
Brad Chamberlain

Cray Inc.

Discovery 2015: September 16 th, 2011

 A new parallel programming language

 Design and development led by Cray Inc.

 Started under the DARPA HPCS program

 Overall goal: Improve programmer productivity
 Improve the programmability of parallel computers

 Match or beat the performance of current programming models

 Support better portability than current programming models

 Improve the robustness of parallel codes

 A work-in-progress

2

 Being developed as open source at SourceForge

 Licensed as BSD software

 Target Architectures:
 multicore desktops and laptops

 commodity clusters

 Cray architectures

 systems from other vendors

 (in-progress: CPU+accelerator hybrids, manycore, …)

3

Dynamic, arbitrary, multithreaded execution
 Contrast with UPC/SHMEM: single-threaded SPMD

Explicit parallel concepts in source code for
(composable) data and task parallelism
 Contrast with UPC/SHMEM: all parallelism stems from

implicitly running multiple copies of the program

Distinct concepts for locality vs. parallelism
 Contrast with UPC/SHMEM in which the program images

represent locality in addition to parallelism

Productivity Features
 type inference, iterator functions, rich array types, OOP, …

4

A

B
C

A

A

A

A

This Session’s Goals:
 Teach you about Chapel

 current status

 future directions

 Give you a chance to program in Chapel

 Answer your questions

 Get your feedback and suggestions

But realistically speaking…?
 You’re about to be hit with a firehose of information

 You’ll likely leave knowing just enough to be dangerous
Plug: Come to our SC11 tutorial in Seattle for a more in-depth

introduction!

5

Chapel Motivation

Quick Tour of Some Chapel Features

 Project Status and Summary

 Bonus Topics

6

Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for greater degrees of control

 build the higher-level concepts in terms of the lower

 Permit users to intermix layers arbitrarily

7

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

8

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

const pi = 3.14, // pi is a real

coord = 1.2 + 3.4i, // coord is a complex…

coord2 = pi*loc, // …as is coord2

name = “brad”, // name is a real

verbose = false; // verbose is boolean

proc addem(x, y) { // addem() is generic

return x + y;

}

var sum = addem(1, pi), // sum is a real

fullname = addem(name, “ford”); // fullname is a string

writeln((sum, fullname));

9

(4.14, bradford)

10

param intSize = 32;

type elementType = real(32);

const epsilon = 0.01:elementType;

var start = 1:int(intSize);

11

config param intSize = 32;

config type elementType = real(32);

config const epsilon = 0.01:elementType;

config var start = 1:int(intSize);

% chpl myProgram.chpl -sintSize=64 -selementType=real

% a.out --start=2 --epsilon=0.00001

12

iter fibonacci(n) {

var current = 0,

next = 1;

for 1..n {

yield current;

current += next;

current <=> next;

}

}

for f in fibonacci(7) do

writeln(f);

0

1

1

2

3

5

8

iter tiledRMO(D, tilesize) {

const tile = [0..#tilesize,

0..#tilesize];

for base in D by tilesize do

for ij in D[tile + base] do

yield ij;

}

for ij in tiledRMO(D, 2) do

write(ij);

(1,1)(1,2)(2,1)(2,2)(

1,3)(1,4)(2,3)(2,4)

(1,5)(1,6)(2,5)(2,6)

…

(3,1)(3,2)(4,1)(4,2)

13

const r = 1..10;

printVals(r # 3);

printVals(r # -3);

printVals(r by 2);

printVals(r by 2 align 2);

printVals(r by -2);

printVals(r by 2 # 3);

printVals(r # 3 by 2);

proc printVals(r) {

for i in r do

write(r, “ “);

writeln();

}

1 2 3

8 9 10

1 3 5 7 9

2 4 6 8 10

10 8 6 4 2

1 3 5

1 3

14

var A: [0..9] real;

for (i,j,a) in (1..10, 2..20 by 2, A) do

a = j + i/10.0;

writeln(A);

2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 21.0

15

proc foo(name=“joe”, weight=175, age) {

…

}

foo(“brad”, age=101);

 tuple types

 compile-time features for meta-programming
 e.g., compile-time functions to compute types and params

 rank-independent programming features

 value- and reference-based OOP

 overloading, where clauses

 modules (for namespace management)

 …

16

17

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

 Definition

 Abstract unit of target architecture

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Supports reasoning about locality

 Properties

 a locale’s tasks have ~uniform access to local data

 Other locales’ data is also accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node

18

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

19

% ./a.out --numLocales=8

config const numLocales: int = …;

const LocaleSpace = [0..#numLocales];

const Locales: [LocaleSpace] locale;

L0 L1 L2 L3 L4 L5 L6 L7Locales:

% ./a.out –nl 8

 Locale methods support reasoning about machine
resources:

 On-clauses support placement of computations:

20

proc locale.physicalMemory(…) { … }

proc locale.numCores(…) { … }

proc locale.name(…) { … }

writeln(“on locale 0”);

on Locales[1] do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

on A[i,j] do

begin bigComputation(A);

on node.left do

begin search(node.left);

21

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

begin myNewTask(); // fire-and-forget

whileOriginalTaskContinues();

cobegin {

myFirstTask();

mySecondTask();

} // wait for these two tasks to complete

coforall tid in 0..#numTasks {

executeTask(tid);

} // wait for these numTasks tasks to complete

22

// ‘sync’ types store full/empty state along with value

var result$: sync int; // initially empty

result$ = begin computeSomething(); // writes fill

computeSomethingElse();

computeThirdThingUsingResult(result$); // reads empty

23

cobegin {

producer();

consumer();

}

var buff$: [0..#buffersize] sync real;

proc producer() {

var i = 0;

for … {

i = (i+1) % buffersize;

buff$[i] = …; // reads block until empty, leave full

} }

proc consumer() {

var i = 0;

while … {

i= (i+1) % buffersize;

…buff$[i]…; // writes block until full, leave empty

} }

24

25

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

26

=

α·
+

 Parallel and Serial Iteration

 Array Slicing; Domain Algebra

 Promotion of Scalar Functions and Operators

 And several other operations: indexing, reallocation,
set operations, reindexing, aliasing, queries, …

27

4.3 4.44.1 4.2 4.5 4.6 4.7 4.8

1.3 1.41.1 1.2 1.5 1.6 1.7 1.8

2.3 2.42.1 2.2 2.5 2.6 2.7 2.8

3.3 3.43.1 3.2 3.5 3.6 3.7 3.8

A = forall (i,j) in D do (i + j/10.0);

A[InnerD] = B[InnerD+(0,1)]; =

A = B + alpha * C; A = exp(B, C);

Chapel supports several types of domains and arrays:

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

28

29

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

30

dynamically

…?

…?

Q3: How are arrays distributed between locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

Q4: What architectural features will be used?
 Can/Will the computation be executed using CPUs? GPUs? both?

 What memory type(s) is the array stored in? CPU? GPU? texture? …?

A1: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

31

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

32

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

A = B + alpha * C;

…to the target locales’ memory and processors:

Domain Maps: “recipes for implementing parallel/

distributed arrays and domains”

They define data storage:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in each locale’s memory

…as well as operations:
 random access, iteration, slicing, reindexing, rank change, …

 the Chapel compiler generates calls to these methods to
implement the user’s array operations

33

const ProblemSpace = [1..m];

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

34

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = [1..m]

dmapped Block(boundingBox=[1..m]);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

35

=

α·
+

const ProblemSpace = [1..m]

dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

36

=

α·
+

startIdx = 1

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

37

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

38

Chapel Motivation

Quick Tour of Some Chapel Features

Project Status and Summary

 Bonus Topics

39

 Everything you’ve heard about today works in the
current compiler
 (which is not to say that it’s bug-free or feature-complete)

 Performance can still be hit or miss
 a number of optimizations remain

 some low-hanging, some more aggressive

 generally speaking…
…lower dimensional arrays perform better than higher-dimensional

…single-locale performs better than multi-locale

…multi-locale performs best with fine-grain, demand-driven
communication patterns or embarrassingly parallel computations

40

No-brainers:

 Performance Optimizations

 Feature Improvements/Bug Fixes

 Complete HPCS deliverables

 Develop post-HPCS strategy/funding

 Support Collaborations and Users

Advanced Topics:

 Hierarchical Locales to target next-gen nodes
 e.g., manycore, CPU+GPU hybrids, tiled processors, …

 additional hierarchy and heterogeneity warrants it

 Atomic Operations Library (local and remote)
41

 Resiliency/Fault Tolerance

 Task Teams
 with collective operations: reductions, barriers, eurekas

 permitting distinct scheduling policies

 Improved Interoperability, Libraries

 Re-work warts based on user feedback
 strings

 syntax: domain/array literals, zipper iteration

 Improved Tools:
 performance analysis, debugging, editor support

 Chapel interpreter

 …
42

 Cray:

 External

Collaborators:

 Interns:

4343

Brad Chamberlain Sung-Eun Choi Greg Titus Vass Litvinov

Albert Sidelnik Jonathan Turner Srinivas Sridharan

Jonathan Claridge Hannah Hemmaplardh Andy Stone Jim Dinan Rob Bocchino Mack Joyner

You? Your

Friend/Student/

Colleague?

Tom Hildebrandt

 Sandia (Kyle Wheeler, Rich Murphy): Chapel over Qthreads user threading

 LTS (Michael Ferguson): Improved I/O and strings

 LLNL (Tom Epperly et al.): Interoperability via Babel

 UIUC (David Padua, Albert Sidelnik, Maria Garzarán): CPU-GPU computing

 U. Malaga (Rafael Asenio, Maria Gonzales, Rafael Larossa): Parallel file I/O

 CU Boulder (Jeremy Siek, Jonathan Turner): Interfaces, concepts, generics

 ORNL/Notre Dame (Srinivas Sridharan, Jeff Vetter, Peter Kogge):
Asynchronous software transactional memory over distributed memory

 ORNL/ESSC (Steve Poole, Matt Baker, …): portability, performance tuning

 BSC/UPC (Alex Duran): Chapel over Nanos++ user-level tasking

 Argonne (Rusty Lusk, Rajeev Thakur, Pavan Balaji): Chapel over MPICH

 (your name + idea here?)

44

http://chapel.cray.com/collaborations.html

 Chapel Home Page (papers, presentations, tutorials):
http://chapel.cray.com

 Chapel Project Page (releases, mailing lists, code):
http://sourceforge.net/projects/chapel/

 General Questions/Info:
chapel_info@cray.com (or SourceForge chapel-users list)

 Upcoming Events:
SC11 (November, Seattle WA):

Monday, Nov 14th: full-day comprehensive tutorial

Wednesday, Nov 16th: Chapel Lightning Talks BOF

Friday, Nov 18th: half-day broader engagement tutorial

PGAS11 (October, Galveston, TX): leader/follower iterator talk
45

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com
mailto:chapel_info@cray.com

Chapel Motivation

Quick Tour of Some Chapel Features

Project Status and Summary

Bonus Topics

 graph representations

 atomic operations

 collectives

 I/O

 tools

46

 Graphs can be stored in a variety of ways in Chapel:
 Edge lists

 e.g., a 1D array of vertex objects, each of which stores an array of edges

 Adjacency matrices
 e.g., a 2D sparse v x v array whose entries represent connecting edges

 “Pointer-based” representations
 e.g., an unstructured/opaque array in which domain indices represent

vertices and arrays of indices are used to represent edges

 or, alternatively, a network of distributed, linked objects

 …or any other sensible thing you can conceive of

 As with any data structure selection, choice should be
motivated by use cases, expected operations
 and at present, maturity of implementation

47

Chapel currently has two main concepts for atomicity:

1) sync vars (low-level)
 use a sync var’s full/empty state to guard critical sections

 essentially a sugared lock
enum owner = {foo, bar};

var lock$: sync owner;

proc foo() { proc bar() {

lock$.writeEF(owner.foo); lock$ = owner.bar;

…critical operations… …critical operations…

lock$.readFE(); lock$;

} }

 in many cases, these locks can be logically associated with
algorithmic data (e.g., see earlier bounded buffer example)

48

2) atomic statements (high-level, not yet available)
 designed to execute a section of code atomically w.r.t. other

tasks
atomic {

newNode.next = node;

newNode.prev = node.prev; atomic A[i] += 1;

node.prev.next = newNode;

node.prev = newNode;

}

 intended that compiler would use HW-based mechanisms
when applicable and fall back on SW when not (i.e., STM)

 but STM is very much an open research area (one that we
have been pursuing jointly with U. Notre Dame & ORNL)

49

Due to…
…the level of effort required to get general atomics working

…the desire to support lock-free programming now

…the observation that some HW atomic ops are awkward to
code and have compilers recognize automatically (e.g., CAS)

…I’ve recently proposed pursuing a third, intermediate
solution: a library of standard atomic ops
 e.g., atomic increments, compare and swap, math, …

 local and remote (use processor/network atomic ops.)

 intended as a stopgap until atomic statement is complete
 though I expect it will continue to have utility then

 main challenges: portability, design

50

 Many traditional collective operations don’t make
sense in a non-SPMD execution model
 which of the arbitrarily many tasks should be involved?

 Some collective ops are supported via keywords on
aggregates: reduce, scan
 e.g., sum = + reduce A;

 Future work:
 Introduction notion of task teams

 Support collectives on teams
 reductions, barriers, broadcasts, eurekas(?)

51

 Output
 write(expr-list): writes the argument expressions

 writeln(…) variant: writes a linefeed after the arguments

 Input
 read(expr-list): reads values into the argument expressions

 read(type-list): reads values of given types, returns as tuple

 readln(…) variant: same, but skips through next linefeed

 Example:

 I/O to files and strings also supported
52

var first, last: string;

write(“what is your name? ”);

read(first);

last = read(string);

writeln(“Hi ”, first, “ ”, last);

What is your name?

Chapel User

Hi Chapel User

While our current I/O story is for simple cases, it’s a bit
impoverished for real applications
 (moral: to get rich I/O, create benchmarks that require it)

Some of our collaborations are striving to improve this
 Michael Ferguson (LTS): Re-engineering the underpinnings

of Chapel I/O to support I/O to memory buffers, sockets,
data streams, etc. in addition to files and strings
 existing console I/O interface unchanged; file I/O cleaned up

 designed with parallel access in mind

 initial version should be available in next 1-7 months

 Rafael Asenjo (U. Malaga): Working on adding support for
writing distributed arrays to parallel file systems efficiently

53

 Tools have not been a major focus in the project so far

 Current status:

 IDEs: vim and emacs Chapel modes available
 see $CHPL_HOME/etc

 performance tuning / correctness debugging:
existing C tools can be applied to the generated code
 Utility varies with style of code, sophistication of user

 e.g., Codes with heavy overloading result in name mangling

 Compiling with --cpp-lines supports Chapel source line numbers

 libraries/visualization: little/no intrinsic support;
support for ‘extern’ calls provides a path forward

54

http://sourceforge.net/projects/chapel/http://chapel.cray.com chapel-info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com
mailto:chapel-info@cray.com

