

 Definition

 Abstract unit of target architecture

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Supports reasoning about locality

 Properties

 a locale’s tasks have ~uniform access to local vars

 Other locale’s vars are accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node

Chapel: Locales 2

 Multi-locale Hello World

Chapel: Locales 3

coforall loc in Locales do

on loc do

writeln(“Hello, world! “,

“from node ”, loc.id, “ of ”, numLocales);

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

 main() begins as a single task on locale #0 (Locales[0])

Chapel: Locales 4

% a.out --numLocales=8

config const numLocales: int;

const LocaleSpace: domain(1) = [0..numLocales-1];

const Locales: [LocaleSpace] locale;

LocaleSpace:

L0 L1 L2 L3 L4 L5 L6 L7Locales:

numLocales: 8

% a.out –nl 8

Create locale views with standard array operations:

Chapel: Locales 5

var TaskALocs = Locales[0..1];

var TaskBLocs = Locales[2..numLocales-1];

var Grid2D = Locales.reshape([1..2, 1..4]);

L0 L1 L2 L3 L4 L5 L6 L7Locales:

L0 L1TaskALocs:

L2 L3 L4 L5 L6 L7TaskBLocs:

L0 L1 L2 L3

L4 L5 L6 L7
Grid2D:



Returns locale’s index in LocaleSpace



Returns name of locale, if available (like uname -a)



Returns number of processor cores available to locale



Returns physical memory available to user programs on locale

Example

Chapel: Locales 6

proc locale.id: int { ... }

proc locale.name: string { ... }

proc locale.numCores: int { ... }

proc locale.physicalMemory(...) { ... }

const totalPhysicalMemory =

+ reduce Locales.physicalMemory();

 Syntax

 Semantics

 Executes stmt on the locale that stores expr

 Example

Chapel: Locales 7

on-stmt:

on expr { stmt }

writeln(“start on locale 0”);

on Locales(1) do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

 On-clauses do not introduce any parallelism

 But can be combined with constructs that do:

 (the final three statements could appear in any order)

Chapel: Locales 8

writeln(“start on locale 0”);

on Locales(1) do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

writeln(“start on locale 0”);

begin on Locales(1) do

writeln(“now on locale 1”);

on Locales(2) do begin

writeln(“now on locale 2”);

writeln(“on locale 0 again”);

 A language may support both global- and local-view
programming — in particular, Chapel does

proc main() {

coforall loc in Locales do

on loc do

MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(me, p) {

...

}

Chapel: Locales 9

 Syntax

 Semantics

 Returns the locale on which expr is stored

 Example

Chapel: Locales 10

locale-query-expr:

expr . locale

var i: int;

on Locales(1) {

var j: int;

writeln(i.locale.id, j.locale.id); // outputs 01

}

L0 L1i j

 Built-in locale value

 Semantics

 Refers to the locale on which the task is executing

 Example

Chapel: Locales 11

const here: locale;

writeln(here.id); // outputs 0

on Locales(1) do

writeln(here.id); // outputs 1

Chapel: Locales 12

var x, y: real; // x and y allocated on locale 0

on Locales(1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = x + y; // remote reads of x and y

on Locales(0) do // migrate back to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

on x do // data-driven migration to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

} // migrate back to locale 0

L0 L1x
y

z

 Everything should be functioning perfectly

 The compiler is currently conservative about
assuming variables may be remote

 Impact: scalar performance overhead

 The compiler is currently lacking several important
communication optimizations

 Impact: performance impact for programs that
would benefit by aggregated communication

Chapel: Locales 13

 Hierarchical Locales (joint work with UIUC)
 Support ability to expose hierarchy, heterogeneity within

locales

 Particularly important in next-generation nodes
 CPU+GPU hybrids

 tiled processors

 manycore processors

Chapel: Locales 14

 Domains are first-class index sets

 Specify the size and shape of arrays

 Support iteration, array operations, etc.

 May optionally be distributed over multiple locales

 Can be stored in local memories in arbitrary ways

D

InnerD

A

B

15Chapel: Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

…to a locale’s memory and processors:

Chapel: Domain Maps 16

=

+

α •

L0 L1 L2

=

+

α •

=

+

α •

=

+

α •

1

var Dom: domain(2) dmapped Block(boundingBox=[1..4, 1..8])

= [1..4, 1..8];

1 8

4

distributed to

var Dom: domain(2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

17Chapel: Domain Maps

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

18Chapel: Domain Maps

 I will be talking at length about domain maps on
Tuesday morning, so thought I’d save some time here
by asking you to attend that talk

19Chapel: Domain Maps

 Full-featured Block, Cyclic, and Replicated
distributions

 Single-locale COO and CSR Sparse layouts supported

 Serial quadratic probing Associative layout supported

 Block-Cyclic, Dimensional, and Associative
distributions underway

 Adding documentation for defining domain maps

 Memory currently leaked for distributed arrays

Chapel: Domain Maps 20

 Advanced uses of domain maps:
 GPU programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations

Chapel: Domain Maps 21

22Chapel: Locales

