

 Multi-locale Data Parallel Hello World

2

config const numIters = 100000;

const WorkSpace = {1..numIters} dmapped Block(…);

forall i in WorkSpace do

 writeln(“Hello, world! ”,

 “from iteration ”, i, “ of ”, numIters,

 “ on locale ”, here.id, “ of ”, numLocales);

 Domains are first-class index sets

 Specify the size and shape of arrays

 Support iteration, array operations, etc.

3

D

InnerD

A

B

Q1: How are arrays laid out in memory?
 Are regular arrays laid out in row- or column-major order? Or…?

 What data structure is used to store sparse arrays? (COO, CSR, …?)

Q2: How are data parallel operators implemented?
 How many tasks?

 How is the iteration space divided between the tasks?

4

dynamically

…?

…?

Q3: How are arrays distributed between locales?
 Completely local to one locale? Or distributed?

 If distributed… In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? …?

Q4: What architectural features will be used?
 Can/Will the computation be executed using CPUs? GPUs? both?

 What memory type(s) is the array stored in? CPU? GPU? texture? …?

A1: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are designed to give the
user full control over such decisions

5

Domain maps are “recipes” (written in Chapel) that
instruct the compiler how to map the global view of a
computation…

6

=

+

α •

Locale 0

=

+

α •

=

+

α •

=

+

α •

Locale 1 Locale 2

A = B + alpha * C;

 …to the target locales’ memory and processors:

Domain Maps: “recipes for implementing parallel/

 distributed arrays and domains”

They define data storage:
 Mapping of domain indices and array elements to locales

 Layout of arrays and index sets in each locale’s memory

…as well as operations:
 random access, iteration, slicing, reindexing, rank change, …

 the Chapel compiler generates calls to these methods to
implement the user’s array operations

7

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

8

=

α·
+

No domain map specified => use default layout
• current locale owns all indices and values
• computation will execute using local processors only

const ProblemSpace = {1..m}

 dmapped Block(boundingBox={1..m});

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

9

=

α·
+

const ProblemSpace = {1..m}

 dmapped Cyclic(startIdx=1);

var A, B, C: [ProblemSpace] real;

A = B + alpha * C;

10

=

α·
+

startIdx = 1

Domain Maps fall into two major categories:

layouts: target a single locale
 (that is, a desktop machine or multicore node)

 examples: row- and column-major order, tilings,
compressed sparse row

distributions: target multiple locales
 (that is a distributed memory cluster or supercomputer)

 examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, …

11

 Domain types and literals may be domain mapped
 In practice, this tends to be a great place to rely on type

inference to avoid repetition:

 Domain maps can also be declared independently of
a domain value (not covered here)
 Useful for declaring several domains using the same map

12

const Dom = {1..m, 1..n} dmapped myDMap(…);

1

13

var Dom = {1..4, 1..8} dmapped Block(boundingBox={1..4, 1..8});

1 8

4

distributed to

var Dom = {1..4, 1..8} dmapped Cyclic(startIdx=(1,1));

L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

14

proc Block(boundingBox: domain,

 targetLocales: [] locale = Locales,

 dataParTasksPerLocale = ...,

 dataParIgnoreRunningTasks = ...,

 dataParMinGranularity = ...)

1

1 8

4

L0 L1 L2 L3

L4 L5 L6 L7
distributed to

1

15

proc Cyclic(startIdx,

 targetLocales: [] locale = Locales,

 dataParTasksPerLocale = ...,

 dataParIgnoreRunningTasks = ...,

 dataParMinGranularity = ...)

distributed to
L0 L1 L2 L3

L4 L5 L6 L7

1
1

8

4

16

“steve”
“lee”
“sung”
“david”
“jacob”
“albert”
“brad”

dense strided sparse

unstructured associative

1. Chapel provides a library of standard domain maps
 to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
 to cope with shortcomings in the standard library

3. Chapel’s standard domain maps are written using the same
end-user framework
 to avoid a performance cliff between “built-in” and user-defined cases

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Locality Control

17

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework, Chamberlain, Deitz, Iten,
Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel,
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:

 Technical notes detailing domain map interface for programmers:

 $CHPL_HOME/doc/technotes/README.dsi

 Current domain maps:

 $CHPL_HOME/modules/dists/*.chpl

layouts/*.chpl

internal/Default*.chpl

18

 Full-featured Block, Cyclic, Replicated distributions

 COO and CSR Sparse layouts supported

 Quadratic probing Associative layout supported

 Prototype Block-Cyclic and 2D Dimensional
distribution available

 Associative distributions underway

 User-defined domain map interface still evolving

 Memory currently leaked for distributed arrays

19

 Advanced uses of domain maps:
 GPU programming

 Dynamic load balancing

 Resilient computation

 in situ interoperability

 Out-of-core computations

 Improved syntax for declared domain maps

20

