Murphy): Chapel over Qthreads user threading
e LTS (Michael Ferguson): Improved |/O and strings

e LLNL (Tom Epperly et al.): Interoperability via Babel

e UIUC (David Padua, Albert Sidelnik, Maria Garzaran): CPU-GPU computing
* U. Malaga (Rafael Asenio, Maria Gonzales, Rafael Larossa): Parallel file I/O
e CU Boulder (Jeremy Siek, Jonathan Turner): Interfaces, concepts, generics

* ORNL/Notre Dame (Srinivas Sridharan, Jeff Vetter, Peter Kogge):
Asynchronous software transactional memory over distributed memory

* ORNL/ESSC (Steve Poole, Matt Baker, ...): portability, performance tuning
e BSC/UPC (Alex Duran): Chapel over Nanos++ user-level tasking
e Argonne (Rusty Lusk, Rajeev Thakur, Pavan Balaji): Chapel over MPICH

* (your name + idea here?)

http://chapel.cray.com/collaborations.html

For Further Information

e Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

e Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

e General Questions/Info:
chapel info@cray.com (or SourceForge chapel-users list)

* Upcoming Events:
SC11 (November, Seattle WA):
Monday, Nov 14t: full-day comprehensive tutorial
Wednesday, Nov 16%": Chapel Lightning Talks BOF
Friday, Nov 18™: half-day broader engagement tutorial

PGAS11 (October, Galveston, TX): leader/follower iterator talk
@;“.'r.

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com

L eRex
Outline B ——

v Chapel Motivation
v Quick Tour of Some Chapel Features
v Project Status and Summary

» Bonus Topics
e graph representations
e atomic operations
e collectives
e |/O
* tools

CRANY

THE SUPERCOMPUTER COMPANY

Graph Representation

e Graphs can be stored in a variety of ways in Chapel:
e Edge lists
e e.g., a 1D array of vertex objects, each of which stores an array of edges

e Adjacency matrices
e e.g., a 2D sparse v x varray whose entries represent connecting edges

e “Pointer-based” representations

e e.g., an unstructured/opaque array in which domain indices represent
vertices and arrays of indices are used to represent edges

e or, alternatively, a network of distributed, linked objects

e ...or any other sensible thing you can conceive of

e As with any data structure selection, choice should be
motivated by use cases, expected operations
* and at present, maturity of implementation

CRANY

THE SUPERCOMPUTER COMPANY

Atomic Operations: Low-level

Chapel currently has two main concepts for atomicity:

1) sync vars (low-level)
e use a sync var’s full/empty state to guard critical sections
e essentially a sugared lock

enum owner = {foo, bar};

var lock$S: sync owner;

proc foo ()

{

proc bar ()

{

lockS.writeEF (owner.foo) ;
...critical operations...
lockS$S.readFE () ;

}

}

locksS =
...critical operations...
lock$S;

owner .bar;

* in many cases, these locks can be logically associated with
algorithmic data (e.g., see earlier bounded buffer example)

CRANY

THE SUPERCOMPUTER COMPANY

Atomic Operations: High-level

2) atomic statements (high-level, not yet available)
» designed to execute a section of code atomically w.r.t. other

tasks
atomic { N\
newNode.next = node;
newNode.prev = node.prev; atomic A[i] += 1;]
node.prev.next = newNode;
node.prev = newNode;
}

e intended that compiler would use HW-based mechanisms
when applicable and fall back on SW when not (i.e., STM)

e but STM is very much an open research area (one that we
have been pursuing jointly with U. Notre Dame & ORNL)

Atomic Operations: A Third Option?

Due to...

...the level of effort required to get general atomics working
...the desire to support lock-free programming now

...the observation that some HW atomic ops are awkward to
code and have compilers recognize automatically (e.g., CAS)

...I've recently proposed pursuing a third, intermediate
solution: a library of standard atomic ops
* e.g., atomic increments, compare and swap, math, ...
* |ocal and remote (use processor/network atomic ops.)

* intended as a stopgap until atomic statement is complete
e though | expect it will continue to have utility then

* main challenges: portability, design

CRANY

THE SUPERCOMPUTER COMPANY

Collectives

 Many traditional collective operations don’t make
sense in a non-SPMD execution model
e which of the arbitrarily many tasks should be involved?

e Some collective ops are supported via keywords on
aggregates: reduce, scan
e e.g.,sum = + reduce A;

e Future work:
e Introduction notion of task teams

e Support collectives on teams
e reductions, barriers, broadcasts, eurekas(?)

Input/Output

e Output

C=RA0Y

THE SUPERCOMPUTER COMPANY

write(expr-list): writes the argument expressions
writeln(...) variant: writes a linefeed after the arguments

e Input

read(expr-list): reads values into the argument expressions
read(type-list): reads values of given types, returns as tuple
readln(...) variant: same, but skips through next linefeed

e Example:

var first, last: string;

read (first) ;

last = read(string) ;
writeln (“Hi 7, first, “ ”

write (“what 1s your name? ”);

, last);

What 1s your name?

Chapel User
Hi Chapel User

» |/O to files and strings also supported

CRANY

THE SUPERCOMPUTER COMPANY

Input/Output: Current Work

While our current |/O story is for simple cases, it’s a bit
impoverished for real applications
e (moral: to get rich I/O, create benchmarks that require it)

Some of our collaborations are striving to improve this

e Michael Ferguson (LTS): Re-engineering the underpinnings
of Chapel I/O to support I/0O to memory buffers, sockets,
data streams, etc. in addition to files and strings

e existing console I/0 interface unchanged; file I/O cleaned up
e designed with parallel access in mind
e initial version should be available in next 1-7 months

» Rafael Asenjo (U. Malaga): Working on adding support for

writing distributed arrays to parallel file systems efficiently

((erarel

CRANY

THE SUPERCOMPUTER COMPANY

Tools

e Tools have not been a major focus in the project so far

e Current status:

e |IDEs: vim and emacs Chapel modes available
e see SCHPL_HOME/etc
e performance tuning / correctness debugging:

existing C tools can be applied to the generated code

e Utility varies with style of code, sophistication of user
e e.g., Codes with heavy overloading result in name mangling
e Compiling with --cpp-lines supports Chapel source line numbers

* libraries/visualization: little/no intrinsic support;
support for ‘extern’ calls provides a path forward

=

— P
CcCHAaPEL
=

=

CRANY

THE SUPERCOMPUTER COMPANY

]

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

