Chapel: Domain Maps

(Layouts and Distributions)

CRANY

THE SUPERCOMPUTER COMPANY

"Hello World" in Chapel: a Domain-Map Version

e Multi-locale Data Parallel Hello World

config const numlIters = 100000; \\
const WorkSpace = {1..numlters} dmapped Block(..);

forall 1 in WorkSpace do
writeln (“Hello, world! 7,

44

“from iteration ”, i, Y of ”, numlters,
W “ of ”, numLocales);

44

on locale ”, here.id,

CRANY

THE SUPERCOMPUTER COMPANY

Review: Data Parallelism

e Domains are first-class index sets
Specify the size and shape of arrays
Support iteration, array operations, etc.

6\

InnerD

CRANY

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q1: How are arrays laid out in memory?
Are regular arrays laid out in row- or column-major order? Or...?

—— = - = = | A IEI I EIIES
o s | Zp [2p |2 1113113 S
) o s o =z lpl=> =d | B |3 B2 ..o
. P re L‘» re L‘» < = [<>

What data structure is used to store sparse arrays? (COO, CSR, ...?)

Q2: How are data parallel operators implemented?
How many tasks?
How is the iteration space divided be.tw_eer_m the tasks?

dyinamicglly ?

CRANY

THE SUPERCOMPUTER COMPANY

Data Parallelism: Implementation Qs

Q3: How are arrays distributed between locales?

e Completely local to one locale? Or distributed?

o |If distributed... In a blocked manner? cyclically? block-cyclically?
recursively bisected? dynamically rebalanced? ...?

Q4: What architectural features will be used?

e Can/Will the computation be executed using CPUs? GPUs? both?
e What memory type(s) is the array stored in? CPU? GPU? texture? ...?

Al: In Chapel, any of these could be the correct answer

A2: Chapel’s domain maps are desighed to give the
user full control over such decisions

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain maps are “recipes” (written in Chapel) that
instruct the compiler how to map the global view of a
computation...

(LTI T I I TTITIIITTITTT+
o TTTTTTTTIIITTITI I I ITT]

A =B + alpha * C;

...to the target locales” memory and processors:

Locale O

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps

Domain Maps: “recipes for implementing parallel/
distributed arrays and domains”

They define data storage:

e Mapping of domain indices and array elements to locales
e Layout of arrays and index sets in each locale’s memory

...as well as operations:
* random access, iteration, slicing, reindexing, rank change, ...

* the Chapel compiler generates calls to these methods to
implement the user’s array operations

CRANY

THE SUPERCOMPUTER COMPANY

STREAM Triad: Chapel (multicore)

const ProblemSpace = {1..m};

var A, B, C: [ProblemSpace] real;

No domain map specified => use default layout
* current locale owns all indices and values
e computation will execute using local processors only

cHaREL

CRANY

THE SUPERCOMPUTER COMPANY

STREAM Triad: Chapel (multinode, blocked)

O OO T I TLIIII] o

const ProblemSpace = {1..m}
dmapped Block (boundingBox={1..m}) ;

var A, B, C: [ProblemSpace] real;
| = |
EEEENEEEEENENEEENEN

+ 1l

B E + alpha * C;

CRANY

THE SUPERCOMPUTE

COMPANY

'/-/I“IH SRR IER RN RN I NN E N

O o

<& O

STREAM Triad: Chapel (multinode, cyclic)

}

dmapped Cyclic (startIdx=1);

. 1N

const ProblemSpace = {1.

EESEENEEEEESEEEEREEEREEN

[ProblemSpace] real;

C:

B,

var A,

I+

Eaalpha * C;

A=

'i cHaREL

CRANY

THE SUPERCOMPUTER COMPANY

Domain Maps: Layouts and Distributions

Domain Maps fall into two major categories:

layouts: target a single locale
e (thatis, a desktop machine or multicore node)

e examples: row- and column-major order, tilings,
compressed sparse row

distributions: target multiple locales
e (that is a distributed memory cluster or supercomputer)
e examples: Block, Cyclic, Block-Cyclic, Recursive Bisection, ...

CRANY

THE SUPERCOMPUTER COMPANY

Declaring a Distributed Domain

* Domain types and literals may be domain mapped

In practice, this tends to be a great place to rely on type
inference to avoid repetition:

const Dom = {l..m, 1..n} dmapped myDMap(..);]

* Domain maps can also be declared independently of
a domain value (not covered here)
Useful for declaring several domains using the same map

CRANY

THE SUPERCOMPUTER COMPANY

Some Standard Distributions: Block and Cyclic

var Dom = {1..4, 1..8} dmapped Block (boundingBox={1..4, 1..8});]

o 10 (L1 12 L3
distributed to
L5 L6 L7

var Dom - {1..4, 1..8} dmapped Cyclic(startIdx=(1,1)); |

d b d Lo ‘L1 L2 L3
istributed to
. L5 L6 L7

1 8

CRANY

THE SUPERCOMPUTER COMPANY

The Block class constructor

proc Block (boundingBox: domain, N
targetLocales: [] locale = Locales,
dataParTasksPerlLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...)

Lo L1 (L2 13

distributed to
. L5 [L6 L7

CRANY

THE SUPERCOMPUTER COMPANY

The Cyclic class constructor

proc Cyclic(startldx,)
targetLocales: [] locale = Locales,
dataParTasksPerLocale = ...,
dataParIgnoreRunningTasks = ...,
dataParMinGranularity = ...)

L2 L3

distrib 4 L0 | L1
Istributed to .
L5

L6 L7

CRANY

THE SUPERCOMPUTER COMPANY

All Domain Types Support Domain Maps

H L II_I L II_I || IHEEN TTTTT]
n o b o b o e H
S R TN s Y = T s R = A S R [l P |
] O Fl O E O
H o F‘ O 1 O Illlrﬂ_r—lllllﬂ_—llll
"densé strided sparsé
“steve”
) lee” _ _.
“Sun.g”
“daVId”
i ‘jacab” _ _
“albert”
Z “brad”
unstructured associative

CRANY

THE SUPERCOMPUTER COMPANY

Chapel’s Domain Map Philosophy

1. Chapel provides a library of standard domain maps
* to support common array implementations effortlessly

2. Advanced users can write their own domain maps in Chapel
e to cope with shortcomings in the standard library

s Domain Maps)

Base Language

Locality Control

3. Chapel’s standard domain maps are written using the same
end-user framework
* to avoid a performance cliff between “built-in” and user-defined cases

For More Information on Domain Maps

HotPAR’10: User-Defined Distributions and Layouts in Chapel:
Philosophy and Framework, Chamberlain, Deitz, Iten,
Choi; June 2010

CUG 2011: Authoring User-Defined Domain Maps in Chapel,
Chamberlain, Choi, Deitz, Iten, Litvinov; May 2011

Chapel release:
e Technical notes detailing domain map interface for programmers:
SCHPL_HOME/doc/technotes/README.dsi
e Current domain maps:
SCHPL_HOME/modules/dists/*.chpl
layouts/*.chpl
internal/Default*.chpl

Domain Maps: Status

» Full-featured Block, Cyclic, Replicated distributions
e COO and CSR Sparse layouts supported
e Quadratic probing Associative layout supported

e Prototype Block-Cyclic and 2D Dimensional
distribution available

e Memory currently leaked for distributed arrays

CRANY

THE SUPERCOMPUTER COMPANY

Future Directions

e Advanced uses of domain maps:
e GPU programming
* Dynamic load balancing
e Resilient computation
* in situ interoperability
e Qut-of-core computations

e Improved syntax for declared domain maps

