

 Definition

 Abstract unit of target architecture

 Capable of running tasks and storing variables
 i.e., has processors and memory

 Supports reasoning about locality

 Properties

 a locale’s tasks have ~uniform access to local vars

 Other locale’s vars are accessible, but at a price

 Locale Examples

 A multi-core processor

 An SMP node

Chapel: Locales 2

 Multi-locale Hello World

Chapel: Locales 3

coforall loc in Locales do

on loc do

writeln(“Hello, world! “,

“from node ”, loc.id, “ of ”, numLocales);

 Specify # of locales when running Chapel programs

 Chapel provides built-in locale variables

 main() begins as a single task on locale #0 (Locales[0])

Chapel: Locales 4

% a.out --numLocales=8

config const numLocales: int;

const LocaleSpace: domain(1) = [0..numLocales-1];

const Locales: [LocaleSpace] locale;

LocaleSpace:

L0 L1 L2 L3 L4 L5 L6 L7Locales:

numLocales: 8

% a.out –nl 8

Create locale views with standard array operations:

Chapel: Locales 5

var TaskALocs = Locales[0..1];

var TaskBLocs = Locales[2..numLocales-1];

var Grid2D = Locales.reshape([1..2, 1..4]);

L0 L1 L2 L3 L4 L5 L6 L7Locales:

L0 L1TaskALocs:

L2 L3 L4 L5 L6 L7TaskBLocs:

L0 L1 L2 L3

L4 L5 L6 L7
Grid2D:

Returns locale’s index in LocaleSpace

Returns name of locale, if available (like uname -a)

Returns number of processor cores available to locale

Returns physical memory available to user programs on locale

Example

Chapel: Locales 6

proc locale.id: int { ... }

proc locale.name: string { ... }

proc locale.numCores: int { ... }

proc locale.physicalMemory(...) { ... }

const totalPhysicalMemory =

+ reduce Locales.physicalMemory();

 Syntax

 Semantics

 Executes stmt on the locale that stores expr

 Example

Chapel: Locales 7

on-stmt:

on expr { stmt }

writeln(“start on locale 0”);

on Locales(1) do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

 On-clauses do not introduce any parallelism

 But can be combined with constructs that do:

 (the final three statements could appear in any order)

Chapel: Locales 8

writeln(“start on locale 0”);

on Locales(1) do

writeln(“now on locale 1”);

writeln(“on locale 0 again”);

writeln(“start on locale 0”);

begin on Locales(1) do

writeln(“now on locale 1”);

on Locales(2) do begin

writeln(“now on locale 2”);

writeln(“on locale 0 again”);

 A language may support both global- and local-view
programming — in particular, Chapel does

proc main() {

coforall loc in Locales do

on loc do

MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(me, p) {

...

}

Chapel: Locales 9

 Syntax

 Semantics

 Returns the locale on which expr is stored

 Example

Chapel: Locales 10

locale-query-expr:

expr . locale

var i: int;

on Locales(1) {

var j: int;

writeln(i.locale.id, j.locale.id); // outputs 01

}

L0 L1i j

 Built-in locale value

 Semantics

 Refers to the locale on which the task is executing

 Example

Chapel: Locales 11

const here: locale;

writeln(here.id); // outputs 0

on Locales(1) do

writeln(here.id); // outputs 1

Chapel: Locales 12

var x, y: real; // x and y allocated on locale 0

on Locales(1) { // migrate task to locale 1

var z: real; // z allocated on locale 1

z = x + y; // remote reads of x and y

on Locales(0) do // migrate back to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

on x do // data-driven migration to locale 0

z = x + y; // remote write to z

// migrate back to locale 1

} // migrate back to locale 0

L0 L1x
y

z

 Everything should be functioning perfectly

 The compiler is currently conservative about
assuming variables may be remote

 Impact: scalar performance overhead

 The compiler is currently lacking several important
communication optimizations

 Impact: performance impact for programs that
would benefit by aggregated communication

Chapel: Locales 13

 Hierarchical Locales (joint work with UIUC)
 Support ability to expose hierarchy, heterogeneity within

locales

 Particularly important in next-generation nodes
 CPU+GPU hybrids

 tiled processors

 manycore processors

Chapel: Locales 14

 Domains are first-class index sets

 Specify the size and shape of arrays

 Support iteration, array operations, etc.

 May optionally be distributed over multiple locales

 Can be stored in local memories in arbitrary ways

D

InnerD

A

B

15Chapel: Domain Maps

Domain maps are “recipes” that instruct the compiler
how to map the global view of a computation…

…to a locale’s memory and processors:

Chapel: Domain Maps 16

=

+

α •

L0 L1 L2

=

+

α •

=

+

α •

=

+

α •

1

var Dom: domain(2) dmapped Block(boundingBox=[1..4, 1..8])

= [1..4, 1..8];

1 8

4

distributed to

var Dom: domain(2) dmapped Cyclic(startIdx=(1,1))

= [1..4, 1..8];

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

17Chapel: Domain Maps

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in our standard library

3. Chapel’s standard layouts and distributions will be written
using the same user-defined domain map framework
 to avoid a performance cliff between “built-in” and user-defined

domain maps

4. Domain maps should only affect implementation and
performance, not semantics
 to support switching between domain maps effortlessly

18Chapel: Domain Maps

 I will be talking at length about domain maps on
Tuesday morning, so thought I’d save some time here
by asking you to attend that talk

19Chapel: Domain Maps

 Full-featured Block, Cyclic, and Replicated
distributions

 Single-locale COO and CSR Sparse layouts supported

 Serial quadratic probing Associative layout supported

 Block-Cyclic, Dimensional, and Associative
distributions underway

 Adding documentation for defining domain maps

 Memory currently leaked for distributed arrays

Chapel: Domain Maps 20

 Advanced uses of domain maps:
 GPU programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations

Chapel: Domain Maps 21

22Chapel: Locales

