


 HPCS: High Productivity Computing Systems
 Overall goal: Raise high-end user productivity by 10x

Productivity = Performance + Programmability + Portability + Robustness

 Phase II: Cray, IBM, Sun (July 2003 – June 2006)
 Goal: Propose new productive system architectures

 Each vendor created a new programming language
 Cray: Chapel

 IBM: X10

 Sun: Fortress

 Phase III: Cray, IBM (July 2006 – )
 Goal: Develop the systems proposed in phase II

 Each vendor implemented a compiler for their language
 Sun also continued their Fortress effort without HPCS funding

Chapel: Background 2



 Chapel’s Context

 Chapel’s Motivating Themes
1. General parallel programming

2. Global-view abstractions

3. Multiresolution design

4. Control over locality/affinity

5. Reduce gap between mainstream & HPC languages

3Chapel: Background



With a unified set of concepts...

...express any parallelism desired in a user’s program
 Styles: data-parallel, task-parallel, concurrency, nested, …

 Levels: model, function, loop, statement, expression

...target all parallelism available in the hardware
 Systems: multicore desktops, clusters, HPC systems, …

 Levels: machines, nodes, cores, instructions

Chapel: Background 4



In pictures: “Apply a 3-Point Stencil to a vector”

Chapel: Background 5

Global-View

(

+

=

)/2

Local-View



In pictures: “Apply a 3-Point Stencil to a vector”

Chapel: Background 6

Global-View

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

(

+

=

)/2

Local-View



In code: “Apply a 3-Point Stencil to a vector”

Chapel: Background 7

Global-View

proc main() {

var n = 1000;

var A, B: [1..n] real;

forall i in 2..n-1 do

B[i] = (A[i-1] + A[i+1])/2;

}

proc main() {

var n = 1000;

var p = numProcs(),

me = myProc(),

myN = n/p,

var A, B: [0..myN+1] real;

if (me < p-1) {

send(me+1, A[myN]);

recv(me+1, A[myN+1]);

}

if (me > 0) {

send(me-1, A[1]);

recv(me-1, A[0]);

}

forall i in 1..myN do

B[i] = (A[i-1] + A[i+1])/2;

}

Local-View (SPMD)

Bug: Refers to uninitialized values at ends of A



Assumes p divides n

In code: “Apply a 3-Point Stencil to a vector”

Chapel: Background 8

Global-View

proc main() {

var n = 1000;

var A, B: [1..n] real;

forall i in 2..n-1 do

B[i] = (A[i-1] + A[i+1])/2;

}

proc main() {

var n = 1000;

var p = numProcs(),

me = myProc(),

myN = n/p,

iLo = 1,

iHi = myN;

var A, B: [0..myN+1] real;

if (me < p-1) {

send(me+1, A[myN]);

recv(me+1, A[myN+1]);

} else

myHi = myN-1;

if (me > 0) {

send(me-1, A[1]);

recv(me-1, A[0]);

} else

myLo = 2;

forall i in iLo..iHi do

B[i] = (A[i-1] + A[i+1])/2;

}

Local-View (SPMD)

Communication becomes
geometrically more complex
for higher-dimensional arrays



System Data Model Control Model

Communication
Libraries

MPI/MPI-2 Local-View Local-View

SHMEM, ARMCI,
GASNet

Local-View SPMD

Shared Memory OpenMP, Pthreads Global-View (trivially) Global-View (trivially)

PGAS
Languages

Co-Array Fortran Local-View SPMD

UPC Global-View SPMD

Titanium Local-View SPMD

PGAS Libraries Global Arrays Global-View SPMD

Chapel: Background 9



System Data Model Control Model

Communication
Libraries

MPI/MPI-2 Local-View Local-View

SHMEM, ARMCI,
GASNet

Local-View SPMD

Shared Memory OpenMP, Pthreads Global-View (trivially) Global-View (trivially)

PGAS
Languages

Co-Array Fortran Local-View SPMD

UPC Global-View SPMD

Titanium Local-View SPMD

PGAS Libraries Global Arrays Global-View SPMD

HPCS
Languages

Chapel Global-View Global-View

X10 (IBM) Global-View Global-View

Fortress (Sun) Global-View Global-View

Chapel: Background 10



 A language may support both global- and local-view 
programming — in particular, Chapel does

proc main() {

coforall loc in Locales do

on loc do

MySPMDProgram(loc.id, Locales.numElements);

}

proc MySPMDProgram(me, p) {

...

}

Chapel: Background 11



Chapel: Background 12

MPI

OpenMP

Pthreads

Target Machine

Low-Level
Implementation

Concepts

“Why is everything so difficult?”
“Why don’t I have more control?”

“Why don’t my programs port trivially?”

ZPL

HPF

Target Machine

High-Level
Abstractions



Multiresolution Design: Support multiple tiers of features

 higher levels for programmability, productivity

 lower levels for performance, control

 build the higher-level concepts in terms of the lower

 separate concerns appropriately for clean design

13

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Chapel language concepts

Chapel: Background



Facts of Life:
 Scalable architectures package memory near processors

 Remote accesses take longer than local accesses

Therefore:
 Placement of data relative to computation affects scalability

 Give programmers control of data and task placement

Note:
 As core counts grow, locality will matter more on desktops

 GPUs and accelerators already expose node-level locality

Chapel: Background 14



Consider:
 Students graduate with training in Java, Matlab, Perl, Python

 Yet HPC programming is dominated by Fortran, C/C++, MPI

We’d like to narrow this gulf with Chapel:
 to leverage advances in modern language design

 to better utilize the skills of the entry-level workforce...

 ...while not ostracizing the traditional HPC programmer
 e.g., support object-oriented programming, but make it optional

Chapel: Background 15



16Chapel: Background


