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The Locale

e Definition
e Abstract unit of target architecture

e Capable of running tasks and storing variables
* j.e., has processors and memory

e Supports reasoning about locality

* Properties
* a locale’s tasks have ~uniform access to local vars
* Other locale’s vars are accessible, but at a price

* Locale Examples
* A multi-core processor
* An SMP node



"Hello World" in Chapel: a Multi-Locale Version

e Multi-locale Hello World
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coforall loc in Locales do
on loc do
writeln (“Hello, world!

144

“from node ”,

\\
4

loc.1d,

“ of ”, numLocales);
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Locales and Program Startup

e Specify # of locales when running Chapel programs

o) [o)

$ a.out ——numLocales=8] $ a.out —nl 8]

e Chapel provides built-in locale variables

config const numlocales: int;
const LocaleSpace: domain(l) = [0..numLocales-1];
const lLocales: [LocaleSpace] locale;

numLocales: 8

LocaleSpace:

e main() begins as a single task on locale #0 (rocales(0])




Rearranging Locales
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Create locale views with standard array operations:

var TaskALocs
var TaskBLocs

var Grid2?2D =

= Loca
= Loca

Locales

les[0..17];
les[2..numLocales-1];

.reshape([1..2, 1..4]);

\

Locales

TaskALocs:

TaskBLocs

Grid2D
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Locale Methods

® |proc locale.id: int { ... }]

Returns locale’s index in LocaleSpace

® | proc locale.name: string { ... }]

Returns name of locale, if available (like uname -a)

e |proc locale.numCores: int { ... }]

Returns number of processor cores available to locale

® |proc locale.physicalMemory(...) { ... }]

Returns physical memory available to user programs on locale

const totalPhysicalMemory =
ExampIe + reduce Locales.physicalMemory () ;
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The On Statement

e Syntax

on-stmt:
on expr { stmt }

e Semantics
Executes stmt on the locale that stores expr

e Example

writeln (“'start on locale 07);
on Locales(l) do

writeln (“‘now on locale 1”);
writeln (“on locale 0 again”);

~
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Locality and Parallelism are Orthogonal

* On-clauses do not introduce any parallelism
N

writeln (“'start on locale 07);
on Locales(l) do

writeln (“‘now on locale 17);
writeln (“on locale 0 again”);

e But can be combined with constructs that do:

writeln (“start on locale O”);\\
begin on Locales(l) do

writeln (“‘now on locale 17);
on Locales(2) do begin

writeln (“‘now on locale 27);
writeln (“on locale 0 again”);

e (the final three statements could appear in any order)
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SPMD Programming in Chapel Revisited

e A language may support both global- and local-view
programming — in particular, Chapel does

proc main () {
coforall loc in Locales do
on loc do
MySPMDProgram(loc.1d, Locales.numElements);

proc MySPMDProgram(me, p) {
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Querying a Variable's Locale

e Syntax

locale—-query—-expr:
expr . locale

e Semantics
Returns the locale on which expr is stored

e Example

var i: int; )
on Locales (1) {

var J: int;

writeln(i.locale.id, j.locale.id); // outputs 01
}
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Here

e Built-in locale value

const here: locale;]

e Semantics
Refers to the locale on which the task is executing

e Example

writeln (here.id); // outputs 0
on Locales(l) do
writeln (here.id); // outputs 1
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Serial Example with Implicit Communication

var x, y: real; // x and y allocated on locale 0 ‘\\\
on Locales (1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = x + y; // remote reads of x and y

on Locales(0) do // migrate back to locale 0

z = X + Vy; // remote write to z
// migrate back to locale 1
on x do // data-driven migration to locale 0
z = X + y; // remote write to z
// migrate back to locale 1
} // migrate back to locale 0
X z

<



Status: Locales

e Everything should be functioning perfectly

* The compiler is currently lacking several important
communication optimizations

* Impact: performance impact for programs that
would benefit by aggregated communication
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Future Directions

e Hierarchical Locales (joint work with UIUC)

e Support ability to expose hierarchy, heterogeneity within
locales

e Particularly important in next-generation nodes
e CPU+GPU hybrids
e tiled processors
® manycore processors
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Review: Data Parallelism

e Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.

InnerD

B

May optionally be distributed over multiple locales
Can be stored in local memories in arbitrary ways
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Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation...

(LTI I Il
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...to a locale’s memory and processors:
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Sample Distributions: Block and Cyclic

var Dom: domain (2) dmapped Block (boundingBox=[1..4, 1..8]) ]

= [1..4, 1..8];
o 10 (L1 12 L3
distributed to
L5 [ L6 L7

N

var Dom: domain (2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];
d.t.btdt
Istriouted to III
L5 L6 L7

1 8
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Chapel’s Domain Map Strategy

1. Chapel provides a library of standard domain maps
e to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
e to avoid a performance cliff between “built-in” and user-defined
domain maps
4. Domain maps should only affect implementation and
performance, not semantics
* to support switching between domain maps effortlessly



Domain Map Details: IOU

e | will be talking at length about domain maps on
Tuesday morning, so thought I'd save some time here
by asking you to attend that talk



Domain Maps: Status

e Full-featured Block, Cyclic, and Replicated
distributions

* Single-locale COO and CSR Sparse layouts supported
e Serial quadratic probing Associative layout supported

e Memory currently leaked for distributed arrays
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Future Directions

e Advanced uses of domain maps:
e GPU programming
* Dynamic load balancing
e Resilient computation
* in situ interoperability
e Qut-of-core computations



Questions?
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Chapel: Locales



