Chapel: Locality

CRANY

THE SUPERCOMPUTER COMPANY

The Locale

e Definition
e Abstract unit of target architecture

e Capable of running tasks and storing variables
* j.e., has processors and memory

e Supports reasoning about locality

* Properties
* a locale’s tasks have ~uniform access to local vars
* Other locale’s vars are accessible, but at a price

* Locale Examples
* A multi-core processor
* An SMP node

"Hello World" in Chapel: a Multi-Locale Version

e Multi-locale Hello World

C=RA0Y

THE SUPERCOMPUTER COMPANY

coforall loc in Locales do
on loc do
writeln (“Hello, world!

144

“from node ”,

\\
4

loc.1d,

“ of ”, numLocales);

C=RA0Y

THE SUPERCOMPUTER COMPANY

Locales and Program Startup

e Specify # of locales when running Chapel programs

o) [o)

$ a.out ——numLocales=8] $ a.out —nl 8]

e Chapel provides built-in locale variables

config const numlocales: int;
const LocaleSpace: domain(l) = [0..numLocales-1];
const lLocales: [LocaleSpace] locale;

numLocales: 8

LocaleSpace:

e main() begins as a single task on locale #0 (rocales(0])

Rearranging Locales

C=RA0Y

THE SUPERCOMPUTER COMPANY

Create locale views with standard array operations:

var TaskALocs
var TaskBLocs

var Grid2?2D =

= Loca
= Loca

Locales

les[0..17];
les[2..numLocales-1];

.reshape([1..2, 1..4]);

\

Locales

TaskALocs:

TaskBLocs

Grid2D

. IEEDDOnD
mm
4Tl sl

olululo
' OO

Locale Methods

® |proc locale.id: int { ... }]

Returns locale’s index in LocaleSpace

® | proc locale.name: string { ... }]

Returns name of locale, if available (like uname -a)

e |proc locale.numCores: int { ... }]

Returns number of processor cores available to locale

® |proc locale.physicalMemory(...) { ... }]

Returns physical memory available to user programs on locale

const totalPhysicalMemory =
ExampIe + reduce Locales.physicalMemory () ;

C=RA0Y

THE SUPERCOMPUTER COMPANY

The On Statement

e Syntax

on-stmt:
on expr { stmt }

e Semantics
Executes stmt on the locale that stores expr

e Example

writeln (“'start on locale 07);
on Locales(l) do

writeln (“‘now on locale 1”);
writeln (“on locale 0 again”);

~

C=RA0Y

THE SUPERCOMPUTER COMPANY

Locality and Parallelism are Orthogonal

* On-clauses do not introduce any parallelism
N

writeln (“'start on locale 07);
on Locales(l) do

writeln (“‘now on locale 17);
writeln (“on locale 0 again”);

e But can be combined with constructs that do:

writeln (“start on locale O”);\\
begin on Locales(l) do

writeln (“‘now on locale 17);
on Locales(2) do begin

writeln (“‘now on locale 27);
writeln (“on locale 0 again”);

e (the final three statements could appear in any order)

CRANY

THE SUPERCOMPUTER COMPANY

SPMD Programming in Chapel Revisited

e A language may support both global- and local-view
programming — in particular, Chapel does

proc main () {
coforall loc in Locales do
on loc do
MySPMDProgram(loc.1d, Locales.numElements);

proc MySPMDProgram(me, p) {

C=RA0Y

THE SUPERCOMPUTER COMPANY

Querying a Variable's Locale

e Syntax

locale—-query—-expr:
expr . locale

e Semantics
Returns the locale on which expr is stored

e Example

var i: int;)
on Locales (1) {

var J: int;

writeln(i.locale.id, j.locale.id); // outputs 01
}

C=RA0Y

THE SUPERCOMPUTER COMPANY

Here

e Built-in locale value

const here: locale;]

e Semantics
Refers to the locale on which the task is executing

e Example

writeln (here.id); // outputs 0
on Locales(l) do
writeln (here.id); // outputs 1

C=RA0Y

THE SUPERCOMPUTER COMPANY

Serial Example with Implicit Communication

var x, y: real; // x and y allocated on locale 0 ‘\\\
on Locales (1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = x + y; // remote reads of x and y

on Locales(0) do // migrate back to locale 0

z = X + Vy; // remote write to z
// migrate back to locale 1
on x do // data-driven migration to locale 0
z = X + y; // remote write to z
// migrate back to locale 1
} // migrate back to locale 0
X z

<

Status: Locales

e Everything should be functioning perfectly

* The compiler is currently lacking several important
communication optimizations

* Impact: performance impact for programs that
would benefit by aggregated communication

CRANY

THE SUPERCOMPUTER COMPANY

Future Directions

e Hierarchical Locales (joint work with UIUC)

e Support ability to expose hierarchy, heterogeneity within
locales

e Particularly important in next-generation nodes
e CPU+GPU hybrids
e tiled processors
® manycore processors

EEEEEEEEEEEEEEEEEEEEEEE

Review: Data Parallelism

e Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.

InnerD

B

May optionally be distributed over multiple locales
Can be stored in local memories in arbitrary ways

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation...

(LTI I Il

a.

...to a locale’s memory and processors:

| |
| |
I I
| |
+ | + | +
I I
| |
| |
1 I

o TR | o T | o -
| | | | | | | | | | | |

C=RA0Y

THE SUPERCOMPUTER COMPANY

Sample Distributions: Block and Cyclic

var Dom: domain (2) dmapped Block (boundingBox=[1..4, 1..8])]

= [1..4, 1..8];
o 10 (L1 12 L3
distributed to
L5 [L6 L7

N

var Dom: domain (2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];
d.t.btdt
Istriouted to III
L5 L6 L7

1 8

CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Strategy

1. Chapel provides a library of standard domain maps
e to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
* to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
e to avoid a performance cliff between “built-in” and user-defined
domain maps
4. Domain maps should only affect implementation and
performance, not semantics
* to support switching between domain maps effortlessly

Domain Map Details: IOU

e | will be talking at length about domain maps on
Tuesday morning, so thought I'd save some time here
by asking you to attend that talk

Domain Maps: Status

e Full-featured Block, Cyclic, and Replicated
distributions

* Single-locale COO and CSR Sparse layouts supported
e Serial quadratic probing Associative layout supported

e Memory currently leaked for distributed arrays

CRANY

THE SUPERCOMPUTER COMPANY

Future Directions

e Advanced uses of domain maps:
e GPU programming
* Dynamic load balancing
e Resilient computation
* in situ interoperability
e Qut-of-core computations

Questions?

————— i

Chapel: Locales

