Chapel: Domain Maps

(Layouts and Distributions)
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"Hello World" in Chapel: a Domain-Map Version

e Multi-locale Data Parallel Hello World

config const numlIters = 100000; \\
const WorkSpace = {1..numlters} dmapped Block(..);

forall 1 in WorkSpace do
writeln (“Hello, world! 7,

44

“from iteration ”, i, Y of ”, numlters,
W “ of ”, numLocales);

44

on locale ”, here.id,
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Review: Data Parallelism

e Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.
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Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?
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What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided be.tw_eer_m the tasks?

dyinamicglly ?
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Data Parallelism: Implementation Qs

Q3: How are arrays distributed between locales?

e Completely local to one locale? Or distributed?

o |If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Q4: What architectural features will be used?

e Can/Will the computation be executed using CPUs? GPUs? both?
e What memory type(s) is the array stored in? CPU? GPU? texture? ...?

Al: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are desighed to give the
user full control over such decisions
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Domain Maps

Domain maps are “recipes” (written in Chapel) that
instruct the compiler how to map the global view of a
computation...
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A =B + alpha * C;

...to the target locales” memory and processors:

Locale O
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Domain Maps

Domain Maps: “recipes for implementing parallel/
distributed arrays and domains”

They define data storage:

e Mapping of domain indices and array elements to locales
e Layout of arrays and index sets in each locale’s memory

...as well as operations:
* random access, iteration, slicing, reindexing, rank change, ...

* the Chapel compiler generates calls to these methods to
implement the user’s array operations
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STREAM Triad: Chapel (multicore)

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

No domain map specified => use default layout
* current locale owns all indices and values
e computation will execute using local processors only

cHaREL
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STREAM Triad: Chapel (multinode, blocked)

O OO T I TLIIII] o

const ProblemSpace = {1..m}
dmapped Block (boundingBox={1..m}) ;

var A, B, C: [ProblemSpace] real;
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B E + alpha * C;
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STREAM Triad: Chapel (multinode, cyclic)

}

dmapped Cyclic (startIdx=1);

. 1N

const ProblemSpace = {1.
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[ProblemSpace] real;

C:

B,

var A,

I+

Eaalpha * C;

A=
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Domain Maps: Layouts and Distributions

Domain Maps fall into two major categories:

layouts: target a single locale
e (thatis, a desktop machine or multicore node)

e examples: row- and column-major order, tilings,
compressed sparse row

distributions: target multiple locales
e (that is a distributed memory cluster or supercomputer)
e examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, ...
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Declaring a Distributed Domain

* Domain types and literals may be domain mapped

In practice, this tends to be a great place to rely on type
inference to avoid repetition:

const Dom = {l..m, 1..n} dmapped myDMap(..); ]

* Domain maps can also be declared independently of
a domain value (not covered here)
Useful for declaring several domains using the same map
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Some Standard Distributions: Block and Cyclic

var Dom = {1..4, 1..8} dmapped Block (boundingBox={1..4, 1..8}); ]

o 10 (L1 12 L3
distributed to
L5 L6 L7

var Dom - {1..4, 1..8} dmapped Cyclic(startIdx=(1,1)); |

d b d Lo ‘L1 L2 L3
istributed to
. L5 L6 L7
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The Block class constructor

proc Block (boundingBox: domain, N
targetLocales: [] locale = Locales,
dataParTasksPerlLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...)
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The Cyclic class constructor

proc Cyclic(startldx, )
targetLocales: [] locale = Locales,
dataParTasksPerLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...)
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All Domain Types Support Domain Maps
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Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
e to cope with shortcomings in the standard library

s Domain Maps )

Base Language

Locality Control

3. Chapel’s standard domain maps are written using the same
end-user framework
* to avoid a performance cliff between “built-in” and user-defined cases



For More Information on Domain Maps

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework, Chamberlain, Deitz, Iten,
Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel,
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Technical notes detailing domain map interface for programmers:
SCHPL_HOME/doc/technotes/README.dsi
e Current domain maps:
SCHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl



Domain Maps: Status

» Full-featured Block, Cyclic, Replicated distributions
e COO and CSR Sparse layouts supported
e Quadratic probing Associative layout supported

e Prototype Block-Cyclic and 2D Dimensional
distribution available

e Memory currently leaked for distributed arrays
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Future Directions

e Advanced uses of domain maps:
e GPU programming
* Dynamic load balancing
e Resilient computation
* in situ interoperability
e Qut-of-core computations

e Improved syntax for declared domain maps



