

 Multi-locale Data Parallel Hello World

2

config const numIters = 100000;

const WorkSpace = {1..numIters} dmapped Block(…);

forall i in WorkSpace do

 writeln(“Hello, world! ”,

 “from iteration ”, i, “ of ”, numIters,

 “ on locale ”, here.id, “ of ”, numLocales);

 Domains are first-class index sets

 Specify the size and shape of arrays

 Support iteration, array operations, etc.

3

D

InnerD

A

B

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

4

dynamically

…?

…?

Q3: How are arrays distributed between locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

Q4: What architectural features will be used?
 Can/Will the computation be executed using CPUs? GPUs? both?

 What memory type(s) is the array stored in? CPU? GPU? texture? …?

A1: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

5

Domain maps are “recipes” (written in Chapel) that
instruct the compiler how to map the global view of a
computation…

6

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

A = B + alpha * C;

 …to the target locales’ memory and processors:

Domain Maps: “recipes for implementing parallel/

 distributed arrays and domains”

They define data storage:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in each locale’s memory

…as well as operations:
 random access, iteration, slicing, reindexing, rank change, …

 the Chapel compiler generates calls to these methods to
implement the user’s array operations

7

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

8

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = {1..m}

 dmapped Block(boundingBox={1..m});

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

9

=

α·
+

const ProblemSpace = {1..m}

 dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

10

=

α·
+

startIdx = 1

Domain Maps fall into two major categories:

layouts: target a single locale
 (that is, a desktop machine or multicore node)

 examples: row- and column-major order, tilings,
compressed sparse row

distributions: target multiple locales
 (that is a distributed memory cluster or supercomputer)

 examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, …

11

 Domain types and literals may be domain mapped
 In practice, this tends to be a great place to rely on type

inference to avoid repetition:

 Domain maps can also be declared independently of
a domain value (not covered here)
 Useful for declaring several domains using the same map

12

const Dom = {1..m, 1..n} dmapped myDMap(…);

1

13

var Dom = {1..4, 1..8} dmapped Block(boundingBox={1..4, 1..8});

1 8

4

distributed to

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

14

proc Block(boundingBox: domain,

 targetLocales: [] locale = Locales,

 dataParTasksPerLocale = ...,

 dataParIgnoreRunningTasks = ...,

 dataParMinGranularity = ...)

1

1 8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

15

proc Cyclic(startIdx,

 targetLocales: [] locale = Locales,

 dataParTasksPerLocale = ...,

 dataParIgnoreRunningTasks = ...,

 dataParMinGranularity = ...)

distributed to
L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

16

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in the standard library

3. Chapel’s standard domain maps are written using the same
end-user framework
 to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

17

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework, Chamberlain, Deitz, Iten,
Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel,
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers:

 $CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

 $CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

18

 Full-featured Block, Cyclic, Replicated distributions

 COO and CSR Sparse layouts supported

 Quadratic probing Associative layout supported

 Prototype Block-Cyclic and 2D Dimensional
distribution available

 Associative distributions underway

 User-defined domain map interface still evolving

 Memory currently leaked for distributed arrays

19

 Advanced uses of domain maps:
 GPU programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations

 Improved syntax for declared domain maps

20

