
C O M P U T E | S T O R E | A N A L Y Z E

Chapel Background & Overview

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2017 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Motivation for Chapel

Copyright 2017 Cray Inc.
3

Q: Can a single language be…
…as productive as Python?
…as fast as Fortran?
…as portable as C?
…as scalable as MPI?
…as fun as <your favorite language here>?

A: We believe so.

C O M P U T E | S T O R E | A N A L Y Z E

The Challenge

Copyright 2017 Cray Inc.
4

Q: So why don’t we have such languages already?
A: Technical challenges?

● while they exist, we don’t think this is the main issue…

A: Due to a lack of…
…long-term efforts
…resources
…community will
…co-design between developers and users
…patience

Chapel is our attempt to reverse this trend

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures:

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.
5

=

α

+

A

B

C
·

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures,	in	parallel:

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.
6

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures,	in	parallel	(distributed	memory):

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.
7

A

B

C

=

+

·

=

+

·

=

+

·

=

+

·
α

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element	vectors	A,	B,	C

Compute:∀i∈ 1..m,	Ai = Bi + α⋅Ci

In	pictures,	in	parallel	(distributed	memory	multicore):

STREAM Triad: a trivial parallel computation

Copyright 2017 Cray Inc.
8

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI

Copyright 2017 Cray Inc.
9

#include <hpcc.h>

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI
if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI+OpenMP

Copyright 2017 Cray Inc.
10

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,
0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

MPI + OpenMP
if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: MPI+OpenMP vs. CUDA

Copyright 2017 Cray Inc.
11

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

Why so many programming models?

Copyright 2017 Cray Inc.
12

HPC tends to approach programming models bottom-up:
Given a system and its core capabilities…

…provide features that can access the available performance.
● portability, generality, programmability: not strictly necessary.

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Type of HW Parallelism Programming Model Unit of Parallelism
Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator CUDA / Open[MP|CL|ACC] SIMD function/task

C O M P U T E | S T O R E | A N A L Y Z E

Rewinding a few slides…

Copyright 2017 Cray Inc.
13

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

HPC suffers from too many distinct notations for expressing parallelism and locality

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel

Copyright 2017 Cray Inc.
14

#define N 2000000

int main() {
float *d_a, *d_b, *d_c;
float scalar;

cudaMalloc((void**)&d_a, sizeof(float)*N);
cudaMalloc((void**)&d_b, sizeof(float)*N);
cudaMalloc((void**)&d_c, sizeof(float)*N);

dim3 dimBlock(128);
dim3 dimGrid(N/dimBlock.x);
if(N % dimBlock.x != 0) dimGrid.x+=1;

set_array<<<dimGrid,dimBlock>>>(d_b, .5f, N);
set_array<<<dimGrid,dimBlock>>>(d_c, .5f, N);

scalar=3.0f;
STREAM_Triad<<<dimGrid,dimBlock>>>(d_b, d_c, d_a, scalar, N);
cudaThreadSynchronize();

cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

}

__global__ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;

}

__global__ void STREAM_Triad(float *a, float *b, float *c,
float scalar, int len) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) c[idx] = a[idx]+scalar*b[idx];

}

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {

fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 0.0;

}

scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif

for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

CUDAMPI + OpenMP

config const m = 1000,
alpha = 3.0;

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

the special
sauce

Chapel

Philosophy: Good, top-down language design can tease system-specific
implementation details away from an algorithm, permitting the compiler,
runtime, applied scientist, and HPC expert to each focus on their strengths.

C O M P U T E | S T O R E | A N A L Y Z E

What is Chapel?

15

Chapel: A productive parallel programming language
● portable
● open-source
● a collaborative effort

Goals:
● Support general parallel programming

● “any parallel algorithm on any parallel hardware”
● Make parallel programming at scale far more productive

Copyright 2017 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

What does “Productivity” mean to you?

Copyright 2017 Cray Inc.
16

Recent Graduates:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmers:
“that sugary stuff that I don’t need because I was born to suffer”

Computational Scientists:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets computational scientists express what they want,
without taking away the control that HPC programmers want,
implemented in a language as attractive as recent graduates want.”

want full control
to ensure performance”

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Portable

Copyright 2017 Cray Inc.
17

● Chapel is designed to be hardware-independent

● The current release requires:
● a C/C++ compiler
● a *NIX environment (Linux, OS X, BSD, Cygwin, …)
● POSIX threads
● UDP, MPI, or RDMA (if distributed memory execution is desired)

● Chapel can run on…
…laptops and workstations
…commodity clusters
…the cloud
…HPC systems from Cray and other vendors
…modern processors like Intel Xeon Phi, GPUs*, etc.

* = academic work only; not yet supported in the official release

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is Open-Source

Copyright 2017 Cray Inc.
18

● Chapel’s development is hosted at GitHub
● https://github.com/chapel-lang

● Chapel is licensed as Apache v2.0 software

● Instructions for download + install are online
● see http://chapel.cray.com/download.html to get started

C O M P U T E | S T O R E | A N A L Y Z E

The Chapel Team at Cray (May 2016)

Copyright 2017 Cray Inc.
19

14 full-time employees + 2 summer interns + occasional visiting academics
(one of each started after photo taken)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Community R&D Efforts

Copyright 2017 Cray Inc.
20

http://chapel.cray.com/collaborations.html

(and several others…)

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc.
21

üChapel Motivation and Background
ØChapel in a Nutshell
● Chapel Project: Past, Present, Future

C O M P U T E | S T O R E | A N A L Y Z E
22

Multiresolution Design: Support multiple tiers of features
● higher levels for programmability, productivity
● lower levels for greater degrees of control

● build the higher-level concepts in terms of the lower
● permit the user to intermix layers arbitrarily

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Chapel’s Multiresolution Philosophy

C O M P U T E | S T O R E | A N A L Y Z E

Base Language

Copyright 2017 Cray Inc.
23

Domain Maps
Data Parallelism
Task Parallelism
Base Language

Target Machine

Locality Control

Lower-level Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

24

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

0
1
1
2
3
5
8
…

Copyright 2017 Cray Inc.

config const n = 10;

for f in fib(n) do
writeln(f);

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

25

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

CLU-style iteratorsCLU-style iteratorsModern iterators

0
1
1
2
3
5
8
…

config const n = 10;

for f in fib(n) do
writeln(f);

C O M P U T E | S T O R E | A N A L Y Z E

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

26

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Configuration declarations
(to avoid command-line argument parsing)

./a.out –-n=1000000

0
1
1
2
3
5
8
…

C O M P U T E | S T O R E | A N A L Y Z E

config const n = 10;

for f in fib(n) do
writeln(f);

Base Language Features, by example

27

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• arguments
• return types
• variables

Static Type Inference for:
• variables
• arguments
• return types

0
1
1
2
3
5
8
…

Static type inference for:
• arguments
• return types
• variables

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

28

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Zippered iteration

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

29

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

range types and
operators

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

Range types and
operators

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

30

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

tuples

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Base Language Features, by example

31

iter fib(n) {
var current = 0,

next = 1;

for i in 1..n {
yield current;
current += next;
current <=> next;

}
}

Copyright 2017 Cray Inc.

config const n = 10;

for (i,f) in zip(0..#n, fib(n)) do
writeln("fib #", i, " is ", f);

fib #0 is 0
fib #1 is 1
fib #2 is 1
fib #3 is 2
fib #4 is 3
fib #5 is 5
fib #6 is 8
…

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism

Copyright 2017 Cray Inc.
32

Task Parallelism
Base Language

Target Machine

Locality Control

Domain Maps
Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
33

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
34

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
35

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
36

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

Control	of	Locality/Affinity

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
37

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Abstraction	of
System	Resources

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
38

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

High-Level
Task	Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
39

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

Not	seen	here:

Data-centric	task	coordination
via	atomic	and	full/empty	vars

C O M P U T E | S T O R E | A N A L Y Z E

Task Parallelism, Locality Control, by example

Copyright 2017 Cray Inc.
40

taskParallel.chpl

coforall loc in Locales do
on loc {

const numTasks = here.maxTaskPar;
coforall tid in 1..numTasks do

writef("Hello from task %n of %n "+
"running on %s\n",

tid, numTasks, here.name);
}

prompt> chpl taskParallel.chpl –o taskParallel
prompt> ./taskParallel –-numLocales=2
Hello from task 1 of 2 running on n1033

Hello from task 2 of 2 running on n1032

Hello from task 2 of 2 running on n1033

Hello from task 1 of 2 running on n1032

C O M P U T E | S T O R E | A N A L Y Z E

Parallelism and Locality: Orthogonal in Chapel

Copyright 2017 Cray Inc.
41

● This is a parallel, but local program:

● This is a distributed, but serial program:

● This is a distributed parallel program:

writeln(“Hello from locale 0!”);
on Locales[1] do writeln(“Hello from locale 1!”);
on Locales[2] do writeln(“Hello from locale 2!”);

coforall i in 1..msgs do
writeln(“Hello from task ”, i);

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln(“Hello from task ”, i,

“ running on locale ”, here.id);

C O M P U T E | S T O R E | A N A L Y Z E
42

Task Parallelism
Base Language

Target Machine

Locality Control

Chapel language concepts

Copyright 2017 Cray Inc.

Higher-Level Features

Higher-level Chapel
Domain Maps

Data Parallelism

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2017 Cray Inc.
43

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2017 Cray Inc.
44

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chplDomains	(Index	Sets)

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2017 Cray Inc.
45

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Arrays

C O M P U T E | S T O R E | A N A L Y Z E

Data Parallelism, by example

Copyright 2017 Cray Inc.
46

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

config const n = 1000;

var D = {1..n, 1..n};

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Data-Parallel	Forall	Loops

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.
47

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

Domain	Maps	
(Map	Data Parallelism	to	the	System)

C O M P U T E | S T O R E | A N A L Y Z E

Distributed Data Parallelism, by example

Copyright 2017 Cray Inc.
48

prompt> chpl dataParallel.chpl –o dataParallel
prompt> ./dataParallel –-n=5 --numLocales=4
1.1 1.3 1.5 1.7 1.9

2.1 2.3 2.5 2.7 2.9

3.1 3.3 3.5 3.7 3.9

4.1 4.3 4.5 4.7 4.9

5.1 5.3 5.5 5.7 5.9

use CyclicDist;
config const n = 1000;

var D = {1..n, 1..n}
dmapped Cyclic(startIdx = (1,1));

var A: [D] real;
forall (i,j) in D do

A[i,j] = i + (j - 0.5)/n;

writeln(A);

dataParallel.chpl

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc.
49

üChapel Motivation and Background
üChapel in a Nutshell
ØChapel Project: Past, Present, Future

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s Origins: HPCS

Copyright 2017 Cray Inc.
50

DARPA HPCS: High Productivity Computing Systems
● Goal: improve productivity by a factor of 10x
● Timeframe: Summer 2002 – Fall 2012
● Cray developed a new system architecture, network, software stack…

● this became the very successful Cray XC30™ Supercomputer Series

…and a new programming language: Chapel
(at that point, essentially a research prototype)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel’s 5-year push

Copyright 2017 Cray Inc.
51

● Based on positive user response to Chapel under HPCS,
Cray undertook a five-year effort to improve it
● we’re just completing our fourth year

● Focus Areas:
1. Improving performance and scaling
2. Fixing immature aspects of the language and implementation

● e.g., strings, memory management and leaks, OOP, error handling, …
3. Porting to emerging architectures

● Intel Xeon Phi, accelerators, heterogeneous processors and memories, …
4. Improving interoperability
5. Growing the Chapel user and developer community

● including non-scientific computing communities
6. Exploring transition of Chapel governance to a neutral, external body

C O M P U T E | S T O R E | A N A L Y Z E

A Year in the Life of Chapel

Copyright 2017 Cray Inc.
52

● Two major releases per year (April / October)
● ~a month later: detailed release notes
● latest release: Chapel 1.15, released April 6th 2017

● release notes due to be published this week or next

● CHIUW: Chapel Implementers and Users Workshop (~June)
● (4th annual) CHIUW 2017, June 1-2 at IPDPS (Orlando, FL)
● talks from members of the broad community + a Chapel code camp

● SC (Nov)
● tutorials, panels, BoFs, posters, educator sessions, exhibits, …
● annual CHUG (Chapel Users Group) happy hour

● Talks, tutorials, research visits, blog posts, … (year-round)

C O M P U T E | S T O R E | A N A L Y Z E

Chapel is a Work-in-Progress

Copyright 2017 Cray Inc.
53

● Currently being picked up by early adopters
● ~3000+ downloads per year across two releases

● Users who try it generally like what they see

C O M P U T E | S T O R E | A N A L Y Z E

A notable early adopter

Copyright 2017 Cray Inc.
54

Chapel in the (Cosmological) Wild 1:00 – 2:00
Nikhil Padmanabhan, Yale University Professor, Physics & Astronomy

Abstract: This talk aims to present my personal experiences using Chapel in my
research. My research interests are in observational cosmology; more
specifically, I use large surveys of galaxies to constrain the evolution of the
Universe and to probe the physics underlying that evolution. Operationally, this
involves measuring a number of spatial statistics of the distribution of galaxies,
both on actual observations, but also on large numbers of simulated universes.
I'll start by presenting a whirlwind introduction to cosmology, the problems that
keep me up at night and our approaches to solving these. I'll then discuss what
attracted me to Chapel—the ability to prototype algorithms quickly and the
promised ease and flexibility of writing parallel programs. I'll then present a
worked example of Chapel being used in a real-world application, discussing
some of these aspects as well highlighting its interoperability with existing
libraries, as well as some of the challenges. I'll conclude with what it would take
for me to switch over to using Chapel all of the time.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Top 3 Historical Barriers to Use

Copyright 2017 Cray Inc.
55

3. Core Language Feature Improvements
● Historical problems that are now much better:

● strings, memory leaks, memory management
● Areas that have improved, but are still in-progress:

● initializers (constructor replacement), error-handling

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leak Improvements

Copyright 2017 Cray Inc.
56

● Effort in recent years has dramatically reduced leaks
● most remaining cases are due to user-level leaks in tests themselves

C O M P U T E | S T O R E | A N A L Y Z E

Chapel: Top 3 Traditional Barriers to Use

Copyright 2017 Cray Inc.
57

3. Core Language Feature Improvements
● Historical problems that are now much better:

● strings, memory leaks, memory management, interoperability, generics
● Areas that have improved, but are still in-progress:

● initializers (constructor replacement), error-handling

2. Access to Standard Libraries
● Situation has improved significantly over past few years

● Several core libraries added:
● BigInteger, BitOps, DateTime, FileSystem, Random, Reflection, Spawn, …

● As well as access to many standard libraries / technologies:
● BLAS, Curl, FFTW, Futures, HDFS, LAPACK, LinearAlgebra, MPI, ZMQ, …

1. Performance
● Particularly for old-school HPC users, performance is crucial
● That said, as of this month’s release, we’re reaching parity more often

C O M P U T E | S T O R E | A N A L Y Z E

Single-Locale Improvements in Execution Time

Copyright 2017 Cray Inc.
58

● Single-locale is increasingly on par with C / C++ / OpenMP

C O M P U T E | S T O R E | A N A L Y Z E

Computer Language Benchmarks Game (CLBG)

Copyright 2016 Cray Inc.
59

Website that supports cross-
language game / comparisons
● 13 toy benchmark programs
● exercises key features like:

● memory management
● tasking and synchronization
● vectorization
● big integers
● strings and regular expressions

● specific approach prescribed

Take results w/ grain of salt
● other programs may be different

● not to mention other programmers
● specific to this platform / OS / …

That said, it’s one of the only
games in town…

C O M P U T E | S T O R E | A N A L Y Z E

Computer Language Benchmarks Game (CLBG)

Copyright 2016 Cray Inc.
60

Chapel’s approach to CLBG:
● want to know how we compare
● strive for entries that are elegant

rather than heroic
● e.g., “Want to learn how program

x works? Check out the Chapel
version.”

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
61

Can sort results by execution time, code size, memory or CPU use:

gz == code size metric
strip comments and extra

whitespace, then gzip

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Chapel Standings as of Apr 20th

Copyright 2017 Cray Inc.
62

● 12 /13 programs in top-20 fastest:
● one #1 fastest:

pidigits

● 3 others in the top-5 fastest:
chameneos-redux
meteor-contest
thread-ring

● 3 others in the top-10 fastest:
fannkuch-redux
fasta
mandelbrot

● 5 others in the top-20 fastest:
binary-trees
k-nucleotide
n-body
regex-redux
spectral-norm

● 8 / 13 programs in top-20 smallest:
● two #1 smallest:

n-body
thread-ring

● 2 others in the top-5 smallest:
pidigits
spectral-norm

● 1 other in the top-10 smallest:
regex-redux

● 3 others in the top-20 smallest:
chameneos-redux
mandelbrot
meteor-contest

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
63

Can also compare languages pair-wise:

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
64

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz Chapel #2 entry excerpt from 2863 gz C gcc #5 entry

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
65

Can also browse program source code (but this requires actual thought):

excerpt from 1210 gz Chapel #2 entry excerpt from 2863 gz C gcc #5 entry

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
66

Site summary: relative performance (sorted by geometric mean)

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
67

● site has a sound philosophy about too-easy answers

● yet, most readers probably still jump to conclusions
● execution time dominates default (or only) views of results
● it’s simply human nature

● we’re interested in elegance as well as performance
● elegance is obviously in the eye of the beholder

● we compare source codes manually
● but then use CLBG’s code size metric as a quantitative stand-in

● want to be able to compare both axes simultaneously
● to that end, we used scatter plots to compare implementations

C O M P U T E | S T O R E | A N A L Y Z E

Chapel entries

Copyright 2017 Cray Inc.
68

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. 9 other languages

Copyright 2017 Cray Inc.
69

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. 9 other languages (zoomed out)

Copyright 2017 Cray Inc.
70

C C++ Fortran

Go Rust Swift

PythonScalaJava

C O M P U T E | S T O R E | A N A L Y Z E

Multi-locale Improvements in Execution Time

Copyright 2017 Cray Inc.
71

● Multi-locale performance is improving significantly as well

�
��
��
��
��
��
��
��

���� ���� ����

�
��
�
��
��
��
��
�

�������

���� ������ ����� ���� ����� ����������

�������������
����������

��������

�
��
���
���
���
���
���
���
���
���

���� ���� ����

�
��
�
��
��
��
��
�

�������

������ ������ �� �����

���������
�������������

����������

�
��
��
��
��
���
���
���
���

���� ���� ����

�
��
�
��
��
��
��
�

�������

����� ���� ��� �� ��������� ����

�������������
����������

�
�
��
��
��
��
��
��
��

���� ����

�
��
�
��
��
��
��
�

�������

��� ��������� �����������

���������
�������������

����������
��������

������

C O M P U T E | S T O R E | A N A L Y Z E

3 Key Multi-Locale Communication Benchmarks

Copyright 2017 Cray Inc.
72

STREAM Triad:
● measures embarrassingly / pleasingly parallel computation

RA:
● measures random updates to a large distributed array

ISx:
● measures bucket-exchange idiom

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Triad: Chapel vs. MPI Scalability

Copyright 2017 Cray Inc.
73

�

����

�����

�����

�����

�����

�� �� �� ��� ���

�
��
�

�������

����������� �� ������
���������������������

���������
���� ��

���� ��
���� ������

���� ������

C O M P U T E | S T O R E | A N A L Y Z E

RA: Chapel vs. MPI Scalability

Copyright 2017 Cray Inc.
74

�
���
���
���
���
�
���
���
���
���
�

�� �� �� ��� ���

�
�
��
�

�������

����������� �� �� ���������

��� ��� ������������ ��� ��� ��������� ���� ���

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Performance Summary

Copyright 2017 Cray Inc.
75

● Gathered on Cray XC with default problem size
● reference versions

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

MPI

SHMEM

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Performance Summary

Copyright 2017 Cray Inc.
76

● Gathered on Cray XC with default problem size
● adding Chapel, six months ago:

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

Chapel 1.14

MPI

SHMEM

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Performance Summary

Copyright 2017 Cray Inc.
77

● Gathered on Cray XC with default problem size
● adding Chapel, today:

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

Chapel 1.14

Chapel 1.15

MPI

SHMEM

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Performance Summary

Copyright 2017 Cray Inc.
78

● Gathered on Cray XC with default problem size
● dropping the old Chapel timings, and zooming in:

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64

Ti
m

e
(s

ec
on

ds
)

Nodes

ISx weakISO Total Time

Chapel 1.15

MPI

SHMEM

C O M P U T E | S T O R E | A N A L Y Z E

Overview Summary

Copyright 2017 Cray Inc.
79

● Chapel has nice features for parallelism and locality
● Traditional reasons for not using Chapel are falling away

● performance specifically is becoming less of a concern with time

● Aiming for a “version 2.0 release” over the near year or so
● intent: no further breaking changes after that point

C O M P U T E | S T O R E | A N A L Y Z E

High-level Questions about Chapel?

Copyright 2017 Cray Inc.
80

C O M P U T E | S T O R E | A N A L Y Z E

Full-size CLBG Scatter Plots

Copyright 2017 Cray Inc.
81

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C

Copyright 2017 Cray Inc.
82

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C (zoomed out)

Copyright 2017 Cray Inc.
83

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C++

Copyright 2017 Cray Inc.
84

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. C++ (zoomed out)

Copyright 2017 Cray Inc.
85

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Fortran

Copyright 2017 Cray Inc.
86

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Fortran (zoomed out)

Copyright 2017 Cray Inc.
87

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Go

Copyright 2017 Cray Inc.
88

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Go (zoomed out)

Copyright 2017 Cray Inc.
89

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Rust

Copyright 2017 Cray Inc.
90

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Rust (zoomed out)

Copyright 2017 Cray Inc.
91

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Swift

Copyright 2017 Cray Inc.
92

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Swift (zoomed out)

Copyright 2017 Cray Inc.
93

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Java

Copyright 2017 Cray Inc.
94

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Java (zoomed out)

Copyright 2017 Cray Inc.
95

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Scala

Copyright 2017 Cray Inc.
96

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Scala (zoomed out)

Copyright 2017 Cray Inc.
97

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Python

Copyright 2017 Cray Inc.
98

C O M P U T E | S T O R E | A N A L Y Z E

Chapel vs. Python (zoomed out)

Copyright 2017 Cray Inc.
99

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2017 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

10
0

