

Task: a unit of parallel work in a Chapel program

 all Chapel parallelism is implemented using tasks

 main() is the only task when execution begins

Thread: a system-level concept that executes tasks

 not exposed in the language

 occasionally exposed in the implementation

2

 Multicore Hello World

3

config const numTasks = here.numCores;

coforall tid in 0..#numTasks do

 writeln(“Hello, world! ”,

 “from task ”, tid, “ of ”, numTasks);

 Primitive Task-Parallel Constructs

 The begin statement

 Synchronization types

 Structured Task-Parallel Constructs

 Miscellaneous Task-Parallel Constructs

4

 Syntax

 Semantics

 Creates a task to execute stmt

 Original (“parent”) task continues without waiting

 Example

 Possible output

5

begin-stmt:

 begin stmt

begin writeln(“hello world”);

writeln(“good bye”);

hello world

good bye

good bye

hello world

 Syntax

 Semantics

 Stores full/empty state along with normal value

 Defaults to full if initialized, empty otherwise

 Default read blocks until full, leaves empty

 Default write blocks until empty, leaves full

 Examples: Critical sections and futures

6

sync-type:

 sync type

var lock$: sync bool;

lock$ = true;

critical();

var lockval = lock$;

var future$: sync real;

begin future$ = compute();

computeSomethingElse();

useComputedResults(future$);

var buff$: [0..#buffersize] sync real;

begin producer();

consumer();

proc producer() {

 var i = 0;

 for … {

 i = (i+1) % buffersize;

 buff$[i] = …;

 }

}

proc consumer() {

 var i = 0;

 while … {

 i= (i+1) % buffersize;

 …buff$[i]…;

 }

}

7

 Syntax

 Semantics

 Similar to sync variable, but stays full once written

 Example: Multiple Consumers of a future

8

single-type:

 single type

var future$: single real;

begin future$ = compute();

begin computeSomethingElse(future$);

begin computeSomethingElse(future$);

 readFE():t block until full, leave empty, return value

 readFF():t block until full, leave full, return value

 readXX():t return value (non-blocking)

 writeEF(v:t) block until empty, set value to v, leave full

 writeFF(v:t) wait until full, set value to v, leave full

 writeXF(v:t) set value to v, leave full (non-blocking)

 reset() reset value, leave empty (non-blocking)

 isFull: bool return true if full else false (non-blocking)

 Defaults: read: readFE, write: writeEF

9

 readFE():t block until full, leave empty, return value

 readFF():t block until full, leave full, return value

 readXX():t return value (non-blocking)

 writeEF(v:t) block until empty, set value to v, leave full

 writeFF(v:t) wait until full, set value to v, leave full

 writeXF(v:t) set value to v, leave full (non-blocking)

 reset() reset value, leave empty (non-blocking)

 isFull: bool return true if full else false (non-blocking)

 Defaults: read: readFF, write: writeEF

10

 Syntax

 Semantics

 Supports operations on variable atomically w.r.t. other tasks

 Based on C/C++ atomic operations

 Example: Trivial barrier

11

sync-type:

 atomic type

var count: atomic int, done: atomic bool;

proc barrier(numTasks) {

 const myCount = count.fetchAdd(1);

 if (myCount < numTasks) then

 done.waitFor(true);

 else

 done.testAndSet();

}

 read():t return current value

 write(v:t) store v as current value

 exchange(v:t):t store v, returning previous value

 compareExchange(old:t,new:t):bool

store new iff previous value was old; returns true on success

 waitFor(v:t) wait until the stored value is v

 add(v:t) add v to the value atomically

 fetchAdd(v:t) same, and return sum

(sub, or, and, xor also supported similarly)

 testAndSet() like exchange(true) for atomic bool

 clear() like write(false) for atomic bool

12

sync/single:
 Best for producer/consumer style synchronization

 Imply a memory fence w.r.t. other loads/stores

 Use single for write-once values

atomic:
 Best for uncoordinated accesses to shared state

13

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 The cobegin statement

 The coforall loop

 Relations between task- and data-parallel concepts

 Miscellaneous Task-Parallel Constructs

14

 Syntax

 Semantics

 Creates a task for each statement in stmt-list

 Parent task waits for stmt-list tasks to complete

 Example

15

cobegin-stmt:

 cobegin { stmt-list }

cobegin {

 consumer(1);

 consumer(2);

 producer();

} // wait here for both consumers and producer to return

 Syntax

 Semantics

 Create a task for each iteration in iteratable-expr

 Parent task waits for all iteration tasks to complete

 Example

16

coforall-loop:

 coforall index-expr in iteratable-expr { stmt-list }

begin producer();

coforall i in 1..numConsumers {

 consumer(i);

} // wait here for all consumers to return

begin:
 Use to create a dynamic task with an unstructured lifetime

 “fire and forget”

cobegin:
 Use to create a related set of heterogeneous tasks

 …or a small, finite set of homogenous tasks

 The parent task depends on the completion of the tasks

coforall:
 Use to create a fixed or dynamic # of homogenous tasks

 The parent task depends on the completion of the tasks

Note: All these concepts can be composed arbitrarily

17

For loops: executed using one task
 use when a loop must be executed serially

 or when one task is sufficient for performance

Forall loops: typically executed using 1 < #tasks << #iters

 use when a loop should be executed in parallel…

 …but can legally be executed serially

 use when desired # tasks << # of iterations

Coforall loops: executed using a task per iteration
 use when the loop iterations must be executed in parallel

 use when you want # tasks == # of iterations

 use when each iteration has substantial work

18

19

forall a in A do

 writeln(“Here is an element of A: ”, a);

• How many tasks will be used?
• How are iterations mapped to the tasks?

forall (a, i) in zip(A, 1..n) do

 a = i / 10.0;

Forall-loops may be zippered, like for-loops
• Corresponding iterations must match up
• But how does this work?

 Chapel defines all zippered forall loops in terms of
leader-follower iterators:
 leader iterators: create parallelism, assign iterations to tasks

 follower iterators: serially execute work generated by leader

 Given…
 forall (a,b,c) in zip(A,B,C) do

 a = b + alpha * c;

…A is defined to be the leader

…A, B, and C are all defined to be followers

20

Leader iterators are defined using task parallelism:
iter BlockArr.lead() {

 const numTasks = here.numCores();

 coforall tid in numTasks do

 yield computeMyChunk(tid, numTasks);

}

Follower iterators simply use serial features:
iter BlockArr.follow(work) {

 for i in work do

 yield accessElement(i);

}

21

Domain Maps

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

PGAS 2011: User-Defined Parallel Zippered Iterators in Chapel,
Chamberlain, Choi, Deitz, Navarro; October 2011

Chapel release:

 $CHPL_HOME/examples/primers/leaderfollower.chpl

 See the AdvancedIters module, described in the “Standard
Modules” section of the language specification for some
interesting leader-follower iterators:

 OpenMP-style dynamic schedules

 work-stealing iterators

22

 Primitive Task-Parallel Constructs

 Structured Task-Parallel Constructs

 Miscellaneous Task-Parallel Constructs

 serial statement

 sync statement

 release notes

23

 Syntax

 Semantics

 Evaluates expr and then executes stmt

 Suppresses any dynamically-encountered concurrency

 Example

24

serial-statement:

 serial expr { stmt }

proc search(N: TreeNode, depth = 0) {

 if (N != nil) then

 serial (depth > 4) do cobegin {

 search(N.left, depth+1);

 search(N.right, depth+1);

 }

}

search(root);

25

proc quickSort(arr: [?D],

 thresh = log2(here.numCores()),

 depth = 0,

 low: int = D.low,

 high: int = D.high) {

 if high – low < 8 {

 bubbleSort(arr, low, high);

 } else {

 const pivotVal = findPivot(arr, low, high);

 const pivotLoc = partition(arr, low, high, pivotVal);

 serial (depth >= thresh) do cobegin {

 quickSort(arr, thresh, depth+1, low, pivotLoc-1);

 quickSort(arr, thresh, depth+1, pivotLoc+1, high);

 }

 }

}

 Syntax

 Semantics

 Executes stmt

 Waits for all dynamically-scoped begins to complete

 Example

26

sync-statement:

 sync stmt

sync {

 for i in 1..numConsumers {

 begin consumer(i);

 }

 producer();

}

proc search(N: TreeNode) {

 if (N != nil) {

 begin search(N.left);

 begin search(N.right);

 }

}

sync { search(root); }

Where the cobegin statement is static…

…the sync statement is dynamic.

Program termination is defined by an implicit sync on

the main() procedure:

27

cobegin {

 functionWithBegin();

 functionWithoutBegin();

} // waits on these two tasks, but not any others

sync {

 begin functionWithBegin();

 begin functionWithoutBegin();

} // waits on these tasks and any other descendents

sync main();

 Concurrency limiter: numThreadsPerLocale
 Use --numThreadsPerLocale=<i> for at most i threads

 Use --numThreadsPerLocale=0 for a system limit (default)

 Default task scheduling policy
 Once a thread starts running a task, it runs to completion

 If an execution runs out of threads, it could deadlock

 Cobegin/coforall parent threads help with child tasks

 (other tasking layers can be selected and differ in approach)
 see $CHPL_HOME/README.tasks for details

 Help with deadlock detection

 Running with -b and -t flags can help debug deadlocks
 see $CHPL_HOME/doc/README.executing for details

28

 All features working well

29

 Change default semantics for variables crossing tasks
 Make semantics match argument passing by default intent

 For performance reasons: to support simple, local access

 For semantic reasons: to avoid races

 To simplify the implementation: moves data off the heap

var x: int;

var y: sync int;

var z: [D] real;

begin {

 …x… // today x is a ref; tomorrow a const copy

 …y… // y will remain a ref due to its sync-ness

 …z… // z will remain a ref due to its

}

30

 Change default semantics for variables crossing tasks
 Make semantics match argument passing by default intent

 For performance reasons: to support simple, local access

 For semantic reasons: to avoid races

 To simplify the implementation: moves data off the heap

var x: int;

var y: sync int;

var z: [D] real;

begin ref(x) {

 …x… // override the default; refer to original x

 …y… // y will remain a ref due to its sync-ness

 …z… // z will remain a ref due to its

}

31

 Task teams: a means of “coloring” tasks by role
 for code isolation

 to support task-based collective operations
 barriers, reductions, eurekas

 for the purposes of specifying execution policies

 Task-private variables and task-reduction variables

 Work-stealing and/or load-balancing tasking layers

32

 begin, cobegin, coforall

 sync, single atomic variables

 sync, serial statements

33

