


Task: a unit of parallel work in a Chapel program 

 all Chapel parallelism is implemented using tasks 

 main() is the only task when execution begins 

 

Thread: a system-level concept that executes tasks 

 not exposed in the language 

 occasionally exposed in the implementation 
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 Multicore Hello World 
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config const numTasks = here.numCores; 

 

coforall tid in 0..#numTasks do 

  writeln(“Hello, world! ”, 

          “from task ”, tid, “ of ”, numTasks); 



 Primitive Task-Parallel Constructs 

 The begin statement 

 Synchronization types 

 Structured Task-Parallel Constructs 

 Miscellaneous Task-Parallel Constructs 
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 Syntax 

 
 Semantics 

 Creates a task to execute stmt 

 Original (“parent”) task continues without waiting 

 Example 

 
 Possible output 
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begin-stmt: 

  begin stmt 

begin writeln(“hello world”); 

writeln(“good bye”); 

hello world 

good bye 

good bye 

hello world 



 Syntax 

 
 Semantics 

 Stores full/empty state along with normal value 

 Defaults to full if initialized, empty otherwise 

 Default read blocks until full, leaves empty 

 Default write blocks until empty, leaves full 

 Examples: Critical sections and futures 
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sync-type: 

  sync type 

var lock$: sync bool; 

 

lock$ = true; 

critical(); 

var lockval = lock$; 

var future$: sync real; 

 

begin future$ = compute(); 

computeSomethingElse(); 

useComputedResults(future$); 



var buff$: [0..#buffersize] sync real; 
 

begin producer(); 

consumer(); 
 

proc producer() { 

  var i = 0; 

  for … { 

    i = (i+1) % buffersize; 

    buff$[i] = …; 

  } 

} 
 

proc consumer() { 

  var i = 0; 

  while … { 

    i= (i+1) % buffersize; 

    …buff$[i]…; 

  } 

} 
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 Syntax 

 
 Semantics 

 Similar to sync variable, but stays full once written 

 Example: Multiple Consumers of a future 
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single-type: 

  single type 

var future$: single real; 

 

begin future$ = compute(); 

begin computeSomethingElse(future$); 

begin computeSomethingElse(future$); 



 readFE():t  block until full, leave empty, return value 

 readFF():t  block until full, leave full, return value 

 readXX():t  return value (non-blocking) 

 writeEF(v:t) block until empty, set value to v, leave full 

 writeFF(v:t) wait until full, set value to v, leave full 

 writeXF(v:t) set value to v, leave full (non-blocking) 

 reset()  reset value, leave empty (non-blocking) 

 isFull: bool return true if full else false (non-blocking) 

 

 Defaults: read: readFE, write: writeEF 
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 readFE():t  block until full, leave empty, return value 

 readFF():t  block until full, leave full, return value 

 readXX():t  return value (non-blocking) 

 writeEF(v:t) block until empty, set value to v, leave full 

 writeFF(v:t) wait until full, set value to v, leave full 

 writeXF(v:t) set value to v, leave full (non-blocking) 

 reset()  reset value, leave empty (non-blocking) 

 isFull: bool return true if full else false (non-blocking) 

 

 Defaults: read: readFF, write: writeEF 
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 Syntax 

 
 Semantics 

 Supports operations on variable atomically w.r.t. other tasks 

 Based on C/C++ atomic operations 

 Example: Trivial barrier 
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sync-type: 

  atomic type 

var count: atomic int, done: atomic bool; 
 

proc barrier(numTasks) { 

  const myCount = count.fetchAdd(1); 

  if (myCount < numTasks) then 

    done.waitFor(true); 

  else 

    done.testAndSet(); 

} 



 read():t   return current value 

 write(v:t)   store v as current value 

 exchange(v:t):t store v, returning previous value 

 compareExchange(old:t,new:t):bool 

store new iff previous value was old; returns true on success 

 waitFor(v:t)  wait until the stored value is v 

 add(v:t)   add v to the value atomically 

 fetchAdd(v:t)  same, and return sum 

(sub, or, and, xor also supported similarly) 
 

 testAndSet()  like exchange(true) for atomic bool 

 clear()   like write(false) for atomic bool 
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sync/single: 
 Best for producer/consumer style synchronization 

 Imply a memory fence w.r.t. other loads/stores 

 Use single for write-once values 

atomic: 
 Best for uncoordinated accesses to shared state 
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 Primitive Task-Parallel Constructs 

 Structured Task-Parallel Constructs 

 The cobegin statement 

 The coforall loop 

 Relations between task- and data-parallel concepts 

 Miscellaneous Task-Parallel Constructs 
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 Syntax 

 
 Semantics 

 Creates a task for each statement in stmt-list 

 Parent task waits for stmt-list tasks to complete 

 Example 
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cobegin-stmt: 

  cobegin { stmt-list } 

cobegin { 

  consumer(1); 

  consumer(2); 

  producer(); 

}  // wait here for both consumers and producer to return 



 Syntax 

 
 Semantics 

 Create a task for each iteration in iteratable-expr 

 Parent task waits for all iteration tasks to complete 

 Example 
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coforall-loop: 

  coforall index-expr in iteratable-expr { stmt-list } 

begin producer(); 

coforall i in 1..numConsumers { 

  consumer(i); 

}  // wait here for all consumers to return 



begin: 
 Use to create a dynamic task with an unstructured lifetime 

 “fire and forget” 

cobegin: 
 Use to create a related set of heterogeneous tasks 

 …or a small, finite set of homogenous tasks 

 The parent task depends on the completion of the tasks 

coforall: 
 Use to create a fixed or dynamic # of homogenous tasks 

 The parent task depends on the completion of the tasks 
 

Note: All these concepts can be composed arbitrarily 
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For loops: executed using one task 
 use when a loop must be executed serially 

 or when one task is sufficient for performance 
 

Forall loops: typically executed using 1 < #tasks << #iters 

 use when a loop should be executed in parallel… 

 …but can legally be executed serially 

 use when desired # tasks  <<  # of iterations 
 

Coforall loops: executed using a task per iteration 
 use when the loop iterations must be executed in parallel 

 use when you want # tasks  ==  # of iterations 

 use when each iteration has substantial work 
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forall a in A do 

  writeln(“Here is an element of A: ”, a); 

• How many tasks will be used? 
• How are iterations mapped to the tasks? 

forall (a, i) in zip(A, 1..n) do 

  a = i / 10.0; 

Forall-loops may be zippered, like for-loops 
• Corresponding iterations must match up 
• But how does this work? 



 Chapel defines all zippered forall loops in terms of  
leader-follower iterators: 
 leader iterators: create parallelism, assign iterations to tasks 

 follower iterators: serially execute work generated by leader 
 

 Given… 
     forall (a,b,c) in zip(A,B,C) do 

       a = b + alpha * c; 

…A is defined to be the leader 

…A, B, and C are all defined to be followers 
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Leader iterators are defined using task parallelism: 
iter BlockArr.lead() { 

  const numTasks = here.numCores(); 

  coforall tid in numTasks do 

    yield computeMyChunk(tid, numTasks); 

} 

 

 

Follower iterators simply use serial features: 
iter BlockArr.follow(work) { 

  for i in work do 

    yield accessElement(i); 

} 
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Domain Maps 

Data Parallelism 

Task Parallelism 

Base Language 

Target Machine 

Locality Control 



PGAS 2011: User-Defined Parallel Zippered Iterators in Chapel, 
Chamberlain, Choi, Deitz, Navarro; October 2011 

 

Chapel release: 

 $CHPL_HOME/examples/primers/leaderfollower.chpl 

 See the AdvancedIters module, described in the “Standard 
Modules” section of the language specification for some 
interesting leader-follower iterators: 

 OpenMP-style dynamic schedules 

 work-stealing iterators 
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 Primitive Task-Parallel Constructs 

 Structured Task-Parallel Constructs 

 Miscellaneous Task-Parallel Constructs 

 serial statement 

 sync statement 

 release notes 
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 Syntax 

 
 Semantics 

 Evaluates expr and then executes stmt 

 Suppresses any dynamically-encountered concurrency 

 Example 
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serial-statement: 

  serial expr { stmt } 

proc search(N: TreeNode, depth = 0) { 

  if (N != nil) then 

    serial (depth > 4) do cobegin { 

      search(N.left,  depth+1); 

      search(N.right, depth+1); 

    } 

} 

search(root); 
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proc quickSort(arr: [?D], 

               thresh = log2(here.numCores()), 

               depth = 0, 

               low: int = D.low, 

               high: int = D.high) { 

  if high – low < 8 { 

    bubbleSort(arr, low, high); 

  } else { 

    const pivotVal = findPivot(arr, low, high); 

    const pivotLoc = partition(arr, low, high, pivotVal); 

    serial (depth >= thresh) do cobegin { 

      quickSort(arr, thresh, depth+1, low, pivotLoc-1); 

      quickSort(arr, thresh, depth+1, pivotLoc+1, high); 

    } 

  } 

} 



 Syntax 

 
 Semantics 

 Executes stmt 

 Waits for all dynamically-scoped begins to complete 

 Example 

26 

sync-statement: 

  sync stmt 

sync { 

  for i in 1..numConsumers { 

    begin consumer(i); 

  } 

  producer(); 

} 

proc search(N: TreeNode) { 

  if (N != nil) { 

    begin search(N.left); 

    begin search(N.right); 

  } 

} 

sync { search(root); } 



Where the cobegin statement is static… 

 

 
…the sync statement is dynamic. 

 

 
Program termination is defined by an implicit sync on 

the main() procedure: 
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cobegin { 

  functionWithBegin(); 

  functionWithoutBegin(); 

}  // waits on these two tasks, but not any others 

sync { 

  begin functionWithBegin(); 

  begin functionWithoutBegin(); 

}  // waits on these tasks and any other descendents 

sync main(); 



 Concurrency limiter: numThreadsPerLocale 
 Use --numThreadsPerLocale=<i> for at most i threads 

 Use --numThreadsPerLocale=0  for a system limit (default) 

 Default task scheduling policy 
 Once a thread starts running a task, it runs to completion 

 If an execution runs out of threads, it could deadlock 

 Cobegin/coforall parent threads help with child tasks 

 (other tasking layers can be selected and differ in approach) 
 see $CHPL_HOME/README.tasks for details 

 Help with deadlock detection 

 Running with -b and -t flags can help debug deadlocks 
 see $CHPL_HOME/doc/README.executing for details 
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 All features working well 
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 Change default semantics for variables crossing tasks 
 Make semantics match argument passing by default intent 

 For performance reasons: to support simple, local access 

 For semantic reasons: to avoid races 

 To simplify the implementation: moves data off the heap 

 
var x: int; 

var y: sync int; 

var z: [D] real; 

begin { 

  …x…   // today x is a ref; tomorrow a const copy 

  …y…   // y will remain a ref due to its sync-ness 

  …z…   // z will remain a ref due to its  

} 
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 Change default semantics for variables crossing tasks 
 Make semantics match argument passing by default intent 

 For performance reasons: to support simple, local access 

 For semantic reasons: to avoid races 

 To simplify the implementation: moves data off the heap 

 
var x: int; 

var y: sync int; 

var z: [D] real; 

begin ref(x) { 

  …x…   // override the default; refer to original x 

  …y…   // y will remain a ref due to its sync-ness 

  …z…   // z will remain a ref due to its  

} 
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 Task teams: a means of “coloring” tasks by role 
 for code isolation 

 to support task-based collective operations 
 barriers, reductions, eurekas 

 for the purposes of specifying execution policies 

 Task-private variables and task-reduction variables 

 Work-stealing and/or load-balancing tasking layers 

32 



 begin, cobegin, coforall 

 sync, single atomic variables 

 sync, serial statements 
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