
Chapel Language Specification
Version 0.98

Cray Inc
901 Fifth Avenue, Suite 1000

Seattle, WA 98164

October 1, 2015

c©2015 Cray Inc.

Contents

1 Scope 13

2 Notation 14

3 Organization 16

4 Acknowledgments 18

5 Language Overview 19
5.1 Guiding Principles . 19
5.1.1 General Parallel Programming . 19
5.1.2 Locality-Aware Programming . 20
5.1.3 Object-Oriented Programming . 20
5.1.4 Generic Programming . 21
5.2 Getting Started . 21

6 Lexical Structure 22
6.1 Comments . 22
6.2 White Space . 22
6.3 Case Sensitivity . 22
6.4 Tokens . 22
6.4.1 Identifiers . 23
6.4.2 Keywords . 23
6.4.3 Literals . 24
6.4.4 Operators and Punctuation . 26
6.4.5 Grouping Tokens . 26

7 Types 28
7.1 Primitive Types . 28
7.1.1 The Void Type . 29
7.1.2 The Bool Type . 29
7.1.3 Signed and Unsigned Integral Types . 29
7.1.4 Real Types . 30
7.1.5 Imaginary Types . 30
7.1.6 Complex Types . 30
7.1.7 The String Type . 30
7.2 Enumerated Types . 31
7.3 Structured Types . 32
7.3.1 Class Types . 32
7.3.2 Record Types . 32
7.3.3 Union Types . 32
7.3.4 Tuple Types . 32
7.4 Data Parallel Types . 33
7.4.1 Range Types . 33
7.4.2 Domain, Array, and Index Types . 33
7.5 Synchronization Types . 33

3

Chapel Language Specification 4

7.6 Type Aliases . 34

8 Variables 35
8.1 Variable Declarations . 35
8.1.1 Default Initialization . 36
8.1.2 Deferred Initialization . 37
8.1.3 Local Type Inference . 37
8.1.4 Multiple Variable Declarations . 37
8.2 Module Level Variables . 38
8.3 Local Variables . 39
8.4 Constants . 39
8.4.1 Compile-Time Constants . 39
8.4.2 Runtime Constants . 40
8.5 Configuration Variables . 40

9 Conversions 41
9.1 Implicit Conversions . 41
9.1.1 Implicit Numeric, Bool and Enumeration Conversions . 42
9.1.2 Implicit Compile-Time Constant Conversions . 43
9.1.3 Implicit Statement Bool Conversions . 43
9.2 Explicit Conversions . 43
9.2.1 Explicit Numeric Conversions . 43
9.2.2 Explicit Tuple to Complex Conversion . 44
9.2.3 Explicit Enumeration Conversions . 44
9.2.4 Explicit Class Conversions . 45
9.2.5 Explicit Record Conversions . 45

10 Expressions 46
10.1 Literal Expressions . 47
10.2 Variable Expressions . 47
10.3 Enumeration Constant Expression . 47
10.4 Parenthesized Expressions . 47
10.5 Call Expressions . 48
10.6 Indexing Expressions . 48
10.7 Member Access Expressions . 48
10.8 The Query Expression . 48
10.9 Casts . 49
10.10 LValue Expressions . 49
10.11 Precedence and Associativity . 50
10.12 Operator Expressions . 52
10.13 Arithmetic Operators . 52
10.13.1 Unary Plus Operators . 52
10.13.2 Unary Minus Operators . 53
10.13.3 Addition Operators . 53
10.13.4 Subtraction Operators . 54
10.13.5 Multiplication Operators . 55
10.13.6 Division Operators . 56
10.13.7 Modulus Operators . 57
10.13.8 Exponentiation Operators . 57
10.14 Bitwise Operators . 58
10.14.1 Bitwise Complement Operators . 58

Chapel Language Specification 5

10.14.2 Bitwise And Operators . 58
10.14.3 Bitwise Or Operators . 59
10.14.4 Bitwise Xor Operators . 59
10.15 Shift Operators . 59
10.16 Logical Operators . 60
10.16.1 The Logical Negation Operator . 60
10.16.2 The Logical And Operator . 61
10.16.3 The Logical Or Operator . 61
10.17 Relational Operators . 61
10.17.1 Ordered Comparison Operators . 62
10.17.2 Equality Comparison Operators . 63
10.18 Miscellaneous Operators . 64
10.18.1 The String Concatenation Operator . 64
10.18.2 The By Operator . 65
10.18.3 The Range Count Operator . 65
10.19 Let Expressions . 65
10.20 Conditional Expressions . 65
10.21 For Expressions . 66
10.21.1 Filtering Predicates in For Expressions . 66

11 Statements 67
11.1 Blocks . 68
11.2 Expression Statements . 68
11.3 Assignment Statements . 69
11.4 The Swap Statement . 70
11.5 The I/O Statement . 70
11.6 The Conditional Statement . 71
11.7 The Select Statement . 71
11.8 The While Do and Do While Loops . 72
11.9 The For Loop . 74
11.9.1 Zipper Iteration . 74
11.9.2 Parameter For Loops . 75
11.10 The Break, Continue and Label Statements . 75
11.11 The Use Statement . 76
11.12 The Empty Statement . 76

12 Modules 77
12.1 Module Definitions . 77
12.2 Files and Implicit Modules . 77
12.3 Nested Modules . 78
12.4 Access of Module Contents . 79
12.4.1 Visibility Of A Module . 79
12.4.2 Visibility Of A Module’s Symbols . 79
12.4.3 Explicit Naming . 79
12.4.4 Using Modules . 81
12.4.5 Module Initialization . 82
12.5 Program Execution . 82
12.5.1 The main Function . 82
12.5.2 Module Initialization Order . 83

Chapel Language Specification 6

13 Procedures 85
13.1 Function Calls . 85
13.2 Procedure Definitions . 86
13.3 Functions without Parentheses . 88
13.4 Formal Arguments . 88
13.4.1 Named Arguments . 89
13.4.2 Default Values . 89
13.5 Argument Intents . 90
13.5.1 Concrete Intents . 90

The In Intent . 90
The Out Intent . 90
The Inout Intent . 90
The Ref Intent . 90
The Const In Intent . 91
The Const Ref Intent . 91
Summary of Concrete Intents . 91

13.5.2 Abstract Intents . 91
The Const Intent . 91
The Default Intent . 92

13.6 Variable Number of Arguments . 93
13.7 Return Intents . 93
13.7.1 The Ref Return Intent . 94
13.7.2 The Param Return Intent . 94
13.7.3 The Type Return Intent . 95
13.8 The Return Statement . 95
13.9 Return Types . 96
13.9.1 Explicit Return Types . 96
13.9.2 Implicit Return Types . 96
13.10 Nested Functions . 96
13.11 Function and Operator Overloading . 97
13.12 Function Resolution . 97
13.12.1 Determining Visible Functions . 97
13.12.2 Determining Candidate Functions . 98

Valid Mapping . 98
Legal Argument Mapping . 98

13.12.3 Determining More Specific Functions . 98

14 Tuples 100
14.1 Tuple Types . 100
14.2 Tuple Values . 101
14.3 Tuple Indexing . 102
14.4 Iteration over Tuples . 102
14.5 Tuple Assignment . 102
14.6 Tuple Destructuring . 103
14.6.1 Splitting a Tuple with Assignment . 103
14.6.2 Splitting a Tuple in a Declaration . 104
14.6.3 Splitting a Tuple into Multiple Indices of a Loop . 105
14.6.4 Splitting a Tuple into Multiple Formal Arguments in a Function Call 105
14.6.5 Splitting a Tuple via Tuple Expansion . 106
14.7 Tuple Operators . 107
14.7.1 Unary Operators . 107

Chapel Language Specification 7

14.7.2 Binary Operators . 107
14.7.3 Relational Operators . 107
14.8 Predefined Functions and Methods on Tuples . 108

15 Classes 109
15.1 Class Declarations . 109
15.1.1 Class Types . 110
15.1.2 Class Values . 110
15.1.3 Class Fields . 111
15.1.4 Class Methods . 111
15.1.5 Nested Classes . 112
15.2 Inheritance . 112
15.2.1 The object Class . 112
15.2.2 Accessing Base Class Fields . 112
15.2.3 Derived Class Constructors . 113
15.2.4 Shadowing Base Class Fields . 113
15.2.5 Overriding Base Class Methods . 113
15.2.6 Inheriting from Multiple Classes . 113
15.2.7 The nil Value . 114
15.2.8 Default Initialization . 114
15.3 Class Constructors . 114
15.3.1 User-Defined Constructors . 114
15.3.2 The Compiler-Generated Constructor . 115
15.4 Field Accesses . 116
15.4.1 Variable Getter Methods . 116
15.5 Class Method Calls . 117
15.5.1 The Method Receiver and the this Argument . 117
15.6 The this Method . 118
15.7 The these Method . 119
15.8 Common Operations . 119
15.8.1 Class Assignment . 119
15.8.2 Implicit Class Conversions . 119
15.9 Dynamic Memory Management . 120
15.9.1 Class Destructor . 120

16 Records 121
16.1 Record Declarations . 121
16.1.1 Record Types . 122
16.1.2 Record Fields . 123
16.1.3 Record Methods . 123
16.1.4 Nested Record Types . 123
16.2 Record Inheritance . 123
16.2.1 Shadowing Base Record Fields . 124
16.2.2 Overriding Base Record Methods . 124
16.3 Record Variable Declarations . 124
16.3.1 Storage Allocation . 125
16.3.2 Record Initialization . 125
16.3.3 Record Destructor . 126
16.4 Record Arguments . 126
16.5 Record Field Access . 127
16.5.1 Field Getter Methods . 127

Chapel Language Specification 8

16.6 Record Method Calls . 127
16.6.1 The Method Receiver and the this Argument . 127
16.7 The this Method . 128
16.8 The these Method . 128
16.9 Common Operations . 128
16.9.1 Record Assignment . 128
16.9.2 Default Comparison Operators . 129
16.9.3 Implicit Record Conversions . 129
16.10 Differences between Classes and Records . 129
16.10.1 Declarations . 129
16.10.2 Storage Allocation . 130
16.10.3 Assignment . 130
16.10.4 Arguments . 130
16.10.5 Inheritance . 130
16.10.6 Shadowing and Overriding . 131
16.10.7 No nil Value . 131
16.10.8 The delete operator . 131
16.10.9 Default Comparison Operators . 131

17 Unions 132
17.1 Union Types . 132
17.2 Union Declarations . 132
17.2.1 Union Fields . 132
17.3 Union Assignment . 133

18 Ranges 134
18.1 Range Concepts . 134
18.2 Range Types . 136
18.3 Range Values . 137
18.3.1 Range Literals . 137
18.3.2 Default Values . 138
18.4 Common Operations . 138
18.4.1 Range Assignment . 139
18.4.2 Range Comparisons . 139
18.4.3 Iterating over Ranges . 139

Iterating over Unbounded Ranges in Zippered Iterations . 139
18.5 Range Operators . 140
18.5.1 By Operator . 140
18.5.2 Align Operator . 141
18.5.3 Count Operator . 142
18.5.4 Arithmetic Operators . 143
18.5.5 Range Slicing . 143
18.6 Predefined Functions on Ranges . 144
18.6.1 Range Type Parameters . 144
18.6.2 Range Properties . 144
18.6.3 Other Queries . 146
18.6.4 Range Transformations . 147

Chapel Language Specification 9

19 Domains 148
19.1 Domain Overview . 148
19.2 Base Domain Types and Values . 149
19.2.1 Rectangular Domains . 149

Rectangular Domain Types . 149
Rectangular Domain Values . 150

19.2.2 Associative Domains . 151
Associative Domain Types . 151
Associative Domain Values . 152

19.3 Simple Subdomain Types and Values . 153
19.3.1 Simple Subdomain Types . 153
19.3.2 Simple Subdomain Values . 153
19.4 Sparse Subdomain Types and Values . 154
19.4.1 Sparse Subdomain Types . 154
19.4.2 Sparse Subdomain Values . 154
19.5 Domain Index Types . 154
19.6 Iteration Over Domains . 155
19.7 Domains as Arguments . 155
19.7.1 Formal Arguments of Domain Type . 155
19.7.2 Domain Promotion of Scalar Functions . 156
19.8 Domain Operations . 156
19.8.1 Domain Assignment . 156
19.8.2 Domain Striding . 157
19.8.3 Domain Slicing . 157

Domain-based Slicing . 157
Range-based Slicing . 158
Rank-Change Slicing . 158

19.8.4 Count Operator . 158
19.8.5 Adding and Removing Domain Indices . 158
19.9 Predefined Methods on Domains . 159
19.9.1 Methods on All Domain Types . 159
19.9.2 Methods on Regular Domains . 160
19.9.3 Methods on Irregular Domains . 161

20 Arrays 162
20.1 Array Types . 162
20.2 Array Values . 162
20.2.1 Rectangular Array Literals . 163
20.2.2 Associative Array Literals . 163
20.2.3 Runtime Representation of Array Values . 164
20.3 Array Indexing . 164
20.3.1 Rectangular Array Indexing . 164
20.3.2 Associative Array Indexing . 165
20.4 Iteration over Arrays . 166
20.5 Array Assignment . 166
20.6 Array Slicing . 167
20.6.1 Rectangular Array Slicing . 167
20.6.2 Rectangular Array Slicing with a Rank Change . 167
20.7 Count Operator . 168
20.8 Array Arguments to Functions . 168
20.8.1 Array Promotion of Scalar Functions . 168

Chapel Language Specification 10

20.9 Array Aliases . 168
20.10 Sparse Arrays . 169
20.11 Association of Arrays to Domains . 170
20.12 Predefined Functions and Methods on Arrays . 170

21 Iterators 172
21.1 Iterator Definitions . 172
21.2 The Yield Statement . 172
21.3 Iterator Calls . 173
21.3.1 Iterators in For and Forall Loops . 173
21.3.2 Iterators as Arrays . 173
21.3.3 Iterators and Generics . 174
21.3.4 Recursive Iterators . 174
21.4 Parallel Iterators . 174

22 Generics 175
22.1 Generic Functions . 175
22.1.1 Formal Type Arguments . 175
22.1.2 Formal Parameter Arguments . 176
22.1.3 Formal Arguments without Types . 176
22.1.4 Formal Arguments with Queried Types . 176
22.1.5 Formal Arguments of Generic Type . 177
22.1.6 Formal Arguments of Generic Array Types . 178
22.2 Function Visibility in Generic Functions . 179
22.3 Generic Types . 180
22.3.1 Type Aliases in Generic Types . 180
22.3.2 Parameters in Generic Types . 181
22.3.3 Fields without Types . 181
22.3.4 The Type Constructor . 182
22.3.5 Generic Methods . 182
22.3.6 The Compiler-Generated Constructor . 182
22.3.7 User-Defined Constructors . 183
22.4 Where Expressions . 183
22.5 User-Defined Compiler Diagnostics . 184
22.6 Example: A Generic Stack . 185

23 Input and Output 186
23.1 See Library Documentation . 186

24 Task Parallelism and Synchronization 187
24.1 Tasks and Task Parallelism . 187
24.2 The Begin Statement . 188
24.3 Synchronization Variables . 188
24.3.1 Predefined Single and Sync Methods . 190
24.4 Atomic Variables . 192
24.4.1 Predefined Atomic Methods . 192
24.5 The Cobegin Statement . 194
24.6 The Coforall Loop . 194
24.7 Task Intents . 195
24.8 The Sync Statement . 197
24.9 The Serial Statement . 197
24.10 Atomic Statements . 198

Chapel Language Specification 11

25 Data Parallelism 200
25.1 The Forall Statement . 200
25.1.1 Syntax . 200
25.1.2 Execution and Serializability . 201
25.1.3 Zipper Iteration . 201
25.2 The Forall Expression . 201
25.2.1 Syntax . 202
25.2.2 Execution and Serializability . 202
25.2.3 Zipper Iteration . 202
25.2.4 Filtering Predicates in Forall Expressions . 202
25.3 Forall Intents . 203
25.4 Promotion . 203
25.4.1 Zipper Promotion . 204
25.4.2 Whole Array Assignment . 204
25.4.3 Evaluation Order . 204
25.5 Reductions and Scans . 205
25.5.1 Reduction Expressions . 205
25.5.2 Scan Expressions . 206
25.6 Configuration Constants for Default Data Parallelism . 207

26 Locales 208
26.1 Locales . 208
26.1.1 Locale Types . 208
26.1.2 Locale Methods . 208
26.1.3 The Predefined Locales Array . 209
26.1.4 The here Locale . 210
26.1.5 Querying the Locale of an Expression . 210
26.2 The On Statement . 211
26.2.1 Remote Variable Declarations . 211

27 Domain Maps 212
27.1 Domain Maps for Domain Types . 212
27.2 Domain Maps for Domain Values . 214
27.3 Domain Maps for Arrays . 214
27.4 Domain Maps Are Not Retained upon Domain Assignment . 215

28 User-Defined Reductions and Scans 216

29 Memory Consistency Model 217
29.1 Sequential Consistency for Data-Race-Free Programs . 217
29.1.1 Program Order . 219
29.1.2 Memory Order . 219
29.2 Non-Sequentially Consistent Atomic Operations . 220
29.2.1 Relaxed Atomic Operations . 220
29.3 Unordered Memory Operations . 220
29.3.1 Unordered Memory Operations Examples . 221
29.4 Examples . 222

Chapel Language Specification 12

30 Interoperability 224
30.1 Interoperability Overview . 224
30.1.1 Calling External Functions . 224
30.1.2 Calling Chapel Functions . 225
30.2 Shared Language Elements . 226
30.2.1 Shared Types . 226

Referring to Standard C Types . 226
Referring to External C Types . 227
Referring to External C Structs . 227
Referring to External Structs Through Pointers . 228
Opaque Types . 229

30.2.2 Shared Data . 229
30.2.3 Shared Procedures . 229

Calling External C Functions . 230
30.2.4 Calling Chapel Procedures Externally . 231
30.2.5 Argument Passing . 231

A Collected Lexical and Syntax Productions 232
A.1 Alphabetical Lexical Productions . 232
A.2 Alphabetical Syntax Productions . 234
A.3 Depth-First Lexical Productions . 249
A.4 Depth-First Syntax Productions . 251

Index 267

1 Scope

Chapel is a new parallel programming language that is under development at Cray Inc. in the context of the DARPA
High Productivity Computing Systems initiative.

This document is ultimately intended to be the definitive specification of the Chapel language. The current draft is a
work-in-progress and therefore incomplete.

13

2 Notation

Special notations are used in this specification to denote Chapel code and to denote Chapel syntax.

Chapel code is represented with a fixed-width font where keywords are bold and comments are italicized.

Example.

for i in D do // iterate over domain D
writeln(i); // output indices in D

Chapel syntax is represented with standard syntax notation in which productions define the syntax of the language. A
production is defined in terms of non-terminal (italicized) and terminal (non-italicized) symbols. The complete syntax
defines all of the non-terminal symbols in terms of one another and terminal symbols.

A definition of a non-terminal symbol is a multi-line construct. The first line shows the name of the non-terminal that
is being defined followed by a colon. The next lines before an empty line define the alternative productions to define
the non-terminal.

Example. The production

bool-literal:
true
false

defines bool-literal to be either the symbol true or false.

In the event that a single line of a definition needs to break across multiple lines of text, more indentation is used to
indicate that it is a continuation of the same alternative production.

As a short-hand for cases where there are many alternatives that define one symbol, the first line of the definition of
the non-terminal may be followed by “one of” to indicate that the single line in the production defines alternatives for
each symbol.

Example. The production

unary-operator: one of
+ - ˜ !

is equivalent to

unary-operator:
+
-
˜
!

14

Notation 15

As a short-hand to indicate an optional symbol in the definition of a production, the subscript “opt” is suffixed to the
symbol.

Example. The production

formal:
formal-tag identifier formal-typeopt default-expressionopt

is equivalent to

formal:
formal-tag identifier formal-type default-expression
formal-tag identifier formal-type
formal-tag identifier default-expression
formal-tag identifier

3 Organization

This specification is organized as follows:

• Chapter 1, Scope, describes the scope of this specification.

• Chapter 2, Notation, introduces the notation that is used throughout this specification.

• Chapter 3, Organization, describes the contents of each of the chapters within this specification.

• Chapter 4, Acknowledgements, offers a note of thanks to people and projects.

• Chapter 5, Language Overview, describes Chapel at a high level.

• Chapter 6, Lexical Structure, describes the lexical components of Chapel.

• Chapter 7, Types, describes the types in Chapel and defines the primitive and enumerated types.

• Chapter 8, Variables, describes variables and constants in Chapel.

• Chapter 9, Conversions, describes the legal implicit and explicit conversions allowed between values of different
types. Chapel does not allow for user-defined conversions.

• Chapter 10, Expressions, describes the non-parallel expressions in Chapel.

• Chapter 11, Statements, describes the non-parallel statements in Chapel.

• Chapter 12, Modules, describes modules in Chapel., Chapel modules allow for name space management.

• Chapter 13, Functions, describes functions and function resolution in Chapel.

• Chapter 14, Tuples, describes tuples in Chapel.

• Chapter 15, Classes, describes reference classes in Chapel.

• Chapter 16, Records, describes records or value classes in Chapel.

• Chapter 17, Unions, describes unions in Chapel.

• Chapter 18, Ranges, describes ranges in Chapel.

• Chapter 19, Domains, describes domains in Chapel. Chapel domains are first-class index sets that support the
description of iteration spaces, array sizes and shapes, and sets of indices.

• Chapter 20, Arrays, describes arrays in Chapel. Chapel arrays are more general than in most languages including
support for multidimensional, sparse, associative, and unstructured arrays.

• Chapter 21, Iterators, describes iterator functions.

• Chapter 22, Generics, describes Chapel’s support for generic functions and types.

• Chapter 23, Input and Output, describes support for input and output in Chapel, including file input and output..

• Chapter 24, Task Parallelism and Synchronization, describes task-parallel expressions and statements in Chapel
as well as synchronization constructs, atomic variables, and the atomic statement.

16

Organization 17

• Chapter 25, Data Parallelism, describes data-parallel expressions and statements in Chapel including reductions
and scans, whole array assignment, and promotion.

• Chapter 26, Locales, describes constructs for managing locality and executing Chapel programs on distributed-
memory systems.

• Chapter 27, Domain Maps, describes Chapel’s domain map construct for defining the layout of domains and
arrays within a single locale and/or the distribution of domains and arrays across multiple locales.

• Chapter 28, User-Defined Reductions and Scans, describes how Chapel programmers can define their own
reduction and scan operators.

• Chapter 29, Memory Consistency Model, describes Chapel’s rules for ordering the reads and writes performed
by a program’s tasks.

• Chapter 30 describes Chapel’s interoperability features for combining Chapel programs with code written in
different languages.

• Appendix A, Collected Lexical and Syntax Productions, contains the syntax productions listed throughout this
specification in both alphabetical and depth-first order.

4 Acknowledgments

The following people have been actively involved in the recent evolution of the Chapel language and its specification:
Kyle Brady, Bradford Chamberlain, Sung-Eun Choi, Lydia Duncan, Michael Ferguson, Ben Harshbarger, Tom Hilde-
brandt, David Iten, Vassily Litvinov, Tom MacDonald, Michael Noakes, Elliot Ronaghan, Greg Titus, Thomas Van
Doren, and Tim Zakian

The following people have contributed to previous versions of the language and its specification: Robert Bocchino,
David Callahan, Steven Deitz, Roxana Diaconescu, James Dinan, Samuel Figueroa, Shannon Hoffswell, Mary Beth
Hribar, Mark James, Mackale Joyner, Jacob Nelson, John Plevyak, Lee Prokowich, Albert Sidelnik, Andy Stone,
Wayne Wong, and Hans Zima.

We are also grateful to our many enthusiastic and vocal users for helping us continually improve the quality of the
Chapel language and compiler.

Chapel is a derivative of a number of parallel and distributed languages and takes ideas directly from them, especially
the MTA extensions of C, HPF, and ZPL.

Chapel also takes many serial programming ideas from many other programming languages, especially C#, C++, Java,
Fortran, and Ada.

The preparation of this specification was made easier and the final result greatly improved because of the good work
that went in to the creation of other language standards and specifications, in particular the specifications of C# and
C.

18

5 Language Overview

Chapel is an emerging parallel programming language designed for productive scalable computing. Chapel’s pri-
mary goal is to make parallel programming far more productive, from multicore desktops and laptops to commodity
clusters and the cloud to high-end supercomputers. Chapel’s design and development are being led by Cray Inc. in
collaboration with academia, computing centers, and industry.

Chapel is being developed in an open-source manner at GitHub under the Apache v2.0 license and also makes use of
other third-party open-source packages under their own licenses. Chapel emerged from Cray’s entry in the DARPA-led
High Productivity Computing Systems program (HPCS). It is currently being hardened from that initial prototype to
more of a product-grade implementation.

This section provides a brief overview of the Chapel language by discussing first the guiding principles behind the
design of the language and second how to get started with Chapel.

5.1 Guiding Principles

The following four principles guided the design of Chapel:

1. General parallel programming

2. Locality-aware programming

3. Object-oriented programming

4. Generic programming

The first two principles were motivated by a desire to support general, performance-oriented parallel programming
through high-level abstractions. The second two principles were motivated by a desire to narrow the gulf between
high-performance parallel programming languages and mainstream programming and scripting languages.

5.1.1 General Parallel Programming

First and foremost, Chapel is designed to support general parallel programming through the use of high-level language
abstractions. Chapel supports a global-view programming model that raises the level of abstraction in expressing both
data and control flow as compared to parallel programming models currently in use. A global-view programming
model is best defined in terms of global-view data structures and a global view of control.

Global-view data structures are arrays and other data aggregates whose sizes and indices are expressed globally even
though their implementations may distribute them across the locales of a parallel system. A locale is an abstraction
of a unit of uniform memory access on a target architecture. That is, within a locale all threads exhibit similar access
times to any specific memory address. For example, a locale in a commodity cluster could be defined to be a single
core of a processor, a multicore processor, or an SMP node of multiple processors.

19

Language Overview 20

Such a global view of data contrasts with most parallel languages which tend to require users to partition distributed
data aggregates into per-processor chunks either manually or using language abstractions. As a simple example,
consider creating a 0-based vector with n elements distributed between p locales. A language that supports global-
view data structures, as Chapel does, allows the user to declare the array to contain n elements and to refer to the array
using the indices 0 . . . n− 1. In contrast, most traditional approaches require the user to declare the array as p chunks
of n/p elements each and to specify and manage inter-processor communication and synchronization explicitly (and
the details can be messy if p does not divide n evenly). Moreover, the chunks are typically accessed using local indices
on each processor (e.g., 0..n/p), requiring the user to explicitly translate between logical indices and those used by the
implementation.

A global view of control means that a user’s program commences execution with a single logical thread of control
and then introduces additional parallelism through the use of certain language concepts. All parallelism in Chapel
is implemented via multithreading, though these threads are created via high-level language concepts and managed
by the compiler and runtime rather than through explicit fork/join-style programming. An impact of this approach
is that Chapel can express parallelism that is more general than the Single Program, Multiple Data (SPMD) model
that today’s most common parallel programming approaches use. Chapel’s general support for parallelism does not
preclude users from coding in an SPMD style if they wish.

Supporting general parallel programming also means targeting a broad range of parallel architectures. Chapel is de-
signed to target a wide spectrum of HPC hardware including clusters of commodity processors and SMPs; vector, mul-
tithreading, and multicore processors; custom vendor architectures; distributed-memory, shared-memory, and shared
address-space architectures; and networks of any topology. Our portability goal is to have any legal Chapel program
run correctly on all of these architectures, and for Chapel programs that express parallelism in an architecturally-
neutral way to perform reasonably on all of them. Naturally, Chapel programmers can tune their code to more closely
match a particular machine’s characteristics.

5.1.2 Locality-Aware Programming

A second principle in Chapel is to allow the user to optionally and incrementally specify where data and computation
should be placed on the physical machine. Such control over program locality is essential to achieve scalable perfor-
mance on distributed-memory architectures. Such control contrasts with shared-memory programming models which
present the user with a simple flat memory model. It also contrasts with SPMD-based programming models in which
such details are explicitly specified by the programmer on a process-by-process basis via the multiple cooperating
program instances.

5.1.3 Object-Oriented Programming

A third principle in Chapel is support for object-oriented programming. Object-oriented programming has been in-
strumental in raising productivity in the mainstream programming community due to its encapsulation of related data
and functions within a single software component, its support for specialization and reuse, and its use as a clean mech-
anism for defining and implementing interfaces. Chapel supports objects in order to make these benefits available in
a parallel language setting, and to provide a familiar coding paradigm for members of the mainstream programming
community. Chapel supports traditional reference-based classes as well as value classes that are assigned and passed
by value.

Language Overview 21

5.1.4 Generic Programming

Chapel’s fourth principle is support for generic programming and polymorphism. These features allow code to be
written in a style that is generic across types, making it applicable to variables of multiple types, sizes, and precisions.
The goal of these features is to support exploratory programming as in popular interpreted and scripting languages, and
to support code reuse by allowing algorithms to be expressed without explicitly replicating them for each possible type.
This flexibility at the source level is implemented by having the compiler create versions of the code for each required
type signature rather than by relying on dynamic typing which would result in unacceptable runtime overheads for the
HPC community.

5.2 Getting Started

A Chapel version of the standard “hello, world” computation is as follows:

writeln("hello, world");

This complete Chapel program contains a single line of code that makes a call to the standard writeln function.

In general, Chapel programs define code using one or more named modules, each of which supports top-level initial-
ization code that is invoked the first time the module is used. Programs also define a single entry point via a function
named main. To facilitate exploratory programming, Chapel allows programmers to define modules using files rather
than an explicit module declaration and to omit the program entry point when the program only has a single user
module.

Chapel code is stored in files with the extension .chpl. Assuming the “hello, world” program is stored in a file
called hello.chpl, it would define a single user module, hello, whose name is taken from the filename. Since the
file defines a module, the top-level code in the file defines the module’s initialization code. And since the program
is composed of the single hello module, the main function is omitted. Thus, when the program is executed, the
single hello module will be initialized by executing its top-level code thus invoking the call to the writeln function.
Modules are described in more detail in §12.

To compile and run the “hello world” program, execute the following commands at the system prompt:

> chpl hello.chpl
> ./a.out

The following output will be printed to the console:

hello, world

6 Lexical Structure

This section describes the lexical components of Chapel programs. The purpose of lexical analysis is to separate the
raw input stream into a sequence of tokens suitable for input to the parser.

6.1 Comments

Two forms of comments are supported. All text following the consecutive characters // and before the end of the line
is in a comment. All text following the consecutive characters /* and before the consecutive characters */ is in a
comment. A comment delimited by /* and */ can be nested in another comment delimited by /* and */

Comments, including the characters that delimit them, do not affect the behavior of the program (except in delimiting
tokens). If the delimiters that start the comments appear within a string literal, they do not start a comment but rather
are part of the string literal.

Example. The following program makes use of both forms of comment:

/*
* main function

*/
proc main() {

writeln("hello, world"); // output greeting with new line
}

6.2 White Space

White-space characters are spaces, tabs, line feeds, form feeds, and carriage returns. Along with comments, they
delimit tokens, but are otherwise ignored.

6.3 Case Sensitivity

Chapel is a case sensitive language.

Example. The following identifiers are considered distinct: chapel, Chapel, and CHAPEL.

6.4 Tokens

Tokens include identifiers, keywords, literals, operators, and punctuation.

22

Lexical Structure 23

6.4.1 Identifiers

An identifier in Chapel is a sequence of characters that starts with a lowercase or uppercase letter or an underscore and
is optionally followed by a sequence of lowercase or uppercase letters, digits, underscores, and dollar-signs. Identifiers
are designated by the following syntax:

identifier:
letter-or-underscore legal-identifier-charsopt

legal-identifier-chars:
legal-identifier-char legal-identifier-charsopt

legal-identifier-char:
letter-or-underscore
digit
$

letter-or-underscore:
letter

letter: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

digit: one of
0 1 2 3 4 5 6 7 8 9

Rationale. Why include “$” in the language? The inclusion of the $ character is meant to assist program-
mers using sync and single variables by supporting a convention (a $ at the end of such variables) in order
to help write properly synchronized code. It is felt that marking such variables is useful since using such
variables could result in deadlocks.

Example. The following are legal identifiers: Cray1, syncvar$, legalIdentifier, and legal_identifier.

6.4.2 Keywords

The following identifiers are reserved as keywords:

_
align
atomic
begin
break
by
class
cobegin
coforall
config
const
continue
delete

dmapped
do
domain
else
enum
export
extern
for
forall
if
in
index
inline

inout
iter
label
let
local
module
new
nil
noinit
on
otherwise
out
param

private
proc
public
record
reduce
ref
return
scan
select
serial
single
sparse

subdomain
sync
then
type
union
use
var
when
where
while
yield
zip

otherwise otherwise otherwise otherwise otherwise otherwise

Lexical Structure 24

The following identifiers are keywords reserved for future use:

lambda

otherwise

6.4.3 Literals

Bool literals are designated by the following syntax:

bool-literal: one of
true false

Signed and unsigned integer literals are designated by the following syntax:

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
0o octal-digits
0O octal-digits
0b binary-digits
0B binary-digits

digits:
digit
digit digits

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

octal-digits:
octal-digit
octal-digit octal-digits

octal-digit: one of
0 1 2 3 4 5 6 7

binary-digits:
binary-digit
binary-digit binary-digits

binary-digit: one of
0 1

Integer literals in the range 0 to max(int), §7.1.3, have type int and the remaining literals have type uint.

Rationale. Why are there no suffixes on integral literals? Suffixes, like those in C, are not necessary.
Explicit conversions can then be used to change the type of the literal to another integer size.

Lexical Structure 25

Real literals are designated by the following syntax:

real-literal:
digitsopt . digits exponent-partopt

digits .opt exponent-part
0x hexadecimal-digitsopt . digits p-exponent-partopt

0X hexadecimal-digitsopt . digits p-exponent-partopt

0x hexadecimal-digits .opt p-exponent-part
0X hexadecimal-digits .opt p-exponent-part

exponent-part:
e signopt digits
E signopt digits

p-exponent-part:
p signopt digits
P signopt digits

sign: one of
+ -

Rationale. Why can’t a real literal end with ’.’? There is a lexical ambiguity between real literals ending
in ’.’ and the range operator ’..’ that makes it difficult to parse. For example, we want to parse 1..10 as
a range from 1 to 10 without concern that 1. is a real literal.

Hexadecimal real literals are supported with a hexadecimal integer and fractional part. Because ’e’ could be a hex-
adecimal character, the exponent for these literals is instead marked with ’p’ or ’P’. The exponent value follows and is
written in decimal.

The type of a real literal is real. Explicit conversions are necessary to change the size of the literal.

Imaginary literals are designated by the following syntax:

imaginary-literal:
real-literal i
integer-literal i

The type of an imaginary literal is imag. Explicit conversions are necessary to change the size of the literal.

There are no complex literals. Rather, a complex value can be specified by adding or subtracting a real literal with an
imaginary literal. Alternatively, a 2-tuple of integral or real expressions can be cast to a complex such that the first
component becomes the real part and the second component becomes the imaginary part.

Example. The following expressions are identical: 1.0 + 2.0i and (1.0, 2.0):complex.

String literals are designated by the following syntax:

Lexical Structure 26

string-literal:
” double-quote-delimited-charactersopt ”
’ single-quote-delimited-charactersopt ’

double-quote-delimited-characters:
string-character double-quote-delimited-charactersopt

’ double-quote-delimited-charactersopt

single-quote-delimited-characters:
string-character single-quote-delimited-charactersopt

” single-quote-delimited-charactersopt

string-character:
any character except the double quote, single quote, or new line
simple-escape-character
hexadecimal-escape-character

simple-escape-character: one of
\’ \” \? \a \b \f \n \r \t \v

hexadecimal-escape-character:
\x hexadecimal-digits

6.4.4 Operators and Punctuation

The following operators and punctuation are defined in the syntax of the language:

symbols use
= assignment
+= -= *= /= **= %= &= |= ˆ= &&= ||= <<= >>= compound assignment
<=> swap
.. range specifier
by range/domain stride specifier
range count operator
... variable argument lists
&& || ! & | ˆ ˜ << >> logical/bitwise operators
== != <= >= < > relational operators
+ - * / % ** arithmetic operators
: type specifier
; statement separator
, expression separator
. member access
? type query
" ’ string delimiters

6.4.5 Grouping Tokens

The following braces are part of the Chapel language:

Lexical Structure 27

braces use
() parenthesization, function calls, and tuples
[] array literals, array types, forall expressions, and function calls
{ } domain literals, block statements

7 Types

Chapel is a statically typed language with a rich set of types. These include a set of predefined primitive types,
enumerated types, structured types (classes, records, unions, tuples), data parallel types (ranges, domains, arrays), and
synchronization types (sync, single, atomic).

The syntax of a type is as follows:

type-specifier:
primitive-type
enum-type
structured-type
dataparallel-type
synchronization-type

Programmers can define their own enumerated types, classes, records, unions, and type aliases using type declaration
statements:

type-declaration-statement:
enum-declaration-statement
class-declaration-statement
record-declaration-statement
union-declaration-statement
type-alias-declaration-statement

These statements are defined in Sections §7.2, §15.1, §16.1, §17.2, and §7.6, respectively.

7.1 Primitive Types

The primitive types are: void, bool, int, uint, real, imag, complex, and string. They are defined in this
section.

The primitive types are summarized by the following syntax:

primitive-type:
void
bool primitive-type-parameter-partopt

int primitive-type-parameter-partopt

uint primitive-type-parameter-partopt

real primitive-type-parameter-partopt

imag primitive-type-parameter-partopt

complex primitive-type-parameter-partopt

string

primitive-type-parameter-part:
(integer-parameter-expression)

integer-parameter-expression:
expression

28

Types 29

If present, the parenthesized integer-parameter-expression must evaluate to a compile-time constant of integer type.
See §8.4.1

Open issue. There is an expectation of future support for larger bit width primitive types depending on a
platform’s native support for those types.

7.1.1 The Void Type

The void type is used to represent the lack of a value, for example when a function has no arguments and/or no return
type.

There may be storage associated with a value of type void, in which case its lifetime obeys the same rules as a value
of type int.

7.1.2 The Bool Type

Chapel defines a logical data type designated by the symbol bool with the two predefined values true and false.
This default boolean type is stored using an implementation-defined number of bits. A particular number of bits can
be specified using a parameter value following the bool keyword, such as bool(8) to request an 8-bit boolean value.
Legal sizes are 8, 16, 32, and 64 bits.

Some statements require expressions of bool type and Chapel supports a special conversion of values to bool type
when used in this context (§9.1.3).

7.1.3 Signed and Unsigned Integral Types

The integral types can be parameterized by the number of bits used to represent them. Valid bit-sizes are 8, 16, 32,
and 64. The default signed integral type, int, and the default unsigned integral type, uint correspond to int(64)

and uint(64) respectively.

The integral types and their ranges are given in the following table:

Type Minimum Value Maximum Value
int(8) -128 127
uint(8) 0 255
int(16) -32768 32767
uint(16) 0 65535
int(32) -2147483648 2147483647
uint(32) 0 4294967295
int(64), int -9223372036854775808 9223372036854775807
uint(64), uint 0 18446744073709551615

The unary and binary operators that are pre-defined over the integral types operate with 32- and 64-bit precision. Using
these operators on integral types represented with fewer bits results in an implicit conversion to the corresponding 32-
bit types according to the rules defined in §9.1.

Types 30

7.1.4 Real Types

Like the integral types, the real types can be parameterized by the number of bits used to represent them. The default
real type, real, is 64 bits. The real types that are supported are machine-dependent, but usually include real(32)

(single precision) and real(64) (double precision) following the IEEE 754 standard.

7.1.5 Imaginary Types

The imaginary types can be parameterized by the number of bits used to represent them. The default imaginary type,
imag, is 64 bits. The imaginary types that are supported are machine-dependent, but usually include imag(32) and
imag(64).

Rationale. The imaginary type is included to avoid numeric instabilities and under-optimized code
stemming from always converting real values to complex values with a zero imaginary part.

7.1.6 Complex Types

Like the integral and real types, the complex types can be parameterized by the number of bits used to represent them.
A complex number is composed of two real numbers so the number of bits used to represent a complex is twice the
number of bits used to represent the real numbers. The default complex type, complex, is 128 bits; it consists of two
64-bit real numbers. The complex types that are supported are machine-dependent, but usually include complex(64)
and complex(128).

The real and imaginary components can be accessed via the methods re and im. The type of these components is real.
The standard Math module provides some functions on complex types. See

http://chapel.cray.com/docs/latest/modules/standard/Math.html

Example. Given a complex number c with the value 3.14+2.72i, the expressions c.re and c.im refer
to 3.14 and 2.72 respectively.

7.1.7 The String Type

Strings are a primitive type designated by the symbol string comprised of ASCII characters. Their length is un-
bounded.

Open issue. There is an expectation of future support for fixed-length strings.

Open issue. There is an expectation of future support for different character sets, possibly including
internationalization.

http://chapel.cray.com/docs/latest/modules/standard/Math.html

Types 31

7.2 Enumerated Types

Enumerated types are declared with the following syntax:

enum-declaration-statement:
enum identifier { enum-constant-list }

enum-constant-list:
enum-constant
enum-constant , enum-constant-listopt

enum-constant:
identifier init-partopt

init-part:
= expression

The enumerated type can then be referenced by its name, as summarized by the following syntax:

enum-type:
identifier

An enumerated type defines a set of named constants that can be referred to via a member access on the enumerated
type. These constants are treated as parameters of integral type. Each enumerated type is a distinct type. If the init-part
is omitted, the enum-constant has an integral value one higher than the previous enum-constant in the enum, with the
first having the value 1.

Example (enum.chpl). The code

enum statesman { Aristotle, Roosevelt, Churchill, Kissinger }

defines an enumerated type with four constants. The function

proc quote(s: statesman) {
select s {

when statesman.Aristotle do
writeln("All paid jobs absorb and degrade the mind.");

when statesman.Roosevelt do
writeln("Every reform movement has a lunatic fringe.");

when statesman.Churchill do
writeln("A joke is a very serious thing.");

when statesman.Kissinger do
{ write("No one will ever win the battle of the sexes; ");
writeln("there’s too much fraternizing with the enemy."); }

}
}

outputs a quote from the given statesman. Note that enumerated constants must be prefixed by the enu-
merated type and a dot.

Types 32

7.3 Structured Types

The structured types are summarized by the following syntax:

structured-type:
class-type
record-type
union-type
tuple-type

Classes are discussed in §15. Records are discussed in §16. Unions are discussed in §17. Tuples are discussed in §14.

7.3.1 Class Types

The class type defines a type that contains variables and constants, called fields, and functions, called methods. Classes
are defined in §15. The class type can also contain type aliases and parameters. Such a class is generic and is defined
in §22.3.

7.3.2 Record Types

The record type is similar to a class type; the primary difference is that a record is a value rather than a reference.
Records are defined in §16.

7.3.3 Union Types

The union type defines a type that contains one of a set of variables. Like classes and records, unions may also define
methods. Unions are defined in §17.

7.3.4 Tuple Types

A tuple is a light-weight record that consists of one or more anonymous fields. If all the fields are of the same type,
the tuple is homogeneous. Tuples are defined in §14.

Types 33

7.4 Data Parallel Types

The data parallel types are summarized by the following syntax:

dataparallel-type:
range-type
domain-type
mapped-domain-type
array-type
index-type

Ranges and their index types are discussed in §18. Domains and their index types are discussed in §19. Arrays are
discussed in §20.

7.4.1 Range Types

A range defines an integral sequence of some integral type. Ranges are defined in §18.

7.4.2 Domain, Array, and Index Types

A domain defines a set of indices. An array defines a set of elements that correspond to the indices in its domain. A
domain’s indices can be of any type. Domains, arrays, and their index types are defined in §19 and §20.

7.5 Synchronization Types

The synchronization types are summarized by the following syntax:

synchronization-type:
sync-type
single-type
atomic-type

Sync and single types are discussed in §24.3. The atomic type is discussed in §24.4.

Types 34

7.6 Type Aliases

Type aliases are declared with the following syntax:

type-alias-declaration-statement:
privacy-specifieropt configopt type type-alias-declaration-list ;
external-type-alias-declaration-statement

type-alias-declaration-list:
type-alias-declaration
type-alias-declaration , type-alias-declaration-list

type-alias-declaration:
identifier = type-specifier
identifier

A type alias is a symbol that aliases the type specified in the type-part. A use of a type alias has the same meaning as
using the type specified by type-part directly.

Type aliases defined at the module level are public by default. The optional privacy-specifier keywords are provided to
specify or change this behavior. For more details on the visibility of symbols, see §12.4.2.

If the keyword config precedes the keyword type, the type alias is called a configuration type alias. Configura-
tion type aliases can be set at compilation time via compilation flags or other implementation-defined means. The
type-specifier in the program is ignored if the type-alias is alternatively set.

If the keyword extern precedes the type keyword, the type alias is external. The declared type name is used by
Chapel for type resolution, but no type alias is generated by the backend. See the chapter on interoperability (§30) for
more information on external types.

The type-part is optional in the definition of a class or record. Such a type alias is called an unspecified type alias.
Classes and records that contain type aliases, specified or unspecified, are generic (§22.3.1).

Open issue. There is on going discussion on whether a type alias is a new type or simply an alias. The
former should enable redefinition of default values, identity elements, etc.

8 Variables

A variable is a symbol that represents memory. Chapel is a statically-typed, type-safe language so every variable has a
type that is known at compile-time and the compiler enforces that values assigned to the variable can be stored in that
variable as specified by its type.

8.1 Variable Declarations

Variables are declared with the following syntax:

variable-declaration-statement:
privacy-specifieropt config-or-externopt variable-kind variable-declaration-list ;

config-or-extern: one of
config extern

variable-kind: one of
param const var

variable-declaration-list:
variable-declaration
variable-declaration , variable-declaration-list

variable-declaration:
identifier-list type-partopt initialization-part
identifier-list type-part no-initialization-partopt

array-alias-declaration

type-part:
: type-specifier

initialization-part:
= expression

no-initialization-part:
= noinit

identifier-list:
identifier
identifier , identifier-list
tuple-grouped-identifier-list
tuple-grouped-identifier-list , identifier-list

tuple-grouped-identifier-list:
(identifier-list)

A variable-declaration-statement is used to define one or more variables. If the statement is a top-level module statement,
the variables are module level; otherwise they are local. Module level variables are discussed in §8.2. Local variables
are discussed in §8.3.

35

Variables 36

The optional privacy-specifier keywords indicate the visibility of module level variables to outside modules. By default,
variables are publicly visible. More details on visibility can be found in §12.4.2.

The optional keyword config specifies that the variables are configuration variables, described in Section §8.5. The
optional keyword extern indicates that the variable is externally defined. Its name and type are used within the
Chapel program for resolution, but no space is allocated for it and no initialization code emitted.

The variable-kind specifies whether the variables are parameters (param), constants (const), or regular variables
(var). Parameters are compile-time constants whereas constants are runtime constants. Both levels of constants are
discussed in §8.4.

The type-part of a variable declaration specifies the type of the variable. It is optional if the initialization-part is specified.
If the type-part is omitted, the type of the variable is inferred using local type inference described in §8.1.3.

The initialization-part of a variable declaration specifies an initial expression to assign to the variable. If the initialization-part
is omitted, the type-part must be present, and the variable is initialized to the default value of its type as described
in §8.1.1.

If the no-initialization-part is present, the variable declaration does not initialize the variable to any value, as described
in §8.1.2. The result of any read of an uninitialized variable is undefined until that variable is written.

Multiple variables can be defined in the same variable-declaration-list. The semantics of declaring multiple variables
that share an initialization-part and/or type-part is defined in §8.1.4.

Multiple variables can be grouped together using a tuple notation as described in §14.6.2.

The array-alias-declaration is defined in §20.9.

8.1.1 Default Initialization

If a variable declaration has no initialization expression, a variable is initialized to the default value of its type. The
default values are as follows:

Type Default Value
bool(*) false
int(*) 0
uint(*) 0
real(*) 0.0
imag(*) 0.0i
complex(*) 0.0 + 0.0i
string ""
enums first enum constant
classes nil
records default constructed record
ranges 1..0 (empty sequence)
arrays elements are default values
tuples components are default values
sync/single base default value and empty status
atomic base default value

Variables 37

Open issue. In the case that the first enumerator in an enumeration type is offset from zero, as in

Example. enum foo { red = 0xff0000, green = 0xff00, blue = 0xff } ;

the compiler has to look up the first named type to see what to use as the default.

An alternative would be to specify that the default value is the enumerator whose underlying value is zero.
But that approach also has issues, since the default value does not conform to any named enumerator.

8.1.2 Deferred Initialization

For performance purposes, a variable’s declaration can specify that the variable should not be default initialized by
using the noinit keyword in place of an initialization expression. Since this variable should be written at a later point
in order to be read properly, it must be a regular variable (var). It is incompatible with declarations that require the
variable to remain unchanged throughout the program’s lifetime, such as const or param. Additionally, its type must
be specified at declaration time.

The result of any read of this variable before it is written is undefined; it exists and therefore can be accessed, but no
guarantees are made as to its contents.

8.1.3 Local Type Inference

If the type is omitted from a variable declaration, the type of the variable is defined to be the type of the initialization
expression. With the exception of sync and single expressions, the declaration

var v = e;

is equivalent to

var v: e.type;
v = e;

for an arbitrary expression e. For expressions of sync or single type, this translation does not hold because the
evaluation of e results in a default read of this expression. The type of the variable is thus equal to the base type of the
sync or single expression.

8.1.4 Multiple Variable Declarations

All variables defined in the same identifier-list are defined such that they have the same type and value, and so that the
type and initialization expression are evaluated only once.

Example (multiple.chpl). In the declaration

proc g() { writeln("side effect"); return "a string"; }
var a, b = 1.0, c, d:int, e, f = g();

variables a and b are of type real with value 1.0. Variables c and d are of type int and are initialized
to the default value of 0. Variables e and f are of type string with value "a string". The string
"side effect" has been written to the display once. It is not evaluated twice.

Variables 38

The exact way that multiple variables are declared is defined as follows:

• If the variables in the identifier-list are declared with a type, but without an initialization expression as in

var v1, v2, v3: t;

for an arbitrary type expression t, then the declarations are rewritten so that the first variable is declared to be
of type t and each later variable is declared to be of the type of the first variable as in

var v1: t; var v2: v1.type; var v3: v1.type;

• If the variables in the identifier-list are declared without a type, but with an initialization expression as in

var v1, v2, v3 = e;

for an arbitrary expression e, then the declarations are rewritten so that the first variable is initialized by expres-
sion e and each later variable is initialized by the first variable as in

var v1 = e; var v2 = v1; var v3 = v1;

• If the variables in the identifier-list are declared with both a type and an initialization expression as in

var v1, v2, v3: t = e;

for an arbitrary type expression t and an arbitrary expression e, then the declarations are rewritten so that the
first variable is declared to be of type t and initialized by expression e, and each later variable is declared to be
of the type of the first variable and initialized by the result of calling the function readXX on the first variable
as in

var v1: t = e; var v2: v1.type = readXX(v1); var v3: v1.type = readXX(v1);

where the function readXX is defined as follows:

proc readXX(x: sync) return x.readXX();
proc readXX(x: single) return x.readXX();
proc readXX(x) return x;

Note that the use of the helper function readXX() in this code fragment is solely for the purposes of illustration.
It is not actually a part of Chapel’s semantics or implementation.

Rationale. This algorithm is complicated by the existence of sync and single variables. If these did not
exist, we could rewrite any multi-variable declaration such that later variables were simply initialized by
the first variable and the first variable was defined as if it appeared alone in the identifier-list. However,
both sync and single variables require careful handling to avoid unintentional changes to their full/empty
state.

8.2 Module Level Variables

Variables declared in statements that are in a module but not in a function or block within that module are module level
variables. Module level variables can be accessed anywhere within that module after the declaration of that variable.
If they are public, they can also be accessed in other modules that use that module.

Variables 39

8.3 Local Variables

Local variables are declared within block statements. They can only be accessed within the scope of that block
statement (including all inner nested block statements and functions).

A local variable only exists during the execution of code that lies within that block statement. This time is called the
lifetime of the variable. When execution has finished within that block statement, the local variable and the storage it
represents is removed. Variables of class type are the sole exception. Constructors of class types create storage that is
not associated with any scope. Such storage can be reclaimed as described in §15.9.

8.4 Constants

Constants are divided into two categories: parameters, specified with the keyword param, are compile-time constants
and constants, specified with the keyword const, are runtime constants.

8.4.1 Compile-Time Constants

A compile-time constant, or “parameter”, must have a single value that is known statically by the compiler. Parameters
are restricted to primitive and enumerated types.

Parameters can be assigned expressions that are parameter expressions. Parameter expressions are restricted to the
following constructs:

• Literals of primitive or enumerated type.

• Parenthesized parameter expressions.

• Casts of parameter expressions to primitive or enumerated types.

• Applications of the unary operators +, -, !, and ˜ on operands that are bool or integral parameter expressions.

• Applications of the unary operators + and - on operands that are real, imaginary or complex parameter expres-
sions.

• Applications of the binary operators +, -, *, /, %, **, &&, ||, &, |, ˆ, <<, >>, ==, !=, <=, >=, <, and > on
operands that are bool or integral parameter expressions.

•

• Applications of the binary operators +, -, *, /, **, ==, !=, <=, >=, <, and > on operands that are real,
imaginary or complex parameter expressions.

• Applications of the string concatenation operator +, string comparison operators ==, !=, <=, >=, <, >, and the
string length and ascii functions on parameter string expressions.

• The conditional expression where the condition is a parameter and the then- and else-expressions are parameters.

• Call expressions of parameter functions. See §13.7.2.

Variables 40

8.4.2 Runtime Constants

Runtime constants, or simply “constants”, do not have the restrictions that are associated with parameters. Constants
can be of any type. They require an initialization expression and contain the value of that expression throughout their
lifetime.

A variable of a class type that is a constant is a constant reference. That is, the variable always points to the object that
it was initialized to reference. However, the fields of that object are allowed to be modified.

8.5 Configuration Variables

If the keyword config precedes the keyword var, const, or param, the variable, constant, or parameter is called a
configuration variable, configuration constant, or configuration parameter respectively. Such variables, constants, and
parameters must be at the module level.

The initialization of these variables can be set via implementation dependent means, such as command-line switches
or environment variables. The initialization expression in the program is ignored if the initialization is alternatively
set.

Configuration parameters are set at compilation time via compilation flags or other implementation-defined means.
The value passed via these means can be an arbitrary Chapel expression as long as the expression can be evaluated at
compile-time. If present, the value thus supplied overrides the default value appearing in the Chapel code.

Example (config-param.chpl). For example,

config param rank = 2;

sets a integer parameter rank to 2. At compile-time, rank can be set via a configuration file or compile-
line override to 3 or 2*n1 or indeed to any other expression that can be evaluated at compile-time. The
value supplied at compile time overrides the value 2 appearing in the code. In this example, the rank

configuration variable can be used to write rank-independent code.

1It is assumed here that n is also a param variable.

9 Conversions

A conversion converts an expression of one type to another type, possibly changing its value. We refer to these two
types the source and target types. Conversions can be either implicit (§9.1) or explicit (§9.2).

9.1 Implicit Conversions

An implicit conversion is a conversion that occurs implicitly, that is, not due to an explicit specification in the program.
Implicit conversions occur at the locations in the program listed below. Each location determines the target type. The
source and target types of an implicit conversion must be allowed. They determine whether and how the expression’s
value changes.

An implicit conversion occurs at each of the following program locations:

• In an assignment, the expression on the right-hand side of the assignment is converted to the type of the variable
or another lvalue on the left-hand side of the assignment.

• The actual argument of a function call or an operator is converted to the type of the corresponding formal
argument, if the formal’s intent is in or const in or an abstract intent (§13.5.2) with the semantics of in or
const in.

• The formal argument of a function call is converted to the type of the corresponding actual argument, if the
formal’s intent is out.

• The return or yield expression within a function without a ref return intent is converted to the return type of
that function.

• The condition of a conditional expression, conditional statement, while-do or do-while loop statement is con-
verted to the boolean type (§9.1.3). A special rule defines the allowed source types and how the expression’s
value changes in this case.

Implicit conversions are allowed between the following source and target types, as defined in the referenced subsec-
tions:

• numeric, boolean, and enumerated types (§9.1.1),

• class types (§15.8.2),

• record types (§16.9.3),

• integral types in the special case when the expression’s value is a compile-time constant (§9.1.2), and

• from an integral or class type to bool in certain cases (§9.1.3).

In addition, an implicit conversion from a type to the same type is allowed for any type. Such conversion does not
change the value of the expression.

Implicit conversion is not transitive. That is, if an implicit conversion is allowed from type T1 to T2 and from T2 to
T3, that by itself does not allow an implicit conversion from T1 to T3.

41

Conversions 42

9.1.1 Implicit Numeric, Bool and Enumeration Conversions

Implicit conversions among numeric types are allowed when all values representable in the source type can also be
represented in the target type, retaining their full precision. In addition, implicit conversions from types int(64) and
uint(64) to types real(64) and complex(128) are allowed, even though they may result in a loss of precision.

Rationale. We allow these additional conversions because they are an important convenience for applica-
tion programmers. Therefore we are willing to lose precision in these cases. The largest real and complex
types are chosen to retain precision as often as as possible.

Any boolean type can be implicitly converted to any other boolean type, retaining the boolean value. Any boolean
type can be implicitly converted to any integral type by representing false as 0 and true as 1, except (if applicable)
a boolean cannot be converted to int(1).

Rationale. We disallow implicit conversion of a boolean to a real, imaginary, or complex type because of
the following. We expect that the cases where such a conversion is needed will more likely be unintended
by the programmer. Marking those cases as errors will draw the programmer’s attention. If such a
conversion is actually desired, a cast §9.2 can be inserted.

An expression of an enumerated type can be implicitly converted to an integral type, provided that all of the constants
defined by the enumerated type are representable by the integral type.

Legal implicit conversions with numeric, boolean and enumerated types may thus be tabulated as follows:

Target Type

Source Type bool(t) uint(t) int(t) real(t) imag(t) complex(t)

bool(s) all s, t all s, t all s; 2 ≤ t

enum (see rules) (see rules)

uint(s) s ≤ t s < t s ≤ mant(t) s ≤ mant(t/2)

uint(64) real(64) complex(128)

int(s) s ≤ t s ≤ mant(t) + 1 s ≤ mant(t/2) + 1

int(64) real(64) complex(128)

real(s) s ≤ t s ≤ t/2

imag(s) s ≤ t s ≤ t/2

complex(s) s ≤ t

Here, mant(i) is the number of bits in the (unsigned) mantissa of the i-bit floating-point type.1 Conversions for the
default integral and real types (uint, complex, etc.) are the same as for their explicitly-sized counterparts.

1For the IEEE 754 format, mant(32) = 24 and mant(64) = 53.

Conversions 43

9.1.2 Implicit Compile-Time Constant Conversions

The following implicit conversion of a parameter is allowed:

• A parameter of type int(64) can be implicitly converted to int(8), int(16), int(32), or any unsigned
integral type if the value of the parameter is within the range of the target type.

9.1.3 Implicit Statement Bool Conversions

In the condition of an if-statement, while-loop, and do-while-loop, the following implicit conversions to bool are
supported:

• An expression of integral type is taken to be false if it is zero and is true otherwise.

• An expression of a class type is taken to be false if it is nil and is true otherwise.

9.2 Explicit Conversions

Explicit conversions require a cast in the code. Casts are defined in §10.9. Explicit conversions are supported between
more types than implicit conversions, but explicit conversions are not supported between all types.

The explicit conversions are a superset of the implicit conversions. In addition to the following definitions, an explicit
conversion from a type to the same type is allowed for any type. Such conversion does not change the value of the
expression.

9.2.1 Explicit Numeric Conversions

Explicit conversions are allowed from any numeric type, boolean, or string to any other numeric type, boolean, or
string.

When a bool is converted to a bool, int or uint of equal or larger size, its value is zero-extended to fit the new
representation. When a bool is converted to a smaller bool, int or uint, its most significant bits are truncated (as
appropriate) to fit the new representation.

When a int, uint, or real is converted to a bool, the result is false if the number was equal to 0 and true

otherwise.

When an int is converted to a larger int or uint, its value is sign-extended to fit the new representation. When a
uint is converted to a larger int or uint, its value is zero-extended. When an int or uint is converted to an int or
uint of the same size, its binary representation is unchanged. When an int or uint is converted to a smaller int or
uint, its value is truncated to fit the new representation.

Conversions 44

Future. There are several kinds of integer conversion which can result in a loss of precision. Currently, the
conversions are performed as specified, and no error is reported. In the future, we intend to improve type
checking, so the user can be informed of potential precision loss at compile time, and actual precision loss
at run time. Such cases include: When an int is converted to a uint and the original value is negative;
When a uint is converted to an int and the sign bit of the result is true; When an int is converted to
a smaller int or uint and any of the truncated bits differs from the original sign bit; When a uint is
converted to a smaller int or uint and any of the truncated bits is true;

Rationale. For integer conversions, the default behavior of a program should be to produce a run-time
error if there is a loss of precision. Thus, cast expressions not only give rise to a value conversion at run
time, but amount to an assertion that the required precision is preserved. Explicit conversion procedures
would be available in the run-time library so that one can perform explicit conversions that result in a loss
of precision but do not generate a run-time diagnostic.

When converting from a real type to a larger real type, the represented value is preserved. When converting from a
real type to a smaller real type, the closest representation in the target type is chosen.2

When converting to a real type from an integer type, integer types smaller than int are first converted to int. Then,
the closest representation of the converted value in the target type is chosen. The exact behavior of this conversion is
implementation-defined.

When converting from real(k) to complex(2k), the original value is copied into the real part of the result, and the
imaginary part of the result is set to zero. When converting from a real(k) to a complex(`) such that ` > 2k, the
conversion is performed as if the original value is first converted to real(`/2) and then to `.

The rules for converting from imag to complex are the same as for converting from real, except that the imaginary
part of the result is set using the input value, and the real part of the result is set to zero.

9.2.2 Explicit Tuple to Complex Conversion

A two-tuple of numerical values may be converted to a complex value. If the destination type is complex(128), each
member of the two-tuple must be convertible to real(64). If the destination type is complex(64), each member of
the two-tuple must be convertible to real(32). The first member of the tuple becomes the real part of the resulting
complex value; the second member of the tuple becomes the imaginary part of the resulting complex value.

9.2.3 Explicit Enumeration Conversions

Explicit conversions are allowed from any enumerated type to any integer or real type, bool, or string, and vice
versa.

When the target type is an integer type, the value is first converted to its underlying integer type and then to the target
type, following the rules above for converting between integers.

When the target type is a real or complex type, the value is first converted to its underlying integer type and then to the
target type.

2When converting to a smaller real type, a loss of precision is expected. Therefore, there is no reason to produce a run-time diagnostic.

Conversions 45

The conversion of an enumerated type to imag is not permitted.

When the target type is bool, the value is first converted to its underlying integer type. If the result is zero, the value
of the bool is false; otherwise, it is true.

When the target type is string, the value becomes the name of the enumerator.

When the source type is bool, enumerators corresponding to the values 0 and 1 in the underlying integer type are
selected, corresponding to input values of false and true, respectively.

When the source type is a real or integer type, the value is converted to the target type’s underlying integer type.

The conversion from complex and imag types to an enumerated type is not permitted.

When the source type is string, the enumerator whose name matches value of the input string is selected. If no such
enumerator exists, a runtime error occurs.

9.2.4 Explicit Class Conversions

An expression of static class type C can be explicitly converted to a class type D provided that C is derived from D or D
is derived from C.

When at run time the source expression refers to an instance of D or it subclass, its value is not changed. Otherwise,
or when the source expression is nil, the result of the conversion is nil.

9.2.5 Explicit Record Conversions

An expression of record type C can be explicitly converted to another record type D provided that C is derived from D.
There are no explicit record conversions that are not also implicit record conversions.

10 Expressions

Chapel provides the following expressions:

expression:
literal-expression
nil-expression
variable-expression
enum-constant-expression
call-expression
iteratable-call-expression
member-access-expression
constructor-call-expression
query-expression
cast-expression
lvalue-expression
parenthesized-expression
unary-expression
binary-expression
let-expression
if-expression
for-expression
forall-expression
reduce-expression
scan-expression
module-access-expression
tuple-expression
tuple-expand-expression
locale-access-expression
mapped-domain-expression

Individual expressions are defined in the remainder of this chapter and additionally as follows:

• forall, reduce, and scan §25

• module access §12.4.3

• tuple and tuple expand §14

• locale access §26.1.5

• mapped domain §27

• constructor calls §15.3

• nil §15.2.7

46

Expressions 47

10.1 Literal Expressions

A literal value for any of the predefined types (§6.4.3) is a literal expression. Literal expressions are given by the
following syntax:

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string-literal
range-literal
domain-literal
array-literal

10.2 Variable Expressions

A use of a variable, constant, parameter, or formal argument, is itself an expression. The syntax of a variable expression
is given by:

variable-expression:
identifier

10.3 Enumeration Constant Expression

A use of an enumeration constant is itself an expression. Such a constant must be preceded by the enumeration type
name. The syntax of an enumeration constant expression is given by:

enum-constant-expression:
enum-type . identifier

For an example of using enumeration constants, see §7.2.

10.4 Parenthesized Expressions

A parenthesized-expression is an expression that is delimited by parentheses as given by:

parenthesized-expression:
(expression)

Such an expression evaluates to the expression. The parentheses are ignored and have only a syntactical effect.

Expressions 48

10.5 Call Expressions

Functions and function calls are defined in §13.

10.6 Indexing Expressions

Indexing, for example into arrays, tuples, and domains, has the same syntax as a call expression.

Indexing is performed by an implicit invocation of the this method on the value being indexed, passing the indices
as the actual arguments.

10.7 Member Access Expressions

Member access expressions provide access to a field or invoke a method of an instance of a class, record, or union.
They are defined in §15.4 and §15.5, respectively.

member-access-expression:
field-access-expression
method-call-expression

10.8 The Query Expression

A query expression is used to query a type or value within a formal argument type expression. The syntax of a query
expression is given by:

query-expression:
? identifieropt

Querying is restricted to querying the type of a formal argument, the element type of a formal argument that is an
array, the domain of a formal argument that is an array, the size of a primitive type, or a type or parameter field of a
formal argument type.

The identifier can be omitted. This is useful for ensuring the genericity of a generic type that defines default values for
all of its generic fields when specifying a formal argument as discussed in §22.1.5.

Example (query.chpl). The following code defines a generic function where the type of the first argument
is queried and stored in the type alias t and the domain of the second argument is queried and stored in
the variable D:

proc foo(x: ?t, y: [?D] t) {
for i in D do
y[i] = x;

}

Expressions 49

This allows a generic specification of assigning a particular value to all elements of an array. The value
and the elements of the array are constrained to be the same type. This function can be rewritten without
query expression as follows:

proc foo(x, y: [] x.type) {
for i in y.domain do
y[i] = x;

}

There is an expectation that query expressions will be allowed in more places in the future.

10.9 Casts

A cast is specified with the following syntax:

cast-expression:
expression : type-specifier

The expression is converted to the specified type. A cast expression invokes the corresponding explicit conver-
sion (§9.2). A resolution error occurs if no such conversion exists.

10.10 LValue Expressions

An lvalue is an expression that can be used on the left-hand side of an assignment statement or on either side of a
swap statement, that can be passed to a formal argument of a function that has out, inout or ref intent, or that can
be returned by a function with a ref return intent (§13.7.1). Valid lvalue expressions include the following:

• Variable expressions.

• Member access expressions.

• Call expressions of functions with a ref return intent.

• Indexing expressions.

LValue expressions are given by the following syntax:

lvalue-expression:
variable-expression
member-access-expression
call-expression
parenthesized-expression

The syntax is less restrictive than the definition above. For example, not all call-expressions are lvalues.

Expressions 50

10.11 Precedence and Associativity

The following table summarizes operator and expression precedence and associativity. Operators and expressions
listed earlier have higher precedence than those listed later.

Operator Associativity Use
.

left
member access

() function call or access
[] function call or access
new right constructor call
: left cast
** right exponentiation
reduce

left
reduction

scan scan
dmapped domain map application
! right logical negation
˜ bitwise negation
*

left
multiplication

/ division
% modulus
unary + right positive identity
unary - negation
<< left left shift
>> right shift
& left bitwise/logical and
ˆ left bitwise/logical xor
| left bitwise/logical or
+ left addition
- subtraction
.. left range construction
<=

left

less-than-or-equal-to comparison
>= greater-than-or-equal-to comparison
< less-than comparison
> greater-than comparison
== left equal-to comparison
!= not-equal-to comparison
&& left short-circuiting logical and
|| left short-circuiting logical or
in left forall expression
by

left
range/domain stride application

range count application
align range alignment
if then else

left

conditional expression
forall do forall expression
[] forall expression
for do for expression
sync single atomic sync, single and atomic type
, left comma separated expressions

Expressions 51

Rationale. In general, our operator precedence is based on that of the C family of languages including
C++, Java, Perl, and C#. We comment on a few of the differences and unique factors here.

We find that there is tension between the relative precedence of exponentiation, unary minus/plus, and
casts. The following three expressions show our intuition for how these expressions should be parenthe-
sized.

-2**4 wants -(2**4)

-2:uint wants (-2):uint

2:uint**4:uint wants (2:uint)**(4:uint)

Trying to support all three of these cases results in a circularity—exponentiation wants precedence over
unary minus, unary minus wants precedence over casts, and casts want precedence over exponentiation.
We chose to break the circularity by making unary minus have a lower precedence. This means that for
the second case above:

-2:uint requires (-2):uint

We also chose to depart from the C family of languages by making unary plus/minus have lower prece-
dence than binary multiplication, division, and modulus as in Fortran. We have found very few cases that
distinguish between these cases. An interesting one is:

const minint = min(int(32));

...-minint/2...

Intuitively, this should result in a positive value, yet C’s precedence rules results in a negative value due to
asymmetry in modern integer representations. If we learn of cases that argue in favor of the C approach,
we would likely reverse this decision in order to more closely match C.

We were tempted to diverge from the C precedence rules for the binary bitwise operators to make them
bind less tightly than comparisons. This would allow us to interpret:

a | b == 0 as (a | b) == 0

However, given that no other popular modern language has made this change, we felt it unwise to stray
from the pack. The typical rationale for the C ordering is to allow these operators to be used as non-short-
circuiting logical operations.

In contrast to C, we give bitwise operations a higher precedence than binary addition/subtraction and
comparison operators. This enables using the shift operators as shorthand for multiplication/division by
powers of 2, and also makes it easier to extract and test a bitmapped field:

(x & MASK) == MASK as x & MASK == MASK

a + b * pow(2,y) as a * b << y

One final area of note is the precedence of reductions. Two common cases tend to argue for making
reductions very low or very high in the precedence table:

max reduce A - min reduce A wants (max reduce A) - (min reduce A)

max reduce A * B wants max reduce (A * B)

The first statement would require reductions to have a higher precedence than the arithmetic operators
while the second would require them to be lower. We opted to make reductions have high precedence due
to the argument that they tend to resemble unary operators. Thus, to support our intuition:

Expressions 52

max reduce A * B requires max reduce (A * B)

This choice also has the (arguably positive) effect of making the unparenthesized version of this statement
result in an aggregate value if A and B are both aggregates—the reduction of A results in a scalar which
promotes when being multiplied by B, resulting in an aggregate. Our intuition is that users who forget the
parenthesis will learn of their error at compilation time because the resulting expression is not a scalar as
expected.

10.12 Operator Expressions

The application of operators to expressions is itself an expression. The syntax of a unary expression is given by:

unary-expression:
unary-operator expression

unary-operator: one of
+ - ˜ !

The syntax of a binary expression is given by:

binary-expression:
expression binary-operator expression

binary-operator: one of
+ - ∗ / % ∗∗ & | ˆ << >> && || == != <= >= < > by #

The operators are defined in subsequent sections.

10.13 Arithmetic Operators

This section describes the predefined arithmetic operators. These operators can be redefined over different types using
operator overloading (§13.11).

For each operator, implicit conversions are applied to the operands of an operator such that they are compatible with
one of the function forms listed, those listed earlier in the list being given preference. If no compatible implicit
conversions exist, then a compile-time error occurs. In these cases, an explicit cast is required.

10.13.1 Unary Plus Operators

The unary plus operators are predefined as follows:

Expressions 53

proc +(a: int(8)): int(8)
proc +(a: int(16)): int(16)
proc +(a: int(32)): int(32)
proc +(a: int(64)): int(64)

proc +(a: uint(8)): uint(8)
proc +(a: uint(16)): uint(16)
proc +(a: uint(32)): uint(32)
proc +(a: uint(64)): uint(64)

proc +(a: real(32)): real(32)
proc +(a: real(64)): real(64)

proc +(a: imag(32)): imag(32)
proc +(a: imag(64)): imag(64)

proc +(a: complex(64)): complex(64)
proc +(a: complex(128)): complex(128)

For each of these definitions, the result is the value of the operand.

10.13.2 Unary Minus Operators

The unary minus operators are predefined as follows:

proc -(a: int(8)): int(8)
proc -(a: int(16)): int(16)
proc -(a: int(32)): int(32)
proc -(a: int(64)): int(64)

proc -(a: real(32)): real(32)
proc -(a: real(64)): real(64)

proc -(a: imag(32)): imag(32)
proc -(a: imag(64)): imag(64)

proc -(a: complex(64)): complex(64)
proc -(a: complex(128)): complex(128)

For each of these definitions that return a value, the result is the negation of the value of the operand. For integral
types, this corresponds to subtracting the value from zero. For real and imaginary types, this corresponds to inverting
the sign. For complex types, this corresponds to inverting the signs of both the real and imaginary parts.

It is an error to try to negate a value of type uint(64). Note that negating a value of type uint(32) first converts the
type to int(64) using an implicit conversion.

10.13.3 Addition Operators

The addition operators are predefined as follows:

proc +(a: int(8), b: int(8)): int(8)
proc +(a: int(16), b: int(16)): int(16)
proc +(a: int(32), b: int(32)): int(32)
proc +(a: int(64), b: int(64)): int(64)

Expressions 54

proc +(a: uint(8), b: uint(8)): uint(8)
proc +(a: uint(16), b: uint(16)): uint(16)
proc +(a: uint(32), b: uint(32)): uint(32)
proc +(a: uint(64), b: uint(64)): uint(64)

proc +(a: real(32), b: real(32)): real(32)
proc +(a: real(64), b: real(64)): real(64)

proc +(a: imag(32), b: imag(32)): imag(32)
proc +(a: imag(64), b: imag(64)): imag(64)

proc +(a: complex(64), b: complex(64)): complex(64)
proc +(a: complex(128), b: complex(128)): complex(128)

proc +(a: real(32), b: imag(32)): complex(64)
proc +(a: imag(32), b: real(32)): complex(64)
proc +(a: real(64), b: imag(64)): complex(128)
proc +(a: imag(64), b: real(64)): complex(128)

proc +(a: real(32), b: complex(64)): complex(64)
proc +(a: complex(64), b: real(32)): complex(64)
proc +(a: real(64), b: complex(128)): complex(128)
proc +(a: complex(128), b: real(64)): complex(128)

proc +(a: imag(32), b: complex(64)): complex(64)
proc +(a: complex(64), b: imag(32)): complex(64)
proc +(a: imag(64), b: complex(128)): complex(128)
proc +(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the sum of the two operands.

It is a compile-time error to add a value of type uint(64) and a value of type int(64).

Addition over a value of real type and a value of imaginary type produces a value of complex type. Addition of values
of complex type and either real or imaginary types also produces a value of complex type.

10.13.4 Subtraction Operators

The subtraction operators are predefined as follows:

proc -(a: int(8), b: int(8)): int(8)
proc -(a: int(16), b: int(16)): int(16)
proc -(a: int(32), b: int(32)): int(32)
proc -(a: int(64), b: int(64)): int(64)

proc -(a: uint(8), b: uint(8)): uint(8)
proc -(a: uint(16), b: uint(16)): uint(16)
proc -(a: uint(32), b: uint(32)): uint(32)
proc -(a: uint(64), b: uint(64)): uint(64)

proc -(a: real(32), b: real(32)): real(32)
proc -(a: real(64), b: real(64)): real(64)

proc -(a: imag(32), b: imag(32)): imag(32)
proc -(a: imag(64), b: imag(64)): imag(64)

proc -(a: complex(64), b: complex(64)): complex(64)
proc -(a: complex(128), b: complex(128)): complex(128)

Expressions 55

proc -(a: real(32), b: imag(32)): complex(64)
proc -(a: imag(32), b: real(32)): complex(64)
proc -(a: real(64), b: imag(64)): complex(128)
proc -(a: imag(64), b: real(64)): complex(128)

proc -(a: real(32), b: complex(64)): complex(64)
proc -(a: complex(64), b: real(32)): complex(64)
proc -(a: real(64), b: complex(128)): complex(128)
proc -(a: complex(128), b: real(64)): complex(128)

proc -(a: imag(32), b: complex(64)): complex(64)
proc -(a: complex(64), b: imag(32)): complex(64)
proc -(a: imag(64), b: complex(128)): complex(128)
proc -(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the value obtained by subtracting the second operand from
the first operand.

It is a compile-time error to subtract a value of type uint(64) from a value of type int(64), and vice versa.

Subtraction of a value of real type from a value of imaginary type, and vice versa, produces a value of complex type.
Subtraction of values of complex type from either real or imaginary types, and vice versa, also produces a value of
complex type.

10.13.5 Multiplication Operators

The multiplication operators are predefined as follows:

proc *(a: int(8), b: int(8)): int(8)
proc *(a: int(16), b: int(16)): int(16)
proc *(a: int(32), b: int(32)): int(32)
proc *(a: int(64), b: int(64)): int(64)

proc *(a: uint(8), b: uint(8)): uint(8)
proc *(a: uint(16), b: uint(16)): uint(16)
proc *(a: uint(32), b: uint(32)): uint(32)
proc *(a: uint(64), b: uint(64)): uint(64)

proc *(a: real(32), b: real(32)): real(32)
proc *(a: real(64), b: real(64)): real(64)

proc *(a: imag(32), b: imag(32)): real(32)
proc *(a: imag(64), b: imag(64)): real(64)

proc *(a: complex(64), b: complex(64)): complex(64)
proc *(a: complex(128), b: complex(128)): complex(128)

proc *(a: real(32), b: imag(32)): imag(32)
proc *(a: imag(32), b: real(32)): imag(32)
proc *(a: real(64), b: imag(64)): imag(64)
proc *(a: imag(64), b: real(64)): imag(64)

proc *(a: real(32), b: complex(64)): complex(64)
proc *(a: complex(64), b: real(32)): complex(64)
proc *(a: real(64), b: complex(128)): complex(128)
proc *(a: complex(128), b: real(64)): complex(128)

proc *(a: imag(32), b: complex(64)): complex(64)
proc *(a: complex(64), b: imag(32)): complex(64)

Expressions 56

proc *(a: imag(64), b: complex(128)): complex(128)
proc *(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the product of the two operands.

It is a compile-time error to multiply a value of type uint(64) and a value of type int(64).

Multiplication of values of imaginary type produces a value of real type. Multiplication over a value of real type and a
value of imaginary type produces a value of imaginary type. Multiplication of values of complex type and either real
or imaginary types produces a value of complex type.

10.13.6 Division Operators

The division operators are predefined as follows:

proc /(a: int(8), b: int(8)): int(8)
proc /(a: int(16), b: int(16)): int(16)
proc /(a: int(32), b: int(32)): int(32)
proc /(a: int(64), b: int(64)): int(64)

proc /(a: uint(8), b: uint(8)): uint(8)
proc /(a: uint(16), b: uint(16)): uint(16)
proc /(a: uint(32), b: uint(32)): uint(32)
proc /(a: uint(64), b: uint(64)): uint(64)

proc /(a: real(32), b: real(32)): real(32)
proc /(a: real(64), b: real(64)): real(64)

proc /(a: imag(32), b: imag(32)): real(32)
proc /(a: imag(64), b: imag(64)): real(64)

proc /(a: complex(64), b: complex(64)): complex(64)
proc /(a: complex(128), b: complex(128)): complex(128)

proc /(a: real(32), b: imag(32)): imag(32)
proc /(a: imag(32), b: real(32)): imag(32)
proc /(a: real(64), b: imag(64)): imag(64)
proc /(a: imag(64), b: real(64)): imag(64)

proc /(a: real(32), b: complex(64)): complex(64)
proc /(a: complex(64), b: real(32)): complex(64)
proc /(a: real(64), b: complex(128)): complex(128)
proc /(a: complex(128), b: real(64)): complex(128)

proc /(a: imag(32), b: complex(64)): complex(64)
proc /(a: complex(64), b: imag(32)): complex(64)
proc /(a: imag(64), b: complex(128)): complex(128)
proc /(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the quotient of the two operands.

It is a compile-time error to divide a value of type uint(64) by a value of type int(64), and vice versa.

Division of values of imaginary type produces a value of real type. Division over a value of real type and a value of
imaginary type produces a value of imaginary type. Division of values of complex type and either real or imaginary
types produces a value of complex type.

Expressions 57

When the operands are integers, the result (quotient) is also an integer. If b does not divide a exactly, then there are
two candidate quotients q1 and q2 such that b ∗ q1 and b ∗ q2 are the two multiples of b closest to a. The integer result
q is the candidate quotient which lies closest to zero.

10.13.7 Modulus Operators

The modulus operators are predefined as follows:

proc %(a: int(8), b: int(8)): int(8)
proc %(a: int(16), b: int(16)): int(16)
proc %(a: int(32), b: int(32)): int(32)
proc %(a: int(64), b: int(64)): int(64)

proc %(a: uint(8), b: uint(8)): uint(8)
proc %(a: uint(16), b: uint(16)): uint(16)
proc %(a: uint(32), b: uint(32)): uint(32)
proc %(a: uint(64), b: uint(64)): uint(64)

For each of these definitions that return a value, the result is the remainder when the first operand is divided by the
second operand.

The sign of the result is the same as the sign of the dividend a, and the magnitude of the result is always smaller than
that of the divisor b. For integer operands, the % and / operators are related by the following identity:

var q = a / b;
var r = a % b;
writeln(q * b + r == a); // true

It is a compile-time error to take the remainder of a value of type uint(64) and a value of type int(64), and vice
versa.

There is an expectation that the predefined modulus operators will be extended to handle real, imaginary, and complex
types in the future.

10.13.8 Exponentiation Operators

The exponentiation operators are predefined as follows:

proc **(a: int(8), b: int(8)): int(8)
proc **(a: int(16), b: int(16)): int(16)
proc **(a: int(32), b: int(32)): int(32)
proc **(a: int(64), b: int(64)): int(64)

proc **(a: uint(8), b: uint(8)): uint(8)
proc **(a: uint(16), b: uint(16)): uint(16)
proc **(a: uint(32), b: uint(32)): uint(32)
proc **(a: uint(64), b: uint(64)): uint(64)

proc **(a: real(32), b: real(32)): real(32)
proc **(a: real(64), b: real(64)): real(64)

Expressions 58

For each of these definitions that return a value, the result is the value of the first operand raised to the power of the
second operand.

It is a compile-time error to take the exponent of a value of type uint(64) by a value of type int(64), and vice
versa.

There is an expectation that the predefined exponentiation operators will be extended to handle imaginary and complex
types in the future.

10.14 Bitwise Operators

This section describes the predefined bitwise operators. These operators can be redefined over different types using
operator overloading (§13.11).

10.14.1 Bitwise Complement Operators

The bitwise complement operators are predefined as follows:

proc ˜(a: bool): bool

proc ˜(a: int(8)): int(8)
proc ˜(a: int(16)): int(16)
proc ˜(a: int(32)): int(32)
proc ˜(a: int(64)): int(64)

proc ˜(a: uint(8)): uint(8)
proc ˜(a: uint(16)): uint(16)
proc ˜(a: uint(32)): uint(32)
proc ˜(a: uint(64)): uint(64)

For each of these definitions, the result is the bitwise complement of the operand.

10.14.2 Bitwise And Operators

The bitwise and operators are predefined as follows:

proc &(a: bool, b: bool): bool

proc &(a: int(?w), b: int(w)): int(w)
proc &(a: uint(?w), b: uint(w)): uint(w)

proc &(a: int(?w), b: uint(w)): uint(w)
proc &(a: uint(?w), b: int(w)): uint(w)

For each of these definitions, the result is computed by applying the logical and operation to the bits of the operands.

Chapel allows mixing signed and unsigned integers of the same size when passing them as arguments to bitwise and.
In the mixed case the result is of the same size as the arguments and is unsigned. No run-time error is issued, even if
the apparent sign changes as the required conversions are performed.

Expressions 59

Rationale. The mathematical meaning of integer arguments is discarded when they are passed to bitwise
operators. Instead the arguments are treated simply as bit vectors. The bit-vector meaning is preserved
when converting between signed and unsigned of the same size. The choice of unsigned over signed as
the result type in the mixed case reflects the semantics of standard C.

10.14.3 Bitwise Or Operators

The bitwise or operators are predefined as follows:

proc |(a: bool, b: bool): bool

proc |(a: int(?w), b: int(w)): int(w)
proc |(a: uint(?w), b: uint(w)): uint(w)

proc |(a: int(?w), b: uint(w)): uint(w)
proc |(a: uint(?w), b: int(w)): uint(w)

For each of these definitions, the result is computed by applying the logical or operation to the bits of the operands.
Chapel allows mixing signed and unsigned integers of the same size when passing them as arguments to bitwise or.
No run-time error is issued, even if the apparent sign changes as the required conversions are performed.

Rationale. The same as for bitwise and (§10.14.2).

10.14.4 Bitwise Xor Operators

The bitwise xor operators are predefined as follows:

proc ˆ(a: bool, b: bool): bool

proc ˆ(a: int(?w), b: int(w)): int(w)
proc ˆ(a: uint(?w), b: uint(w)): uint(w)

proc ˆ(a: int(?w), b: uint(w)): uint(w)
proc ˆ(a: uint(?w), b: int(w)): uint(w)

For each of these definitions, the result is computed by applying the XOR operation to the bits of the operands. Chapel
allows mixing signed and unsigned integers of the same size when passing them as arguments to bitwise xor. No
run-time error is issued, even if the apparent sign changes as the required conversions are performed.

Rationale. The same as for bitwise and (§10.14.2).

10.15 Shift Operators

This section describes the predefined shift operators. These operators can be redefined over different types using
operator overloading (§13.11).

The shift operators are predefined as follows:

Expressions 60

proc <<(a: int(8), b): int(8)
proc <<(a: int(16), b): int(16)
proc <<(a: int(32), b): int(32)
proc <<(a: int(64), b): int(64)

proc <<(a: uint(8), b): uint(8)
proc <<(a: uint(16), b): uint(16)
proc <<(a: uint(32), b): uint(32)
proc <<(a: uint(64), b): uint(64)

proc >>(a: int(8), b): int(8)
proc >>(a: int(16), b): int(16)
proc >>(a: int(32), b): int(32)
proc >>(a: int(64), b): int(64)

proc >>(a: uint(8), b): uint(8)
proc >>(a: uint(16), b): uint(16)
proc >>(a: uint(32), b): uint(32)
proc >>(a: uint(64), b): uint(64)

The type of the second actual argument must be any integral type.

The << operator shifts the bits of a left by the integer b. The new low-order bits are set to zero.

The >> operator shifts the bits of a right by the integer b. When a is negative, the new high-order bits are set to one;
otherwise the new high-order bits are set to zero.

The value of b must be non-negative.

10.16 Logical Operators

This section describes the predefined logical operators. These operators can be redefined over different types using
operator overloading (§13.11).

10.16.1 The Logical Negation Operator

The logical negation operator is predefined for booleans and integers as follows:

proc !(a: bool): bool
proc !(a: int(?w)): bool
proc !(a: uint(?w)): bool

For the boolean form, the result is the logical negation of the operand. For the integer forms, the result is true if the
operand is zero and false otherwise.

Expressions 61

10.16.2 The Logical And Operator

The logical and operator is predefined over bool type. It returns true if both operands evaluate to true; otherwise it
returns false. If the first operand evaluates to false, the second operand is not evaluated and the result is false.

The logical and operator over expressions a and b given by

a && b

is evaluated as the expression

if isTrue(a) then isTrue(b) else false

The function isTrue is predefined over bool type as follows:

proc isTrue(a:bool) return a;

Overloading the logical and operator over other types is accomplished by overloading the isTrue function over other
types.

10.16.3 The Logical Or Operator

The logical or operator is predefined over bool type. It returns true if either operand evaluate to true; otherwise it
returns false. If the first operand evaluates to true, the second operand is not evaluated and the result is true.

The logical or operator over expressions a and b given by

a || b

is evaluated as the expression

if isTrue(a) then true else isTrue(b)

The function isTrue is predefined over bool type as described in §10.16.2. Overloading the logical or operator over
other types is accomplished by overloading the isTrue function over other types.

10.17 Relational Operators

This section describes the predefined relational operators. These operators can be redefined over different types using
operator overloading (§13.11).

Expressions 62

10.17.1 Ordered Comparison Operators

The “less than” comparison operators are predefined over numeric types as follows:

proc <(a: int(8), b: int(8)): bool
proc <(a: int(16), b: int(16)): bool
proc <(a: int(32), b: int(32)): bool
proc <(a: int(64), b: int(64)): bool

proc <(a: uint(8), b: uint(8)): bool
proc <(a: uint(16), b: uint(16)): bool
proc <(a: uint(32), b: uint(32)): bool
proc <(a: uint(64), b: uint(64)): bool

proc <(a: real(32), b: real(32)): bool
proc <(a: real(64), b: real(64)): bool

proc <(a: imag(32), b: imag(32)): bool
proc <(a: imag(64), b: imag(64)): bool

The result of a < b is true if a is less than b; otherwise the result is false.

The “greater than” comparison operators are predefined over numeric types as follows:

proc >(a: int(8), b: int(8)): bool
proc >(a: int(16), b: int(16)): bool
proc >(a: int(32), b: int(32)): bool
proc >(a: int(64), b: int(64)): bool

proc >(a: uint(8), b: uint(8)): bool
proc >(a: uint(16), b: uint(16)): bool
proc >(a: uint(32), b: uint(32)): bool
proc >(a: uint(64), b: uint(64)): bool

proc >(a: real(32), b: real(32)): bool
proc >(a: real(64), b: real(64)): bool

proc >(a: imag(32), b: imag(32)): bool
proc >(a: imag(64), b: imag(64)): bool

The result of a > b is true if a is greater than b; otherwise the result is false.

The “less than or equal to” comparison operators are predefined over numeric types as follows:

proc <=(a: int(8), b: int(8)): bool
proc <=(a: int(16), b: int(16)): bool
proc <=(a: int(32), b: int(32)): bool
proc <=(a: int(64), b: int(64)): bool

proc <=(a: uint(8), b: uint(8)): bool
proc <=(a: uint(16), b: uint(16)): bool
proc <=(a: uint(32), b: uint(32)): bool
proc <=(a: uint(64), b: uint(64)): bool

proc <=(a: real(32), b: real(32)): bool
proc <=(a: real(64), b: real(64)): bool

proc <=(a: imag(32), b: imag(32)): bool
proc <=(a: imag(64), b: imag(64)): bool

Expressions 63

The result of a <= b is true if a is less than or equal to b; otherwise the result is false.

The “greater than or equal to” comparison operators are predefined over numeric types as follows:

proc >=(a: int(8), b: int(8)): bool
proc >=(a: int(16), b: int(16)): bool
proc >=(a: int(32), b: int(32)): bool
proc >=(a: int(64), b: int(64)): bool

proc >=(a: uint(8), b: uint(8)): bool
proc >=(a: uint(16), b: uint(16)): bool
proc >=(a: uint(32), b: uint(32)): bool
proc >=(a: uint(64), b: uint(64)): bool

proc >=(a: real(32), b: real(32)): bool
proc >=(a: real(64), b: real(64)): bool

proc >=(a: imag(32), b: imag(32)): bool
proc >=(a: imag(64), b: imag(64)): bool

The result of a >= b is true if a is greater than or equal to b; otherwise the result is false.

The ordered comparison operators are predefined over strings as follows:

proc <(a: string, b: string): bool
proc >(a: string, b: string): bool
proc <=(a: string, b: string): bool
proc >=(a: string, b: string): bool

Comparisons between strings are defined based on the ordering of the character set used to represent the string, which
is applied elementwise to the string’s characters in order.

10.17.2 Equality Comparison Operators

The equality comparison operators == and != are predefined over bool and the numeric types as follows:

proc ==(a: int(8), b: int(8)): bool
proc ==(a: int(16), b: int(16)): bool
proc ==(a: int(32), b: int(32)): bool
proc ==(a: int(64), b: int(64)): bool

proc ==(a: uint(8), b: uint(8)): bool
proc ==(a: uint(16), b: uint(16)): bool
proc ==(a: uint(32), b: uint(32)): bool
proc ==(a: uint(64), b: uint(64)): bool

proc ==(a: real(32), b: real(32)): bool
proc ==(a: real(64), b: real(64)): bool

proc ==(a: imag(32), b: imag(32)): bool
proc ==(a: imag(64), b: imag(64)): bool

proc ==(a: complex(64), b: complex(64)): bool
proc ==(a: complex(128), b: complex(128)): bool

proc !=(a: int(8), b: int(8)): bool
proc !=(a: int(16), b: int(16)): bool
proc !=(a: int(32), b: int(32)): bool
proc !=(a: int(64), b: int(64)): bool

Expressions 64

proc !=(a: uint(8), b: uint(8)): bool
proc !=(a: uint(16), b: uint(16)): bool
proc !=(a: uint(32), b: uint(32)): bool
proc !=(a: uint(64), b: uint(64)): bool

proc !=(a: real(32), b: real(32)): bool
proc !=(a: real(64), b: real(64)): bool

proc !=(a: imag(32), b: imag(32)): bool
proc !=(a: imag(64), b: imag(64)): bool

proc !=(a: complex(64), b: complex(64)): bool
proc !=(a: complex(128), b: complex(128)): bool

The result of a == b is true if a and b contain the same value; otherwise the result is false. The result of a != b is
equivalent to !(a == b).

The equality comparison operators are predefined over classes as follows:
proc ==(a: object, b: object): bool
proc !=(a: object, b: object): bool

The result of a == b is true if a and b reference the same storage location; otherwise the result is false. The result of
a != b is equivalent to !(a == b).

Default equality comparison operators are generated for records if the user does not define them. These operators are
described in §16.9.2.

The equality comparison operators are predefined over strings as follows:
proc ==(a: string, b: string): bool
proc !=(a: string, b: string): bool

The result of a == b is true if the sequence of characters in a matches exactly the sequence of characters in b;
otherwise the result is false. The result of a != b is equivalent to !(a == b).

10.18 Miscellaneous Operators

This section describes several miscellaneous operators. These operators can be redefined over different types using
operator overloading (§13.11).

10.18.1 The String Concatenation Operator

The string concatenation operator + is predefined over numeric, boolean, and enumerated types with strings. It casts
its operands to string type and concatenates them together.

Example (string-concat.chpl). The code
"result: "+i

where i is an integer appends the string representation of i to the string literal "result: ". If i is 3,
then the resulting string would be "result: 3".

Expressions 65

10.18.2 The By Operator

The operator by is predefined on ranges and rectangular domains. It is described in §18.5.1 for ranges and §19.8.2 for
domains.

10.18.3 The Range Count Operator

The operator # is predefined on ranges. It is described in §18.5.3.

10.19 Let Expressions

A let expression allows variables to be declared at the expression level and used within that expression. The syntax of
a let expression is given by:

let-expression:
let variable-declaration-list in expression

The scope of the variables is the let-expression.

Example (let.chpl). Let expressions are useful for defining variables in the context of an expression. In
the code

let x: real = a*b, y = x*x in 1/y

the value determined by a*b is computed and converted to type real if it is not already a real. The square
of the real is then stored in y and the result of the expression is the reciprocal of that value.

10.20 Conditional Expressions

A conditional expression is given by the following syntax:

if-expression:
if expression then expression else expression
if expression then expression

The conditional expression is evaluated in two steps. First, the expression following the if keyword is evaluated.
Then, if the expression evaluated to true, the expression following the then keyword is evaluated and taken to be the
value of this expression. Otherwise, the expression following the else keyword is evaluated and taken to be the value
of this expression. In both cases, the unselected expression is not evaluated.

The ‘else’ clause can be omitted only when the conditional expression is nested immediately inside a for or forall
expression. Such an expression is used to filter predicates as described in §10.21.1 and §25.2.4, respectively.

Example (condexp.chpl). This example shows how if-then-else can be used in a context in which an
expression is expected. The code

Expressions 66

writehalf(8);
writehalf(21);
writehalf(1000);

proc writehalf(i: int) {
var half = if (i % 2) then i/2 +1 else i/2;
writeln("Half of ",i," is ",half);

}

produces the output

Half of 8 is 4
Half of 21 is 11
Half of 1000 is 500

10.21 For Expressions

A for expression is given by the following syntax:

for-expression:
for index-var-declaration in iteratable-expression do expression
for iteratable-expression do expression

The for expression executes a for loop (§11.9), evaluates the body expression on each iteration of the loop, and returns
the resulting values as a collection. The size and shape of that collection are determined by the iteratable-expression.

10.21.1 Filtering Predicates in For Expressions

A conditional expression that is immediately enclosed in a for expression and does not require an else clause filters
the iterations of the for expression. The iterations for which the condition does not hold are not reflected in the result
of the for expression.

Example (yieldPredicates.chpl). The code

var A = for i in 1..10 do if i % 3 != 0 then i;

declares an array A that is initialized to the integers between 1 and 10 that are not divisible by 3.

11 Statements

Chapel is an imperative language with statements that may have side effects. Statements allow for the sequencing of
program execution. Chapel provides the following statements:

statement:
block-statement
expression-statement
assignment-statement
swap-statement
io-statement
conditional-statement
select-statement
while-do-statement
do-while-statement
for-statement
label-statement
break-statement
continue-statement
param-for-statement
use-statement
empty-statement
return-statement
yield-statement
module-declaration-statement
procedure-declaration-statement
external-procedure-declaration-statement
exported-procedure-declaration-statement
iterator-declaration-statement
method-declaration-statement
type-declaration-statement
variable-declaration-statement
remote-variable-declaration-statement
on-statement
cobegin-statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic-statement
forall-statement
delete-statement

Individual statements are defined in the remainder of this chapter and additionally as follows:

• return §13.8

• yield §21.2

• module declaration §12

67

Statements 68

• procedure declaration §13.2

• external procedure declaration §30.1.1

• exporting procedure declaration §30.1.2

• iterator declaration §21.1

• method declaration §15.1.4

• type declaration §7

• variable declaration §8.1

• remote variable declaration §26.2.1

• on statement §26.2

• cobegin, coforall, begin, sync, serial and atomic statements §24

• forall §25

• delete §15.9

11.1 Blocks

A block is a statement or a possibly empty list of statements that form their own scope. A block is given by

block-statement:
{ statementsopt }

statements:
statement
statement statements

Variables defined within a block are local variables (§8.3).

The statements within a block are executed serially unless the block is in a cobegin statement (§24.5).

11.2 Expression Statements

The expression statement evaluates an expression solely for side effects. The syntax for an expression statement is
given by

expression-statement:
variable-expression ;
member-access-expression ;
call-expression ;
constructor-call-expression ;
let-expression ;

Statements 69

11.3 Assignment Statements

An assignment statement assigns the value of an expression to another expression, for example, a variable. Assignment
statements are given by

assignment-statement:
lvalue-expression assignment-operator expression

assignment-operator: one of
= += -= ∗= /= %= ∗∗= &= |= ˆ= &&= ||= <<= >>=

The assignment operators that contain a binary operator symbol as a prefix are compound assignment operators. The
remaining assignment operator = is called simple assignment.

The expression on the left-hand side of the assignment operator must be a valid lvalue (§10.10). It is evaluated before
the expression on the right-hand side of the assignment operator, which can be any expression.

When the left-hand side is of a numerical type, there is an implicit conversion (§9.1) of the right-hand side expression
to the type of the left-hand side expression. Additionally, for simple assignment, if the left-hand side is of Boolean
type, the right-hand side is implicitly converted to the type of the left-hand side (i.e. a bool(?w) with the same width
w).

For simple assignment, the validity and semantics of assigning between classes (§15.8.1), records (§16.9.1), unions (§17.3),
tuples (§14.5), ranges (§18.4.1), domains (§19.8.1), and arrays (§20.5) are discussed in these later sections.

A compound assignment is shorthand for applying the binary operator to the left- and right-hand side expressions
and then assigning the result to the left-hand side expression. For numerical types, the left-hand side expression is
evaluated only once, and there is an implicit conversion of the result of the binary operator to the type of the left-hand
side expression. Thus, for example, x += y is equivalent to x = x + y where the expression x is evaluated once.

For all other compound assignments, Chapel provides a completely generic catch-all implementation defined in the
obvious way. For example:

inline proc +=(ref lhs, rhs) {
lhs = lhs + rhs;

}

Thus, compound assignment can be used with operands of arbitrary types, provided that the following provisions are
met: If the type of the left-hand argument of a compound assignment operator op= is L and that of the right-hand
argument is R, then a definition for the corresponding binary operator op exists, such that L is coercible to the type of
its left-hand formal and R is coercible to the type of its right-hand formal. Further, the result of op must be coercible
to L, and there must exist a definition for simple assignment between objects of type L.

Both simple and compound assignment operators can be overloaded for different types using operator overload-
ing (§13.11). In such an overload, the left-hand side expression should have ref intent and be modified within the
body of the function. The return type of the function should be void.

Statements 70

11.4 The Swap Statement

The swap statement indicates to swap the values in the expressions on either side of the swap operator. Since both
expressions are assigned to, each must be a valid lvalue expression (§10.10).

The swap operator can be overloaded for different types using operator overloading (§13.11).
swap-statement:

lvalue-expression swap-operator lvalue-expression

swap-operator:
<=>

To implement the swap operation, the compiler uses temporary variables as necessary.

Example. When resolved to the default swap operator, the following swap statement
var a, b: real;

a <=> b;

is semantically equivalent to:
const t = b;
b = a;
a = t;

11.5 The I/O Statement

The I/O operator indicates writing to the left-hand-side the value in the right-hand-side; or reading from the left-hand-
side and storing the result in the variable on the right-hand-side. This operator can be chained with other I/O operator
calls.

The I/O operator can be overloaded for different types using operator overloading (§13.11).
io-statement:

io-expression io-operator expression

io-expression:
expression
io-expression io-operator expression

io-operator:
<∼>

See the module documentation on I/O for details on how to use the I/O statement.

Example. In the example below,
var w: Writer;
var a: real;
var b: int;

w <∼> a <∼> b;

the I/O operator is left-associative and indicates writing a and then b to w in this case.

Statements 71

11.6 The Conditional Statement

The conditional statement allows execution to choose between two statements based on the evaluation of an expression
of bool type. The syntax for a conditional statement is given by

conditional-statement:
if expression then statement else-partopt

if expression block-statement else-partopt

else-part:
else statement

A conditional statement evaluates an expression of bool type. If the expression evaluates to true, the first statement
in the conditional statement is executed. If the expression evaluates to false and the optional else-clause exists, the
statement following the else keyword is executed.

If the expression is a parameter, the conditional statement is folded by the compiler. If the expression evaluates to true,
the first statement replaces the conditional statement. If the expression evaluates to false, the second statement, if it
exists, replaces the conditional statement; if the second statement does not exist, the conditional statement is removed.

Each statement embedded in the conditional-statement has its own scope whether or not an explicit block surrounds
it.

If the statement that immediately follows the optional then keyword is a conditional statement and it is not in a block,
the else-clause is bound to the nearest preceding conditional statement without an else-clause. The statement in the
else-clause can be a conditional statement, too.

Example (conditionals.chpl). The following function prints two when x is 2 and B,four when x is 4.

proc condtest(x:int) {
if x > 3 then
if x > 5 then

write("A,");
else

write("B,");

if x == 2 then
writeln("two");

else if x == 4 then
writeln("four");

else
writeln("other");

}

11.7 The Select Statement

The select statement is a multi-way variant of the conditional statement. The syntax is given by:

Statements 72

select-statement:
select expression { when-statements }

when-statements:
when-statement
when-statement when-statements

when-statement:
when expression-list do statement
when expression-list block-statement
otherwise statement

expression-list:
expression
expression , expression-list

The expression that follows the keyword select, the select expression, is evaluated once and its value is then com-
pared with the list of case expressions following each when keyword. These values are compared using the equality
operator ==. If the expressions cannot be compared with the equality operator, a compile-time error is generated. The
first case expression that contains an expression where that comparison is true will be selected and control trans-
ferred to the associated statement. If the comparison is always false, the statement associated with the keyword
otherwise, if it exists, will be selected and control transferred to it. There may be at most one otherwise statement
and its location within the select statement does not matter.

Each statement embedded in the when-statement has its own scope whether or not an explicit block surrounds it.

11.8 The While Do and Do While Loops

There are two variants of the while loop in Chapel. The syntax of the while-do loop is given by:

while-do-statement:
while expression do statement
while expression block-statement

The syntax of the do-while loop is given by:

do-while-statement:
do statement while expression ;

In both variants, the expression evaluates to a value of type bool which determines when the loop terminates and
control continues with the statement following the loop.

The while-do loop is executed as follows:

1. The expression is evaluated.

2. If the expression evaluates to false, the statement is not executed and control continues to the statement fol-
lowing the loop.

3. If the expression evaluates to true, the statement is executed and control continues to step 1, evaluating the
expression again.

Statements 73

The do-while loop is executed as follows:

1. The statement is executed.

2. The expression is evaluated.

3. If the expression evaluates to false, control continues to the statement following the loop.

4. If the expression evaluates to true, control continues to step 1 and the the statement is executed again.

In this second form of the loop, note that the statement is executed unconditionally the first time.

Example (while.chpl). The following example illustrates the difference between the do-while-statement
and the while-do-statement. The body of the do-while loop is always executed at least once, even if the
loop conditional is already false when it is entered. The code

var t = 11;

writeln("Scope of do while loop:");
do {

t += 1;
writeln(t);

} while (t <= 10);

t = 11;
writeln("Scope of while loop:");
while (t <= 10) {

t += 1;
writeln(t);

}

produces the output
Scope of do while loop:
12
Scope of while loop:

Chapel do-while loops differ from those found in most other languages in one important regard. If the body of a
do-while statement is a block statement and new variables are defined within that block statement, then the scope of
those variables extends to cover the loop’s termination expression.

Example (do-while.chpl). The following example demonstrates that the scope of the variable t includes
the loop termination expression.

var i = 0;
do {

var t = i;
i += 1;
writeln(t);

} while (t != 5);

produces the output
0
1
2
3
4
5

Statements 74

11.9 The For Loop

The for loop iterates over ranges, domains, arrays, iterators, or any class that implements an iterator named these.
The syntax of the for loop is given by:

for-statement:
for index-var-declaration in iteratable-expression do statement
for index-var-declaration in iteratable-expression block-statement
for iteratable-expression do statement
for iteratable-expression block-statement

index-var-declaration:
identifier
tuple-grouped-identifier-list

iteratable-expression:
expression
zip (expression-list)

The index-var-declaration declares new variables for the scope of the loop. It may specify a new identifier or may
specify multiple identifiers grouped using a tuple notation in order to destructure the values returned by the iterator
expression, as described in §14.6.3.

The index-var-declaration is optional and may be omitted if the indices do not need to be referenced in the loop.

If the iteratable-expression begins with the keyword zip followed by a parenthesized expression-list, the listed ex-
pressions must support zipper iteration.

11.9.1 Zipper Iteration

When multiple iterators are iterated over in a zipper context, on each iteration, each expression is iterated over, the
values are returned by the iterators in a tuple and assigned to the index, and then statement is executed.

The shape of each iterator, the rank and the extents in each dimension, must be identical.

Example (zipper.chpl). The output of

for (i, j) in zip(1..3, 4..6) do
write(i, " ", j, " ");

is

1 4 2 5 3 6

Statements 75

11.9.2 Parameter For Loops

Parameter for loops are unrolled by the compiler so that the index variable is a parameter rather than a variable. The
syntax for a parameter for loop statement is given by:

param-iteratable-expression:
range-literal
range-literal by integer-literal

param-for-statement:
for param identifier in param-iteratable-expression do statement
for param identifier in param-iteratable-expression block-statement

Parameter for loops are restricted to iteration over range literals with an optional by expression where the bounds and
stride must be parameters. The loop is then unrolled for each iteration.

11.10 The Break, Continue and Label Statements

The break- and continue-statements are used to alter the flow of control within a loop construct. A break-statement
causes flow to exit the containing loop and resume with the statement immediately following it. A continue-statement
causes control to jump to the end of the body of the containing loop and resume execution from there. By default,
break- and continue-statements exit or skip the body of the immediately-containing loop construct.

The label-statement is used to name a specific loop so that break and continue can exit or resume a less-nested
loop. Labels can only be attached to for-, while-do- and do-while-statements. When a break statement has a label,
execution continues with the first statement following the loop statement with the matching label. When a continue
statement has a label, execution continues at the end of the body of the loop with the matching label. If there is no
containing loop construct with a matching label, a compile-time error occurs.

The syntax for label, break, and continue statements is given by:

break-statement:
break identifieropt ;

continue-statement:
continue identifieropt ;

label-statement:
label identifier statement

Break-statements cannot be used to exit parallel loops.

Rationale. Breaks are not permitted in parallel loops because the execution order of the iterations of
parallel loops is not defined.

Future. We expect to support a eureka concept which would enable one or more tasks to stop the
execution of all current and future iterations of the loop.

Statements 76

Example. In the following code, the index of the first element in each row of A that is equal to findVal

is printed. Once a match is found, the continue statement is executed causing the outer loop to move to
the next row.

label outer for i in 1..n {
for j in 1..n {
if A[i, j] == findVal {

writeln("index: ", (i, j), " matches.");
continue outer;

}
}

}

11.11 The Use Statement

The use statement makes symbols in each listed module’s scope available from the scope where the use statement
occurs. For more information on use statements, see §12.4.4.

11.12 The Empty Statement

An empty statement has no effect. The syntax of an empty statement is given by

empty-statement:
;

12 Modules

Chapel supports modules to manage name spaces. A program consists of one or more modules. Every symbol,
including variables, functions, and types, is associated with some module.

Module definitions are described in §12.1. The relation between files and modules is described in §12.2. Nested
modules are described in §12.3. The visibility of a module’s symbols by users of the module is described in §12.4.2.
The execution of a program and module initialization is described in §12.5.

12.1 Module Definitions

A module is declared with the following syntax:

module-declaration-statement:
privacy-specifieropt module module-identifier block-statement

privacy-specifier:
private
public

module-identifier:
identifier

A module’s name is specified after the module keyword. The block-statement opens the module’s scope. Symbols
defined in this block statement are defined in the module’s scope and are called top-level module symbols. The
visibility of a module is defined by its privacy-specifier (§12.4.1).

Module declaration statements must be top-level statements within a module. A module that is declared within another
module is called a nested module (§12.3).

12.2 Files and Implicit Modules

Multiple modules can be defined in the same file and need not bear any relation to the file in terms of their names.

Example (two-modules.chpl). The following file contains two explicitly named modules (§12.4.3), MX
and MY.

module MX {
var x: string = "Module MX";
proc printX() {
writeln(x);

}
}

module MY {

77

Modules 78

var y: string = "Module MY";
proc printY() {
writeln(y);

}
}

Module MX defines top-level module symbols x and printX, while MY defines top-level module symbols
y and printY.

For any file that contains top-level statements other than module declarations, the file itself is treated as the module
declaration. In this case, the module is implicit and takes its name from the base filename. In particular, the module
name is defined as the remaining string after removing the .chpl suffix and any path specification from the specified
filename. If the resulting name is not a legal Chapel identifier, it cannot be referenced in a use statement.

Example (implicit.chpl). The following file, named myModule.chpl, defines an implicitly named module
called myModule.

var x: int = 0;
var y: int = 1;

proc printX() {
writeln(x);

}
proc printY() {

writeln(y);
}

Module myModule defines the top-level module symbols x, y, printX, and printY.

12.3 Nested Modules

A nested module is a module that is defined within another module, the outer module. Nested modules automatically
have access to all of the symbols in the outer module. However, the outer module needs to explicitly use a nested
module to have access to its symbols.

A nested module can be used without using the outer module by explicitly naming the outer module in the use state-
ment.

Example (nested-use.chpl). The code

use libsci.blas;

uses a module named blas that is nested inside a module named libsci.

Files with both module declarations and top-level statements result in nested modules.

Example (nested.chpl). The following file, named myModule.chpl, defines an implicitly named module
called myModule, with nested modules MX and MY.

Modules 79

module MX {
var x: int = 0;

}

module MY {
var y: int = 0;

}

use MX, MY;

proc printX() {
writeln(x);

}

proc printY() {
writeln(y);

}

12.4 Access of Module Contents

A module’s contents can be accessed by code outside of that module depending on the visibility of the module it-
self (§12.4.1) and the visibility of each individual symbol (§12.4.2). This can be done via explicit naming (§12.4.3) or
the use statement (§12.4.4).

12.4.1 Visibility Of A Module

A top-level module is visible anywhere if the privacy-specifier of its declaration is public or is omitted (i.e. by default).
A top-level module declared private is visible only within that module. The visibility of a nested module is subject
to the rules of §12.4.2. There, the nested module is considered a ”symbol defined at the top level scope” of its outer
module.

12.4.2 Visibility Of A Module’s Symbols

A symbol defined at the top level scope of a module is visible from outside the module when the privacy-specifier of
its definition is public or is omitted (i.e. by default). When a symbol defined at the top level scope of a module
is declared private, it is not visible outside of that module. A symbol’s visibility inside its module is controlled
by normal lexical scoping and is not affected by its privacy-specifier. A module’s visible symbols are accessible via
explicit naming (§12.4.3) or the use statement (§12.4.4) only where the module’s symbol is visible (§12.4.1).

12.4.3 Explicit Naming

All publicly visible top-level module symbols can be named explicitly with the following syntax:

Modules 80

module-access-expression:
module-identifier-list . identifier

module-identifier-list:
module-identifier
module-identifier . module-identifier-list

This allows two variables that have the same name to be distinguished based on the name of their module. Using
explicit module naming in a function call restricts the set of candidate functions to those in the specified module.

If code refers to symbols that are defined by multiple modules, the compiler will issue an error. Explicit naming can
be used to disambiguate the symbols in this case.

Open issue. It is currently unspecified whether the first-named module is always at the outermost module
level scope, or whether a scope-search mechanism is used starting at the scope containing the usage.

Example (ambiguity.chpl). In the following example,
module M1 {
var x: int = 1;
var y: int = -1;
proc printX() {
writeln("M1’s x is: ", x);

}
proc printY() {
writeln("M1’s y is: ", y);

}
}

module M2 {
use M3;
use M1;

var x: int = 2;

proc printX() {
writeln("M2’s x is: ", x);

}

proc main() {
M1.x = 4;
M1.printX();
writeln(x);
printX(); // This is not ambiguous
printY(); // ERROR: This is ambiguous

}
}

module M3 {
var x: int = 3;
var y: int = -3;
proc printY() {
writeln("M3’s y is: ", y);

}
}

The call to printX() is not ambiguous because M2’s definition shadows that of M1. On the other hand,
the call to printY() is ambiguous because it is defined in both M1 and M3. This will result in a compiler
error.

Modules 81

12.4.4 Using Modules

If a module is visible to where accessing its symbols is desirable, then a use statement on that module may be em-
ployed. Use statements make a module’s visible symbols available without requiring them to be prefixed by the
module’s name. The syntax of the use statement is given by:

use-statement:
use module-name-list ;

module-name-list:
module-name
module-name , module-name-list

module-name:
identifier
module-name . module-name

Symbols made available by a use statement are at an outer scope from those defined directly in the scope where the use
statement occurs, but at a nearer scope than symbols defined in the scope containing the scope where the use statement
occurs.

Use statements are transitive by default: if a module A used by another module B also contains a use of a further
module C, C’s symbols will also be considered visible within B, at a further scope than the symbols of other modules
immediately used by B.

It is an error for two public variables, types, or modules to be defined at the same depth.

Open issue. There is an expectation that this statement will be extended to allow the programmer to
restrict which symbols are ’used’ as well as to rename symbols that are ’used.’

Example (use.chpl). The following example illustrates how the use statement makes symbols declared
in M1’s scope (like procedure foo()) visible within the scope of M2’s main function. Without the use

statement, the procedure call to foo could not be resolved since M2 would not have access to symbols in
M1.

When executed, the program
module M1 {

proc foo() {
writeln("In M1’s foo.");

}
}

module M2 {
proc main() {

use M1;

writeln("In M2’s main.");
foo();

}
}

prints out
In M2’s main.
In M1’s foo.

Modules 82

12.4.5 Module Initialization

Module initialization occurs at program start-up. All top-level statements in a module other than function and type
declarations are executed during module initialization.

Example (init.chpl). In the code,
var x = foo(); // executed at module initialization
writeln("Hi!"); // executed at module initialization
proc sayGoodbye {

writeln("Bye!"); // not executed at module initialization
}

The function foo() will be invoked and its result assigned to x. Then “Hi!” will be printed.

Module initialization order is discussed in §12.5.2.

12.5 Program Execution

Chapel programs start by initializing all modules and then executing the main function (§12.5.1).

12.5.1 The main Function

The main function must be called main and must have zero arguments. It can be specified with or without parentheses.
In any Chapel program, there is a single main function that defines the program’s entry point. If a program defines
multiple potential entry points, the implementation may provide a compiler flag that disambiguates between main
functions in multiple modules.

Cray’s Chapel Implementation. In the Cray Chapel compiler implementation, the – –main-module flag
can be used to specify the module from which the main function definition will be used.

Example (main-module.chpl). Because it defines two main functions, the following code will yield an
error unless a main module is specified on the command line.

module M1 {
const x = 1;
proc main() {

writeln("M", x, "’s main");
}

}

module M2 {
use M1;

const x = 2;
proc main() {
M1.main();
writeln("M", x, "’s main");

}
}

Modules 83

If M1 is specified as the main module, the program will output:

M1’s main

If M2 is specified as the main module the program will output:

M1’s main
M2’s main

Notice that main is treated like just another function if it is not in the main module and can be called as
such.

To aid in exploratory programming, a default main function is created if the program does not contain a user-defined
main function. The default main function is equivalent to

proc main() {}

Example (no-main.chpl). The code

writeln("hello, world");

is a legal and complete Chapel program. The startup code for a Chapel program first calls the module
initialization code for the main module and then calls main(). This program’s initialization function
is the top-level writeln() statement. The module declaration is taken to be the entire file, as described
in §12.2.

12.5.2 Module Initialization Order

Module initialization is performed using the following algorithm.

Starting from the module that defines the main function, the modules named in its use statements are visited depth-first
and initialized in post-order. If a use statement names a module that has already been visited, it is not visited a second
time. Thus, infinite recursion is avoided.

Modules used by a given module are visited in the order in which they appear in the program text. For nested modules,
the parent module and its uses are initialized before the nested module and its uses.

Example (init-order.chpl). The code

module M1 {
use M2.M3;
use M2;
writeln("In M1’s initializer");
proc main() {
writeln("In main");

}
}

module M2 {
use M4;
writeln("In M2’s initializer");
module M3 {
writeln("In M3’s initializer");

}

Modules 84

}

module M4 {
writeln("In M4’s initializer");

}

prints the following

In M4’s initializer
In M2’s initializer
In M3’s initializer
In M1’s initializer
In main

M1, the main module, uses M2.M3 and then M2, thus M2.M3 must be initialized. Because M2.M3 is a
nested module, M4 (which is used by M2) must be initialized first. M2 itself is initialized, followed by
M2.M3. Finally M1 is initialized, and the main function is run.

13 Procedures

A function is a code abstraction that can be invoked by a call expression. Throughout this specification the term
“function” is used in this programming-languages sense, rather than in the mathematical sense. A function has zero
or more formal arguments, or simply formals. Upon a function call each formal is associated with the corresponding
actual argument, or simply actual. Actual arguments are provided as part of the call expression, or at the the call site.
Direct and indirect recursion is supported.

A function can be a procedure, which completes and returns to the call site exactly once, returning no result, a single
result, or multiple results aggregated in a tuple. A function can also be an iterator, which can generate, or yield,
multiple results (in sequence and/or in parallel). A function (either a procedure or an iterator) can be a method if it is
bound to a type (often a class). An operator in this chapter is a procedure with a special name, which can be invoked
using infix notation, i.e., via a unary or binary expression. This chapter defines procedures, but most of its contents
apply to iterators and methods as well.

Functions are presented as follows:

• procedures (this chapter)

• operators §13.2, §10.12

• iterators §21

• methods (when bound to a class) §15.1.4

• function calls §13.1

• various aspects of defining a procedure §13.2–§13.10

• calling external functions from Chapel §30.1.1

• calling Chapel functions from external functions§30.1.2

• determining the function to invoke for a given call site: function and operator overloading §13.11, function
resolution §13.12

13.1 Function Calls

The syntax to call a non-method function is given by:

call-expression:
lvalue-expression (named-expression-list)
lvalue-expression [named-expression-list]
parenthesesless-function-identifier

named-expression-list:
named-expression
named-expression , named-expression-list

85

Procedures 86

named-expression:
expression
identifier = expression

parenthesesless-function-identifier:
identifier

A call-expression is resolved to a particular function according to the algorithm for function resolution described
in §13.12.

Functions can be called using either parentheses or brackets.

Rationale. This provides an opportunity to blur the distinction between an array access and a function
call and thereby exploit a possible space/time tradeoff.

Functions that are defined without parentheses must be called without parentheses as defined by scope resolution.
Functions without parentheses are discussed in §13.3.

A named-expression is an expression that may be optionally named. It provides an actual argument to the function
being called. The optional identifier refers to a named formal argument described in §13.4.1.

Calls to methods are defined in Section §15.5.

13.2 Procedure Definitions

Procedures are defined with the following syntax:

procedure-declaration-statement:
privacy-specifieropt linkage-specifieropt proc function-name argument-listopt return-intentopt return-typeopt where-clauseopt

function-body

linkage-specifier:
inline

function-name:
identifier
operator-name

operator-name: one of
+ - ∗ / % ∗∗ ! == != <= >= < > << >> & | ˆ ˜
+= -= ∗= /= %= ∗∗= &= |= ˆ= <<= >>= <=>

argument-list:
(formalsopt)

formals:
formal
formal , formals

formal:

Procedures 87

formal-intentopt identifier formal-typeopt default-expressionopt

formal-intentopt identifier formal-typeopt variable-argument-expression
formal-intentopt tuple-grouped-identifier-list formal-typeopt default-expressionopt

formal-intentopt tuple-grouped-identifier-list formal-typeopt variable-argument-expression

formal-type:
: type-specifier
: ? identifieropt

default-expression:
= expression

variable-argument-expression:
... expression
... ? identifieropt

...

formal-intent:
const
const in
const ref
in
out
inout
ref
param
type

return-intent: one of
ref const param type

return-type:
: type-specifier

where-clause:
where expression

function-body:
block-statement
return-statement

Functions do not require parentheses if they have no arguments. Such functions are described in §13.3.

Formal arguments can be grouped together using a tuple notation as described in §14.6.4.

Default expressions allow for the omission of actual arguments at the call site, resulting in the implicit passing of a
default value. Default values are discussed in §13.4.2.

The intents const, const in, const ref, in, out, inout and ref are discussed in §13.5. The intents param and
type make a function generic and are discussed in §22.1. If the formal argument’s type is omitted, generic, or prefixed
with a question mark, the function is also generic and is discussed in §22.1.

Functions can take a variable number of arguments. Such functions are discussed in §13.6.

Procedures 88

The return-intent can be used to indicate how the value is returned from a function. return-intent is described further in
§13.7.

Open issue. Parameter and type procedures are supported. Parameter and type iterators are currently not
supported.

The return-type is optional and is discussed in §13.9. A type function may not specify a return type.

The optional where-clause is only applicable if the function is generic. It is discussed in §22.4.

Function and operator overloading is supported in Chapel and is discussed in §13.11. Operator overloading is sup-
ported on the operators listed above (see operator-name).

The optional privacy-specifier keywords indicate the visibility of module level procedures to outside modules. By
default, procedures are publicly visible. More details on visibility can be found in §12.4.2.

The linkage specifier inline indicates that the function body must be inlined at every call site.

See the chapter on interoperability (§30) for details on exported and imported functions.

13.3 Functions without Parentheses

Functions do not require parentheses if they have empty argument lists. Functions declared without parentheses around
empty argument lists must be called without parentheses.

Example (function-no-parens.chpl). Given the definitions

proc foo { writeln("In foo"); }
proc bar() { writeln("In bar"); }

the procedure foo can be called by writing foo and the procedure bar can be called by writing bar().
It is an error to use parentheses when calling foo or omit them when calling bar.

13.4 Formal Arguments

A formal argument’s intent (§13.5) specifies how the actual argument is passed to the function. If no intent is specified,
the default intent (§13.5.2) is applied, resulting in type-dependent behavior.

Procedures 89

13.4.1 Named Arguments

A formal argument can be named at the call site to explicitly map an actual argument to a formal argument.

Example (named-args.chpl). Running the code

proc foo(x: int, y: int) { writeln(x); writeln(y); }

foo(x=2, y=3);
foo(y=3, x=2);

will produce the output

2
3
2
3

named argument passing is used to map the actual arguments to the formal arguments. The two function
calls are equivalent.

Named arguments are sometimes necessary to disambiguate calls or ignore arguments with default values. For a
function that has many arguments, it is sometimes good practice to name the arguments at the call site for compiler-
checked documentation.

13.4.2 Default Values

Default values can be specified for a formal argument by appending the assignment operator and a default expression to
the declaration of the formal argument. If the actual argument is omitted from the function call, the default expression
is evaluated when the function call is made and the evaluated result is passed to the formal argument as if it were
passed from the call site.

Example (default-values.chpl). The code

proc foo(x: int = 5, y: int = 7) { writeln(x); writeln(y); }

foo();
foo(7);
foo(y=5);

writes out

5
7
7
7
5
5

Default values are specified for the formal arguments x and y. The three calls to foo are equivalent to the
following three calls where the actual arguments are explicit: foo(5, 7), foo(7, 7), and foo(5, 5).
The example foo(y=5) shows how to use a named argument for y in order to use the default value for x
in the case when x appears earlier than y in the formal argument list.

Procedures 90

13.5 Argument Intents

Argument intents specify how an actual argument is passed to a function where it is represented by the corresponding
formal argument.

Argument intents are categorized as being either concrete or abstract. Concrete intents are those in which the semantics
of the intent keyword are independent of the argument’s type. Abstract intents are those in which the keyword (or lack
thereof) expresses a general intention that will ultimately be implemented via one of the conrete intents. The specific
choice of concrete intent depends on the argument’s type and may be implementation-defined. Abstract intents are
provided to support productivity and code reuse.

13.5.1 Concrete Intents

The concrete intents are in, out, inout, ref, const in, and const ref.

The In Intent

When in is specified as the intent, the actual argument is copied into the formal argument when the function is called.
An implicit conversion occurs from the actual argument to the type of the formal. The formal can be modified within
the function, but such changes are local to the function and not reflected back to the call site.

The Out Intent

When out is specified as the intent, the actual argument is ignored when the call is made, but when the function
returns, the formal argument is copied back to the actual argument. An implicit conversion occurs from the type of the
formal to the type of the actual. The actual argument must be a valid lvalue. The formal argument is initialized to its
default value if one is supplied, or to its type’s default value otherwise. The formal argument can be modified within
the function.

The Inout Intent

When inout is specified as the intent, the actual argument is copied into the formal argument as with the in intent
and then copied back out as with the out intent. The actual argument must be a valid lvalue. The formal argument can
be modified within the function. The type of the actual argument must be the same as the type of the formal.

The Ref Intent

When ref is specified as the intent, the actual argument is passed by reference. Any reads of, or modifications to, the
formal argument are performed directly on the corresponding actual argument at the call site. The actual argument
must be a valid lvalue. The type of the actual argument must be the same as the type of the formal.

The ref intent differs from the inout intent in that the inout intent requires copying from/to the actual argument
on the way in/out of the function, while ref allows direct access to the actual argument through the formal argument
without copies. Note that concurrent modifications to the ref actual argument by other tasks may be visible within
the function, subject to the memory consistency model.

Procedures 91

The Const In Intent

The const in intent is identical to the in intent, except that modifications to the formal argument are prohibited
within the function.

The Const Ref Intent

The const ref intent is identical to the ref intent, except that modifications to the formal argument are prohibited
within the dynamic scope of the function. Note that concurrent tasks may modify the actual argument while the
function is executing and that these modifications may be visible to reads of the formal argument within the function’s
dynamic scope (subject to the memory consistency model).

Summary of Concrete Intents

The following table summarizes the differences between the concrete intents:

in out inout ref const in const ref

copied in on function call? yes no yes no yes no
copied out on function return? no yes yes no no no
refers to actual argument? no no no yes no yes
formal can be read? yes yes yes yes yes yes
formal can be modified? yes yes yes yes no no
local changes affect the actual? no on return on return immediately N/A N/A

13.5.2 Abstract Intents

The abstract intents are const and the default intent (when no intent is specified).

The Const Intent

The const intent specifies the intention that the function will not and cannot modify the formal argument within its
dynamic scope, yet leaves unspecified whether the actual argument will be passed by const in or const ref intent.
In general, small values, such as scalar types, will be passed by const in; while larger values, such as domains and
arrays, will be passed by const ref intent. At present, the decision between the two mechanisms is implementation-
defined. If a user’s function is sensitive to which mechanism is used, they should use the desired concrete intent to
guarantee portability.

Open issue. It remains an open issue whether the choice between const in and const ref should be
defined by the language, either for certain types or for all of them. One area of active debate is whether
the implementation can choose between const in and const ref for records based on size. Another
open issue is how tuples should be handled with respect to const intents.

Procedures 92

Cray’s Chapel Implementation. The current implementation uses the following mapping:

meaning
type of const
bool const in

int const in

uint const in

real const in

imag const in

complex const in

string const ref

sync const ref

single const ref

atomic const in

record const ref

class const in

union const in

dmap const ref

domain const ref

array const ref

The Default Intent

When no intent is specified for a formal argument, the default intent is applied. It is designed to take the most
natural/least surprising action for the argument, based on its type. The following table shows how default intents are
interpreted based on the argument’s type:

meaning of
type default intent
bool const

int const

uint const

real const

imag const

complex const

string const

sync ref

single ref

atomic ref

record const

class const

union const

dmap const

domain const

array ref

Open issue. How tuples should be handled under default intents is an open issue; particularly for
heterogeneous tuples whose components would fall into separate categories in the table above. One
proposed approach is to apply the default intent to each component of the tuple independently.

Procedures 93

Another open issue arises if the meaning of the const intent is not defined by the language completely.
If so, should the meaning of the default intent have that same flexibility? In particular, should the default
intent for records mean const or const in?

13.6 Variable Number of Arguments

Functions can be defined to take a variable number of arguments where those arguments can have any intent or can be
types. A variable number of parameters is not supported. This allows the call site to pass a different number of actual
arguments. There must be at least one actual argument.

If the variable argument expression contains an identifier prepended by a question mark, the number of actual argu-
ments can vary, and the identifier will be bound to an integer parameter value indicating the number of arguments at
a given call site. If the variable argument expression contains an expression without a question mark, that expression
must evaluate to an integer parameter value requiring the call site to pass that number of arguments to the function.

Within the function, the formal argument that is marked with a variable argument expression is a tuple of the actual
arguments.

Example (varargs.chpl). The code
proc mywriteln(x ...?k) {
for param i in 1..k do
writeln(x(i));

}

defines a generic procedure called mywriteln that takes a variable number of arguments of any type and
then writes them out on separate lines. The parameter for-loop (§11.9.2) is unrolled by the compiler so
that i is a parameter, rather than a variable. This needs to be a parameter for-loop because the expression
x(i) will have a different type on each iteration. The type of x can be specified in the formal argument
list to ensure that the actuals all have the same type.

Example (varargs-with-type.chpl). Either or both the number of variable arguments and their types can
be specified. For example, a basic procedure to sum the values of three integers can be written as

proc sum(x: int...3) return x(1) + x(2) + x(3);

Specifying the type is useful if it is important that each argument have the same type. Specifying the
number is useful in, for example, defining a method on a class that is instantiated over a rank parameter.

Example (varargs-returns-tuples.chpl). The code
proc tuple(x ...) return x;

defines a generic procedure that is equivalent to building a tuple. Therefore the expressions tuple(1, 2)

and (1,2) are equivalent, as are the expressions tuple(1) and (1,).

13.7 Return Intents

The return-intent specifies how the value is returned from a function, and in what contexts that function is allowed to
be used. By default, or if the return-intent is const, the function returns a value that cannot be used as an lvalue.

Procedures 94

13.7.1 The Ref Return Intent

When using a ref return intent, the function call is an lvalue (specifically, a call expression for a procedure and an
iterator variable for an iterator). This implies that the function produces a reference; however, this reference cannot be
captured.

The ref return intent is specified by following the argument list with the ref keyword. The function must return or
yield an lvalue.

When a procedure with a ref return intent is called on the left-hand side of an assignment statement or in the context
of a call to a formal argument by out, inout, or ref intent, the lvalue that is returned by the procedure is assigned a
value.

Functions with a ref return intent provide an implicit param formal argument setter of type bool. If the function
is called in a context requiring an lvalue, the actual argument for setter is implicitly true; otherwise it is false.
This argument is useful for adjusting the behavior depending to the calling context.

Example (ref-return-intent.chpl). The following code defines a procedure that can be interpreted as a
simple two-element array where the elements are actually module level variables:

var x, y = 0;

proc A(i: int) ref {
if i < 0 || i > 1 then
halt("array access out of bounds");

if i == 0 then
return x;

else
return y;

}

Calls to this procedure can be assigned to in order to write to the “elements” of the array as in

A(0) = 1;
A(1) = 2;

It can be called as an expression to access the “elements” as in

writeln(A(0) + A(1));

This code outputs the number 3.

The implicit setter argument can be used to ensure, for example, that the second element in the pseudo-
array is only assigned a value if the first argument is positive. To do this, add the following:

if setter && i == 1 && x <= 0 then
halt("cannot assign value to A(1) if A(0) <= 0");

13.7.2 The Param Return Intent

A parameter function, or a param function, is a function that returns a parameter expression. It is specified by following
the function’s argument list by the keyword param. It is often, but not necessarily, generic.

It is a compile-time error if a parameter function does not return a parameter expression. The result of a parameter
function is computed during compilation and substituted for the call expression.

Procedures 95

Example (param-functions.chpl). In the code
proc sumOfSquares(param a: int, param b: int) param
return a**2 + b**2;

var x: sumOfSquares(2, 3)*int;

sumOfSquares is a parameter procedure that takes two parameters as arguments. Calls to this procedure
can be used in places where a parameter expression is required. In this example, the call is used in the
declaration of a homogeneous tuple and so is required to be a parameter.

Parameter functions may not contain control flow that is not resolved at compile-time. This includes loops other than
the parameter for loop §11.9.2 and conditionals with a conditional expressions that is not a parameter.

13.7.3 The Type Return Intent

A type function is a function that returns a type, not a value. It is specified by following the function’s argument list
by the keyword type, without the subsequent return type. It is often, but not necessarily, generic.

It is a compile-time error if a type function does not return a type. The result of a type function is computed during
compilation.

As with parameter functions, type functions may not contain control flow that is not resolved at compile-time. This
includes loops other than the parameter for loop §11.9.2 and conditionals with a conditional expression that is not a
parameter.

Example (type-functions.chpl). In the code
proc myType(x) type {
if numBits(x.type) <= 32 then return int(32);
else return int(64);

}

myType is a type procedure that takes a single argument x and returns int(32) if the number of bits used
to represent x is less than or equal to 32, otherwise it returns int(64). numBits is a param procedure
defined in the standard Types module.

13.8 The Return Statement

The return statement can only appear in a function. It causes control to exit that function, returning it to the point at
which that function was called.

A procedure can return a value by executing a return statement that includes an expression. If it does, that expression’s
value becomes the value of the invoking call expression.

A return statement in a procedure of a non-void return type (§13.9) must include an expression. A return statement
in a procedure of a void return type or in an iterator must not include an expression. A return statement of a variable
procedure must contain an lvalue expression.

The syntax of the return statement is given by

Procedures 96

return-statement:
return expressionopt ;

Example (return.chpl). The following code defines a procedure that returns the sum of three integers:

proc sum(i1: int, i2: int, i3: int)
return i1 + i2 + i3;

13.9 Return Types

Every procedure has a return type. The return type is either specified explicitly via return-type in the procedure
declaration, or is inferred implicitly.

13.9.1 Explicit Return Types

If a return type is specified and is not void, each return statement of the procedure must include an expression. For
a non-ref return intent, an implicit conversion occurs from each return expression to the specified return type. For a
ref return intent (§13.7.1), the return type must match the type returned in all of the return statements exactly, when
checked after generic instantiation and parameter folding (if applicable).

13.9.2 Implicit Return Types

If a return type is not specified, it is inferred from the return statements. It is illegal for a procedure to have a
return statement with an expression and a return statement without an expression. For procedures without any return
statements, or when none of the return statements include an expression, the return type is void.

Otherwise, the types of the expressions in all of the procedure’s return statements are considered. If a function has a
ref return intent (§13.7.1), they all must be the same exact type, which becomes the inferred return type. Otherwise,
there must exist exactly one type such that an implicit conversion is allowed between every other type and that type,
and that type becomes the inferred return type. If the above requirements are not satisfied, it is an error.

13.10 Nested Functions

A function defined in another function is called a nested function. Nesting of functions may be done to arbitrary
degrees, i.e., a function can be nested in a nested function.

Nested functions are only visible to function calls within the lexical scope in which they are defined.

Nested functions may refer to variables defined in the function(s) in which they are nested.

Procedures 97

13.11 Function and Operator Overloading

Functions that have the same name but different argument lists are called overloaded functions. Function calls to
overloaded functions are resolved according to the function resolution algorithm in §13.12.

Operator overloading is achieved by defining a function with a name specified by that operator. The operators that
may be overloaded are listed in the following table:

arity operators
unary + - ! ˜
binary + - * / % ** == <= >= < > << >> & | ˆ by

+= -= *= /= %= **= &= |= ˆ= <<= >>= <=>

The arity and precedence of the operator must be maintained when it is overloaded. Operator resolution follows the
same algorithm as function resolution.

13.12 Function Resolution

Function resolution is the algorithm that determines which function to invoke for a given call expression. Function
resolution is defined as follows.

• Identify the set of visible functions for the function call. A visible function is any function that satisfies the
criteria in §13.12.1. If no visible function can be found, the compiler will issue an error stating that the call
cannot be resolved.

• From the set of visible functions for the function call, determine the set of candidate functions for the function
call. A candidate function is any function that satisfies the criteria in §13.12.2. If no candidate function can be
found, the compiler will issue an error stating that the call cannot be resolved. If exactly one candidate function
is found, this is determined to be the function.

• From the set of candidate functions, the most specific function is determined. The most specific function is a
candidate function that is more specific than every other candidate function as defined in §13.12.3. If there is no
function that is more specific than every other candidate function, the compiler will issue an error stating that
the call is ambiguous.

13.12.1 Determining Visible Functions

Given a function call, a function is determined to be a visible function if the name of the function is the same as the
name of the function call and the function is defined in the same scope as the function call or a lexical outer scope of
the function call, or if the function is publicly declared in a module that is used from the same scope as the function
call or a lexical outer scope of the function call. Function visibility in generic functions is discussed in §22.2.

Procedures 98

13.12.2 Determining Candidate Functions

Given a function call, a function is determined to be a candidate function if there is a valid mapping from the function
call to the function and each actual argument is mapped to a formal argument that is a legal argument mapping.

Valid Mapping

The following algorithm determines a valid mapping from a function call to a function if one exists:

• Each actual argument that is passed by name is matched to the formal argument with that name. If there is no
formal argument with that name, there is no valid mapping.

• The remaining actual arguments are mapped in order to the remaining formal arguments in order. If there are
more actual arguments then formal arguments, there is no valid mapping. If any formal argument that is not
mapped to by an actual argument does not have a default value, there is no valid mapping.

• The valid mapping is the mapping of actual arguments to formal arguments plus default values to formal argu-
ments that are not mapped to by actual arguments.

Legal Argument Mapping

An actual argument of type TA can be mapped to a formal argument of type TF if any of the following conditions
hold:

• TA and TF are the same type.

• There is an implicit conversion from TA to TF .

• TA is derived from TF .

• TA is scalar promotable to TF .

13.12.3 Determining More Specific Functions

Given two functions F1 and F2, the more specific function is determined by the following steps:

• If F1 does not require promotion and F2 does require promotion, then F1 is more specific.

• If F2 does not require promotion and F1 does require promotion, then F2 is more specific.

• If at least one of the legal argument mappings to F1 is a more specific argument mapping than the corresponding
legal argument mapping to F2 and none of the legal argument mappings to F2 is a more specific argument
mapping than the corresponding legal argument mapping to F1, then F1 is more specific.

• If at least one of the legal argument mappings to F2 is a more specific argument mapping than the corresponding
legal argument mapping to F1 and none of the legal argument mappings to F1 is a more specific argument
mapping than the corresponding legal argument mapping to F2, then F2 is more specific.

Procedures 99

• If F1 shadows F2, then F1 is more specific.

• If F2 shadows F1, then F2 is more specific.

• If all param arguments prefer F1 over F2, then F1 is more specific. In order of preference, a param argument
prefers to passed to (a) a param formal of matching type; (b) a param formal large enough to store the param
value; (c) a non-param formal of matching type.

• If all param arguments prefer F2 over F1, then F2 is more specific.

• If F1 has a where clause and F2 does not have a where clause, then F1 is more specific.

• If F2 has a where clause and F1 does not have a where clause, then F2 is more specific.

• Otherwise neither function is more specific.

Given an argument mapping, M1, from an actual argument, A, of type TA to a formal argument, F1, of type TF1 and
an argument mapping, M2, from the same actual argument to a formal argument, F2, of type TF2, the more specific
argument mapping is determined by the following steps:

• If TF1 and TF2 are the same type, F1 is an instantiated parameter, and F2 is not an instantiated parameter, M1

is more specific.

• If TF1 and TF2 are the same type, F2 is an instantiated parameter, and F1 is not an instantiated parameter, M2

is more specific.

• If M1 does not require scalar promotion and M2 requires scalar promotion, M1 is more specific.

• If M1 requires scalar promotion and M2 does not require scalar promotion, M2 is more specific.

• If TF1 and TF2 are the same type, F1 is generic, and F2 is not generic, M1 is more specific.

• If TF1 and TF2 are the same type, F2 is generic, and F1 is not generic, M2 is more specific.

• If F1 is not generic over all types and F2 is generic over all types, M1 is more specific.

• If F1 is generic over all types and F2 is not generic over all types, M2 is more specific.

• If TA and TF1 are the same type and TA and TF2 are not the same type, M1 is more specific.

• If TA and TF1 are not the same type and TA and TF2 are the same type, M2 is more specific.

• If TF1 is derived from TF2, then M1 is more specific.

• If TF2 is derived from TF1, then M2 is more specific.

• If there is an implicit conversion from TF1 to TF2, then M1 is more specific.

• If there is an implicit conversion from TF2 to TF1, then M2 is more specific.

• If TF1 is any int type and TF2 is any uint type, M1 is more specific.

• If TF2 is any int type and TF1 is any uint type, M2 is more specific.

• Otherwise neither mapping is more specific.

14 Tuples

A tuple is an ordered set of components that allows for the specification of a light-weight collection of values. As the
examples in this chapter illustrate, tuples are a boon to the Chapel programmer. In addition to making it easy to return
multiple values from a function, tuples help to support multidimensional indices, to group arguments to functions, and
to specify mathematical concepts.

14.1 Tuple Types

A tuple type is defined by a fixed number (a compile-time constant) of component types. It can be specified by a
parenthesized, comma-separated list of types. The number of types in the list defines the size of the tuple; the types
themselves specify the component types.

The syntax of a tuple type is given by:

tuple-type:
(type-specifier , type-list)

type-list:
type-specifier
type-specifier , type-list

A homogeneous tuple is a special-case of a general tuple where the types of the components are identical. Homoge-
neous tuples have fewer restrictions for how they can be indexed (§14.3). Homogeneous tuple types can be defined
using the above syntax, or they can be defined as a product of an integral parameter (a compile-time constant integer)
and a type. This latter specification is implemented by overloading * with the following prototype:

proc *(param p: int, type t) type

Rationale. Homogeneous tuples require the size to be specified as a parameter (a compile-time constant).
This avoids any overhead associated with storing the runtime size in the tuple. It also avoids the question
as to whether a non-parameter size should be part of the type of the tuple. If a programmer requires a
non-parameter value to define a data structure, an array may be a better choice.

Example (homogenous.chpl). The statement
var x1: (string, real),

x2: (int, int, int),
x3: 3*int;

defines three variables. Variable x1 is a 2-tuple with component types string and real. Variables x2
and x3 are homogeneous 3-tuples with component type int. The types of x2 and x3 are identical even
though they are specified in different ways.

Note that if a single type is delimited by parentheses, the parentheses only impact precedence. Thus (int) is equiva-
lent to int. Nevertheless, tuple types with a single component type are legal and useful. One way to specify a 1-tuple
is to use the overloaded * operator since every 1-tuple is trivially a homogeneous tuple.

100

Tuples 101

Rationale. Like parentheses around expressions, parentheses around types are necessary for grouping in
order to avoid the default precedence of the grammar. Thus it is not the case that we would always want
to create a tuple. The type 3*(3*int) specifies a 3-tuple of 3-tuples of integers rather than a 3-tuple of
1-tuples of 3-tuples of integers. The type 3*3*int, on the other hand, specifies a 9-tuple of integers.

14.2 Tuple Values

A value of a tuple type attaches a value to each component type. Tuple values can be specified by a parenthesized,
comma-separated list of expressions. The number of expressions in the list defines the size of the tuple; the types of
these expressions specify the component types of the tuple.

The syntax of a tuple expression is given by:

tuple-expression:
(tuple-component ,)
(tuple-component , tuple-component-list)

tuple-component:
expression

tuple-component-list:
tuple-component
tuple-component , tuple-component-list

An underscore can be used to omit components when splitting a tuple (see 14.6.1).

Example (values.chpl). The statement
var x1: (string, real) = ("hello", 3.14),

x2: (int, int, int) = (1, 2, 3),
x3: 3*int = (4, 5, 6);

defines three tuple variables. Variable x1 is a 2-tuple with component types string and real. It is
initialized such that the first component is "hello" and the second component is 3.14. Variables x2 and
x3 are homogeneous 3-tuples with component type int. Their initialization expressions specify 3-tuples
of integers.

Note that if a single expression is delimited by parentheses, the parentheses only impact precedence. Thus (1) is
equivalent to 1. To specify a 1-tuple, use the form with the trailing comma (1,).

Example (onetuple.chpl). The statement
var x: 1*int = (7,);

creates a 1-tuple of integers storing the value 7.

Tuple expressions are evaluated similarly to function calls where the arguments are all generic with no explicit intent.
So a tuple expression containing an array does not copy the array.

When a tuple is passed as an argument to a function, it is passed as if it is a record type containing fields of the same
type and in the same order as in the tuple.

Tuples 102

14.3 Tuple Indexing

A tuple component may be accessed by an integral parameter (a compile-time constant) as if the tuple were an array.
Indexing is 1-based, so the first component in the tuple is accessed by the index 1, and so forth.

Example (access.chpl). The loop
var myTuple = (1, 2.0, "three");
for param i in 1..3 do

writeln(myTuple(i));

uses a param loop to output the components of a tuple.

Homogeneous tuples may be accessed by integral values that are not necessarily compile-time constants.

Example (access-homogeneous.chpl). The loop
var myHTuple = (1, 2, 3);
for i in 1..3 do
writeln(myHTuple(i));

uses a serial loop to output the components of a homogeneous tuple. Since the index is not a compile-time
constant, this would result in an error were tuple not homogeneous.

Rationale. Non-homogeneous tuples can only be accessed by compile-time constants since the type of
an expression must be statically known.

14.4 Iteration over Tuples

Only homogenous tuples support iteration via standard for, forall and coforall loops. These loops iterate over
all of the tuple’s elements. A loop of the form:

[for|forall|coforall] e in t do
...e...

where t is a homogenous tuple of size n, is semantically equivalent to:
[for|forall|coforall] i in 1..n do

...t(i)...

The iterator variable for an tuple iteration is a either a const value or a reference to the tuple element type, following
default intent semantics.

14.5 Tuple Assignment

In tuple assignment, the components of the tuple on the left-hand side of the assignment operator are each assigned
the components of the tuple on the right-hand side of the assignment. These assignments occur in component order
(component one followed by component two, etc.).

Tuples 103

14.6 Tuple Destructuring

Tuples can be split into their components in the following ways:

• In assignment where multiple expression on the left-hand side of the assignment operator are grouped using
tuple notation.

• In variable declarations where multiple variables in a declaration are grouped using tuple notation.

• In for, forall, and coforall loops (statements and expressions) where multiple indices in a loop are grouped using
tuple notation.

• In function calls where multiple formal arguments in a function declaration are grouped using tuple notation.

• In an expression context that accepts a comma-separated list of expressions where a tuple expression is expanded
in place using the tuple expansion expression.

14.6.1 Splitting a Tuple with Assignment

When multiple expression on the left-hand side of an assignment operator are grouped using tuple notation, the tuple
on the right-hand side is split into its components. The number of grouped expressions must be equal to the size of
the tuple on the right-hand side. In addition to the usual assignment evaluation order of left to right, the assignment is
evaluated in component order.

Example (splitting.chpl). The code

var a, b, c: int;
(a, (b, c)) = (1, (2, 3));

defines three integer variables a, b, and c. The second line then splits the tuple (1, (2, 3)) such that
1 is assigned to a, 2 is assigned to b, and 3 is assigned to c.

Example (aliasing.chpl). The code

var A = [i in 1..4] i;
writeln(A);
(A(1..2), A(3..4)) = (A(3..4), A(1..2));
writeln(A);

creates a non-distributed, one-dimensional array containing the four integers from 1 to 4. Line 2 outputs
1 2 3 4. Line 3 does what appears to be a swap of array slices. However, because the tuple is created
with array aliases (like a function call), the assignment to the second component uses the values just
overwritten in the assignment to the first component. Line 4 outputs 3 4 3 4.

When splitting a tuple with assignment, the underscore token can be used to omit storing some of the components. In
this case, the full expression on the right-hand side of the assignment operator is evaluated, but the omitted values will
not be assigned to anything.

Example (omit-component.chpl). The code

Tuples 104

proc f()
return (1, 2);

var x: int;
(x,_) = f();

defines a function that returns a 2-tuple, declares an integer variable x, calls the function, assigns the first
component in the returned tuple to x, and ignores the second component in the returned tuple. The value
of x becomes 1.

14.6.2 Splitting a Tuple in a Declaration

When multiple variables in a declaration are grouped using tuple notation, the tuple initialization expression is split into
its type and/or value components. The number of grouped variables must be equal to the size of the tuple initialization
expression. The variables are initialized in component order.

The syntax of grouped variable declarations is defined in §8.1.

Example (decl.chpl). The code

var (a, (b, c)) = (1, (2, 3));

defines three integer variables a, b, and c. It splits the tuple (1, (2, 3)) such that 1 initializes a, 2
initializes b, and 3 initializes c.

Grouping variable declarations using tuple notation allows a 1-tuple to be destructured by enclosing a single variable
declaration in parentheses.

Example (onetuple-destruct.chpl). The code

var (a) = (1,);

initialize the new variable a to 1.

When splitting a tuple into multiple variable declarations, the underscore token may be used to omit components of the
tuple rather than declaring a new variable for them. In this case, no variables are defined for the omitted components.

Example (omit-component-decl.chpl). The code

proc f()
return (1, 2);

var (x,_) = f();

defines a function that returns a 2-tuple, calls the function, declares and initializes variable x to the first
component in the returned tuple, and ignores the second component in the returned tuple. The value of x
is initialized to 1.

Tuples 105

14.6.3 Splitting a Tuple into Multiple Indices of a Loop

When multiple indices in a loop are grouped using tuple notation, the tuple returned by the iterator (§21) is split across
the index tuple’s components. The number of indices in the index tuple must equal the size of the tuple returned by
the iterator.

Example (indices.chpl). The code
iter bar() {
yield (1, 1);
yield (2, 2);

}

for (i,j) in bar() do
writeln(i+j);

defines a simple iterator that yields two 2-tuples before completing. The for-loop uses a tuple notation to
group two indices that take their values from the iterator.

When a tuple is split across an index tuple, indices in the index tuple (left-hand side) may be omitted. In this case, no
indices are defined for the omitted components.

However even when indices are omitted, the iterator is evaluated as if an index were defined. Execution proceeds as if
the omitted indices are present but invisible. This means that the loop body controlled by the iterator may be executed
multiple times with the same set of (visible) indices.

14.6.4 Splitting a Tuple into Multiple Formal Arguments in a Function Call

When multiple formal arguments in a function declaration are grouped using tuple notation, the actual expression is
split into its components during a function call. The number of grouped formal arguments must be equal to the size of
the actual tuple expression. The actual arguments are passed in component order to the formal arguments.

The syntax of grouped formal arguments is defined in §13.2.

Example (formals.chpl). The function
proc f(x: int, (y, z): (int, int)) {

// body
}

is defined to take an integer value and a 2-tuple of integer values. The 2-tuple is split when the function is
called into two formals. A call may look like the following:

f(1, (2, 3));

An implicit where clause is created when arguments are grouped using tuple notation, to ensure that the function is
called with an actual tuple of the correct size. Arguments grouped in tuples may be nested arbitrarily. Functions with
arguments grouped into tuples may not be called using named-argument passing on the tuple-grouped arguments. In
addition, tuple-grouped arguments may not be specified individually with types or default values (only in aggregate).
They may not be specified with any qualifier appearing before the group of arguments (or individual arguments) such
as inout or type. They may not be followed by ... to indicate that there are a variable number of them.

Tuples 106

Example (implicit-where.chpl). The function f defined as
proc f((x, (y, z))) {
writeln((x, y, z));

}

is equivalent to the function g defined as
proc g(t) where isTuple(t) && t.size == 2 && isTuple(t(2)) && t(2).size == 2 {

writeln((t(1), t(2)(1), t(2)(2)));
}

except without the definition of the argument name t.

Grouping formal arguments using tuple notation allows a 1-tuple to be destructured by enclosing a single formal
argument in parentheses.

Example (grouping-Formals.chpl). The empty function
proc f((x)) { }

accepts a 1-tuple actual with any component type.

When splitting a tuple into multiple formal arguments, the arguments that are grouped using the tuple notation may be
omitted. In this case, no names are associated with the omitted components. The call is evaluated as if an argument
were defined.

14.6.5 Splitting a Tuple via Tuple Expansion

Tuples can be expanded in place using the following syntax:

tuple-expand-expression:
(... expression)

In this expression, the tuple defined by expression is expanded in place to represent its components. This can only be
used in a context where a comma-separated list of components is valid.

Example (expansion.chpl). Given two 2-tuples
var x1 = (1, 2.0), x2 = ("three", "four");

the following statement
var x3 = ((...x1), (...x2));

creates the 4-tuple x3 with the value (1, 2.0, "three", "four").

Example (expansion-2.chpl). The following code defines two functions, a function first that returns
the first component of a tuple and a function rest that returns a tuple containing all of the components of
a tuple except for the first:

proc first(t) where isTuple(t) {
return t(1);

}
proc rest(t) where isTuple(t) {
proc helper(first, rest...)

return rest;
return helper((...t));

}

Tuples 107

14.7 Tuple Operators

14.7.1 Unary Operators

The unary operators +, -, ˜, and ! are overloaded on tuples by applying the operator to each argument component and
returning the results as a new tuple.

The size of the result tuple is the same as the size of the argument tuple. The type of each result component is the
result type of the operator when applied to the corresponding argument component.

The type of every element of the operand tuple must have a well-defined operator matching the unary operator being
applied. That is, if the element type is a user-defined type, it must supply an overloaded definition for the unary
operator being used. Otherwise, a compile-time error will be issued.

14.7.2 Binary Operators

The binary operators +, -, *, /, %, **, &, |, ˆ, <<, and >> are overloaded on tuples by applying them to pairs of the
respective argument components and returning the results as a new tuple. The sizes of the two argument tuples must
be the same. These operators are also defined for homogenous tuples and scalar values of matching type.

The size of the result tuple is the same as the argument tuple(s). The type of each result component is the result type
of the operator when applied to the corresponding pair of the argument components.

When a tuple binary operator is used, the same operator must be well-defined for successive pairs of operands in the
two tuples. Otherwise, the operation is illegal and a compile-time error will result.

Example (binary-ops.chpl). The code

var x = (1, 1, 1) + (2, 2.0, "2");

creates a 3-tuple of an int, a real and a string with the value (3, 3.0, "12").

14.7.3 Relational Operators

The relational operators >, >=, <, <=, ==, and != are defined over tuples of matching size. They return a single boolean
value indicating whether the two arguments satisfy the corresponding relation.

The operators >, >=, <, and <= check the corresponding lexicographical order based on pair-wise comparisons between
the argument tuples’ components. The operators == and != check whether the two arguments are pair-wise equal or
not. The relational operators on tuples may be short-circuiting, i.e. they may execute only the pair-wise comparisons
that are necessary to determine the result.

However, just as for other binary tuple operators, the corresponding operation must be well-defined on each successive
pair of operand types in the two operand tuples. Otherwise, a compile-time error will result.

Example (relational-ops.chpl). The code

Tuples 108

var x = (1, 1, 0) > (1, 0, 1);

creates a variable initialized to true. After comparing the first components and determining they are
equal, the second components are compared to determine that the first tuple is greater than the second
tuple.

14.8 Predefined Functions and Methods on Tuples

proc isHomogeneousTuple(t: Tuple) param

Returns true if t is a homogeneous tuple; otherwise false.

proc isTuple(t: Tuple) param

Returns true if t is a tuple; otherwise false.

proc isTupleType(type t) param

Returns true if t is a tuple of types; otherwise false.

proc max(type t) where isTupleType(t)

Returns a tuple of type t with each component set to the maximum value that can be stored in its position.

proc min(type t) where isTupleType(t)

Returns a tuple of type t with each component set to the minimum value that can be stored in its position.

proc Tuple.size param

Returns the size of the tuple.

15 Classes

Classes are data structures with associated state and functions. Storage for a class instance, or object, is allocated
independently of the scope of the variable that refers to it. An object is created by calling a class constructor (§15.3),
which allocates storage, initializes it, and returns a reference to the newly-created object. Storage can be reclaimed by
deleting the object (§15.9).

A class declaration (§15.1) generates a class type (§15.1.1). A variable of a class type can refer to an instance of that
class or any of its derived classes.

A class is generic if it has generic fields. Generic classes and fields are discussed in §22.3.

15.1 Class Declarations

A class is defined with the following syntax:

class-declaration-statement:
simple-class-declaration-statement
external-class-declaration-statement

simple-class-declaration-statement:
class identifier class-inherit-listopt { class-statement-listopt }

class-inherit-list:
: class-type-list

class-type-list:
class-type
class-type , class-type-list

class-statement-list:
class-statement
class-statement class-statement-list

class-statement:
variable-declaration-statement
method-declaration-statement
type-declaration-statement
empty-statement

A class-declaration-statement defines a new type symbol specified by the identifier. Classes inherit data and functionality
from other classes if the inherit-type-list is specified. Inheritance is described in §15.2.

Future. Record inheritance is not currently implemented. When enabled, it will have the same effect as
creating a field of that record type within the class, except that all of the record’s field and method names
will appear within the scope of the inheriting class.

109

Classes 110

The body of a class declaration consists of a sequence of statements where each of the statements either defines a
variable (called a field), a procedure or iterator (called a method), or a type alias. In addition, empty statements are
allowed in class declarations, and they have no effect.

If a class declaration contains a type alias or a parameter field, or it contains a variable or constant without a specified
type and without an initialization expression, then it declares a generic class type. Generic classes are described
in §22.3.

If the extern keyword appears before the class keyword, then an external class type is declared. An external
class type declaration must not contain a class-inherit-list. An external class is used within Chapel for type and field
resolution, but no corresponding backend definition is generated. It is presumed that the definition of an external class
is supplied by a library or the execution environment. See the chapter on interoperability (§30) for more information
on external classes.

Future. Privacy controls for classes and records are currently not specified, as discussion is needed
regarding its impact on inheritance, for instance.

15.1.1 Class Types

A class type is given simply by the class name for non-generic classes. Generic classes must be instantiated to serve
as a fully-specified type, for example to declare a variable. This is done with type constructors, which are defined in
Section 22.3.4.

class-type:
identifier
identifier (named-expression-list)

A class type may appear in inheritance lists of other class declarations.

15.1.2 Class Values

A class value is either a reference to an instance of a class or nil (§15.2.7). Class instances can be created using the
new operator (§15.3) and deleted using the delete operator (§15.9).

For a given class type, a legal value of that type is a reference to an instance of either that class or a class inheriting,
directly or indirectly, from that class. nil is a legal value of any class type.

The default value of a class type is nil.

Example (declaration.chpl).

class C { }
var c : C; // c has the class type C, initialized with the value nil.
c = new C(); // Now c refers to an object of type C.
var c2 = c; // The type of c2 is also C.

// c2 refers to the same object as c.
class D : C {} // Class D is derived from C.
c = new D(); // Now c refers to an object of type D.

Classes 111

When the variable c is declared, it initially has the value of nil. The next statement assigned to it an
instance of the class C. The declaration of variable c2 shows that these steps can be combined. The type
of c2 is also C, determined implicitly from the the initialization expression. Finally, an object of type D
is created and assigned to c. The object previously referenced by c is no longer referenced anywhere. It
could be reclaimed by the garbage collector.

15.1.3 Class Fields

Variable declarations within a class declaration define fields within that class. Parameter fields make a class generic.
Variable fields define the storage associated with a class instance.

Example (defineActor.chpl). The code

class Actor {
var name: string;
var age: uint;

}

defines a new class type called Actor that has two fields: the string field name and the unsigned integer
field age.

Field access is described in §15.4.

15.1.4 Class Methods

A method is a procedure or iterator that is associated with a type known as the receiver. Methods on classes are
referred to as to as class methods. Methods may be defined on other types as well.

Methods are declared with the following syntax:

method-declaration-statement:
linkage-specifieropt proc-or-iter this-intentopt type-bindingopt function-name argument-listopt

return-intentopt return-typeopt where-clauseopt function-body

proc-or-iter:
proc
iter

this-intent:
param
ref
type

type-binding:
identifier .

Methods defined within the lexical scope of a class, record, or union are referred to as primary methods. For such
methods, the type-binding can be omitted and is taken to be the innermost class, record, or union in which the method
is defined. Methods defined outside of such scopes are known as secondary methods and must have a type-binding

Classes 112

(otherwise, they would simply be standalone functions rather than methods). Note that secondary methods can be
defined not only for classes, records, and unions, but also for any other type (e.g., integers, reals, strings).

Method calls are described in §15.5.

The use of this-intent is described in §15.5.1.

15.1.5 Nested Classes

A class or record defined within another class is a nested class (or record).

Nested classes or records can refer to fields and methods in the outer class (or record) implicitly, or explicitly by means
of an outer reference.

A nested class (or record) can be referenced only within its immediately enclosing class (or record).

15.2 Inheritance

A derived class can inherit from one or more other classes by listing those classes in the derived class declaration.
When inheriting from multiple base classes, only one of the base classes may contain fields. The other classes can
only define methods. Note that a class can still be derived from a class that contains fields which is itself derived from
a class that contains fields.

These restrictions on inheritance induce a class hierarchy which has the form of a tree. A variable referring to an
instance of class C can be cast to any type that is an ancestor of C. Note that casts to more- and less-derived classes are
both permitted.

Future. A derived class may also incorporate any number of records by listing them in the derived class
declaration. As with record inheritance, this has the effect of injecting the record’s fields and methods
into the new class type. Record inheritance does not induce a well-defined class hierarchy. See §16.2 for
details.

15.2.1 The object Class

All classes are derived from the object class, either directly or indirectly. If no class name appears in the inheritance
list, the class derives implicitly from object. Otherwise, a class derives from object indirectly through the class or
classes it inherits. A variable of type object can hold a reference to an object of any class type.

15.2.2 Accessing Base Class Fields

A derived class contains data associated with the fields in its base classes. The fields can be accessed in the same
way that they are accessed in their base class unless the getter or setter method is overridden in the derived class, as
discussed in §15.2.5.

Classes 113

15.2.3 Derived Class Constructors

The default initializer of a derived class automatically calls the default initializer of each of its base classes The same is
not true for constructors: To initialize inherited fields to anything other than its default-initialized value, a constructor
defined in a derived class must either call base class constructors or manipulate those base-class fields directly.

Open issue. The syntax for calling a base-class constructor from a derived-class constructor has not yet
been defined.

There is an expectation that a more standard way of chaining constructor calls will be supported.

15.2.4 Shadowing Base Class Fields

A field in the derived class can be declared with the same name as a field in the base class. Such a field shadows the
field in the base class in that it is always referenced when it is accessed in the context of the derived class.

Open issue. There is an expectation that there will be a way to reference the field in the base class but
this is not defined at this time.

15.2.5 Overriding Base Class Methods

If a method in a derived class is declared with a signature identical to that of a method in a base class, then it is said to
override the base class’s method. Such a method is a candidate for dynamic dispatch in the event that a variable that
has the base class type references an object that has the derived class type.

The identical signature requires that the names, types, and order of the formal arguments be identical. The return type
of the overriding method must be the same as the return type of the base class’s method, or must be a subclass of the
base class method’s return type.

Methods without parentheses are not candidates for dynamic dispatch.

Rationale. Methods without parentheses are primarily used for field accessors. A default is created if
none is specified. The field accessor should not dispatch dynamically since that would make it impossible
to access a base field within a base method should that field be shadowed by a subclass.

15.2.6 Inheriting from Multiple Classes

A class can be derived from multiple base classes provided that only one of the base classes contains fields either
directly or from base classes that it is derived from. The methods defined by the other base classes can be overridden.
This provides functionality similar to the C# concept of interfaces.

Open issue. It is an open question whether the language will support interface declarations and
multiple inheritance. This is currently under study at the University of Colorado (Boulder).

Classes 114

15.2.7 The nil Value

Chapel provides nil to indicate the absence of a reference to any object. nil can be assigned to a variable of any
class type. Invoking a class method or accessing a field of the nil value results in a run-time error.

nil-expression:
nil

15.2.8 Default Initialization

When an instance of a class (an object) is created, it is brought to a known and legal state first, before it can be accessed
or operated upon. This is done through default initialization.

An object is default-initialized by initializing all of its fields in the order of the field declarations within the class.
Fields inherited from a superclass are initialized before fields declared in current class.

If a field in the class is declared with an initialization expression, that expression is used to initialize the field. Other-
wise, the field is initialized to the default value of its type (§8.1.1).

15.3 Class Constructors

Class instances are created by invoking class constructors. A class constructor is a method with the same name as the
class. It is invoked by the new operator, where the class name and constructor arguments are preceded with the new
keyword.

When the constructor is called, memory is allocated to store a class instance, the instance undergoes default initializa-
tion, and then the constructor method is invoked on this newly-created instance.

If the program declares a class constructor method, it is a user-defined constructor. If the program declares no con-
structors for a class, a compiler-generated constructor for that class is created automatically.

15.3.1 User-Defined Constructors

A user-defined constructor is a constructor method explicitly declared in the program. A constructor declaration has
the same syntax as a method declaration, except that the name of the function matches the name of the class, and there
is no return type specifier.

A constructor for a given class is called by placing the new operator in front of the class name. Any constructor
arguments follow the class name in a parenthesized list.

constructor-call-expression:
new class-name (argument-list)

class-name:
identifier

Classes 115

When a constructor is called, the usual function resolution mechanism (§13.12) is applied to determine which user-
defined constructor to invoke.

Example (simpleConstructors.chpl). The following example shows a class with two constructors:

class MessagePoint {
var x, y: real;
var message: string;

proc MessagePoint(x: real, y: real) {
this.x = x;
this.y = y;
this.message = "a point";

}

proc MessagePoint(message: string) {
this.x = 0;
this.y = 0;
this.message = message;

}
} // class MessagePoint

// create two objects
var mp1 = new MessagePoint(1.0,2.0);
var mp2 = new MessagePoint("point mp2");

The first constructor lets the user specify the initial coordinates and the second constructor lets the user
specify the initial message when creating a MessagePoint.

Constructors for generic classes (§22.3) handle certain arguments differently and may need to satisfy additional re-
quirements. See Section 22.3.7 for details.

15.3.2 The Compiler-Generated Constructor

A compiler-generated constructor for a class is created automatically if there are no constructors for that class in the
program. The compiler-generated constructor has one argument for every field in the class, each of which has a default
value equal to the field’s initializer (if present) or default value of the field’s type (if not). The list of fields (and hence
arguments) includes fields inherited from superclasses, type aliases and parameter fields, if any. The order of the
arguments in the argument list matches the order of the field declarations within the class, with the arguments for a
superclass’s fields occurring before the arguments for the fields declared in current class.

Generic fields are treated separately which are discussed in Section §22.3.6.

When invoked, the compiler-generated constructor initializes each field in the class to the value of the corresponding
actual argument.

Example (defaultConstructor.chpl). Given the class

class C {
var x: int;
var y: real = 3.14;
var z: string = "Hello, World!";

}

Classes 116

there are no user-defined constructors for C, so new operators will invoke C’s compiler-generated con-
structor. The x argument of the compiler-generated constructor has the default value 0. The y and z

arguments have the default values 3.14 and "Hello, World!", respectively.

C instances can be created by calling the compiler-generated constructor as follows:

• The call new C() is equivalent to C(0,3.14,"Hello, World!").

• The call new C(2) is equivalent to C(2,3.14,"Hello, World!").

• The call new C(z="") is equivalent to C(0,3.14,"").

• The call new C(2, z="") is equivalent to C(2,3.14,"").

• The call new C(0,0.0,"") specifies the initial values for all fields explicitly.

15.4 Field Accesses

The field in a class is accessed via a field access expression.

field-access-expression:
receiver-clauseopt identifier

receiver-clause:
expression .

The receiver-clause specifies the receiver, which is the class instance whose field is being accessed. The receiver
clause can be omitted when the field access is within a method. In this case the receiver is the method’s receiver
§15.5.1. The receiver clause can also be omitted when the field access is within a class declaration. In this case the
receiver is the instance being implicitly defined or referenced.

The identifier in the field access expression indicates which field is accessed.

A field can be modified via an assignment statement where the left-hand side of the assignment is a field access
expression. Accessing a parameter field returns a parameter.

Example (useActor1.chpl). Given a variable anActor of type Actor as defined above, the code

var s: string = anActor.name;
anActor.age = 27;

reads the field name and assigns the value to the variable s, and assigns the field age in the object anActor
the value 27.

15.4.1 Variable Getter Methods

All field accesses are performed via getters. A getter is a method without parentheses with the same name as the field.
It is defined in the field’s class and has a ref return intent (§13.7.1). If the program does not define it, the default
getter, which simply returns the field, is provided.

Example (getterSetter.chpl). In the code

Classes 117

class C {
var setCount: int;
var x: int;
proc x ref {
if setter then

setCount += 1;
return x;

}
}

an explicit variable getter method is defined for field x. It returns the field x and increments another field
that records the number of times x was assigned a value.

15.5 Class Method Calls

A method is invoked with a method call, which is similar to a non-method call expression.

method-call-expression:
receiver-clauseopt expression (named-expression-list)
receiver-clauseopt expression [named-expression-list]
receiver-clauseopt parenthesesless-function-identifier

The receiver-clause (or its absence) specifies the method’s receiver §15.5.1 in the same way it does for field accesses
§15.4.

Example (defineMethod.chpl). A method to output information about an instance of the Actor class can
be defined as follows:

proc Actor.print() {
writeln("Actor ", name, " is ", age, " years old");

}

This method can be called on an instance of the Actor class, anActor, with the call expression anActor.print().

The actual arguments supplied in the method call are bound to the formal arguments in the method declaration follow-
ing the rules specified for procedures (§13). The exception is the receiver §15.5.1.

15.5.1 The Method Receiver and the this Argument

A method’s receiver is an implicit formal argument named this representing the expression on which the method is
invoked. The receiver’s actual argument is specified by the receiver-clause of a method-call-expression as specified in
§15.4.

Example (implicitThis.chpl). Let class C, method foo, and function bar be defined as
class C {
proc foo() {
bar(this);

}
}
proc bar(c: C) { writeln(c); }

Classes 118

Then given an instance of C called c1, the method call c1.foo() results in a call to bar where the
argument is c1. Within primary method C.foo(), the (implicit) receiver formal has static type C and is
referred to as this.

Methods whose receivers are objects are called instance methods. Methods may also be defined to have type

receivers—these are known as type methods.

The optional this-intent is used to specify type methods, to constrain a receiver argument to be a param, or to specify
how the receiver argument should be passed to the method.

A method whose this-intent is type defines a type method. It can only be called on the type itself rather than on an
instance of the type. When this-intent is param, it specifies that the function can only be applied to param objects of
the given type binding.

Example (paramTypeThisIntent.chpl). In the following code, the isOdd method is defined with a
this-intent of param, permitting it to be called on params only. The size method is defined with a
this-intent of type, requiring it to be called on the int type itself, not on integer values.

proc param int.isOdd() param {
return this & 0x1 == 0x1;

}

proc type int.size() param {
return 64;

}

param three = 3;
var seven = 7;

writeln(42.isOdd()); // prints false
writeln(three.isOdd()); // prints true
writeln((42+three).isOdd()); // prints true
// writeln(seven.isOdd()); // illegal since ’seven’ is not a param

writeln(int.size()); // prints 64
// writeln(42.size()); // illegal since ’size()’ is a static method

When this-intent is ref, the receiver argument will be passed by reference, allowing modifications to this. If no
this-intent is specified, the receiver will be passed with the default intent as specified in §13.5.2.

Example (refThisIntent.chpl). In the following code, the doubleMe function is defined with a this-intent
of ref, allowing variables of type int to double themselves.

proc ref int.doubleMe() { this *= 2; }

Given a variable x = 2, a call to x.doubleMe() will set x to 4.

15.6 The this Method

A procedure method declared with the name this allows a class to be “indexed” similarly to how an array is indexed.
Indexing into a class instance has the semantics of calling a method named this. There is no other way to call a
method called this. The this method must be declared with parentheses even if the argument list is empty.

Classes 119

Example (thisMethod.chpl). In the following code, the this method is used to create a class that acts
like a simple array that contains three integers indexed by 1, 2, and 3.

class ThreeArray {
var x1, x2, x3: int;
proc this(i: int) ref {
select i {

when 1 do return x1;
when 2 do return x2;
when 3 do return x3;

}
halt("ThreeArray index out of bounds: ", i);

}
}

15.7 The these Method

An iterator method declared with the name these allows a class to be “iterated over” similarly to how a domain or
array is iterated over. Using a class in the context of a loop where an iteratable-expression is expected has the semantics
of calling a method on the class named these.

Example (theseIterator.chpl). In the following code, the these method is used to create a class that acts
like a simple array that can be iterated over and contains three integers.

class ThreeArray {
var x1, x2, x3: int;
iter these() ref {

yield x1;
yield x2;
yield x3;

}
}

15.8 Common Operations

15.8.1 Class Assignment

Classes are assigned by reference. After an assignment from one variable of a class type to another, both variables
reference the same class instance.

15.8.2 Implicit Class Conversions

An implicit conversion from class type D to another class type C is allowed when D is a subclass of C. The value nil
can be implicitly converted to any class type. These conversions do not change the value.

Classes 120

15.9 Dynamic Memory Management

Memory associated with class instances can be reclaimed with the delete statement:

delete-statement:
delete expression ;

where the expression is a reference to the instance that will be reclaimed. The expression may evaluate to nil, in
which case the delete statement has no effect. If an object is referenced after it has been deleted, the behavior is
undefined.

Example (delete.chpl). The following example allocates a new object c of class type C and then deletes
it.

var c : C = nil;
delete c; // Does nothing: c is nil.

c = new C(); // Creates a new object.
delete c; // Deletes that object.

// The following statements reference an object after it has been deleted, so
// the behavior of each is "undefined":
// writeln(c.i); // May read from freed memory.
// c.i = 3; // May overwrite freed memory.
// delete c; // May confuse some allocators.

Open issue. Chapel was originally specified without a delete keyword. The intention was that Chapel
would be implemented with a distributed-memory garbage collector. This is a research challenge. In order
to focus elsewhere, the design has been scaled back. There is an expectation that Chapel will eventually
support an optional distributed-memory garbage collector as well as a region-based memory management
scheme similar to that used in the Titanium language. Support of delete will likely continue even as
these optional features become supported.

15.9.1 Class Destructor

A class author may specify additional actions to be performed before a class object is reclaimed, by defining a class
destructor. A class destructor is a method that has the same name as the class prefixed by a tilde. A class destructor
takes no arguments (aside from the implicit this argument). If defined, the destructor is called each time a delete
statement is invoked with a valid instance of that class type. The destructor is not called if the argument of delete
evaluates to nil.

Example (classDestructor.chpl).
class C {

var i,j,k: int;
proc ˜C() { writeln("Bye, bye."); }

}

var c : C = nil;
delete c; // Does nothing: c is nil.

c = new C(); // Creates a new object.
delete c; // Deletes that object: Writes out "Bye, bye."

// and reclaims the memory that was held by c.

16 Records

A record is a data structure that is similar to a class but instead has value semantics, similar to primitive types. Value
semantics mean that assignment, argument passing and function return values are by default all done by copying.
Value semantics also imply that a variable of record type is associated with only one piece of storage and has only
one type throughout its lifetime. Storage is allocated for a variable of record type when the variable declaration is
executed, and the record variable is also initialized at that time.

A record declaration creates a record type §16.1. A variable of record type contains all and only the fields defined
by that type (§16.1.1). Value semantics imply that the type of a record variable is known at compile time (i.e. it is
statically typed).

Records can be created through an explicit call to a record constructor, which allocates storage, initializes it and returns
it. A record is also created upon a variable declaration of a record type.

A record type is generic if it contains generic fields. Generic record types are discussed in detail in §22.3.

16.1 Record Declarations

A record is defined with the following syntax:

record-declaration-statement:
simple-record-declaration-statement
external-record-declaration-statement

simple-record-declaration-statement:
record identifier record-inherit-listopt { record-statement-list }

record-inherit-list:
: record-type-list

record-type-list:
record-type
record-type , record-type-list

record-statement-list:
record-statement
record-statement record-statement-list

record-statement:
variable-declaration-statement
method-declaration-statement
type-declaration-statement
empty-statement

A record-declaration-statement defines a new type symbol specified by the identifier. A record inherits data and methods
from other records if the record-inherit-list is specified.

121

Records 122

Future. Allowing a record to inherit from more than one record is future work.

Rationale. We do not allow records to inherit from classes because of the following.

Inheritance implies that the derived type can be cast to one of its base types. If the base type is a record
type, casting to the base type has the effect of removing all of the data fields and all of functions that
are not associated with the base type. Thereafter, the record variable has the base record type, in both
compile-time and run-time interpretations.

If the base type were a class type, the result of the cast would have the static type of the base class while
its run-time type was a record type. Since a record’s type is supposed to be determined at compile time,
this is a bit incongruous with the definition of a record. Moreover, space would have to be allocated in
this special case, to store the record’s run-time type.

As in a class declarations, the body of a record declaration can contain variable, iterator and method declarations as
well as nested type declarations.

If a record declaration contains a type alias or parameter field, or it contains a variable or constant without a specified
type and without an initialization expression, then it declares a generic record type. Generic record types are described
in §22.3.

If the extern keyword appears before the record keyword, then an external record type is declared. An external
record type declaration must not contain a record-inherit-list. An external record is used within Chapel for type and
field resolution, but no corresponding backend definition is generated. It is presumed that the definition of an external
record is supplied by a library or the execution environment. See the chapter on interoperability (§30) for more
information on external records.

Future. Privacy controls for classes and records are currently not specified, as discussion is needed
regarding its impact on inheritance, for instance.

16.1.1 Record Types

A record type specifier simply names a record type, using the following syntax:

record-type:
identifier
identifier (named-expression-list)

A record type specifier may appear anywhere a type specifier is permitted.

For non-generic records, the record name by itself is sufficient to specify the type. Generic records must be instantiated
to serve as a fully-specified type, for example to declare a variable. This is done with type constructors, which are
defined in Section 22.3.4.

Records 123

16.1.2 Record Fields

Variable declarations within a record type declaration define fields within that record type. The presence of at least one
parameter field causes the record type to become generic. Variable fields define the storage associated with a record.

Example (defineActorRecord.chpl). The code

record ActorRecord {
var name: string;
var age: uint;

}

defines a new record type called ActorRecord that has two fields: the string field name and the unsigned
integer field age. The data contained by a record of this type is exactly the same as that contained by an
instance of the Actor class defined in the preceding chapter §15.1.3.

16.1.3 Record Methods

A record method is a function or iterator that is bound to a record. Unlike functions that take a record as an argument,
record methods access the record by reference, so that persistent field updates are possible.

The syntax for record method declarations is identical to that for class method declarations (§15.1.4).

16.1.4 Nested Record Types

Record type declarations may be nested within other class, record and union declarations. Methods defined in a nested
record type may access fields declared in the containing aggregate type either implicitly, or explicitly by means of an
outer reference.

16.2 Record Inheritance

A derived record type is a type that inherits from other record types. For each named base record type, inheritance
effectively inserts all of its fields and methods into the new record type.

Since record types are resolved statically, there is no type hierarchy implied by record inheritance. It is merely a
shorthand for including a list of fields in the record (or class) type being defined. Record inheritance can be useful for
grouping data common to several or class or record types.

Future. From the definition of record inheritance, it is apparent that a record of a derived type can be
cast legally to any of its base record types. But given their semantics, records can also be legally cast to
types with which they have no inheritance relationship. Thus, records do not induce a well-defined type
hierarchy.

Example (recordInheritance.chpl).

Records 124

record Center { var x, y: real; }
record Circle : Center {
var radius: real;

}
record Ellipse : Center {
var major, minor: real;

}

The record Center is defined and used as a shorthand in defining the Circle and Ellipse records. The
Circle record contains three real fields named x, y and radius. The Ellipse record contains four
real fields named x, y, major and minor.

The syntax and semantics for accessing methods (including getter methods and hence fields) in a base record type is
the same as for accessing fields in a base class (§15.2.2).

16.2.1 Shadowing Base Record Fields

A field in the derived record can be declared with the same name as a field in a base record. Such a field shadows the
field in the base record, meaning that the field by the same name in the base record is not directly accessible.

Open issue. A syntax for accessing shadowed fields has not yet been specified.

16.2.2 Overriding Base Record Methods

Future. If a method in a derived record is declared with a signature identical to that of a method in a
base record, then it is said to override the base record’s method. Since records do not support dynamic
dispatch, method overriding is the same as method shadowing: When referenced via the derived record
type, the derived type’s version of the method is called; when referenced via the base record type, the base
record type’s version of the method is called.

The identical signature requires that the names, types, and order of the formal arguments be identical. The
return type of the overriding method must be the same as the return type of the base record’s method, or
must be a subrecord of the base record method’s return type.

16.3 Record Variable Declarations

A record variable declaration is a variable declaration using a record type. When a variable of record type is declared,
storage is allocated sufficient to store all of the fields defined in that record type.

In the context of a class or record or union declaration, the fields are allocated within the object as if they had been
declared individually. In this sense, records provide a way to group related fields within a containing class or record
type.

In the context of a function body, a record variable declaration causes storage to be allocated sufficient to store all
of the fields in that record type. The record variable is initialized through a call to its default initializer. The default
initializer for a record is defined in the same way as the default initializer for a class (§15.2.8).

Records 125

16.3.1 Storage Allocation

Storage for a record variable directly contains the data associated with the fields in the record, in the same manner as
variables of primitive types directly contain the primitive values. Record storage is reclaimed when the record variable
goes out of scope. No additional storage for a record is allocated or reclaimed. Field data of one variable’s record is
not shared with data of another variable’s record.

16.3.2 Record Initialization

A variable of a record type declared without an initialization expression is initialized through a call to the record’s
default initializer, passing no arguments. The default initializer for a record is defined in the same way as the default
initializer for a class (§15.2.8).

If the new record type is derived from other record types, the default initializer for each base record will be called in
lexical order before default initializer for the record itself.

To construct a record as an expression, i.e. without binding it to a variable, the new operator is required. In this case,
storage is allocated and reclaimed as for a record variable declaration (§16.3.1), except that the temporary record goes
out of scope at the end of the enclosing expression.

To initialize a record variable with a non-default value, it can be assigned the value of a constructor call expression.
The constructors for a record are defined in the same way as those for a class (§15.3).

Rationale. The new keyword disambiguates types from values. This is needed because of the close
relationship between constructors and type specifiers for classes and records.

Example (recordCreation.chpl). The program

record TimeStamp {
var time: string = "1/1/1011";

}

var timestampDefault: TimeStamp; // use the default for ’time’
var timestampCustom = new TimeStamp("2/2/2022"); // ... or a different one
writeln(timestampDefault);
writeln(timestampCustom);

var idCounter = 0;
record UniqueID {

var id: int;
proc UniqueID() { idCounter += 1; id = idCounter; }

}

writeln(new UniqueID()); // create and use a record value without a variable
writeln(new UniqueID());

produces the output

(time = 1/1/1011)
(time = 2/2/2022)
(id = 1)
(id = 2)

Records 126

The variable timestampDefault is initialized with TimeStamp’s default initializer. The expression
new TimeStamp creates a record that is assigned to timestampCustom. It effectively initializes timestampCustom
via a call to the constructor with desired arguments. The records created with new UniqueID() are dis-
carded after they are used.

As with classes, the user can provide his own constructors (§15.3.1). If any user-defined constructors are supplied, the
default initializer cannot be called directly.

16.3.3 Record Destructor

A record author may specify addditional actions to be performed before record storage is reclaimed by defining a
record destructor. A record destructor is a method that has the same name as the record prefixed by a tilde. A record
destructor takes no arguments (aside from the implicit this argument). If defined, the destructor is called on a record
object after it goes out of scope and before its memory is reclaimed.

Example (recordDestructor.chpl).

class C { var x: int; } // A class with nonzero size.
// If the class were empty, whether or not its memory was reclaimed
// would not be observable.

// Defines a record implementing simple memory management.
record R {

var c: C;
proc R() { c = new C(0); }
proc ˜R() { delete c; c = nil; }

}

proc foo()
{
var r: R; // Initialized using default constructor.
writeln(r);
// r will go out of scope here.
// Its destructor will be called to free the C object it contains.

}

foo();

16.4 Record Arguments

When records are copied into or out of a function’s formal argument, the copy is performed consistently with the
semantics described for record assignment (§16.9.1).

Example (paramPassing.chpl). The program

record MyColor {
var color: int;

}
proc printMyColor(in mc: MyColor) {
writeln("my color is ", mc.color);
mc.color = 6; // does not affect the caller’s record

Records 127

}
var mc1: MyColor; // ’color’ defaults to 0
var mc2: MyColor = mc1; // mc1’s value is copied into mc2
mc1.color = 3; // mc1’s value is modified
printMyColor(mc2); // mc2 is not affected by assignment to mc1
printMyColor(mc2); // ... or by assignment in printMyColor()

proc modifyMyColor(inout mc: MyColor, newcolor: int) {
mc.color = newcolor;

}
modifyMyColor(mc2, 7); // mc2 is affected because of the ’inout’ intent
printMyColor(mc2);

produces
my color is 0
my color is 0
my color is 7

The assignment to mc1.color affects only the record stored in mc1. The record in mc2 is not affected
by the assignment to mc1 or by the assignment in printMyColor. mc2 is affected by the assignment in
modifyMyColor because the intent inout is used.

16.5 Record Field Access

A record field is accessed the same way as a class field (§15.4). When a field access is used as an rvalue, the value of
that field is returned. When it is used as an lvalue, the value of the record field is updated.

Member access expressions that access parameter fields produce a parameter.

16.5.1 Field Getter Methods

As in classes, field accesses are performed via getter methods (§15.4.1). By default, these methods simply return a
reference to the specified field (so they can be written as well as read). The user may redefine these as needed.

16.6 Record Method Calls

A record method may be invoked the same way as a class method (§15.5). Unlike class methods, record methods are
resolved at compile time.

16.6.1 The Method Receiver and the this Argument

The receiver of a record method is similar to and is determined in the same way as the receiver of a class method
(§15.5.1). The type of the receiver is the record in which the method is defined. The receiver formal argument can be
referred to within the method using the identifier this.

The difference from a class method is that the receiver actual argument, which must be a record value, is passed to the
record method by reference, rather than by copying. Therefore updates to the receiver made in the method, if any, are
visible outside the method.

Records 128

16.7 The this Method

As with classes, records can be supplied with a this method. This method defines the behavior of the indexing
operator [].

16.8 The these Method

A these method can be defined for records as well as classes (§15.7). It provides an iterator which iterates over the
contents of the record in a user-defined manner.

16.9 Common Operations

16.9.1 Record Assignment

A variable of record type may be updated by assignment. The compiler provides a default assignment operator for
each record type R having the signature

Example.

proc =(ref lhs:R, rhs:R) : void ;

In it, the value of each field of the record on the right-hand side is assigned to the corresponding field of the record on
the left-hand side.

The compiler-provided assignment operator may be overridden.

The following example demonstrates record assignment.

Example (assignment.chpl).

record R {
var i: int;
var x: real;
proc print() { writeln("i = ", this.i, ", x = ", this.x); }

}
var A: R;
A.i = 3;
A.print(); // "i = 3, x = 0.0"

var C: R;
A = C;
A.print(); // "i = 0, x = 0.0"

C.x = 3.14;
A.print(); // "i = 0, x = 0.0"

Records 129

Prior to the first call to R.print, the record A is created and initialized to all zeroes. Then, its i field is set
to 3. For the second call to R.print, the record C is created assigned to A. Since C is default-initialized
to all zeroes, those zero values overwrite both values in A.

The next clause demonstrates that A and C are distinct entities, rather than two references to the same
object. Assigning 3.14 to C.x does not affect the x field in A.

Open issue. Whether reference assignment is to be supported is an open question. If so, it would work
like reference assignment in C++ – basically creating an alias for the RHS. References can be used to
reduce the length of dereference expression, and also improve performance – especially if that expression
is used repeatedly.

16.9.2 Default Comparison Operators

Default functions to overload == and != are defined for records if none are explicitly defined. The default implemen-
tation of == applies == to each field of the two argument records and reduces the result with the && operator. The
default implementation of != applies != to each field of the two argument records and reduces the result with the ||
operator.

16.9.3 Implicit Record Conversions

An expression of record type D can be implicitly converted to another record type C if

• for each field in C there is a like-named field in D, and

• an implicit conversion is allowed from the type of the field in D to the type of the field in C.

Such a conversion removes any fields that are in D but not C.

The value produced by such a conversion is a record of type C. The value of each field of this record is obtained by an
implicit conversion of the corresponding field in D to that field’s type in C.

16.10 Differences between Classes and Records

The key differences between records and classes are listed below.

16.10.1 Declarations

Syntactically, class and record type declarations are identical, except that they begin with the class and record

keywords, respectively. Also, a record type can only inherit from other record types. Class inheritance is not permitted.

Records 130

16.10.2 Storage Allocation

For a variable of record type, storage necessary to contain the data fields has a lifetime equivalent to the scope in which
it is declared. No two record variables share the same data. It is not necessary to call new to create a record.

By contrast, a class variable contains only a reference to a class instance. A class instance is created through a call to
its new operator. Storage for a class instance, including storage for the data associated with the fields in the class, is
allocated and reclaimed separately from variables referencing that instance. The same class instance can be referenced
by multiple class variables.

16.10.3 Assignment

Assignment to a class variable is performed by reference, whereas assignment to a record is performed by value. When
a variable of class type is assigned to another variable of class type, they both become names for the same object. In
contrast, when a record variable is assigned to another record variable, then contents of the source record are copied
into the target record field-by-field.

When a variable of class type is assigned to a record, matching fields (matched by name) are copied from the class
instance into the corresponding record fields. Subsequent changes to the fields in the target record have no effect upon
the class instance.

Assignment of a record to a class variable is not permitted.

16.10.4 Arguments

The semantics of argument passing is determined by the type of the formal argument (as declared inside the function
header). An actual argument is of a type compatible with the formal argument only if it is legal to assign the actual to
the formal.

Specifically, if the formal argument is of class type, the actual argument must be of that class type or of a type derived
from that class type. If the formal argument is of a record type, then it is only necessary for the fields in the actual
argument to “cover” the fields in the formal argument type.

The receiver argument is passed by value for class methods but is passed by reference for record methods. In both
cases modifications to the receiver fields are visible outside the method.

16.10.5 Inheritance

The difference between record inheritance and class inheritance is that for records there is no dynamic dispatch. The
record type of a variable is the exact type of that variable, i.e. a variable of a base record type cannot store a derived
record type.

Casting a derived record type to a base record type truncates all fields except those belonging to the base record type.
In the same way, only those methods accessible to the base record type may be invoked using the result of such a cast.

Records 131

16.10.6 Shadowing and Overriding

Class variables have run-time types and (therefore) support dynamic dispatch. Records are statically typed, so they do
not have run-time types and they do not support dynamic dispatch.

As a result, in record type hierarchies, shadowing and overriding are the same. Which field is accessed and/or which
method is invoked is determined statically by the declared type of the record being referenced.

16.10.7 No nil Value

Records do not provide a counterpart of the nil value. A variable of record type is associated with storage throughout
its lifetime, so nil has no meaning with respect to records.

16.10.8 The delete operator

Calling delete on a record is illegal.

16.10.9 Default Comparison Operators

For records, the compiler will supply default comparison operators if they are not supplied by the user. The compiler
does not supply default comparison operators for classes.

17 Unions

Unions have the semantics of records, however, only one field in the union can contain data at any particular point in
the program’s execution. Unions are safe so that an access to a field that does not contain data is a runtime error. When
a union is constructed, it is in an unset state so that no field contains data.

17.1 Union Types

The syntax of a union type is summarized as follows:

union-type:
identifier

The union type is specified by the name of the union type. This simplification from class and record types is possible
because generic unions are not supported.

17.2 Union Declarations

A union is defined with the following syntax:

union-declaration-statement:
externopt union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type-declaration-statement
procedure-declaration-statement
iterator-declaration-statement
variable-declaration-statement
empty-statement

If the extern keyword appears before the union keyword, then an external union type is declared. An external
union is used within Chapel for type and field resolution, but no corresponding backend definition is generated. It is
presumed that the definition of an external union type is supplied by a library or the execution environment.

17.2.1 Union Fields

Union fields are accessed in the same way that record fields are accessed. It is a runtime error to access a field that is
not currently set.

Union fields should not be specified with initialization expressions.

132

Unions 133

17.3 Union Assignment

Union assignment is by value. The field set by the union on the right-hand side of the assignment is assigned to the
union on the left-hand side of the assignment and this same field is marked as set.

18 Ranges

A range is a first-class, constant-space representation of a regular sequence of integer indices. Ranges support iteration
over the sequences they represent and are the basis for defining domains (§19).

Ranges are presented as follows:

• definition of the key range concepts §18.1

• range types §18.2

• range values §18.3

• range assignment §18.4.1

• operators on ranges §18.5

• predefined functions on ranges §18.6

18.1 Range Concepts

A range has four primary properties. Together they define the sequence of indices that the range represents, or the
represented sequence, as follows.

• The low bound is either an integer or -∞.

• The high bound is either an integer or +∞. The low and high bounds determine the span of the represented
sequence. Chapel does not represent ∞ explicitly. Instead, infinite bound(s) are represented implicitly in the
range’s type (§18.2). When the low and/or high bound is ∞, the represented sequence is unbounded in the
corresponding direction(s).

• The stride is a non-zero integer. It defines the distance between any two adjacent members of the represented
sequence. The sign of the stride indicates the direction of the sequence:

• stride > 0 indicates an increasing sequence,

• stride < 0 indicates a decreasing sequence.

• The alignment is either an integer or is ambiguous. It defines how the represented sequence’s members are
aligned relative to 0. For a range with a stride other than 1 or -1, ambiguous alignment means that the represented
sequence is undefined. In such a case, certain operations discussed later result in an error.

Open issue. We consider disallowing ambiguous alignment for ranges whose both bounds are
integers (not∞), in order to enable more efficient implementation.

134

Ranges 135

More formally, the represented sequence for the range (low, high, stride, alignmt) contains all indices ix such that:

low ≤ ix ≤ high and ix ≡ alignmt (mod |stride|) if alignmt is not ambiguous
low ≤ ix ≤ high if stride = 1 or stride = −1
the represented sequence is undefined otherwise

The sequence, if defined, is increasing if stride > 0 and decreasing if stride < 0.

If the represented sequence is defined but there are no indices satisfying the applicable equation(s) above, the range
and its represented sequence are empty.

We will say that an integer ix is aligned w.r.t. the range (low, high, stride, alignmt) if:

• alignmt is not ambiguous and ix ≡ alignmt (mod |stride|), or

• stride is 1 or -1.

Furthermore,∞ is never aligned.

Ranges have the following additional properties.

• A range is ambiguously aligned if

– its alignment is ambiguous, and
– its stride is neither 1 nor -1.

• The first index is the first member of the represented sequence.

A range has no first index when the first member is undefined, that is, in the following cases:

– the range is ambiguously aligned,
– the represented sequence is empty,
– the represented sequence is increasing and the low bound is -∞,
– the represented sequence is decreasing and the high bound is +∞.

• The last index is the last member of the represented sequence.

A range has no last index when the last member is undefined, that is, in the following cases:

– it is ambiguously aligned,
– the represented sequence is empty,
– the represented sequence is increasing and the high bound is +∞,
– the represented sequence is decreasing and the low bound is -∞.

• The aligned low bound is the smallest integer that is greater than or equal to the low bound and is aligned w.r.t.
the range, if such an integer exists.

The aligned low bound equals the smallest member of the represented sequence, when both exist.

• The aligned high bound is the largest integer that is less than or equal to the high bound and is aligned w.r.t. the
range, if such an integer exists.

The aligned high bound equals the largest member of the represented sequence, when both exist.

• The range is iterable, that is, it is legal to iterate over it, if is has the first index.

Ranges 136

18.2 Range Types

The type of a range is characterized by three parameters:

• idxType is the type of the indices of the range’s represented sequence. However, when the range’s low and/or
high bound is∞, the represented sequence also contains indices that are not representable by idxType.

idxType must be an integral type and is int by default. The range’s low bound and high bound (when they
are not∞) and alignment are of the type idxType. The range’s stride is of the signed integer type that has the
same bit size as idxType.

• boundedType indicates which of the range’s bounds are not∞. boundedType is an enumeration constant of
the type BoundedRangeType. It is discussed further below.

• stridable is a boolean that determines whether the range’s stride can take on values other than 1. stridable
is false by default. A range is called stridable if its type’s stridable is true.

boundedType is one of the constants of the following type:

enum BoundedRangeType { bounded, boundedLow, boundedHigh, boundedNone };

The value of boundedType determines which bounds of the range are integers (making the range “bounded”, as
opposed to infinite, in the corresponding direction(s)) as follows:

• bounded: both bounds are integers.

• boundedLow: the low bound is an integer (the high bound is +∞).

• boundedHigh: the high bound is an integer (the low bound is -∞).

• boundedNone: neither bound is an integer (both bounds are∞).

boundedType is BoundedRangeType.bounded by default.

The parameters idxType, boundedType and stridable affect all values of the corresponding range type. For
example, the range’s low bound is -∞ if and only if the boundedType of that range’s type is either boundedHigh or
boundedNone.

Rationale. Providing boundedType and stridable in a range’s type allows the compiler to identify
the more common cases where the range is bounded and/or its stride is 1. The compiler can also detect
user and library code that is specialized to these cases. As a result, the compiler has the opportunity to
optimize these cases and the specialized code more aggressively.

A range type has the following syntax:

range-type:
range (named-expression-list)

That is, a range type is obtained as if by invoking the range type constructor (§22.3.4) that has the following header:

Ranges 137

proc range(type idxType = int,
param boundedType = BoundedRangeType.bounded,
param stridable = false) type

As a special case, the keyword range without a parenthesized argument list refers to the range type with the default
values of all its parameters, i.e., range(int, BoundedRangeType.bounded, false).

Example (rangeVariable.chpl). The following declaration declares a variable r that can represent ranges
of 32-bit integers, with both high and low bounds specified, and the ability to have a stride other than 1.

var r: range(int(32), BoundedRangeType.bounded, stridable=true);

18.3 Range Values

A range value consists of the range’s four primary properties (§18.1): low bound, high bound, stride and alignment.

18.3.1 Range Literals

Range literals are specified with the following syntax.

range-literal:
expression .. expression
expression ..
.. expression
..

The expressions to the left and to the right of .., when given, are called the low bound and the high bound expression,
respectively.

The type of a range literal is a range with the following parameters:

• idxType is determined as follows:

– If both the low bound and the high bound expressions are given and have the same integral type, then
idxType is that type.

– If both the low bound and the high bound expressions are given and an implicit conversion is allowed from
each expression’s type to the same integral type, then idxType is that integral type.

– If only one bound expression is given and it has an integral type or an implicit conversion is allowed from
that expression’s type to an integral type, then idxType is that integral type.

– If neither bound expression is given, then idxType is int.

– Otherwise, the range literal is not legal.

• boundedType is a value of the type BoundedRangeType that is determined as follows:

– bounded, if both the low bound and the high bound expressions are given,

– boundedLow, if only the high bound expression is given,

Ranges 138

– boundedHigh, if only the low bound expression is given,

– boundedNone, if neither bound expression is given.

• stridable is false.

The value of a range literal is as follows:

• The low bound is given by the low bound expression, if present, and is -∞ otherwise.

• The high bound is given by the upper bound expression, if present, and is +∞ otherwise.

• The stride is 1.

• The alignment is ambiguous.

18.3.2 Default Values

The default value for a range type depends on the type’s boundedType parameter as follows:

• 1..0 (an empty range) if boundedType is bounded

• 1.. if boundedType is boundedLow

• ..0 if boundedType is boundedHigh

• .. if boundedType is boundedNone

Rationale. We use 0 and 1 to represent an empty range because these values are available for any
idxType.

We have not found the natural choice of the default value for boundedLow and boundedHigh ranges.
The values indicated above are distinguished by the following property. Slicing the default value for a
boundedLow range with the default value for a boundedHigh range (or visa versa) produces an empty
range, matching the default value for a bounded range

18.4 Common Operations

All operations on a range return a new range rather than modifying the existing one. This supports a coding style in
which all ranges are immutable (i.e. declared as const).

Rationale.

The intention is to provide ranges as immutable objects.

Immutable objects may be cached without creating coherence concerns. They are also inherently thread-
safe. In terms of implementation, immutable objects are created in a consistent state and stay that way:
Outside of constructors, internal consistency checks can be dispensed with.

These are the same arguments as were used to justify making strings immutable in Java and C#.

Ranges 139

18.4.1 Range Assignment

Assigning one range to another results in the target range copying the low and high bounds, stride, and alignment from
the source range.

Range assignment is legal when:

• An implicit conversion is allowed from idxType of the source range to idxType of the destination range type,

• the two range types have the same boundedType, and

• either the destination range is stridable or the source range’s stride is 1.

18.4.2 Range Comparisons

Ranges can be compared using equality and inequality.

proc ==(r1: range(?), r2: range(?)): bool

Returns true if the two ranges have the same represented sequence or the same four primary properties, and
false otherwise.

18.4.3 Iterating over Ranges

A range can be used as an iterator expression in a loop. This is legal only if the range is iterable. In this case the loop
iterates over the members of the range’s represented sequence, in the order defined by the sequence. If the range is
empty, no iterations are executed.

Cray’s Chapel Implementation. An attempt to iterate over a range causes an error if adding stride to the
range’s last index overflows its index type, i.e. if the sum is greater than the index type’s maximum value,
or smaller than its minimum value.

Iterating over Unbounded Ranges in Zippered Iterations

When a range with the first index but without the last index is used in a zippered iteration (§11.9.1), it generates as
many indices as needed to match the other iterator(s).

Example (zipWithUnbounded.chpl). The code

for i in zip(1..5, 3..) do
write(i, "; ");

produces the output

(1, 3); (2, 4); (3, 5); (4, 6); (5, 7);

Ranges 140

18.5 Range Operators

The following operators can be applied to range expressions and are described in this section: stride (by), alignment
(align), count (#) and slicing (() or []). Chapel also defines a set of functions that operate on ranges. They are
described in §18.6.

range-expression:
expression
strided-range-expression
counted-range-expression
aligned-range-expression
sliced-range-expression

18.5.1 By Operator

The by operator selects a subsequence of the range’s represented sequence, optionally reversing its direction. The
operator takes two arguments, a base range and an integral step. It produces a new range whose represented sequence
contains each |step|-th element of the base range’s represented sequence. The operator reverses the direction of the
represented sequence if step<0. If the resulting sequence is increasing, it starts at the base range’s aligned low bound, if
it exists. If the resulting sequence is decreasing, it starts at the base range’s aligned high bound, if it exists. Otherwise,
the base range’s alignment is used to determine which members of the represented sequence to retain. If the base
range’s represented sequence is undefined, the resulting sequence is undefined, too.

The syntax of the by operator is:

strided-range-expression:
range-expression by step-expression

step-expression:
expression

The type of the step must be a signed or unsigned integer of the same bit size as the base range’s idxType, or an
implicit conversion must be allowed to that type from the step’s type. It is an error for the step to be zero.

Future. We may consider allowing the step to be of any integer type, for maximum flexibility.

The type of the result of the by operator is the type of the base range, but with the stridable parameter set to true.

Formally, the result of the by operator is a range with the following primary properties:

• The low and upper bounds are the same as those of the base range.

• The stride is the product of the base range’s stride and the step, cast to the base range’s stride type before
multiplying.

• The alignment is:

– the aligned low bound of the base range, if such exists and the stride is positive;

Ranges 141

– the aligned high bound of the base range, if such exists and the stride is negative;

– the same as that of the base range, otherwise.

Example (rangeByOperator.chpl). In the following declarations, range r1 represents the odd integers
between 1 and 20. Range r2 strides r1 by two and represents every other odd integer between 1 and 20:
1, 5, 9, 13 and 17.

var r1 = 1..20 by 2;
var r2 = r1 by 2;

Rationale. Why isn’t the high bound specified first if the stride is negative? The reason for this choice
is that the by operator is binary, not ternary. Given a range R initialized to 1..3, we want R by -1

to contain the ordered sequence 3, 2, 1. But then R by -1 would be different from 3..1 by -1 even
though it should be identical by substituting the value in R into the expression.

18.5.2 Align Operator

The align operator can be applied to any range, and creates a new range with the given alignment.

The syntax for the align operator is:

aligned-range-expression:
range-expression align expression

The type of the resulting range expression is the same as that of the range appearing as the left operand. An implicit
conversion from the type of the right operand to the index type of the operand range must be allowed. The resulting
range has the same low and high bounds and stride as the source range. The alignment equals the align operator’s
right operand and therefore is not ambiguous.

Example (alignedStride.chpl).

var r1 = 0 .. 10 by 3 align 0;
for i in r1 do
write(" ", i); // Produces "0 3 6 9".

writeln();

var r2 = 0 .. 10 by 3 align 1;
for i in r2 do
write(" ", i); // Produces "1 4 7 10".

writeln();

When the stride is negative, the same indices are printed in reverse:

Example (alignedNegStride.chpl).

Ranges 142

var r3 = 0 .. 10 by -3 align 0;
for i in r3 do
write(" ", i); // Produces "9 6 3 0".

writeln();

var r4 = 0 .. 10 by -3 align 1;
for i in r4 do
write(" ", i); // Produces "10 7 4 1".

writeln();

To create a range aligned relative to its first index, use the offset method (§18.6.4).

18.5.3 Count Operator

The # operator takes a range and an integral count and creates a new range containing the specified number of indices.
The low or high bound of the left operand is preserved, and the other bound adjusted to provide the specified number
of indices. If the count is positive, indices are taken from the start of the range; if the count is negative, indices are
taken from the end of the range. The count must be less than or equal to the length of the range.

counted-range-expression:
range-expression # expression

The type of the count expression must be a signed or unsigned integer of the same bit size as the base range’s idxType,
or an implicit conversion must be allowed to that type from the count’s type.

The type of the result of the # operator is the type of the range argument.

Depending on the sign of the count and the stride, the high or low bound is unchanged and the other bound is adjusted
so that it is c ∗ stride− 1 units away. Specifically:

• If the count times the stride is positive, the low bound is preserved and the high bound is adjusted to be one less
than the low bound plus that product.

• Iff the count times the stride is negative, the high bound is preserved and the low bound is adjusted to be one
greater than the high bound plus that product.

Rationale. Following the principle of preserving as much information from the original range as possible,
we must still choose the other bound so that exactly count indices lie within the range. Making the two
bounds lie count ∗ stride− 1 apart will achieve this, regardless of the current alignment of the range.

This choice also has the nice symmetry that the alignment can be adjusted without knowing the bounds
of the original range, and the same number of indices will be produced:

r # 4 align 0 // Contains four indices.
r # 4 align 1 // Contains four indices.
r # 4 align 2 // Contains four indices.
r # 4 align 3 // Contains four indices.

It is an error to apply the count operator with a positive count to a range that has no first index. It is also an error
to apply the count operator with a negative count to a range that has no last index. It is an error to apply the count
operator to a range that is ambiguously aligned.

Ranges 143

Example (rangeCountOperator.chpl). The following declarations result in equivalent ranges.

var r1 = 1..10 by -2 # -3;
var r2 = ..6 by -2 # 3;
var r3 = -6..6 by -2 # 3;
var r4 = 1..#6 by -2;

Each of these ranges represents the ordered set of three indices: 6, 4, 2.

18.5.4 Arithmetic Operators

The following arithmetic operators are defined on ranges and integral types:

proc +(r: range, s: integral): range
proc +(s: integral, r: range): range
proc -(r: range, s: integral): range

The + and - operators apply the scalar via the operator to the range’s low and high bounds, producing a shifted version
of the range. If the operand range is unbounded above or below, the missing bounds are ignored. The index type of
the resulting range is the type of the value that would result from an addition between the scalar value and a value with
the range’s index type. The bounded and stridable parameters for the result range are the same as for the input range.

The stride of the resulting range is the same as the stride of the original. The alignment of the resulting range is
shifted by the same amount as the high and low bounds. It is permissible to apply the shift operators to a range that is
ambiguously aligned. In that case, the resulting range is also ambiguously aligned.

Example (rangeAdd.chpl). The following code creates a bounded, non-stridable range r which has an
index type of int representing the indices 0, 1, 2, 3. It then uses the + operator to create a second range r2
representing the indices 1, 2, 3, 4. The r2 range is bounded, non-stridable, and is represented by indices
of type int.

var r = 0..3;
var r2 = r + 1; // 1..4

18.5.5 Range Slicing

Ranges can be sliced using other ranges to create new sub-ranges. The resulting range represents the intersection
between the two ranges’ represented sequences. The stride and alignment of the resulting range are adjusted as needed
to make this true. idxType and the sign of the stride of the result are determined by the first operand.

Range slicing is specified by the syntax:

sliced-range-expression:
range-expression (range-expression)
range-expression [range-expression]

If either of the operand ranges is ambiguously aligned, then the resulting range is also ambiguously aligned. In this
case, the result is valid only if the strides of the operand ranges are relatively prime. Otherwise, an error is generated
at run time.

Ranges 144

Rationale. If the strides of the two operand ranges are relatively prime, then they are guaranteed to have
some elements in their intersection, regardless whether their relative alignment can be determined. In that
case, the bounds and stride in the resulting range are valid with respect to the given inputs. The alignment
can be supplied later to create a valid range.

If the strides are not relatively prime, then the result of the slicing operation would be completely ambigu-
ous. The only reasonable action for the implementation is to generate an error.

If the resulting represented sequence cannot be expressed as a range of the expected type, an error is generated. This
can happen, for example, when the operands represent all odd and all even numbers, or when the first operand is an
unbounded range with unsigned idxType and the second operand represents only negative numbers.

Example (rangeSlicing.chpl). In the following example, r represents the integers from 1 to 20 inclusive.
Ranges r2 and r3 are defined using range slices and represent the indices from 3 to 20 and the odd
integers between 1 and 20 respectively. Range r4 represents the odd integers between 1 and 20 that are
also divisible by 3.

var r = 1..20;
var r2 = r[3..];
var r3 = r[1.. by 2];
var r4 = r3[0.. by 3];

18.6 Predefined Functions on Ranges

18.6.1 Range Type Parameters

proc range.boundedType : BoundedRangeType

Returns the boundedType parameter of the range’s type.

proc range.idxType : type

Returns the idxType parameter of the range’s type.

proc range.stridable : bool

Returns the stridable parameter of the range’s type.

18.6.2 Range Properties

Most of the methods in this subsection report on the range properties defined in §18.1. A range’s represented sequence
can be examined, for example, by iterating over the range in a for loop §11.9.

Open issue. The behavior of the methods that report properties that may be undefined,∞, or ambiguous,
may change.

proc range.aligned : bool

Ranges 145

Reports whether the range’s alignment is not ambiguous.

proc range.alignedHigh : idxType

Returns the range’s aligned high bound. If the aligned high bound is undefined (does not exist), the behavior is
undefined.

Example (alignedHigh.chpl). The following code:

var r = 0..20 by 3;
writeln(r.alignedHigh);

produces the output

18

proc range.alignedLow : idxType

Returns the range’s aligned low bound. If the aligned low bound is undefined (does not exist), the behavior is
undefined.

proc range.alignment : idxType

Returns the range’s alignment. If the alignment is ambiguous, the behavior is undefined. See also aligned.

proc range.first : idxType

Returns the range’s first index. If the range has no first index, the behavior is undefined. See also hasFirst.

proc range.hasFirst(): bool

Reports whether the range has the first index.

proc range.hasHighBound() param: bool

Reports whether the range’s high bound is not +∞.

proc range.hasLast(): bool

Reports whether the range has the last index.

proc range.hasLowBound() param: bool

Reports whether the range’s low bound is not -∞.

proc range.high : idxType

Returns the range’s high bound. If the high bound is +∞, the behavior is undefined. See also hasHighBound.

proc range.isAmbiguous(): bool

Reports whether the range is ambiguously aligned.

proc range.last : idxType

Ranges 146

Returns the range’s last index. If the range has no last index, the behavior is undefined. See also hasLast.

proc range.length : idxType

Returns the number of indices in the range’s represented sequence. If the represented sequence is infinite or is
undefined, an error is generated.

proc range.low : idxType

Returns the range’s low bound. If the low bound is -∞, the behavior is undefined. See also hasLowBound.

proc range.size : idxType

Same as range.length.

proc range.stride : int(numBits(idxType))

Returns the range’s stride. This will never return 0. If the range is not stridable, this will always return 1.

18.6.3 Other Queries

proc range.boundsCheck(r2: range(?)): bool

Returns false if either range is ambiguously aligned. Returns true if range r2 lies entirely within this range
and false otherwise.

proc ident(r1: range(?), r2: range(?)): bool

Returns true if the two ranges are the same in every respect: i.e. the two ranges have the same idxType,
boundedType, stridable, low, high, stride and alignment values.

proc range.indexOrder(i: idxType): idxType

If i is a member of the range’s represented sequence, returns an integer giving the ordinal index of i within the
sequence using 0-based indexing. Otherwise, returns (-1):idxType. It is an error to invoke indexOrder if
the represented sequence is not defined or the range does not have the first index.

Example. The following calls show the order of index 4 in each of the given ranges:
(0..10).indexOrder(4) == 4
(1..10).indexOrder(4) == 3
(3..5).indexOrder(4) == 1
(0..10 by 2).indexOrder(4) == 2
(3..5 by 2).indexOrder(4) == -1

proc range.member(i: idxType): bool

Returns true if the range’s represented sequence contains i, false otherwise. It is an error to invoke member
if the represented sequence is not defined.

proc range.member(other: range): bool

Reports whether other is a subrange of the receiver. That is, if the represented sequences of the receiver and
other are defined and the receiver’s sequence contains all members of the other’s sequence.

Ranges 147

18.6.4 Range Transformations

proc range.alignHigh()

Sets the high bound of this range to its aligned high bound, if it is defined. Generates an error otherwise.

proc range.alignLow()

Sets the low bound of this range to its aligned low bound, if it is defined. Generates an error otherwise.

proc range.expand(i: idxType)

Returns a new range whose bounds are extended by i units on each end. If i < 0 then the resulting range is
contracted by its absolute value. In symbols, given that the operand range is represented by the tuple (l, h, s, a),
the result is (l− i, h+ i, s, a). The stride and alignment of the original range are preserved. If the operand range
is ambiguously aligned, then so is the resulting range.

proc range.exterior(i: idxType)

Returns a new range containing the indices just outside the low or high bound of the range (low if i < 0 and
high otherwise). The stride and alignment of the original range are preserved. Let the operand range be denoted
by the tuple (l, h, s, a). Then:

if i < 0, the result is (l + i, l − 1, s, a),

if i > 0, the result is (h + 1, h + i, s, a), and

if i = 0, the result is (l, h, s, a).

If the operand range is ambiguously aligned, then so is the resulting range.

proc range.interior(i: idxType)

Returns a new range containing the indices just inside the low or high bound of the range (low if i < 0 and high
otherwise). The stride and alignment of the original range are preserved. Let the operand range be denoted by
the tuple (l, h, s, a). Then:

if i < 0, the result is (l, l − (i− 1), s, a),

if i > 0, the result is (h− (i− 1), h, s, a), and

if i = 0, the result is (l, h, s, a).

This differs from the behavior of the count operator, in that interior() preserves the alignment, and it uses the
low and high bounds rather than first and last to establish the bounds of the resulting range. If the operand
range is ambiguously aligned, then so is the resulting range.

proc range.offset(n: idxType)

Returns a new range whose alignment is this range’s first index plus n. The new alignment, therefore, is not
ambiguous. If the range has no first index, a run-time error is generated.

proc range.translate(i: integral)

Returns a new range with its low, high and alignment values adjusted by i. The stride value is preserved.
If the range’s alignment is ambiguous, the behavior is undefined.

19 Domains

A domain is a first-class representation of an index set. Domains are used to specify iteration spaces, to define the size
and shape of arrays (§20), and to specify aggregate operations like slicing. A domain can specify a single- or multi-
dimensional rectangular iteration space or represent a set of indices of a given type. Domains can also represent a
subset of another domain’s index set, using either a dense or sparse representation. A domain’s indices may potentially
be distributed across multiple locales as described in §27, thus supporting global-view data structures.

In the next subsection, we introduce the key characteristics of domains. In §19.2, we discuss the types and values that
can be associated with a base domain. In §19.3, we discuss the types and values of simple subdomains that can be
created from those base domains. In §19.4, we discuss the types and values of sparse subdomains. The remaining
sections describe the important manipulations that can be performed with domains, as well as the predefined operators
and functions defined for domains.

19.1 Domain Overview

There are three kinds of domain, distinguished by their subset dependencies: base domains, subdomains and sparse
subdomains. A base domain describes an index set spanning one or more dimensions. A subdomain creates an index
set that is a subset of the indices in a base domain or another subdomain. Sparse subdomains are subdomains which can
represent sparse index subsets efficiently. Simple subdomains are subdomains that are not sparse. These relationships
can be represented as follows:

domain-type:
base-domain-type
simple-subdomain-type
sparse-subdomain-type

Domains can be further classified according to whether they are regular or irregular. A regular domain represents a
rectangular iteration space and can have a compact representation whose size is independent of the number of indices.
Rectangular domains, with the exception of sparse subdomains, are regular.

An irregular domain can store an arbitrary set of indices of an arbitrary but homogeneous index type. Irregular domains
typically require space proportional to the number of indices being represented. All associative domain types and their
subdomains (including sparse subdomains) are irregular. Sparse subdomains of regular domains are also irregular.

An index set can be either ordered or unordered depending on whether its members have a well-defined order rela-
tionship. All regular and enumerated domains are ordered. All other associative domains are unordered.

The type of a domain describes how a domain is represented and the operations that can be performed upon it, while
its value is the set of indices it represents. In addition to storing a value, each domain variable has an identity that
distinguishes it from other domains that may have the same type and value. This identity is used to define the domain’s
relationship with subdomains, index types (§19.5), and arrays (§20.11).

Open issue. In the future, it is likely that we will support a means of creating domain aliases, much as
we support array aliases currently.

The runtime representation of a domain is controlled by its domain map. Domain maps are presented in §27.

148

Domains 149

19.2 Base Domain Types and Values

Base domain types can be classified as regular or irregular. Dense and strided rectangular domains are regular domains.
Irregular base domain types include all of the associative domain types.

base-domain-type:
rectangular-domain-type
associative-domain-type

These base domain types are discussed in turn in the following subsections.

19.2.1 Rectangular Domains

Rectangular domains describe multidimensional rectangular index sets. They are characterized by a tensor product
of ranges and represent indices that are tuples of an integral type. Because their index sets can be represented using
ranges, regular domain values typically require only O(1) space.

Rectangular Domain Types

Rectangular domain types are parameterized by three things:

• rank a positive int value indicating the number of dimensions that the domain represents;

• idxType a type member representing the index type for each dimension; and

• stridable a bool parameter indicating whether any of the domain’s dimensions will be characterized by a
strided range.

If rank is 1, the index type represented by a rectangular domain is idxType. Otherwise, the index type is the
homogenous tuple type rank*idxType. If unspecified, idxType defaults to int and stridable defaults to false.

Open issue. We may represent a rectangular domain’s index type as rank*idxType even if rank is 1. This
would eliminate a lot of code currently used to support the special (rank == 1) case.

The syntax of a rectangular domain type is summarized as follows:

rectangular-domain-type:
domain (named-expression-list)

where named-expression-list permits the values of rank, idxType, and stridable to be specified using standard type
signature.

Example (typeFunctionDomain.chpl). The following declarations both create an uninitialized rectangular
domain with three dimensions, with int indices:

var D1 : domain(rank=3, idxType=int, stridable=false);
var D2 : domain(3*int);

Domains 150

Rectangular Domain Values

Each dimension of a rectangular domain is a range of type range(idxType, BoundedRangeType.bounded,

stridable). The index set for a rank 1 domain is the set of indices described by its singleton range. The index
set for a rank n domain is the set of all n*idxType tuples described by the tensor product of its ranges. When ex-
panded (as by an iterator), rectangular domain indices are ordered according to the lexicographic order of their values.
That is, the index with the highest rank is listed first and changes most slowly.1

Future. Domains defined using unbounded ranges may be supported.

Literal rectangular domain values are represented by a comma-separated list of range expressions of matching idxType
enclosed in curly braces:

rectangular-domain-literal:
{ range-expression-list }

range-expression-list:
range-expression
range-expression, range-expression-list

The type of a rectangular domain literal is defined as follows:

• rank = the number of range expressions in the literal;

• idxType = the type of the range expressions;

• stridable = true if any of the range expressions are stridable, otherwise false.

If the index types in the ranges differ and all of them can be promoted to the same type, then that type is used as the
idxType. Otherwise, the domain literal is invalid.

Example. The expression {1..5, 1..5} defines a rectangular domain with type domain(rank=2,

idxType=int, stridable=false). It is a 5× 5 domain with the indices:

(1, 1), (1, 2), . . . , (1, 5), (2, 1), . . . (5, 5). (19.1)

A domain expression may contain bounds which are evaluated at runtime.

Example. In the code

var D: domain(2) = {1..n, 1..n};

D is defined as a two-dimensional, nonstridable rectangular domain with an index type of 2*int and is
initialized to contain the set of indices (i, j) for all i and j such that i ∈ 1, 2, . . . , n and j ∈ 1, 2, . . . , n.

The default value of a range type is the rank default range values for type:

1This is also known as row-major ordering.

Domains 151

range(idxType, BoundedRangeType.bounded, stridable)

Example (rectangularDomain.chpl). The following creates a two-dimensional rectangular domain and
then uses this to declare an array. The array indices are iterated over using the domain’s dim() method,
and each element is filled with some value. Then the array is printed out.

Thus, the code
var D : domain(2) = {1..2, 1..7};
var A : [D] int;
for i in D.dim(1) do

for j in D.dim(2) do
A[i,j] = 7 * i**2 + j;

writeln(A);

produces
8 9 10 11 12 13 14
29 30 31 32 33 34 35

19.2.2 Associative Domains

Associative domains represent an arbitrary set of indices of a given type and can be used to describe sets or to create
dictionary-style arrays (hash tables). The type of indices of an associative domain, or its idxType, can be any primitive
type except void or any class type.

Associative Domain Types

An associative domain type is parameterized by idxType, the type of the indices that it stores. The syntax is as
follows:

associative-domain-type:
domain (associative-index-type)
domain (enum-type)
domain (opaque)

associative-index-type:
type-specifier

The three expansions of associative-domain-type correspond to the three kinds of associative domain listed below.

1. In general, associative-index-type determines idxType of the associative domain type.

2. Enumerated domains are a special case, in which idxType is an enumerated type. Enumerated domains are
handled specially during initialization and have a defined iteration order, as described below.

3. Opaque domains are a special case, indicated by the type opaque. Anonymous values of the type opaque are
used as index values in this case.

When an associative domain is used as the index set of an array, the relation between the indices and the array elements
can be thought of as a map between the values of the index set and the elements stored in the array. Opaque domains
can be used to build unstructured arrays that are similar to pointer-based data structures in conventional languages.

Domains 152

Associative Domain Values

An associative domain’s value is simply the set of all index values that the domain describes. The iteration order over
the indices of an associative domain is undefined, except for enumerated domains. The iteration order over the indices
of an enumerated domain is the declaration order of the corresponding enumeration constants.

Specification of an assocative domain literal value follows a similar syntax as rectangular domain literal values. What
differentiates the two are the types of expressions specified in the comma separated list. Use of values of a type other
than ranges will result in the construction of an associative domain.

associative-domain-literal:
{ associative-expression-list }

associative-expression-list:
non-range-expression
non-range-expression, associative-expression-list

non-range-expression:
expression

It is required that the types of the values used in constructing an associative domain literal value be of the same type.
If the types of the indices does not match a compiler error will be issued.

Future. Due to implementation of == over arrays it is currently not possible to use arrays as indices
within an associative domain.

Open issue. Assignment of an associative domain literal results in the a warning message being printed
altering the user that whole-domain assignment has been serialized. This results from the resize operation
over assocative arrays not being parsafe.

Example (associativeDomain.chpl). The following example illusrates construction of an associative
domain containing string indices ”bar” and ”foo”. Note that due to internal hashing of indices the order
in which the values of the associative domain are iterated is not the same as their specification order.

This code
var D : domain(string) = {"bar", "foo"};
writeln(D);

produces the output
{foo, bar}

If unspecified the default value of an associative domain type is the empty index set, except for enumerated domains.
The default value of an enumerated domain type is the set of all constants of the corresponding enumerated type.

Rationale. The decision to have enumerated domains start fully populated was based on the observation
that enumerations have a finite, typically small number of values and that it would be common to declare
arrays with elements corresponding to each identifier in the enumeration. Further, in terms of usability it
is simpler to clear a fully-populated domain than to fully populate an empty one.

In addition, fully-populated constant enumerated domains are an important case for compiler optimiza-
tions, particularly if the numeric values of the enumeration are consecutive.

Domains 153

Future. We may generally support a startPopulated parameter on associative domains, to unify this
capability with other values.

Indices can be added to or removed from an associative domain as described in §19.8.5.

19.3 Simple Subdomain Types and Values

A subdomain is a domain whose indices are guaranteed to be a subset of those described by another domain known as
its parent domain. A subdomain has the same type as its parent domain, and by default it inherits the domain map of
its parent domain. All domain types support subdomains.

Simple subdomains are subdomains which are not sparse. Sparse subdomains are discussed in the following section
(§19.4). A simple subdomain inherits its representation (regular or irregular) from its base domain (or base subdomain).
A sparse subdomain is always irregular, even if its base domain is regular.

In all other respects, the two kinds of subdomain behave identically. In this specification, “subdomain” refers to both
simple and sparse subdomains, unless it is specifically distinguished as one or the other.

Rationale. Subdomains are provided in Chapel for a number of reasons: to facilitate the ability of the
compiler or a reader to reason about the inter-relationship of distinct domain variables; to support the
author’s ability to omit redundant domain mapping specifications; to support the compiler’s ability to
reason about the relative alignment of multiple domains; and to improve the compiler’s ability to prove
away bounds checks for array accesses.

19.3.1 Simple Subdomain Types

A simple subdomain type is specified using the following syntax:

simple-subdomain-type:
subdomain (domain-expression)

This declares that domain-expression is the parent domain of this subdomain type. A simple subdomain specifies a
subdomain with the same underlying representation as its base domain.

Open issue.

An open semantic issue for subdomains is when a subdomain’s subset property should be re-verified once
its parent domain is reassigned and whether this should be done aggressively or lazily.

19.3.2 Simple Subdomain Values

The value of a simple subdomain is the set of all index values that the subdomain describes.

The default value of a simple subdomain type is the same as the default value of its parent’s type (§19.2.1, §19.2.2).

A simple subdomain variable can be initialized or assigned to with a tuple of values of the parent’s idxType. Indices
can also be added to or removed from a simple subdomain as described in §19.8.5. It is an error to attempt to add an
index to a subdomain that is not also a member of the parent domain.

Domains 154

19.4 Sparse Subdomain Types and Values

sparse-subdomain-type:
sparse subdomainopt (domain-expression)

This declaration creates a sparse subdomain. Sparse subdomains are irregular domains that describe an arbitrary subset
of a domain, even if the parent domain is a regular domain. Sparse subdomains are useful in Chapel for defining sparse
arrays in which a single element value (usually “zero”) occurs frequently enough that it is worthwhile to avoid storing
it redundantly. The set difference between a sparse subdomain’s index set and that of parent domain is the set of
indices for which the sparse array will store this replicated value. See §20.10 for details about sparse arrays.

19.4.1 Sparse Subdomain Types

Each root domain type has a unique corresponding sparse subdomain type. Sparse subdomains whose parent domains
are also sparse subdomains share the same type.

19.4.2 Sparse Subdomain Values

A sparse subdomain’s value is simply the set of all index values that the domain describes. If the parent domain defines
an iteration order over its indices, the sparse subdomain inherits that order.

There is no literal syntax for an sparse subdomain. However, a variable of a sparse subdomain type can be initialized
using a tuple of values of the parent domain’s index type.

The default value for a sparse subdomain value is the empty set. This is true even if the parent domain is an enumerated
domain.

Example. The following code declares a two-dimensional dense domain D, followed by a two dimensional
sparse subdomain of D named SpsD. Since SpsD is uninitialized, it will initially describe an empty set of
indices from D.

const D: domain(2) = {1..n, 1..n};
var SpsD: sparse subdomain(D);

19.5 Domain Index Types

Each domain value has a corresponding compiler-provided index type which can be used to represent values belonging
to that domain’s index set. Index types are described using the following syntax:

index-type:
index (domain-expression)

Domains 155

A variable with a given index type is constrained to take on only values available within the domain on which it is
defined. This restriction allows the compiler to prove away the bound checking that code safety considerations might
otherwise require. Due to the subset relationship between a base domain and its subdomains, a variable of an index
type defined with respect to a subdomain is also necessarily a valid index into the base domain.

Since an index types are known to be legal for a given domain, it may also afford the opportunity to represent that
index using an optimized format that doesn’t simply store the index variable’s value. This fact could be used to support
accelerated access to arrays declared over that domain. For example, iteration over an index type could be implemented
using memory pointers and strides, rather than explicitly calculating the offset of each index within the domain.

These potential optimizations may make it less expensive to index into arrays using index type variables of their
domains or subdomains.

In addition, since an index type is associated with a specific domain or subdomain, it carries more semantic weight
than a generic index. For example, one could iterate over a rectangular domain with integer bounds using an int(n)

as the index variable. However, it would be more precise to use a variable of the domain’s index type.

Open issue.

An open issue for index types is what the semantics should be for an index type value that is live across
a modification to its domain’s index set—particularly one that shrinks the index set. Our hypothesis is
that most stored indices will either have short lifespans or belong to constant or monotonically growing
domains. But these semantics need to be defined nevertheless.

19.6 Iteration Over Domains

All domains support iteration via standard for, forall, and coforall loops. These loops iterate over all of the
indices that the domain describes. If the domain defines an iteration order of its indices, then the indices are visited in
that order.

The type of the iterator variable for an iteration over a domain named D is that domain’s index type, index(D).

19.7 Domains as Arguments

This section describes the semantics of passing domains as arguments to functions.

19.7.1 Formal Arguments of Domain Type

When a domain value is passed to a formal argument of compatible domain type by default intent, it is passed by
reference in order to preserve the domain’s identity.

Domains 156

19.7.2 Domain Promotion of Scalar Functions

Domain values may be passed to a scalar function argument whose type matches the domain’s index type. This results
in a promotion of the scalar function as defined in §25.4.

Example. Given a function foo() that accepts real floating point values and an associative domain D of
type domain(real), foo can be called with D as its actual argument which will result in the function
being invoked for each value in the index set of D.

Example. Given an array A with element type int declared over a one-dimensional domain D with
idxType int, the array elements can be assigned their corresponding index values by writing:

A = D;

This is equivalent to:
forall (a,i) in zip(A,D) do

a = i;

19.8 Domain Operations

Chapel supplies predefined operators and functions that can be used to manipulate domains. Unless otherwise noted,
these operations are applicable to a domain of any type, whether a base domain or a subdomain.

19.8.1 Domain Assignment

All domain types support domain assignment.

domain-expression:
domain-literal
domain-name
domain-assignment-expression
domain-striding-expression
domain-slice-expression

domain-literal:
rectangular-domain-literal
associative-domain-literal

domain-assignment-expression:
domain-name = domain-expression

domain-name:
identifier

Domain assignment is by value and causes the target domain variable to take on the index set of the right-hand side
expression. In practice, the right-hand side expression is often another domain value; a tuple of ranges (for regular
domains); or a tuple of indices or a loop that enumerates indices (for irregular domains). If the domain variable being
assigned was used to declare arrays, these arrays are reallocated as discussed in §20.11.

Domains 157

Example. The following three assignments show ways of assigning indices to a sparse domain, SpsD.
The first assigns the domain two index values, (1,1) and (n,n). The second assigns the domain all
of the indices along the diagonal from (1,1). . .(n,n). The third invokes an iterator that is written to
yield indices read from a file named “inds.dat”. Each of these assignments has the effect of replacing
the previous index set with a completely new set of values.

SpsD = ((1,1), (n,n));
SpsD = [i in 1..n] (i,i);
SpsD = readIndicesFromFile("inds.dat");

19.8.2 Domain Striding

The by operator can be applied to a rectangular domain value in order to create a strided rectangular domain value.
The right-hand operand to the by operator can either be an integral value or an integral tuple whose size matches the
domain’s rank.

domain-striding-expression:
domain-expression by expression

The type of the resulting domain is the same as the original domain but with stridable set to true. In the case of an
integer stride value, the value of the resulting domain is computed by applying the integer value to each range in the
value using the by operator. In the case of a tuple stride value, the resulting domain’s value is computed by applying
each tuple component to the corresponding range using the by operator.

19.8.3 Domain Slicing

Slicing is the application of an index set to a domain. It can be written using either parentheses or square brackets.
The index set can be defined with either a domain or a list of ranges.

domain-slice-expression:
domain-expression [slicing-index-set]
domain-expression (slicing-index-set)

slicing-index-set:
domain-expression
range-expression-list

The result of slicing, or a slice, is a new domain value that represents the intersection of the index set of the domain
being sliced and the index set being applied. The type and domain map of the slice match the domain being sliced.

Slicing can also be performed on an array, resulting in aliasing a subset of the array’s elements (§20.6).

Domain-based Slicing

If the brackets or parentheses contain a domain value, its index set is applied for slicing.

Open issue. Can we say that it is an alias in the case of sparse/associative?

Domains 158

Range-based Slicing

When slicing rectangular domains or arrays, the brackets or parentheses can contain a list of rank ranges. These
ranges can either be bounded or unbounded. When unbounded, they inherit their bounds from the domain or array
being sliced. The Cartesian product of the ranges’ index sets is applied for slicing.

Example. The following code declares a two dimensional rectangular domain D, and then a number of
subdomains of D by slicing into D using bounded and unbounded ranges. The InnerD domain describes
the inner indices of D, Col2OfD describes the 2nd column of D, and AllButLastRow describes all of D
except for the last row.

const D: domain(2) = {1..n, 1..n},
InnerD = D[2..n-1, 2..n-1],
Col2OfD = D[.., 2..2],
AllButLastRow = D[..n-1, ..];

Rank-Change Slicing

For multidimensional rectangular domains and arrays, substituting integral values for one or more of the ranges in a
range-based slice will result in a domain or array of lower rank.

The result of a rank-change slice on an array is an alias to a subset of the array’s elements as described in §20.6.1.

The result of rank-change slice on a domain is a subdomain of the domain being sliced. The resulting subdomain’s
type will be the same as the original domain, but with a rank equal to the number of dimensions that were sliced by
ranges rather than integers.

19.8.4 Count Operator

The # operator can be applied to dense rectangular domains with a tuple argument whose size matches the rank of the
domain (or optionally an integer in the case of a 1D domain). The operator is equivalent to applying the # operator to
the component ranges of the domain and then using them to slice the domain as in Section 19.8.3.

19.8.5 Adding and Removing Domain Indices

All irregular domain types support the ability to incrementally add and remove indices from their index sets. This can
either be done using add(i:idxType) and remove(i:idxType) methods on a domain variable or by using the +=
and -= assignment operators. It is legal to add the same index to an irregular domain’s index set twice, but illegal to
remove an index that does not belong to the domain’s index set.

Open issue. These remove semantics seem dangerous in a parallel context; maybe add flags to both the
method versions of the call that say whether they should balk or not? Or add exceptions...

As with normal domain assignments, arrays declared in terms of a domain being modified in this way will be reallo-
cated as discussed in §20.11.

Domains 159

19.9 Predefined Methods on Domains

This section gives a brief description of the library functions provided for Domains. These are categorized by the type
of domain to which they apply: all, regular or irregular. Within each subsection, entries are listed in alphabetical order.

19.9.1 Methods on All Domain Types

The methods in this subsection can be applied to any domain.

proc Domain.clear()

Resets this domain’s index set to the empty set.

Example (emptyEnumeratedDomain). In the case of an enumerated domain, this function provides a way
to produce an empty index set.

When run, the code

enum Counter { one, two, three };
var D : domain (Counter);
writeln("D has ", D.numIndices, " indices.");
D.clear();
writeln("D has ", D.numIndices, " indices.");

prints out

D has 3 indices.
D has 0 indices.

proc Domain.idxType type

Returns the domain type’s idxType. This function is not available on opaque domains.

proc Domain.indexOrder(i: index(Domain)): idxType

If i is a member of the domain, returns the ordinal value of i using a total ordering of the domain’s indices
using 0-based indexing. Otherwise, it returns (-1):idxType. For rectangular domains, this ordering will be
based on a row-major ordering of the indices; for other domains, the ordering may be implementation-defined
and unstable as indices are added and removed from the domain.

proc isEnumDom(d: domain) param

Returns a param true if the given domain is enumerated, false otherwise.

proc isIrregularDom(d: domain) param

Returns a param true if the given domain is irregular, false otherwise.

proc isOpaqueDom(d: domain) param

Returns a param true if the given domain is opaque, false otherwise.

proc isRectangularDom(d: domain) param

Domains 160

Returns a param true if the given domain is rectangular, false otherwise.

proc isSparseDom(d: domain) param

Returns a param true if the given domain is sparse, false otherwise.

proc Domain.member(i)

Returns true if the given index i is a member of this domain’s index set, and false otherwise.

Open issue. We would like to call the type of i above idxType, but it’s not true for rectangular domains.
That observation provides some motivation to normalize the behavior.

proc Domain.numIndices: capType

Returns the number of indices in the domain as a value of the capacity type.

19.9.2 Methods on Regular Domains

The methods described in this subsection can be applied to regular domains only.

proc Domain.dim(d: int): range

Returns the range of indices described by dimension d of the domain.

Example. In the code

for i in D.dim(1) do
for j in D.dim(2) do
writeln(A(i,j));

domain D is iterated over by two nested loops. The first dimension of D is iterated over in the outer loop.
The second dimension is iterated over in the inner loop.

proc Domain.dims(): rank*range

Returns a tuple of ranges describing the dimensions of the domain.

proc Domain.expand(off: integral): domain
proc Domain.expand(off: rank*integral): domain

Returns a new domain that is the current domain expanded in dimension d if off or off(d) is positive or
contracted in dimension d if off or off(d) is negative.

proc Domain.exterior(off: integral): domain
proc Domain.exterior(off: rank*integral): domain

Returns a new domain that is the exterior portion of the current domain with off or off(d) indices for each
dimension d. If off or off(d) is negative, compute the exterior from the low bound of the dimension; if
positive, compute the exterior from the high bound.

proc Domain.high: index(Domain)

Domains 161

Returns the high index of the domain as a value of the domain’s index type.

proc Domain.interior(off: integral): domain
proc Domain.interior(off: rank*integral): domain

Returns a new domain that is the interior portion of the current domain with off or off(d) indices for each
dimension d. If off or off(d) is negative, compute the interior from the low bound of the dimension; if
positive, compute the interior from the high bound.

proc Domain.low: index(Domain)

Returns the low index of the domain as a value of the domain’s index type.

proc Domain.rank param : int

Returns the rank of the domain.

proc Domain.size: capType

Same as Domain.numIndices.

proc Domain.stridable param : bool

Returns whether or not the domain is stridable.

proc Domain.stride: int(numBits(idxType)) where rank == 1
proc Domain.stride: rank*int(numBits(idxType))

Returns the stride of the domain as the domain’s stride type (for 1D domains) or a tuple of the domain’s stride
type (for multidimensional domains).

proc Domain.translate(off: integral): domain
proc Domain.translate(off: rank*integral): domain

Returns a new domain that is the current domain translated by off or off(d) for each dimension d.

19.9.3 Methods on Irregular Domains

The following methods are available only on irregular domain types.
proc +(d: domain, i: index(d))
proc +(i, d: domain) where i: index(d)

Adds the given index to the given domain. If the given index is already a member of that domain, it is ignored.

proc +(d1: domain, d2: domain)

Merges the index sets of the two domain arguments.

proc -(d: domain, i: index(d))

Removes the given index from the given domain. It is an error if the domain does not contain the given index.

proc -(d1: domain, d2: domain)

Removes the indices in domain d2 from those in d1. It is an error if d2 contains indices which are not also in
d1.

proc requestCapacity(s: int)

Resizes the domain internal storage to hold at least s indicies.

20 Arrays

An array is a map from a domain’s indices to a collection of variables of homogenous type. Since Chapel domains
support a rich variety of index sets, Chapel arrays are also richer than the traditional linear or rectilinear array types in
conventional languages. Like domains, arrays may be distributed across multiple locales without explicitly partitioning
them using Chapel’s Domain Maps (§27).

20.1 Array Types

An array type is specified by the identity of the domain that it is declared over and the element type of the array. Array
types are given by the following syntax:

array-type:
[domain-expression] type-specifier

The domain-expression must specify a domain that the array can be declared over. If the domain-expression is a domain
literal, the curly braces around the literal may be omitted.

Example (decls.chpl). In the code
const D: domain(2) = {1..10, 1..10};
var A: [D] real;

A is declared to be an arithmetic array over rectangular domain D with elements of type real. As
a result, it represents a 2-dimensional 10 × 10 real floating point variables indexed using the indices
(1, 1), (1, 2), . . . , (1, 10), (2, 1), . . . , (10, 10).

An array’s element type can be referred to using the member symbol eltType.

Example (eltType.chpl). In the following example, x is declared to be of type real since that is the
element type of array A.

var A: [D] real;
var x: A.eltType;

20.2 Array Values

An array’s value is the collection of its elements’ values. Assignments between array variables are performed by value
as described in §20.5. Chapel semantics are defined so that the compiler will never need to insert temporary arrays of
the same size as a user array variable.

Array literal values can be either rectangular or associative, corresponding to the underlying domain which defines its
indices.

array-literal:
rectangular-array-literal
associative-array-literal

162

Arrays 163

20.2.1 Rectangular Array Literals

Rectangular array literals are specified by enclosing a comma separated list of expressions representing values in
square brackets. A 1-based domain will automatically be generated for the given array literal. The type of the array’s
values will be the type of the first element listed.

rectangular-array-literal:
[expression-list]

Example (adecl-literal.chpl). The following example declares a 5 element rectangular array literal con-
taining strings, then subsequently prints each string element to the console.

var A = ["1", "2", "3", "4", "5"];

for i in 1..5 do
writeln(A[i]);

Future. Provide syntax which allows users to specify the domain for a rectangular array literal.

Future. Determine the type of a rectangular array literal based on the most promoted type, rather than
the first element’s type.

Example (decl-with-anon-domain.chpl). The following example declares a 2-element array A containing
3-element arrays of real numbers. A is initialized using array literals.

var A: [1..2] [1..3] real = [[1.1, 1.2, 1.3], [2.1, 2.2, 2.3]];

Open issue. We would like to differentiate syntactically between array literals for an array of arrays and
a multi-dimensional array.

An rectangular array’s default value is for each array element to be initialized to the default value of the element type.

20.2.2 Associative Array Literals

Associative array values are specified by enclosing a comma separated list of index-to-value bindings within square
brackets. It is expected that the indices in the listing match in type and, likewise, the types of values in the listing also
match.

associative-array-literal:
[associative-expr-list]

associative-expr-list:
index-expr => value-expr
index-expr => value-expr, associative-expr-list

index-expr:
expression

value-expr:
expression

Arrays 164

Open issue. Currently it is not possible to use other associative domains as values within an associative
array literal.

Example (adecl-assocLiteral.chpl). The following example declares a 5 element associative array literal
which maps integers to their corresponding string representation. The indices and their corresponding
values are then printed.

var A = [1 => "one", 10 => "ten", 3 => "three", 16 => "sixteen"];

for da in zip (A.domain, A) do
writeln(da);

20.2.3 Runtime Representation of Array Values

The runtime representation of an array in memory is controlled by its domain’s domain map. Through this mechanism,
users can reason about and control the runtime representation of an array’s elements. See §27 for more details.

20.3 Array Indexing

Arrays can be indexed using index values from the domain over which they are declared. Array indexing is expressed
using either parenthesis or square brackets. This results in a reference to the element that corresponds to the index
value.

Example (array-indexing.chpl). Given:

var A: [1..10] real;

the first two elements of A can be assigned the value 1.2 and 3.4 respectively using the assignment:

A(1) = 1.2;
A[2] = 3.4;

Except for associative arrays, if an array is indexed using an index that is not part of its domain’s index set, the
reference is considered out-of-bounds and a runtime error will occur, halting the program.

20.3.1 Rectangular Array Indexing

Since the indices for multidimensional rectangular domains are tuples, for convenience, rectangular arrays can be
indexed using the list of integer values that make up the tuple index. This is semantically equivalent to creating a tuple
value out of the integer values and using that tuple value to index the array. For symmetry, 1-dimensional rectangular
arrays can be accessed using 1-tuple indices even though their index type is an integral value. This is semantically
equivalent to de-tupling the integral value from the 1-tuple and using it to index the array.

Example (array-indexing-2.chpl). Given:

Arrays 165

var A: [1..5, 1..5] real;
var ij: 2*int = (1, 1);

the elements of array A can be indexed using any of the following idioms:

A(ij) = 1.1;
A((1, 2)) = 1.2;
A(1, 3) = 1.3;
A[ij] = -1.1;
A[(1, 4)] = 1.4;
A[1, 5] = 1.5;

Example (index-using-var-arg-tuple.chpl). The code

proc f(A: [], is...)
return A(is);

defines a function that takes an array as the first argument and a variable-length argument list. It then
indexes into the array using the tuple that captures the actual arguments. This function works even for
one-dimensional arrays because one-dimensional arrays can be indexed into by 1-tuples.

20.3.2 Associative Array Indexing

Indices can be added to associative arrays in two different ways.

The first way is through the array’s domain.

Example (assoc-add-index.chpl). Given:

var D : domain(string);
var A : [D] int;

the array A initially contains no elements. We can change that by adding indices to the domain D:

D.add("a");
D.add("b");

The array A can now be indexed with indices ”a” and ”b”:

A["a"] = 1;
A["b"] = 2;
var x = A["a"];

The second way is more concise, and has the same effect as the first method:

Example (assoc-add-index-2.chpl).

var D : domain(string);
var A : [D] int;

For other array types, assigning to an index not in the array’s domain would incur an out-of-bounds error.
For associative arrays such assignment will add the index to the array’s domain, and the array can be
indexed with the newly added indices:

Arrays 166

A["a"] = 1;
A["b"] = 2;
var x = A["a"];

Here, the indices ”a” and ”b” are implicitly added the domain D. Reading from an index not in the array
is still an out-of-bounds error.

// writeln(A["c"]); // halts if "c" is not in A’s domain

An important restriction for this method is that A may not share its domain with another array. This
restriction exists because it may be surprising to seemingly modify one array, and to then see a change in
another array. This restriction is checked at runtime.

20.4 Iteration over Arrays

All arrays support iteration via standard for, forall and coforall loops. These loops iterate over all of the array
elements as described by its domain. A loop of the form:

[for|forall|coforall] a in A do
...a...

is semantically equivalent to:
[for|forall|coforall] i in A.domain do

...A[i]...

The iterator variable for an array iteration is a reference to the array element type.

20.5 Array Assignment

Array assignment is by value. Arrays can be assigned arrays, ranges, domains, iterators, or tuples.

Example (assign.chpl). If A is an lvalue of array type and B is an expression of either array, range, or
domain type, or an iterator, then the assignment

A = B;

is equivalent to
forall (a,b) in zip(A,B) do
a = b;

If the zipper iteration is illegal, then the assignment is illegal. Notice that the assignment is implemented
with the semantics of a forall loop.

Arrays can be assigned tuples of values of their element type if the tuple contains the same number of elements as the
array. For multidimensional arrays, the tuple must be a nested tuple such that the nesting depth is equal to the rank of
the array and the shape of this nested tuple must match the shape of the array. The values are assigned element-wise.

Arrays can also be assigned single values of their element type. In this case, each element in the array is assigned this
value.

Arrays 167

Example (assign-2.chpl). If e is an expression of the element type of the array or a type that can be
implicitly converted to the element type of the array, then the assignment

A = e;

is equivalent to
forall a in A do
a = e;

20.6 Array Slicing

An array can be sliced using a domain that has the same type as the domain over which it was declared. The result
of an array slice is an alias to the subset of the array elements from the original array corresponding to the slicing
domain’s index set.

Example (slicing.chpl). Given the definitions
var OuterD: domain(2) = {0..n+1, 0..n+1};
var InnerD: domain(2) = {1..n, 1..n};
var A, B: [OuterD] real;

the assignment given by
A[InnerD] = B[InnerD];

assigns the elements in the interior of B to the elements in the interior of A.

20.6.1 Rectangular Array Slicing

A rectangular array can be sliced by any rectangular domain that is a subdomain of the array’s defining domain. If the
subdomain relationship is not met, an out-of-bounds error will occur. The result is a subarray whose indices are those
of the slicing domain and whose elements are an alias of the original array’s.

Rectangular arrays also support slicing by ranges directly. If each dimension is indexed by a range, this is equivalent
to slicing the array by the rectangular domain defined by those ranges. These range-based slices may also be expressed
using partially unbounded or completely unbounded ranges. This is equivalent to slicing the array’s defining domain
by the specified ranges to create a subdomain as described in §20.6 and then using that subdomain to slice the array.

20.6.2 Rectangular Array Slicing with a Rank Change

For multidimensional rectangular arrays, slicing with a rank change is supported by substituting integral values within
a dimension’s range for an actual range. The resulting array will have a rank less than the rectangular array’s rank and
equal to the number of ranges that are passed in to take the slice.

Example (array-decl.chpl). Given an array
var A: [1..n, 1..n] int;

the slice A[1..n, 1] is a one-dimensional array whose elements are the first column of A.

Arrays 168

20.7 Count Operator

The # operator can be applied to dense rectangular arrays with a tuple argument whose size matches the rank of the
array (or optionally an integer in the case of a 1D array). The operator is equivalent to applying the # operator to the
array’s domain and using the result to slice the array as described in Section 20.6.1.

20.8 Array Arguments to Functions

Arrays are passed to functions by reference. Formal arguments that receive arrays are aliases of the actual arguments.

When a formal argument has array type, the element type of the array can be omitted and/or the domain of the array
can be queried or omitted. In such cases, the argument is generic and is discussed in §22.1.6.

If a formal array argument specifies a domain as part of its type signature, the domain of the actual argument must
represent the same index set. If the formal array’s domain was declared using an explicit domain map, the actual
array’s domain must use an equivalent domain map.

20.8.1 Array Promotion of Scalar Functions

Array promotion of a scalar function is defined over the array type and the element type of the array. The domain of
the returned array, if an array is captured by the promotion, is the domain of the array that promoted the function. In
the event of zipper promotion over multiple arrays, the promoted function returns an array with a domain that is equal
to the domain of the first argument to the function that enables promotion. If the first argument is an iterator or a range,
the result is a one-based one-dimensional array.

Example (whole-array-ops.chpl). Whole array operations is a special case of array promotion of scalar
functions. In the code

A = B + C;

if A, B, and C are arrays, this code assigns each element in A the element-wise sum of the elements in B

and C.

20.9 Array Aliases

Array slices alias the data in arrays rather than copying it. Such array aliases can be captured and optionally reindexed
with the array alias operator =>. The syntax for capturing an alias to an array requires a new variable declaration:

array-alias-declaration:
identifier reindexing-expressionopt => array-expression ;

reindexing-expression:
: [domain-expression]

array-expression:
expression

Arrays 169

The identifier is an alias to the array specified in the array-expression.

The optional reindexing-expression allows the domain of the array alias to be reindexed. The shape of the domain in the
reindexing-expression must match the shape of the domain of the array-expression. Indexing via the alias is governed by
the new indices.

Example (reindexing.chpl). In the code

var A: [1..5, 1..5] int;
var AA: [0..2, 0..2] => A[2..4, 2..4];

an array alias AA is created to alias the interior of array A given by the slice A[2..4, 2..4]. The
reindexing expression changes the indices defined by the domain of the alias to be zero-based in both
dimensions. Thus AA(1,1) is equivalent to A(3,3).

20.10 Sparse Arrays

Sparse arrays in Chapel are those whose domain is a sparse array. A sparse array differs from other array types in that
it stores a single value corresponding to multiple indices. This value is commonly referred to as the zero value, but we
refer to it as the implicitly replicated value or IRV since it can take on any value of the array’s element type in practice
including non-zero numeric values, a class reference, a record or tuple value, etc.

An array declared over a sparse domain can be indexed using any of the indices in the sparse domain’s parent domain.
If it is read using an index that is not part of the sparse domain’s index set, the IRV value is returned. Otherwise, the
array element corresponding to the index is returned.

Sparse arrays can only be written at locations corresponding to indices in their domain’s index set. In general, writing
to other locations corresponding to the IRV value will result in a runtime error.

By default a sparse array’s IRV is defined as the default value for the array’s element type. The IRV can be set to any
value of the array’s element type by assigning to a pseudo-field named IRV in the array.

Example (sparse-error.chpl). The following code example declares a sparse array, SpsA using the sparse
domain SpsD (For this example, assume that n>1). Line 2 assigns two indices to SpsD’s index set and
then lines 3–4 store the values 1.1 and 9.9 to the corresponding values of SpsA. The IRV of SpsA will
initially be 0.0 since its element type is real. However, the fifth line sets the IRV to be the value 5.5,
causing SpsA to represent the value 1.1 in its low corner, 9.9 in its high corner, and 5.5 everywhere else.
The final statement is an error since it attempts to assign to SpsA at an index not described by its domain,
SpsD.

var SpsD: sparse subdomain(D);
var SpsA: [SpsD] real;
SpsD = ((1,1), (n,n));
SpsA(1,1) = 1.1;
SpsA(n,n) = 9.9;
SpsA.IRV = 5.5;
SpsA(1,n) = 0.0; // ERROR!

Arrays 170

20.11 Association of Arrays to Domains

When an array is declared, it is linked during execution to the domain identity over which it was declared. This linkage
is invariant for the array’s lifetime and cannot be changed.

When indices are added or removed from a domain, the change impacts the arrays declared over this particular domain.
In the case of adding an index, an element is added to the array and initialized to the IRV for sparse arrays, and to
the default value for the element type for dense arrays. In the case of removing an index, the element in the array is
removed.

When a domain is reassigned a new value, its arrays are also impacted. Values that correspond to indices in the
intersection of the old and new domain are preserved in the arrays. Values that could only be indexed by the old
domain are lost. Values that can only be indexed by the new domain have elements added to the new array, initialized
to the IRV for sparse arrays, and to the element type’s default value for other array types.

For performance reasons, there is an expectation that a method will be added to domains to allow non-preserving
assignment, i.e., all values in the arrays associated with the assigned domain will be lost. Today this can be achieved
by assigning the array’s domain an empty index set (causing all array elements to be deallocated) and then re-assigning
the new index set to the domain.

An array’s domain can only be modified directly, via the domain’s name or an alias created by passing it to a function
via default intent. In particular, the domain may not be modified via the array’s .domain method, nor by using the
domain query syntax on a function’s formal array argument (§22.1.6).

Rationale. When multiple arrays are declared using a single domain, modifying the domain affects all of
the arrays. Allowing an array’s domain to be queried and then modified suggests that the change should
only affect that array. By requiring the domain to be modified directly, the user is encouraged to think in
terms of the domain distinctly from a particular array.

In addition, this choice has the beneficial effect that arrays declared via an anonymous domain have
a constant domain. Constant domains are considered a common case and have potential compilation
benefits such as eliminating bounds checks. Therefore making this convenient syntax support a common,
optimizable case seems prudent.

20.12 Predefined Functions and Methods on Arrays

There is an expectation that this list of predefined methods will grow.
proc Array.eltType type

Returns the element type of the array.

proc Array.rank param

Returns the rank of the array.

proc Array.domain: this.domain

Returns the domain of the given array. This domain is constant, implying that the domain cannot be resized by
assigning to its domain field, only by modifying the domain directly.

Arrays 171

proc Array.numElements: this.domain.dim_type

Returns the number of elements in the array.

proc reshape(A: Array, D: Domain): Array

Returns a copy of the array containing the same values but in the shape of the new domain. The number of
indices in the domain must equal the number of elements in the array. The elements of the array are copied into
the new array using the default iteration orders over both arrays.

proc Array.size: this.domain.dim_type

Same as Array.numElements.

21 Iterators

An iterator is a function that can generate, or yield, multiple values (consecutively or in parallel) via its yield state-
ments.

Open issue. The parallel iterator story is under development. It is expected that the specification will be
expanded regarding parallel iterators soon.

21.1 Iterator Definitions

The syntax to declare an iterator is given by:

iterator-declaration-statement:
privacy-specifieropt iter iterator-name argument-listopt return-intentopt return-typeopt where-clauseopt

iterator-body

iterator-name:
identifier

iterator-body:
block-statement
yield-statement

The syntax of an iterator declaration is similar to a procedure declaration, with some key differences:

• The keyword iter is used instead of the keyword proc.

• The name of the iterator cannot overload any operator.

• yield statements may appear in the body of an iterator, but not in a procedure.

• A return statement in the body of an iterator is not allowed to have an expression.

21.2 The Yield Statement

The yield statement can only appear in iterators. The syntax of the yield statement is given by

yield-statement:
yield expression ;

172

Iterators 173

When an iterator is executed and a yield is encountered, the value of the yield expression is returned. However,
the state of execution of the iterator is saved. On its next invocation, execution resumes from the point immediately
following that yield statement and with the saved state of execution. A yield statement in a variable iterator must
contain an lvalue expression.

When a return is encountered, the iterator finishes without yielding another index value. The return statements
appearing in an iterator are not permitted to have a return expression. An iterator also completes after the last statement
in the iterator is executed. An iterator need not contain any yield statements.

21.3 Iterator Calls

Iterators are invoked using regular call expressions:

iteratable-call-expression:
call-expression

All details of iterator calls, including argument passing, function resolution, the use of parentheses versus brackets to
delimit the parameter list, and so on, are identical to procedure calls as described in Chapter 13.

However, the result of an iterator call depends upon its context, as described below.

21.3.1 Iterators in For and Forall Loops

When an iterator is accessed via a for or forall loop, the iterator is evaluated alongside the loop body in an interleaved
manner. For each iteration, the iterator yields a value and the body is executed.

21.3.2 Iterators as Arrays

If an iterator function is captured into a new variable declaration or assigned to an array, the iterator is iterated over
in total and the expression evaluates to a one-dimensional arithmetic array that contains the values returned by the
iterator on each iteration.

Example (as-arrays.chpl). Given this iterator

iter squares(n: int): int {
for i in 1..n do

yield i * i;
}

the expression squares(5) evaluates to

1 4 9 16 25

Iterators 174

21.3.3 Iterators and Generics

An iterator call expression can be passed to a generic function argument that has neither a declared type nor default
value (§22.1.3). In this case the iterator is passed without being evaluated. Within the generic function the correspond-
ing formal argument can be used as an iterator, e.g. in for loops. The arguments to the iterator call expression, if any,
are evaluated at the call site, i.e. prior to passing the iterator to the generic function.

21.3.4 Recursive Iterators

Recursive iterators are allowed. A recursive iterator invocation is typically made by iterating over it in a loop.

Example (recursive.chpl). A post-order traversal of a tree data structure could be written like this:

iter postorder(tree: Tree): string {
if tree != nil {

for child in postorder(tree.left) do
yield child;

for child in postorder(tree.right) do
yield child;

yield tree.data;
}

}

By contrast, using calls postorder(tree.left) and postorder(tree.right) as stand-alone state-
ments would result in generating temporary arrays containing the outcomes of these recursive calls, which
would then be discarded.

21.4 Parallel Iterators

Iterators used in explicit forall-statements or -expressions must be parallel iterators. Reductions, scans and promotion
over serial iterators will be serialized.

Parallel iterators are defined for standard constructs in Chapel such as ranges, domains, and arrays, thereby allowing
these constructs to be used with forall-statements and -expressions.

The left-most iteratable expression in a forall-statement or -expression determines the number of tasks, the iterations
each task executes, and the locales on which these tasks execute. For ranges, default domains, and default arrays, these
values can be controlled via configuration constants (§25.6).

Domains and arrays defined using distributed domain maps will typically implement forall loops with multiple tasks
on multiple locales. For ranges, default domains, and default arrays, all tasks are executed on the current locale.

A more detailed definition of parallel iterators is forthcoming.

22 Generics

Chapel supports generic functions and types that are parameterizable over both types and parameters. The generic
functions and types look similar to non-generic functions and types already discussed.

22.1 Generic Functions

A function is generic if any of the following conditions hold:

• Some formal argument is specified with an intent of type or param.

• Some formal argument has no specified type and no default value.

• Some formal argument is specified with a queried type.

• The type of some formal argument is a generic type, e.g., List. Queries may be inlined in generic types, e.g.,
List(?eltType).

• The type of some formal argument is an array type where either the element type is queried or omitted or the
domain is queried or omitted.

These conditions are discussed in the next sections.

22.1.1 Formal Type Arguments

If a formal argument is specified with intent type, then a type must be passed to the function at the call site. A copy
of the function is instantiated for each unique type that is passed to this function at a call site. The formal argument
has the semantics of a type alias.

Example (build2tuple.chpl). The following code defines a function that takes two types at the call site and
returns a 2-tuple where the types of the components of the tuple are defined by the two type arguments
and the values are specified by the types default values.

proc build2Tuple(type t, type tt) {
var x1: t;
var x2: tt;
return (x1, x2);

}

This function is instantiated with “normal” function call syntax where the arguments are types:

var t2 = build2Tuple(int, string);
t2 = (1, "hello");

175

Generics 176

22.1.2 Formal Parameter Arguments

If a formal argument is specified with intent param, then a parameter must be passed to the function at the call site. A
copy of the function is instantiated for each unique parameter that is passed to this function at a call site. The formal
argument is a parameter.

Example (fillTuple.chpl). The following code defines a function that takes an integer parameter p at the
call site as well as a regular actual argument of integer type x. The function returns a homogeneous tuple
of size p where each component in the tuple has the value of x.

proc fillTuple(param p: int, x: int) {
var result: p*int;
for param i in 1..p do
result(i) = x;

return result;
}

The function call fillTuple(3, 3) returns a 3-tuple where each component contains the value 3.

22.1.3 Formal Arguments without Types

If the type of a formal argument is omitted, the type of the formal argument is taken to be the type of the actual
argument passed to the function at the call site. A copy of the function is instantiated for each unique actual type.

Example (fillTuple2.chpl). The example from the previous section can be extended to be generic on a
parameter as well as the actual argument that is passed to it by omitting the type of the formal argument x.
The following code defines a function that returns a homogeneous tuple of size p where each component
in the tuple is initialized to x:

proc fillTuple(param p: int, x) {
var result: p*x.type;
for param i in 1..p do

result(i) = x;
return result;

}

In this function, the type of the tuple is taken to be the type of the actual argument. The call fillTuple(3, 3.14)

returns a 3-tuple of real values (3.14, 3.14, 3.14). The return type is (real, real, real).

22.1.4 Formal Arguments with Queried Types

If the type of a formal argument is specified as a queried type, the type of the formal argument is taken to be the type
of the actual argument passed to the function at the call site. A copy of the function is instantiated for each unique
actual type. The queried type has the semantics of a type alias.

Example (fillTuple3.chpl). The example from the previous section can be rewritten to use a queried type
for clarity:

proc fillTuple(param p: int, x: ?t) {
var result: p*t;
for param i in 1..p do

result(i) = x;
return result;

}

Generics 177

22.1.5 Formal Arguments of Generic Type

If the type of a formal argument is a generic type, the type of the formal argument is taken to be the type of the actual
argument passed to the function at the call site with the constraint that the type of the actual argument is an instantiation
of the generic type. A copy of the function is instantiated for each unique actual type.

Example. The following code defines a function writeTop that takes an actual argument that is a
generic stack (see §22.6) and outputs the top element of the stack. The function is generic on the type of
its argument.

proc writeTop(s: Stack) {
write(s.top.item);

}

Types and parameters may be queried from the top-level types of formal arguments as well. In the example above,
the formal argument’s type could also be specified as Stack(?type) in which case the symbol type is equivalent to
s.itemType.

Note that generic types which have default values for all of their generic fields, e.g. range, are not generic when simply
specified and require a query to mark the argument as generic. For simplicity, the identifier may be omitted.

Example. The following code defines a class with a type field that has a default value. Function f is
defined to take an argument of this class type where the type field is instantiated to the default. Function
g, on the other hand, is generic on its argument because of the use of the question mark.

class C {
type t = int;

}
proc f(c: C) {
// c.type is always int

}
proc g(c: C(?)) {

// c.type may not be int
}

The generic type may be specified with some queries and some exact values. These exact values result in implicit
where clauses for the purpose of function resolution.

Example. Given the class definition

class C {
type t;
type tt;

}

then the function definition

proc f(c: C(?t,real)) {
// body

}

is equivalent to

Generics 178

proc f(c: C(?t,?tt)) where tt == real {
// body

}

For tuples with query arguments, an implicit where clause is always created to ensure that the size of the actual tuple
matches the implicitly specified size of the formal tuple.

Example. The function definition

proc f(tuple: (?t,real)) {
// body

}

is equivalent to

proc f(tuple: (?t,?tt)) where tuple.size == 2 && tt == real {
// body

}

Example (query.chpl). Type queries can also be used to constrain the types of other function arguments
and/or the return type. In this example, the type query on the first argument establishes type constraints
on the other arguments and also determines the return type.

The code

writeln(sumOfThree(1,2,3));
writeln(sumOfThree(4.0,5.0,3.0));

proc sumOfThree(x: ?t, y:t, z:t):t {
var sum: t;

sum = x + y + z;
return sum;

}

produces the output

6
12.0

The generic types integral, numeric and enumerated are generic types that can only be instantiated with, respec-
tively, the signed and unsigned integral types, all of the numeric types, and enumerated types.

22.1.6 Formal Arguments of Generic Array Types

If the type of a formal argument is an array where either the domain or the element type is queried or omitted, the
type of the formal argument is taken to be the type of the actual argument passed to the function at the call site. If the
domain is omitted, the domain of the formal argument is taken to be the domain of the actual argument.

A queried domain may not be modified via the name to which it is bound (see §20.11 for rationale).

Generics 179

22.2 Function Visibility in Generic Functions

Function visibility in generic functions is altered depending on the instantiation. When resolving function calls made
within generic functions, the visible functions are taken from any call site at which the generic function is instan-
tiated for each particular instantiation. The specific call site chosen is arbitrary and it is referred to as the point of
instantiation.

For function calls that specify the module explicitly (§12.4.3), an implicit use of the specified module exists at the call
site.

Example (point-of-instantiation.chpl). Consider the following code which defines a generic function
bar:

module M1 {
record R {
var x: int;
proc foo() { }

}
}

module M2 {
proc bar(x) {
x.foo();

}
}

module M3 {
use M1, M2;
proc main() {
var r: R;
bar(r);

}
}

In the function main, the variable r is declared to be of type R defined in module M1 and a call is made to
the generic function bar which is defined in module M2. This is the only place where bar is called in this
program and so it becomes the point of instantiation for bar when the argument x is of type R. Therefore,
the call to the foo method in bar is resolved by looking for visible functions from within main and going
through the use of module M1.

If the generic function is only called indirectly through dynamic dispatch, the point of instantiation is defined as the
point at which the derived type (the type of the implicit this argument) is defined or instantiated (if the derived type
is generic).

Rationale. Visible function lookup in Chapel’s generic functions is handled differently than in C++’s
template functions in that there is no split between dependent and independent types.

Also, dynamic dispatch and instantiation is handled differently. Chapel supports dynamic dispatch over
methods that are generic in some of its formal arguments.

Note that the Chapel lookup mechanism is still under development and discussion. Comments or questions
are appreciated.

Generics 180

22.3 Generic Types

Generic types are generic classes and generic records. A class or record is generic if it contains one or more generic
fields. A generic field is one of:

• a specified or unspecified type alias,

• a parameter field, or

• a var or const field that has no type and no initialization expression.

For each generic field, the class or record is parameterized over:

• the type bound to the type alias,

• the value of the parameter field, or

• the type of the var or const field, respectively.

Correspondingly, the class or record is instantiated with a set of types and parameter values, one type or value per
generic field.

22.3.1 Type Aliases in Generic Types

If a class or record defines a type alias, the class or record is generic over the type that is bound to that alias. Such a
type alias is accessed as if it were a field; similar to a parameter field, it cannot be assigned except in its declaration.

The type alias becomes an argument with intent type to the compiler-generated constructor (§22.3.6) for its class or
record. This makes the compiler-generated constructor generic. The type alias also becomes an argument with intent
type to the type constructor (§22.3.4). If the type alias declaration binds it to a type, that type becomes the default for
these arguments, otherwise they have no defaults.

The class or record is instantiated by binding the type alias to the actual type passed to the corresponding argument
of a user-defined (§22.3.7) or compiler-generated constructor or type constructor. If that argument has a default, the
actual type can be omitted, in which case the default will be used instead.

Example (NodeClass.chpl). The following code defines a class called Node that implements a linked list
data structure. It is generic over the type of the element contained in the linked list.

class Node {
type eltType;
var data: eltType;
var next: Node(eltType);

}

The call new Node(real, 3.14) creates a node in the linked list that contains the value 3.14. The
next field is set to nil. The type specifier Node is a generic type and cannot be used to define a variable.
The type specifier Node(real) denotes the type of the Node class instantiated over real. Note that the
type of the next field is specified as Node(eltType); the type of next is the same type as the type of
the object that it is a field of.

Generics 181

22.3.2 Parameters in Generic Types

If a class or record defines a parameter field, the class or record is generic over the value that is bound to that field. The
parameter becomes an argument with intent param to the compiler-generated constructor (§22.3.6) for that class or
record. This makes the compiler-generated constructor generic. The parameter also becomes an argument with intent
param to the type constructor (§22.3.4). If the parameter declaration has an initialization expression, that expression
becomes the default for these arguments, otherwise they have no defaults.

The class or record is instantiated by binding the parameter to the actual value passed to the corresponding argument
of a user-defined (§22.3.7) or compiler-generated constructor or type constructor. If that argument has a default, the
actual value can be omitted, in which case the default will be used instead.

Example (IntegerTuple.chpl). The following code defines a class called IntegerTuple that is generic
over an integer parameter which defines the number of components in the class.

class IntegerTuple {
param size: int;
var data: size*int;

}

The call new IntegerTuple(3) creates an instance of the IntegerTuple class that is instantiated
over parameter 3. The field data becomes a 3-tuple of integers. The type of this class instance is
IntegerTuple(3). The type specified by IntegerTuple is a generic type.

22.3.3 Fields without Types

If a var or const field in a class or record has no specified type or initialization expression, the class or record
is generic over the type of that field. The field becomes an argument with default intent to the compiler-generated
constructor (§22.3.6). That argument has no specified type and no default value. This makes the compiler-generated
constructor generic. The field also becomes an argument with type intent and no default to the type constructor
(§22.3.4). Correspondingly, an actual value must always be passed to the default constructor argument and an actual
type to the type constructor argument.

The class or record is instantiated by binding the type of the field to the type of the value passed to the corresponding
argument of a user-defined (§22.3.7) or compiler-generated constructor (§22.3.6). When the type constructor is in-
voked, the class or record is instantiated by binding the type of the field to the actual type passed to the corresponding
argument.

Example (fieldWithoutType.chpl). The following code defines another class called Node that implements
a linked list data structure. It is generic over the type of the element contained in the linked list. This code
does not specify the element type directly in the class as a type alias but rather omits the type from the
data field.

class Node {
var data;
var next: Node(data.type) = nil;

}

A node with integer element type can be defined in the call to the constructor. The call new Node(1)

defines a node with the value 1. The code

Generics 182

var list = new Node(1);
list.next = new Node(2);

defines a two-element list with nodes containing the values 1 and 2. The type of each object could be
specified as Node(int).

22.3.4 The Type Constructor

A type constructor is automatically created for each class or record. A type constructor is a type function (§13.7.3) that
has the same name as the class or record. It takes one argument per the class’s or record’s generic field, including fields
inherited from the superclasses, if any. The formal argument has intent type for a type alias field and is a parameter
for a parameter field. It accepts the type to be bound to the type alias and the value to be bound to the parameter,
respectively. For a generic var or const field, the corresponding formal argument also has intent type. It accepts the
type of the field, as opposed to a value as is the case for a parameter field. The formal arguments occur in the same
order as the fields are declared and have the same names as the corresponding fields. Unlike the compiler-generated
constructor, the type constructor has only those arguments that correspond to generic fields.

A call to a type constructor accepts actual types and parameter values and returns the type of the class or record that
is instantiated appropriately for each field (§22.3.1, §22.3.2, §22.3.3). Such an instantiated type must be used as the
type of a variable, array element, non-generic formal argument, and in other cases where uninstantiated generic class
or record types are not allowed.

When a generic field declaration has an initialization expression or a type alias is specified, that initializer becomes
the default value for the corresponding type constructor argument. Uninitialized fields, including all generic var

and const fields, and unspecified type aliases result in arguments with no defaults; actual types or values for these
arguments must always be provided when invoking the type constructor.

22.3.5 Generic Methods

All methods bound to generic classes or records, including constructors, are generic over the implicit this argument.
This is in addition to being generic over any other argument that is generic.

22.3.6 The Compiler-Generated Constructor

If no user-defined constructors are supplied for a given generic class, the compiler generates one following in a manner
similar to that for concrete classes (§15.3.2). However, the compiler-generated constructor for a generic class or record
(§15.3.2) is generic over each argument that corresponds to a generic field, as specified above. The argument has intent
type for a type alias field and is a parameter for a parameter field. It accepts the type to be bound to the type alias
and the value to be bound to the parameter, respectively. This is the same as for the type constructor. For a generic
var or const field, the corresponding formal argument has the default intent and accepts the value for the field to be
initialized with. The type of the field is inferred automatically to be the type of the initialization value.

The default values for the generic arguments of the compiler-generated constructor are the same as for the type con-
structor (§22.3.4). For example, the arguments corresponding to the generic var and const fields, if any, never have
defaults, so the corresponding actual values must always be provided.

Generics 183

22.3.7 User-Defined Constructors

If a generic field of a class does not have an initialization expression or a type alias is unspecified, each user-defined
constructor for that class must provide a formal argument whose name matches the name of the field.

If the name of a formal argument in a user-defined constructor matches the name of a generic field that does not have
an initialization expression, is a type alias, or is a parameter field, the field is automatically initialized at the beginning
of the constructor invocation to the actual value of that argument. This is done by passing that formal argument to the
implicit invocation of the compiler-generated constructor during default-initialization (§15.2.8).

Example (constructorsForGenericFields.chpl). In the following code:
class MyGenericClass {
type t1;
param p1;
const c1;
var v1;
var x1: t1; // this field is not generic

type t5 = real;
param p5 = "a string";
const c5 = 5.5;
var v5 = 555;
var x5: t5; // this field is not generic

proc MyGenericClass(c1, v1, type t1, param p1) { }
proc MyGenericClass(type t5, param p5, c5, v5, x5,

type t1, param p1, c1, v1, x1) { }
} // class MyGenericClass

var g1 = new MyGenericClass(11, 111, int, 1);
var g2 = new MyGenericClass(int, "this is g2", 3.3, 333, 3333,

real, 2, 222, 222.2, 22);

The arguments t1, p1, c1, and v1 are required in all constructors for MyGenericClass. They can appear
in any order. Both MyGenericClass constructors initialize the corresponding fields implicitly because
these fields do not have initialization expressions. The second constructor also initializes implicitly the
fields t5 and p5 because they are a type field and a parameter field. It does not initialize the fields c5 and
v5 because they have initialization expressions, or the fields x1 and x5 because they are not generic fields
(even though they are of generic types).

Open issue. The design of constructors, especially for generic classes, is under development, so the
above specification may change.

22.4 Where Expressions

The instantiation of a generic function can be constrained by where clauses. A where clause is specified in the
definition of a function (§13.2). When a function is instantiated, the expression in the where clause must be a parameter
expression and must evaluate to either true or false. If it evaluates to false, the instantiation is rejected and the
function is not a possible candidate for function resolution. Otherwise, the function is instantiated.

Example (whereClause.chpl). Given two overloaded function definitions

Generics 184

proc foo(x) where x.type == int { writeln("int"); }
proc foo(x) where x.type == real { writeln("real"); }

the call foo(3) resolves to the first definition because when the second function is instantiated the where
clause evaluates to false.

22.5 User-Defined Compiler Diagnostics

The special compiler diagnostic function calls compilerError and compilerWarning generate compiler diagnostic
of the indicated severity if the function containing these calls may be called when the program is executed and the
function call is not eliminated by parameter folding.

The compiler diagnostic is defined by the actual arguments which must be string parameters. The diagnostic points
to the spot in the Chapel program from which the function containing the call is called. Compilation halts if a
compilerError is encountered whereas it will continue after encountering a compilerWarning.

Cray’s Chapel Implementation. Note that when a function with a ref return intent is called in a context
where the implicit setter argument is true or false, both versions of the function are resolved by the
compiler. Consequently, the setter argument cannot be effectively used to guard a compiler diagnostic
statements.

Example (compilerDiagnostics.chpl). The following code shows an example of using user-defined com-
piler diagnostics to generate warnings and errors:

proc foo(x, y) {
if (x.type != y.type) then

compilerError("foo() called with non-matching types: ",
typeToString(x.type), " != ", typeToString(y.type));

writeln("In 2-argument foo...");
}

proc foo(x) {
compilerWarning("1-argument version of foo called");
writeln("In generic foo!");

}

The first routine generates a compiler error whenever the compiler encounters a call to it where the two
arguments have different types. It prints out an error message indicating the types of the arguments. The
second routine generates a compiler warning whenever the compiler encounters a call to it.

Thus, if the program foo.chpl contained the following calls:
1 foo(3.4);
2 foo("hi");
3 foo(1, 2);
4 foo(1.2, 3.4);
5 foo("hi", "bye");
6 foo(1, 2.3);
7 foo("hi", 2.3);

compiling the program would generate output like:
foo.chpl:1: warning: 1-argument version of foo called with type: real
foo.chpl:2: warning: 1-argument version of foo called with type: string
foo.chpl:6: error: foo() called with non-matching types: int != real

Generics 185

22.6 Example: A Generic Stack

Example (genericStack.chpl).

class MyNode {
type itemType; // type of item
var item: itemType; // item in node
var next: MyNode(itemType); // reference to next node (same type)

}

record Stack {
type itemType; // type of items
var top: MyNode(itemType); // top node on stack linked list

proc push(item: itemType) {
top = new MyNode(itemType, item, top);

}

proc pop() {
if isEmpty then

halt("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

}

proc isEmpty return top == nil;
}

23 Input and Output

23.1 See Library Documentation

Chapel includes an extensive library for input and output that is documented in the standard library documentation. See
http://chapel.cray.com/docs/latest/modules/standard/IO.html and http://chapel.cray.
com/docs/latest/modules/standard/ChapelIO.html.

186

http://chapel.cray.com/docs/latest/modules/standard/IO.html
http://chapel.cray.com/docs/latest/modules/standard/ChapelIO.html
http://chapel.cray.com/docs/latest/modules/standard/ChapelIO.html

24 Task Parallelism and Synchronization

Chapel supports both task parallelism and data parallelism. This chapter details task parallelism as follows:

• §24.1 introduces tasks and task parallelism.

• §24.2 describes the begin statement, an unstructured way to introduce concurrency into a program.

• §24.3 describes synchronization variables, an unstructured mechanism for synchronizing tasks.

• §24.4 describes atomic variables, a mechanism for supporting atomic operations.

• §24.5 describes the cobegin statement, a structured way to introduce concurrency into a program.

• §24.6 describes the coforall loop, another structured way to introduce concurrency into a program.

• §24.7 specifies how variables from outer scopes are handled within begin, cobegin and coforall statements.

• §24.8 describes the sync statement, a structured way to control parallelism.

• §24.9 describes the serial statement, a structured way to suppress parallelism.

• §24.10 describes the atomic statement, a construct to support atomic transactions.

24.1 Tasks and Task Parallelism

A Chapel task is a distinct context of execution that may be running concurrently with other tasks. Chapel provides
a simple construct, the begin statement, to create tasks, introducing concurrency into a program in an unstructured
way. In addition, Chapel introduces two type qualifiers, sync and single, for synchronization between tasks.

Chapel provides two constructs, the cobegin and coforall statements, to introduce concurrency in a more structured
way. These constructs create multiple tasks but do not continue until these tasks have completed. In addition, Chapel
provides two constructs, the sync and serial statements, to insert synchronization and suppress parallelism. All four
of these constructs can be implemented through judicious uses of the unstructured task-parallel constructs described
in the previous paragraph.

Tasks are considered to be created when execution reaches the start of a begin, cobegin, or coforall statement.
When the tasks are actually executed depends on the Chapel implementation and run-time execution state.

A task is represented as a call to a task function, whose body contains the Chapel code for the task. Variables defined in
outer scopes are considered to be passed into a task function by default intent, unless a different task intent is specified
explicitly by a task-intent-clause.

187

Task Parallelism and Synchronization 188

24.2 The Begin Statement

The begin statement creates a task to execute a statement. The syntax for the begin statement is given by

begin-statement:
begin task-intent-clauseopt statement

Control continues concurrently with the statement following the begin statement.

Example (beginUnordered.chpl). The code

begin writeln("output from spawned task");
writeln("output from main task");

executes two writeln statements that output the strings to the terminal, but the ordering is purposely
unspecified. There is no guarantee as to which statement will execute first. When the begin statement is
executed, a new task is created that will execute the writeln statement within it. However, execution
will continue immediately after task creation with the next statement.

A begin statement creates a single task function, whose body is the body of the begin statement. The handling of the
outer variables within the task function and the role of task-intent-clause are defined in §24.7.

Yield and return statements are not allowed in begin blocks. Break and continue statements may not be used to exit a
begin block.

24.3 Synchronization Variables

Synchronization variables have a logical state associated with the value. The state of the variable is either full or
empty. Normal reads of a synchronization variable cannot proceed until the variable’s state is full. Normal writes of a
synchronization variable cannot proceed until the variable’s state is empty.

Chapel supports two types of synchronization variables: sync and single. Both types behave similarly, except that a
single variable may only be written once. Consequently, when a sync variable is read, its state transitions to empty,
whereas when a single variable is read, its state does not change. When either type of synchronization variable is
written, its state transitions to full.

sync and single are type qualifiers and precede the type of the variable’s value in the declaration. Sync and single
are supported for all Chapel primitive types (§7.1) except strings and complex.

If a task attempts to read or write a synchronization variable that is not in the correct state, the task is suspended. When
the variable transitions to the correct state, the task is resumed. If there are multiple tasks blocked waiting for the state
transition, one is non-deterministically selected to proceed and the others continue to wait if it is a sync variable; all
tasks are selected to proceed if it is a single variable.

A synchronization variable is specified with a sync or single type given by the following syntax:

Task Parallelism and Synchronization 189

sync-type:
sync type-specifier

single-type:
single type-specifier

If a synchronization variable declaration has an initialization expression, then the variable is initially full, otherwise it
is initially empty.

Example (beginWithSyncVar.chpl). The code

class Tree {
var isLeaf: bool;
var left, right: Tree;
var value: int;

proc sum():int {
if (isLeaf) then

return value;

var x$: sync int;
begin x$ = left.sum();
var y = right.sum();
return x$ + y;

}
}

the sync variable x$ is assigned by an asynchronous task created with the begin statement. The task
returning the sum waits on the reading of x$ until it has been assigned. By convention, synchronization
variables end in $ to provide a visual cue to the programmer indicating that the task may block.

Example (syncCounter.chpl). Sync variables are useful for tallying data from multiple tasks as well. If all
updates to an initialized sync variable are via compound assignment operators (or equivalently, traditional
assignments that read and write the variable once), the full/empty state of the sync variable guarantees
that the reads and writes will be interleaved in a manner that makes the updates atomic. For example, the
code:

var count$: sync int = 0;
cobegin {

count$ += 1;
count$ += 1;
count$ += 1;

}

creates three tasks that increment count$. If count$ were not a sync variable, this code would be unsafe
because two tasks could then read the same value before either had written its updated value, causing one
of the increments to be lost.

Example (singleVar.chpl). The following code implements a simple split-phase barrier using a single
variable.

var count$: sync int = n; // counter which also serves as a lock
var release$: single bool; // barrier release

forall t in 1..n do begin {
work(t);

Task Parallelism and Synchronization 190

var myc = count$; // read the count, set state to empty
if myc!=1 {
write(".");
count$ = myc-1; // update the count, set state to full
// we could also do some work here before blocking
release$;

} else {
release$ = true; // last one here, release everyone
writeln("done");

}
}

In each iteration of the forall loop after the work is completed, the task reads the count$ variable, which
is used to tally the number of tasks that have arrived. All tasks except the last task to arrive will block
while trying to read the variable release$. The last task to arrive will write to release$, setting its
state to full at which time all the other tasks can be unblocked and run.

If a formal argument with a default intent either has a synchronization type or the formal is generic (§22.1.5) and the
actual has a synchronization type, the actual must be an lvalue and is passed by reference. In these cases the formal
itself is an lvalue, too. The actual argument is not read or written during argument passing; its state is not changed or
waited on. The qualifier sync or single without the value type can be used to specify a generic formal argument that
requires a sync or single actual.

When the actual argument is a sync or single and the corresponding formal has the actual’s base type or is implicitly
converted from that type, a normal read of the actual is performed when the call is made, and the read value is passed
to the formal.

24.3.1 Predefined Single and Sync Methods

The following methods are defined for variables of sync and single type.

proc (sync t).readFE(): t

Returns the value of the sync variable. This method blocks until the sync variable is full. The state of the
sync variable is set to empty when this method completes. This method implements the normal read of a sync
variable.

proc (sync t).readFF(): t
proc (single t).readFF(): t

Returns the value of the sync or single variable. This method blocks until the sync or single variable is full.
The state of the sync or single variable remains full when this method completes. This method implements the
normal read of a single variable.

proc (sync t).readXX(): t
proc (single t).readXX(): t

Returns the value of the sync or single variable. This method is non-blocking and the state of the sync or single
variable is unchanged when this method completes.

proc (sync t).writeEF(v: t)
proc (single t).writeEF(v: t)

Task Parallelism and Synchronization 191

Assigns v to the value of the sync or single variable. This method blocks until the sync or single variable
is empty. The state of the sync or single variable is set to full when this method completes. This method
implements the normal write of a sync or single variable.

proc (sync t).writeFF(v: t)

Assigns v to the value of the sync variable. This method blocks until the sync variable is full. The state of the
sync variable remains full when this method completes.

proc (sync t).writeXF(v: t)

Assigns v to the value of the sync variable. This method is non-blocking and the state of the sync variable is set
to full when this method completes.

proc (sync t).reset()

Assigns the default value of type t to the value of the sync variable. This method is non-blocking and the state
of the sync variable is set to empty when this method completes.

proc (sync t).isFull: bool
proc (single t).isFull: bool

Returns true if the sync or single variable is full and false otherwise. This method is non-blocking and the
state of the sync or single variable is unchanged when this method completes.

Note that writeEF and readFE/readFF methods (for sync and single variables, respectively) are implicitly in-
voked for normal writes and reads of synchronization variables.

Example (syncMethods.chpl). Given the following declarations

var x$: sync int;
var y$: single int;
var z: int;

the code

x$ = 5;
y$ = 6;
z = x$ + y$;

is equivalent to

x$.writeEF(5);
y$.writeEF(6);
z = x$.readFE() + y$.readFF();

Task Parallelism and Synchronization 192

24.4 Atomic Variables

Atomic variables are variables that support atomic operations. Chapel currently supports atomic operations for bools,
all supported sizes of signed and unsigned integers, as well as all supported sizes of reals.

Rationale. The choice of supported atomic variable types as well as the atomic operations was strongly
influenced by the C11 standard.

Atomic is a type qualifier that precedes the variable’s type in the declaration. Atomic operations are supported for
bools, and all sizes of ints, uints, and reals.

An atomic variable is specified with an atomic type given by the following syntax:

atomic-type:
atomic type-specifier

24.4.1 Predefined Atomic Methods

The following methods are defined for variables of atomic type. Note that not all operations are supported for all
atomic types. The supported types are listed for each method.

Most of the predefined atomic methods accept an optional argument named order of type memory order. The order
argument is used to specify the ordering constraints of atomic operations. The supported memory order values are:

• memory order relaxed

• memory order acquire

• memory order release

• memory order acq rel

• memory order seq cst

Open issue. The memory order values were taken directly from the C11 specification. We expect to
review and better define the supported values with work on Chapel’s memory consistency model (see 29).

Unless specified, the default for the memory order parameter is memory order seq cst.

Implementors’ note. Not all architectures or implementations may support all memory order values. In
these cases, the implementation should default to a more conservative ordering than specified.

proc (atomic t).read(memory_order order): t

Reads and returns the stored value. Defined for all atomic types.

proc (atomic t).peek(): t

Task Parallelism and Synchronization 193

Reads and returns the stored value using memory order relaxed. Defined for all atomic types.

proc (atomic t).write(v: t, memory_order order)

Stores v as the new value. Defined for all atomic types.

proc (atomic t).poke(v: t)

Stores v as the new value using memory order relaxed. Defined for all atomic types.

proc (atomic t).exchange(v: t, memory_order order): t

Stores v as the new value and returns the original value. Defined for all atomic types.

proc (atomic t).compareExchangeWeak(e: t, v: t, memory_order order): bool
proc (atomic t).compareExchangeStrong(e: t, v: t, memory_order order): bool
proc (atomic t).compareExchange(e: t, v: t, memory_order order): bool

Stores v as the new value, if and only if the original value is equal to e. Returns true if v was stored, false
otherwise. The ’weak’ variation may return false even if the original value was equal to e, if, for example,
the value could not be updated atomically. compareExchange is equivalent to compareExchangeStrong.
Defined for all atomic types.

proc (atomic t).add(v: t, memory_order order)
proc (atomic t).sub(v: t, memory_order order)
proc (atomic t).or(v: t, memory_order order)
proc (atomic t).and(v: t, memory_order order)
proc (atomic t).xor(v: t, memory_order order)

Applies the appropriate operator (+, -, |, &, ˆ) to the original value and v and stores the result. All of the
methods are defined for integral atomic types. Only add and sub (+, -) are defined for real atomic types. None
of the methods are defined for the bool atomic type.

Future. In the future we may overload certain operations such as += to call the above methods automati-
cally for atomic variables.

proc (atomic t).fetchAdd(v: t, memory_order order): t
proc (atomic t).fetchSub(v: t, memory_order order): t
proc (atomic t).fetchOr(v: t, memory_order order): t
proc (atomic t).fetchAnd(v: t, memory_order order): t
proc (atomic t).fetchXor(v: t, memory_order order): t

Applies the appropriate operator (+, -, |, &, ˆ) to the original value and v, stores the result, and returns the
original value. All of the methods are defined for integral atomic types. Only add and sub (+, -) are defined for
real atomic types. None of the methods are defined for the bool atomic type.

proc (atomic bool).testAndSet(memory_order order): bool

Stores true as the new value and returns the old value. Equivalent to exchange(true). Only defined for the
bool atomic type.

proc (atomic bool).clear(memory_order order)

Stores false as the new value. Equivalent to write(false). Only defined for the bool atomic type.

proc (atomic t).waitFor(v: t)

Waits until the stored value is equal to v. The implementation may yield the running task while waiting. Defined
for all atomic types.

Task Parallelism and Synchronization 194

24.5 The Cobegin Statement

The cobegin statement is used to introduce concurrency within a block. The cobegin statement syntax is

cobegin-statement:
cobegin task-intent-clauseopt block-statement

A new task and a corresponding task function are created for each statement in the block-statement. Control continues
when all of the tasks have finished. The handling of the outer variables within each task function and the role of
task-intent-clause are defined in §24.7.

Return statements are not allowed in cobegin blocks. Yield statement may only be lexically enclosed in cobegin blocks
in parallel iterators (§21.4). Break and continue statements may not be used to exit a cobegin block.

Example (cobeginAndEquivalent.chpl). The cobegin statement

cobegin {
stmt1();
stmt2();
stmt3();

}

is equivalent to the following code that uses only begin statements and single variables to introduce con-
currency and synchronize:

var s1$, s2$, s3$: single bool;
begin { stmt1(); s1$ = true; }
begin { stmt2(); s2$ = true; }
begin { stmt3(); s3$ = true; }
s1$; s2$; s3$;

Each begin statement is executed concurrently but control does not continue past the final line above until
each of the single variables is written, thereby ensuring that each of the functions has finished.

24.6 The Coforall Loop

The coforall loop is a variant of the cobegin statement in loop form. The syntax for the coforall loop is given by

coforall-statement:
coforall index-var-declaration in iteratable-expression task-intent-clauseopt do statement
coforall index-var-declaration in iteratable-expression task-intent-clauseopt block-statement
coforall iteratable-expression task-intent-clauseopt do statement
coforall iteratable-expression task-intent-clauseopt block-statement

The coforall loop creates a separate task for each iteration of the loop. Control continues with the statement
following the coforall loop after all tasks corresponding to the iterations of the loop have completed.

The single task function created for a coforall and invoked by each task contains the loop body. The handling of
the outer variables within the task function and the role of task-intent-clause are defined in §24.7.

Return statements are not allowed in coforall blocks. Yield statement may only be lexically enclosed in coforall blocks
in parallel iterators (§21.4). Break and continue statements may not be used to exit a coforall block.

Task Parallelism and Synchronization 195

Example (coforallAndEquivalent.chpl). The coforall statement

coforall i in iterator() {
body();

}

is equivalent to the following code that uses only begin statements and sync and single variables to intro-
duce concurrency and synchronize:

var runningCount$: sync int = 1;
var finished$: single bool;
for i in iterator() {

runningCount$ += 1;
begin {
body();
var tmp = runningCount$;
runningCount$ = tmp-1;
if tmp == 1 then finished$ = true;

}
}
var tmp = runningCount$;
runningCount$ = tmp-1;
if tmp == 1 then finished$ = true;
finished$;

Each call to body() executes concurrently because it is in a begin statement. The sync variable runningCount$
is used to keep track of the number of executing tasks plus one for the main task. When this variable
reaches zero, the single variable finished$ is used to signal that all of the tasks have completed. Thus
control does not continue past the last line until all of the tasks have completed.

24.7 Task Intents

If a variable is referenced within the lexical scope of a begin, cobegin, or coforall statement and is declared
outside that statement, it is considered to be passed as an actual argument to the corresponding task function at task
creation time. All references to the variable within the task function implicitly refer to the task function’s correspond-
ing formal argument.

Each formal argument of a task function has the default intent by default. For variables of primitive and class types,
this has the effect of capturing the value of the variable at task creation time and referencing that value instead of the
original variable within the lexical scope of the task construct.

A formal can be given another intent explicitly by listing it with that intent in the optional task-intent-clause. For
example, for variables of most types, the ref intent allows the task construct to modify the corresponding original
variable or to read its updated value after concurrent modifications.

The syntax of the task intent clause is:

task-intent-clause:
with (task-intent-list)

task-intent-list:
formal-intent identifier
formal-intent identifier, task-intent-list

Task Parallelism and Synchronization 196

where the following intents can be used as a formal-intent: ref, in, const, const in, const ref.

The implicit treatment of outer scope variables as the task function’s formal arguments applies to both module level
and local variables. It applies to variable references within the lexical scope of a task construct, but does not extend
to its dynamic scope, i.e., to the functions called from the task(s) but declared outside of the lexical scope. The loop
index variables of a coforall statement are not subject to such treatment within that statement; however, they are
subject to such treatment within nested task constructs, if any.

Rationale. The primary motivation for task intents is to avoid some races on scalar/record variables,
which are possible when one task modifies a variable and another task reads it. Without task intents, for
example, it would be easy to introduce and overlook a bug illustrated by this simplified example:

{
var i = 0;
while i < 10 {
begin {
f(i);

}
i += 1;

}
}

If all the tasks created by the begin statement start executing only after the while loop completes, and
i within the begin is treated as a reference to the original i, there will be ten tasks executing f(10).
However, the user most likely intended to generate ten tasks executing f(0), f(1), ..., f(9). Task intents
ensure that, regardless of the timing of task execution.

Another motivation for task intents is that referring to a captured copy in a task is often more efficient than
referring to the original variable. That’s because the copy is a local constant, e.g. it could be placed in a
register when it fits. Without task intents, references to the original variable would need to be implemented
using a pointer dereference. This is less efficient and can hinder optimizations in the surrounding code,
for example loop-invariant code motion.

Furthermore, in the above example the scope where i is declared may exit before all the ten tasks com-
plete. Without task intents, the user would have to protect i to make sure its lexical scope doesn’t exit
before the tasks referencing it complete.

We decided to treat cobegin and coforall statements the same way as begin. This is for consistency
and to make the race-avoidance benefit available to more code.

We decided to apply task intents to module level variables, in addition to local variables. Again, this is for
consistency. One could view module level variables differently than local variables (e.g. a module level
variable is “always available”), but we favored consistency over such an approach.

We decided not to apply task intents to “closure” variables, i.e., the variables in the dynamic scope of a
task construct. This is to keep this feature manageable, so that all variables subject to task intents can be
obtained by examining just the lexical scope of the task construct. In general, the set of closure variables
can be hard to determine, unweildy to implement and reason about, it is unclear what to do with extern
functions, etc.

We do not provide inout or out as task intents because they will necessarily create a data race in a
cobegin or coforall. type and param intents are not available either as they do not seem useful as
task intents.

Future. For a given intent, we would also like to provide a blanket clause, which would apply the intent
to all variables. An example of syntax for a blanket ref intent would be ref *.

Task Parallelism and Synchronization 197

24.8 The Sync Statement

The sync statement acts as a join of all dynamically encountered begins from within a statement. The syntax for the
sync statement is given by

sync-statement:
sync statement
sync block-statement

Return statements are not allowed in sync statement blocks. Yield statement may only be lexically enclosed in sync
statement blocks in parallel iterators (§21.4). Break and continue statements may not be used to exit a sync statement
block.

Example (syncStmt1.chpl). The sync statement can be used to wait for many dynamically created tasks.

sync for i in 1..n do begin work();

The for loop is within a sync statement and thus the tasks created in each iteration of the loop must
complete before the continuing past the sync statement.

Example (syncStmt2.chpl). The sync statement

sync {
begin stmt1();
begin stmt2();

}

is similar to the following cobegin statement

cobegin {
stmt1();
stmt2();

}

except that if begin statements are dynamically encountered when stmt1() or stmt2() are executed,
then the former code will wait for these begin statements to complete whereas the latter code will not.

24.9 The Serial Statement

The serial statement can be used to dynamically disable parallelism. The syntax is:

serial-statement:
serial expressionopt do statement
serial expressionopt block-statement

where the optional expression evaluates to a boolean value. If the expression is omitted, it is as though ’true’ were
specified. Whatever the expression’s value, the statement following it is evaluated. If the expression is true, any
dynamically encountered code that would normally create new tasks within the statement is instead executed by the
original task without creating any new ones. In effect, execution is serialized. If the expression is false, code within
the statement will generates task according to normal Chapel rules.

Task Parallelism and Synchronization 198

Example (serialStmt1.chpl). In the code

proc f(i) {
serial i<13 {

cobegin {
work(i);
work(i);

}
}

}

for i in lo..hi {
f(i);

}

the serial statement in procedure f() inhibits concurrent execution of work() if the variable i is less than
13.

Example (serialStmt2.chpl). The code

serial {
begin stmt1();
cobegin {
stmt2();
stmt3();

}
coforall i in 1..n do stmt4();

}

is equivalent to

stmt1();
{
stmt2();
stmt3();

}
for i in 1..n do stmt4();

because the expression evaluated to determine whether to serialize always evaluates to true.

24.10 Atomic Statements

Open issue. This section describes a feature that is a work-in-progress. We seek feedback and collabora-
tion in this area from the broader community.

The atomic statement is used to specify that a statement should appear to execute atomically from other tasks’ point of
view. In particular, no task will see memory in a state that would reflect that the atomic statement had begun executing
but had not yet completed.

Open issue. This definition of the atomic statement provides a notion of strong atomicity since the action
will appear atomic to any task at any point in its execution. For performance reasons, it could be more
practical to support weak atomicity in which the statement’s atomicity is only guaranteed with respect to
other atomic statements. We may also pursue using atomic type qualifiers as a means of marking data that
should be accessed atomically inside or outside an atomic section.

Task Parallelism and Synchronization 199

The syntax for the atomic statement is given by:

atomic-statement:
atomic statement

Example. The following code illustrates the use of an atomic statement to perform an insertion into a
doubly-linked list:

proc Node.insertAfter(newNode: Node) {
atomic {

newNode.prev = this;
newNode.next = this.next;
if this.next then this.next.prev = newNode;
this.next = newNode;

}
}

The use of the atomic statement in this routine prevents other tasks from viewing the list in a partially-
updated state in which the pointers might not be self-consistent.

25 Data Parallelism

Chapel provides two explicit data-parallel constructs (the forall-statement and the forall-expression) and several idioms
that support data parallelism implicitly (whole-array assignment, function and operator promotion, reductions, and
scans).

This chapter details data parallelism as follows:

• §25.1 describes the forall statement.

• §25.2 describes forall expressions

• §25.3 specifies how variables from outer scopes are handled within forall statements and expressions.

• §25.4 describes promotion.

• §25.5 describes reductions and scans.

• §25.6 describes the configuration constants for controlling default data parallelism.

25.1 The Forall Statement

The forall statement is a concurrent variant of the for statement described in §11.9.

25.1.1 Syntax

The syntax of the forall statement is given by

forall-statement:
forall index-var-declaration in iteratable-expression task-intent-clauseopt do statement
forall index-var-declaration in iteratable-expression task-intent-clauseopt block-statement
forall iteratable-expression task-intent-clauseopt do statement
forall iteratable-expression task-intent-clauseopt block-statement
[index-var-declaration in iteratable-expression task-intent-clauseopt] statement
[iteratable-expression task-intent-clauseopt] statement

As with the for statement, the indices may be omitted if they are unnecessary and the do keyword may be omitted
before a block statement. The square bracketed form is a syntactic convenience.

The handling of the outer variables within the forall statement and the role of task-intent-clause are defined in §25.3.

200

Data Parallelism 201

25.1.2 Execution and Serializability

The forall statement evaluates the loop body once for each element yielded by the iteratable-expression. Each instance
of the forall loop’s body may be executed concurrently with the others, but this is not guaranteed. In particular, the
loop must be serializable. Details regarding concurrency and iterator implementation are described in 21.4.

This differs from the semantics of the coforall loop, discussed in §24.6, where each iteration is guaranteed to run
using a distinct task. The coforall loop thus has potentially higher overhead than a forall loop with the same number
of iterations, but in cases where concurrency is required for correctness, it is essential.

In practice, the number of tasks that will be used to evaluate a forall loop is determined by the object or iterator that
is leading the execution of the loop, as is the mapping of iterations to tasks.

This concept will be formalized in future drafts of the Chapel specification; for now, please refer to CHPL_HOME/examples/primers/leaderfollower.chpl
for a brief introduction or to User-Defined Parallel Zippered Iterators in Chapel, published in the PGAS 2011 work-
shop.

Control continues with the statement following the forall loop only after every iteration has been completely evaluated.
At this point, all data accesses within the body of the forall loop will be guaranteed to be completed.

The following statements may not be lexically enclosed in forall statements: break statements, and return statements.
Yield statement may only be lexically enclosed in forall statements in parallel iterators (§21.4).

Example (forallStmt.chpl). In the code

forall i in 1..N do
a(i) = b(i);

the user has stated that the element-wise assignments can execute concurrently. This loop may be executed
serially with a single task, or by using a distinct task for every iteration, or by using a number of tasks
where each task executes a number of iterations. This loop can also be written as

[i in 1..N] a(i) = b(i);

25.1.3 Zipper Iteration

Zipper iteration has the same semantics as described in §11.9.1 and §21.4 for parallel iteration.

25.2 The Forall Expression

The forall expression is a concurrent variant of the for expression described in §10.21.

Data Parallelism 202

25.2.1 Syntax

The syntax of a forall expression is given by

forall-expression:
forall index-var-declaration in iteratable-expression task-intent-clauseopt do expression
forall iteratable-expression task-intent-clauseopt do expression
[index-var-declaration in iteratable-expression task-intent-clauseopt] expression
[iteratable-expression task-intent-clauseopt] expression

As with the for expression, the indices may be omitted if they are unnecessary. The do keyword is always required in
the keyword-based notation. The bracketed form is a syntactic convenience.

The handling of the outer variables within the forall expression and the role of task-intent-clause are defined in §25.3.

25.2.2 Execution and Serializability

The forall expression executes a forall loop (§25.1), evaluates the body expression on each iteration of the loop, and
returns the resulting values as a collection. The size and shape of that collection are determined by the iteratable-
expression.

Example (forallExpr.chpl). The code

writeln(+ reduce [i in 1..10] i**2);

applies a reduction to a forall-expression that evaluates the square of the indices in the range 1..10.

The forall expression follows the semantics of the forall statement as described in 25.1.2.

25.2.3 Zipper Iteration

Forall expression also support zippered iteration semantics as described in §11.9.1 and §21.4 for parallel iteration.

25.2.4 Filtering Predicates in Forall Expressions

A filtering predicate is an if expression that is immediately enclosed by a forall expression and does not have an else
clause. Such an if expression filters the iterations of the forall expression. The iterations for which the condition does
not hold are not reflected in the result of the forall expression.

Example (forallFilter.chpl). The following expression returns every other element starting with the first:

[i in 1..s.numElements] if i % 2 == 1 then s(i)

Data Parallelism 203

25.3 Forall Intents

If a variable is referenced within the lexical scope of a forall statement or expression and is declared outside that
statement or expression, it is subject to forall intents, analogously to task intents (§24.7) for task-parallel constructs.
That is, the variable is considered to be passed as an actual argument to each task function created by the object or
iterator leading the execution of the loop. If no tasks are created, it is considered to be an actual argument to the
leader iterator itself. All references to the variable within the forall statement or expression implicitly refer to the
corresponding formal argument of the task function or the leader iterator.

Each formal argument of a task function or iterator has the default intent by default. For variables of primitive, enum,
class, record and union types, this has the effect of capturing the value of the variable at task creation time. Within
the lexical scope of the forall statement or expression, the variable name references the captured value instead of the
original value.

A formal can be given another intent explicitly by listing it with that intent in the optional task-intent-clause. For
example, for variables of most types, the ref intent allows the body of the forall loop to modify the corresponding
original variable or to read its updated value after concurrent modifications. The in intent is a way to obtain task-
private variables in a forall loop.

Rationale. A forall statement or expression may create tasks in its implementation. Forall intents affect
those tasks in the same way that task intents affect the behavior of a task construct such as a coforall
loop.

Cray’s Chapel Implementation. An initial implementation of ”reduce” intents is also available, which
permits users to reduce values across iterations of a forall loop. They are described in the Reduce Intents
page under Technical Notes in Cray Chapel online documentation here:
http://chapel.cray.com/docs/latest/

25.4 Promotion

A function that expects one or more scalar arguments but is called with one or more arrays, domains, ranges, or
iterators is promoted if the element types of the arrays, the index types of the domains and/or ranges, or the yielded
types of the iterators can be resolved to the type of the argument. The rules of when an overloaded function can be
promoted are discussed in §13.12.

In addition to scalar functions, operators and casts are also promoted.

Example (promotion.chpl). Given the array
var A: [1..5] int = [i in 1..5] i;

and the function
proc square(x: int) return x**2;

then the call square(A) results in the promotion of the square function over the values in the array A.
The result is an iterator that returns the values 1, 4, 9, 16, and 25.

Whole array operations are a form of promotion as applied to operators rather than functions.

http://chapel.cray.com/docs/latest/

Data Parallelism 204

25.4.1 Zipper Promotion

Promotion also supports zippered iteration semantics as described in §11.9.1 and §21.4 for parallel iteration.

Consider a function f with formal arguments s1, s2, ... that are promoted and formal arguments a1, a2, ... that are
not promoted. The call

f(s1, s2, ..., a1, a2, ...)

is equivalent to

[(e1, e2, ...) in zip(s1, s2, ...)] f(e1, e2, ..., a1, a2, ...)

The usual constraints of zipper iteration apply to zipper promotion so the promoted actuals must have the same shape.

Example (zipper-promotion.chpl). Given a function defined as

proc foo(i: int, j: int) {
return (i,j);

}

and a call to this function written

writeln(foo(1..3, 4..6));

then the output is

(1, 4) (2, 5) (3, 6)

25.4.2 Whole Array Assignment

Whole array assignment is a considered a degenerate case of promotion and is implicitly parallel. The assignment
statement

LHS = RHS;

is equivalent to

forall (e1,e2) in zip(LHS,RHS) do
e1 = e2;

25.4.3 Evaluation Order

The semantics of whole array assignment and promotion are different from most array programming languages.
Specifically, the compiler does not insert array temporaries for such operations if any of the right-hand side array
expressions alias the left-hand side expression.

Example. If A is an array declared over the indices 1..5, then the following codes are not equivalent:

A[2..4] = A[1..3] + A[3..5];

Data Parallelism 205

and

var T = A[1..3] + A[3..5];
A[2..4] = T;

This follows because, in the former code, some of the new values that are assigned to A may be read to
compute the sum depending on the number of tasks used to implement the data parallel statement.

25.5 Reductions and Scans

Chapel provides reduction and scan expressions that apply operators to aggregate expressions in stylized ways. Re-
duction expressions collapse the aggregate’s values down to a summary value. Scan expressions compute an aggregate
of results where each result value stores the result of a reduction applied to all of the elements in the aggregate up to
that expression. Chapel provides a number of predefined reduction and scan operators, and also supports a mechanism
for the user to define additional reductions and scans (Chapter 28).

25.5.1 Reduction Expressions

A reduction expression applies a reduction operator to an aggregate expression, collapsing the aggregate’s dimensions
down into a result value (typically a scalar or summary expression that is independent of the input aggregate’s size).
For example, a sum reduction computes the sum of all the elements in the input aggregate expression.

The syntax for a reduction expression is given by:

reduce-expression:
reduce-scan-operator reduce iteratable-expression
class-type reduce iteratable-expression

reduce-scan-operator: one of
+ ∗ && || & | ˆ min max minloc maxloc

Chapel’s predefined reduction operators are defined by reduce-scan-operator above. In order, they are: sum, product,
logical-and, logical-or, bitwise-and, bitwise-or, bitwise-exclusive-or, minimum, maximum, minimum-with-location,
and maximum-with-location. The minimum reduction returns the minimum value as defined by the < operator. The
maximum reduction returns the maximum value as defined by the > operator. The minimum-with-location reduction
returns the lowest index position with the minimum value (as defined by the < operator). The maximum-with-location
reduction returns the lowest index position with the maximum value (as defined by the > operator).

The expression on the right-hand side of the reduce keyword can be of any type that can be iterated over, provided
the reduction operator can be applied to the values yielded by the iteration. For example, the bitwise-and operator can
be applied to arrays of boolean or integral types to compute the bitwise-and of all the values in the array.

For the minimum-with-location and maximum-with-location reductions, the argument on the right-hand side of the
reduce keyword must be a 2-tuple. Its first component is the collection of values for which the minimum/maximum
value is to be computed. The second argument component is a collection of indices with the same size and shape that
provides names for the locations of the values in the first component. The reduction returns a tuple containing the
minimum/maximum value in the first argument component and the value at the corresponding location in the second
argument component.

Data Parallelism 206

Example (reduce-loc.chpl). The first line below computes the smallest element in an array A as well as
its index, storing the results in minA and minALoc, respectively. It then computes the largest element in
a forall expression making calls to a function foo(), storing the value and its number in maxVal and
maxValNum.

var (minA, minALoc) = minloc reduce zip(A, A.domain);
var (maxVal, maxValNum) = maxloc reduce zip([i in 1..n] foo(i), 1..n);

User-defined reductions are specified by preceding the keyword reduce by the class type that implements the reduc-
tion interface as described in §28.

25.5.2 Scan Expressions

A scan expression applies a scan operator to an aggregate expression, resulting in an aggregate expression of the same
size and shape. The output values represent the result of the operator applied to all elements up to and including the
corresponding element in the input.

The syntax for a scan expression is given by:

scan-expression:
reduce-scan-operator scan iteratable-expression
class-type scan iteratable-expression

The predefined scans are defined by reduce-scan-operator. These are identical to the predefined reductions and are
described in §25.5.1.

The expression on the right-hand side of the scan can be of any type that can be iterated over and to which the operator
can be applied.

Example. Given an array

var A: [1..3] int = 1;

that is initialized such that each element contains one, then the code

writeln(+ scan A);

outputs the results of scanning the array with the sum operator. The output is

1 2 3

User-defined scans are specified by preceding the keyword scan by the class type that implements the scan interface
as described in Chapter 28.

Data Parallelism 207

25.6 Configuration Constants for Default Data Parallelism

The following configuration constants are provided to control the degree of data parallelism over ranges, default
domains, and default arrays:

Config Const Type Default
dataParTasksPerLocale int top level .maxTaskPar (see §26.1.2)
dataParIgnoreRunningTasks bool true

dataParMinGranularity int 1

The configuration constant dataParTasksPerLocale specifies the number of tasks to use when executing a forall
loop over a range, default domain, or default array. The actual number of tasks may be fewer depending on the other
two configuration constants. A value of zero results in using the default value.

The configuration constant dataParIgnoreRunningTasks, when true, has no effect on the number of tasks to use
to execute the forall loop. When false, the number of tasks per locale is decreased by the number of tasks that are
already running on the locale, with a minimum value of one.

The configuration constant dataParMinGranularity specifies the minimum number of iterations per task created.
The number of tasks is decreased so that the number of iterations per task is never less than the specified value.

For distributed domains and arrays that have these same configuration constants (e.g., Block and Cyclic distributions),
these same module level configuration constants are used to specify their default behavior within each locale.

26 Locales

Chapel provides high-level abstractions that allow programmers to exploit locality by controlling the affinity of both
data and tasks to abstract units of processing and storage capabilities called locales. The on-statement allows for the
migration of tasks to remote locales.

Throughout this section, the term local will be used to describe the locale on which a task is running, the data located
on this locale, and any tasks running on this locale. The term remote will be used to describe another locale, the data
on another locale, and the tasks running on another locale.

26.1 Locales

A locale is a portion of the target parallel architecture that has processing and storage capabilities. Chapel implemen-
tations should typically define locales for a target architecture such that tasks running within a locale have roughly
uniform access to values stored in the locale’s local memory and longer latencies for accessing the memories of other
locales. As an example, a cluster of multicore nodes or SMPs would typically define each node to be a locale. In
contrast a pure shared memory machine would be defined as a single locale.

26.1.1 Locale Types

The identifier locale is a class type that abstracts a locale as described above. Both data and tasks can be associated
with a value of locale type. A Chapel implementation may define subclass(es) of locale for a richer description of
the target architecture.

26.1.2 Locale Methods

The locale type supports the following methods:

proc locale.callStackSize: uint(64);

Returns the per-task call stack size used when creating tasks on the locale in question. A value of 0 indicates
that the call stack size is determined by the system.

proc locale.id: int;

Returns a unique integer for each locale, from 0 to the number of locales less one.

proc locale.maxTaskPar: int(32);

Returns an estimate of the maximum parallelism available for tasks on a given locale.

proc locale.name: string;

208

Locales 209

Returns the name of the locale.

proc locale.numCores: int;

Returns the number of logical CPUs available on a given locale.

use Memory;
proc locale.physicalMemory(unit: MemUnits=MemUnits.Bytes, type retType=int(64)): retType;

Returns the amount of physical memory available on a given locale in terms of the specified memory units
(Bytes, KB, MB, or GB) using a value of the specified return type.

26.1.3 The Predefined Locales Array

Chapel provides a predefined environment that stores information about the locales used during program execution.
This execution environment contains definitions for the array of locales on which the program is executing (Locales),
a domain for that array (LocaleSpace), and the number of locales (numLocales).

config const numLocales: int;
const LocaleSpace: domain(1) = [0..numLocales-1];
const Locales: [LocaleSpace] locale;

When a Chapel program starts, a single task executes main on Locales(0).

Note that the Locales array is typically defined such that distinct elements refer to distinct resources on the target
parallel architecture. In particular, the Locales array itself should not be used in an oversubscribed manner in which
a single processor resource is represented by multiple locale values (except during development). Oversubscription
should instead be handled by creating an aggregate of locale values and referring to it in place of the Locales array.

Rationale. This design choice encourages clarity in the program’s source text and enables more opportu-
nities for optimization.

For development purposes, oversubscription is still very useful and this should be supported by Chapel
implementations to allow development on smaller machines.

Example. The code

const MyLocales: [0..numLocales*4] locale
= [loc in 0..numLocales*4] Locales(loc%numLocales);

on MyLocales[i] ...

defines a new array MyLocales that is four times the size of the Locales array. Each locale is added to
the MyLocales array four times in a round-robin fashion.

Locales 210

26.1.4 The here Locale

A predefined constant locale here can be used anywhere in a Chapel program. It refers to the locale that the current
task is running on.

Example. The code

on Locales(1) {
writeln(here.id);

}

results in the output 1 because the writeln statement is executed on locale 1.

The identifier here is not a keyword and can be overridden.

26.1.5 Querying the Locale of an Expression

The locale associated with an expression (where the expression is stored) is queried using the following syntax:

locale-access-expression:
expression . locale

When the expression is a class, the access returns the locale on which the class object exists rather than the reference
to the class. If the expression is a value, it is considered local. The implementation may warn about this behavior. If
the expression is a locale, it is returned directly.

Example. Given a class C and a record R, the code

on Locales(1) {
var x: int;
var c: C;
var r: R;
on Locales(2) {
on Locales(3) {

c = new C();
r = new R();

}
writeln(x.locale.id);
writeln(c.locale.id);
writeln(r.locale.id);

}
}

results in the output

1
3
1

The variable x is declared and exists on Locales(1). The variable c is a class reference. The reference
exists on Locales(1) but the object itself exists on Locales(3). The locale access returns the locale
where the object exists. Lastly, the variable r is a record and has value semantics. It exists on Locales(1)
even though it is assigned a value on a remote locale.

Locales 211

Global (non-distributed) constants are replicated across all locales.

Example. For example, the following code:

const c = 10;
for loc in Locales do on loc do

writeln(c.locale.id);

outputs

0
1
2
3
4

when running on 5 locales.

26.2 The On Statement

The on statement controls on which locale a block of code should be executed or data should be placed. The syntax of
the on statement is given by

on-statement:
on expression do statement
on expression block-statement

The locale of the expression is automatically queried as described in §26.1.5. Execution of the statement occurs on
this specified locale and then continues after the on-statement.

Return statements may not be lexically enclosed in on statements. Yield statements may only be lexically enclosed in
on statements in parallel iterators §21.4.

26.2.1 Remote Variable Declarations

By default, when new variables and data objects are created, they are created in the locale where the task is running.
Variables can be defined within an on-statement to define them on a particular locale such that the scope of the variables
is outside the on-statement. This is accomplished using a similar syntax but omitting the do keyword and braces. The
syntax is given by:

remote-variable-declaration-statement:
on expression variable-declaration-statement

27 Domain Maps

A domain map specifies the implementation of the domains and arrays that are mapped using it. That is, it defines how
domain indices and array elements are mapped to locales, how they are stored in memory, and how operations such as
accesses, iteration, and slicing are performed. Each domain and array is mapped using some domain map.

A domain map is either a layout or a distribution. A layout describes domains and arrays that exist on a single locale,
whereas a distribution describes domains and arrays that are partitioned across multiple locales.

A domain map is represented in the program with an instance of a domain map class. Chapel provides a set of standard
domain map classes. Users can create domain map classes as well.

Domain maps are presented as follows:

• domain maps for domain types §27.1, domain values §27.2, and arrays §27.3

• domain maps are not retained upon domain assignment §27.4

• standard layouts and distributions, such as Block and Cyclic, are documented under Standard Library in Cray
Chapel online documentation here:
http://chapel.cray.com/docs/latest/

• specification of user-defined domain maps is forthcoming; please refer to the Domain Map Standard Interface
page under Technical Notes in Cray Chapel online documentation here:
http://chapel.cray.com/docs/latest/

27.1 Domain Maps for Domain Types

Each domain type has a domain map associated with it. This domain map is used to map all domain values of this type
(§27.2).

If a domain type does not have a domain map specified for it explicitly as described below, a default domain map is
provided by the Chapel implementation. Such a domain map will typically be a layout that maps the entire domain to
the locale on which the domain value is created or the domain or array variable is declared.

Cray’s Chapel Implementation. The default domain map provided by the Cray Chapel compiler is such a
layout. The storage for the representation of a domain’s index set is placed on the locale where the domain
variable is declared. The storage for the elements of arrays declared over domains with the default map is
placed on the locale where the array variable is declared. Arrays declared over rectangular domains with
this default map are laid out in memory in row-major order.

A domain map can be specified explicitly by providing a dmap value in a dmapped clause:

212

http://chapel.cray.com/docs/latest/
http://chapel.cray.com/docs/latest/

Domain Maps 213

mapped-domain-type:
domain-type dmapped dmap-value

dmap-value:
expression

A dmap value consists of an instance of a domain map class wrapped in an instance of the predefined record dmap.
The domain map class is chosen and instantiated by the user. dmap behaves like a generic record with a single generic
field, which holds the domain map instance.

Example. The code

use BlockDist;
var MyBlockDist: dmap(Block(rank=2));

declares a variable capable of storing dmap values for a two-dimensional Block distribution. The Block
distribution is described in more detail here:
http://chapel.cray.com/docs/latest/

Example. The code

use BlockDist;
var MyBlockDist: dmap(Block(rank=2)) = new dmap(new Block({1..5,1..6}));

creates a dmap value wrapping a two-dimensional Block distribution with a bounding box of {1..5, 1..6}

over all of the locales.

Example. The code

use BlockDist;
var MyBlockDist = new dmap(new Block({1..5,1..6}));
type MyBlockedDom = domain(2) dmapped MyBlockDist;

defines a two-dimensional rectangular domain type that is mapped using a Block distribution.

The following syntactic sugar is provided within the dmapped clause. If a dmapped clause starts with the name of a
domain map class, it is considered to be a constructor expression as if preceeded by new. The resulting domain map
instance is wrapped in a newly-created instance of dmap implicitly.

Example. The code

use BlockDist;
type BlockDom = domain(2) dmapped Block({1..5,1..6});

is equivalent to

use BlockDist;
type BlockDom = domain(2) dmapped new dmap(new Block({1..5,1..6}));

http://chapel.cray.com/docs/latest/

Domain Maps 214

27.2 Domain Maps for Domain Values

A domain value is always mapped using the domain map of that value’s type. The type inferred for a domain literal
(§19.2.1) has a default domain map.

Example. In the following code

use BlockDist;
var MyDomLiteral = {1..2,1..3};
var MyBlockedDom: domain(2) dmapped Block({1..5,1..6}) = MyDomLiteral;

MyDomLiteral is given the inferred type of the domain literal and so will be mapped using a default
map. MyBlockedDom is given a type explicitly, in accordance to which it will be mapped using a Block
distribution.

A domain value’s map can be changed explicitly with a dmapped clause, in the same way as a domain type’s map.

mapped-domain-expression:
domain-expression dmapped dmap-value

Example. In the following code

use BlockDist;
var MyBlockedDomLiteral1 = {1..2,1..3} dmapped new dmap(new Block({1..5,1..6}));
var MyBlockedDomLiteral2 = {1..2,1..3} dmapped Block({1..5,1..6});

both MyBlockedDomLiteral1 and MyBlockedDomLiteral2 will be mapped using a Block distribu-
tion.

27.3 Domain Maps for Arrays

Each array is mapped using the domain map of the domain over which the array was declared.

Example. In the code

use BlockDist;
var Dom: domain(2) dmapped Block({1..5,1..6}) = {1..5,1..6};
var MyArray: [Dom] real;

the domain map used for MyArray is the Block distribution from the type of Dom.

Domain Maps 215

27.4 Domain Maps Are Not Retained upon Domain Assignment

Domain assignment (§19.8.1) transfers only the index set of the right-hand side expression. The implementation of the
left-hand side domain expression, including its domain map, is determined by its type and so does not change upon a
domain assignment.

Example. In the code

use BlockDist;
var Dom1: domain(2) dmapped Block({1..5,1..6}) = {1..5,1..6};
var Dom2: domain(2) = Dom1;

Dom2 is mapped using the default distribution, despite Dom1 having a Block distribution.

Example. In the code

use BlockDist;
var Dom1: domain(2) dmapped Block({1..5,1..6}) = {1..5,1..6};
var Dom2 = Dom1;

Dom2 is mapped using the same distribution as Dom1. This is because the declaration of Dom2 lacks an
explicit type specifier and so its type is defined to be the type of its initialization expression, Dom1. So in
this situation the effect is that the domain map does transfer upon an initializing assignment.

28 User-Defined Reductions and Scans

User-defined reductions and scans are supported via class definitions where the class implements a structural interface.
The definition of this structural interface is forthcoming. The following paper sketched out such an interface:

S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder. Global-view abstractions for user-defined
reductions and scans. In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2006.

216

29 Memory Consistency Model

In this section, we describe Chapel’s memory consistency model. The model is based on sequential consistency for
data-race-free programs as adopted by C11, C++11, Java, UPC, and Fortran 2008.

Sequential consistency (SC) means that all Chapel tasks agree on the interleaving of memory operations and this
interleaving results in an order is consistent with the order of operations in the program source code. Conflicting
memory operations, i.e., operations to the same location and one of which is a write, form a data race if they are
from different Chapel tasks and can be executed concurrently. Any Chapel program with a data race is not a valid
program, and an implementation cannot be relied upon to produce consistent behavior. Valid Chapel programs will
use synchronization constructs such as sync, single, or atomic variables or higher-level constructs based on these to
enforce ordering for conflicting memory operations.

The following design principles were used in developing Chapel’s memory consistency model:

1. Sequential programs have program order semantics. Programs that are completely sequential cannot have data
races and should appear to execute as though each statement was executed one at a time and in the expected
order.

2. Chapel’s fork-join constructs introduce additional order dependencies. Operations within a task cannot behave
as though they started before the task started. Similarly, all operations in a task must appear to be completed to
a parent task when the parent task joins with that task.

3. Multi-locale programs have the same memory consistency model as single-locale programs. The Chapel lan-
guage seeks to allow a single description of an algorithm to work with different data distributions. A result of
this property is that an expression of a program must be correct whether it is working on local or distributed
data.

4. Chapel’s memory model should be as relaxed as possible while still consistent with these design principles. In
particular, making all operations sequentially consistent is not likely to enable good performance. At the same
time, sequential consistency should be available to programmers when requested.

See A Primer on Memory Consistency and Cache Coherence by Sorin, et al. for more background information on
memory consistency models. This chapter will proceed in a manner inspired by the XC memory model described
there.

29.1 Sequential Consistency for Data-Race-Free Programs

Sequential consistency for data-race-free programs is described in terms of two orders: program order and memory
order. The program order <p is a partial order describing serial or fork-join parallelism dependencies between variable
reads and writes. The memory order <m is a total order that describes the semantics of synchronizing memory
operations (via atomic, sync or single variables) with sequential consistency. Non-SC atomic operations (described
in Section 29.2) do not create this total order.

217

Memory Consistency Model 218

Note that sync/single variables have memory consistency behavior equivalent to a sequence of SC operations on
atomic variables. Thus for the remainder of the chapter, we will primarily focus on operations on atomic variables.

We will use the following notation:

• L(a) indicates a load from a variable at address a. a could refer to local or remote memory.

• S(a) indicates a store to a variable at address a. a could refer to local or remote memory.

• Asc(a) indicates an atomic operation on a variable at address a with sequential consistency. The variable at
address a could refer to local or remote memory. Atomic operations must be completed as a single operation
(i.e. atomically), and so it is not possible to observe an intermediate state from an atomic operation under any
circumstances.

• Ar(a, o) indicates an atomic operation on a variable at address a with ordering constraint o, where o can be one
of relaxed, acquire, or release (see Section 29.2). As with Asc(a), relaxed atomic operations must be completed
as a single operation.

• L(a), S(a), Asc(a), and Ar(a, o) are also called memory operations

• X <p Y indicates that X precedes Y in program order

• X <m Y indicates that X precedes Y in memory order

• t = begin{X} starts a new task named t to execute X

• waitFor(t1..tn) waits for tasks t1..tn to complete

• on(L) migrates the running task to locale L. Note that while the on statement may change the locale on which
the current task is running, it has no impact on the memory consistency requirements.

For the purposes of describing this memory model, it is assumed that Chapel programs will be translated into sequences
of memory operations, begin statements, and waitFor statements. The translation of a Chapel program into a
sequence of memory operations must preserve sequential program semantics. That is, if we have a snippet of a Chapel
program without task operations, such as X; Y;, the statements X and Y will be converted into a sequence of load,
store, and atomic operations in a manner that preserves the behavior of a this serial portion of the program. That is,
X = x1, x2, ... and Y = y1, y2, ... where xi and yj are each a sequence of load, store, or atomic operations and we
have xi <p yj .

Likewise, for the purposes of this memory model, Chapel’s parallelism keywords are viewed as a sequence of opera-
tions including the primitives of starting a task (begin) and waiting for some number of tasks (waitFor(t1..tn)).
In particular:

• forall (including promotion) creates some number of tasks m to execute the n iterations of the loop

(ti= begin{some-loop-bodies} for each task i = 1..m) and waits for them to complete (waitFor(t1..tm)).
The number of tasks m is defined by the implementation of the parallel iterator (See Section 21 for details on
iterators).

• coforall creates one task per loop iteration (ti= begin{loop-body} for all loop iterations i = 1..n) and
then waits for them all to complete (waitFor(t1..tn)).

• cobegin creates one task per enclosed statement (ti= begin{Xi} for statements X1..Xn) and then waits for
them all to complete (waitFor(t1..tn)).

• begin creates a task to execute the enclosed statement (t = begin{X}). The sync statement waits for all
tasks ti created by a begin statement in the dynamic scope of the sync statement that are not within other,
nested sync statements (waitFor(t1..tn) for all n such tasks).

Memory Consistency Model 219

29.1.1 Program Order

Task creation and task waiting create a conceptual tree of program statements. The task bodies, task creation, and task
wait operations create a partial order <p of program statements. For the purposes of this section, the statements in the
body of each Chapel task will be implemented in terms of load, store, and atomic operations.

• If we have a program snippet without tasks, such as X; Y;, where X and Y are memory operations, then
X <p Y .

• The program X; begin{Y}; Z; implies X <p Y . However, there is no particular relationship between Y and
Z in program order.

• The program t = begin{Y}; waitFor(t); Z; implies Y <p Z

• X <p Y and Y <p Z imply X <p Z

29.1.2 Memory Order

The memory order <m of SC atomic operations in a given task repsects program order as follows:

• If Asc(a) <p Asc(b) then Asc(a) <m Asc(b)

Every SC atomic operation gets its value from the last SC atomic operation before it to the same address in the total
order <m:

• Value of Asc(a) = Value of max<m(A′
sc(a)|A′

sc(a) <m Asc(a))

For data-race-free programs, every load gets its value from the last store before it to the same address in the total order
<m:

• Value of L(a) = Value of max<m (S(a)|S(a) <m L(a) or S(a) <p L(a))

For data-race-free programs, loads and stores are ordered with SC atomics. That is, loads and stores for a given task
are in total order <m respecting the following rules which preserve the order of loads and stores relative to SC atomic
operations:

• If L(a) <p Asc(b) then L(a) <m Asc(b)

• If S(a) <p Asc(b) then S(a) <m Asc(b)

• If Asc(a) <p L(b) then Asc(a) <m L(b)

• If Asc(a) <p S(b) then Asc(a) <m S(b)

Memory Consistency Model 220

For data-race-free programs, loads and stores preserve sequential program behavior. That is, loads and stores to the
same address in a given task are in the order <m respecting the following rules which preserve sequential program
behavior:

• If L(a) <p L′(a) then L(a) <m L′(a)

• If L(a) <p S(a) then L(a) <m S(a)

• If S(a) <p S′(a) then S(a) <m S′(a)

29.2 Non-Sequentially Consistent Atomic Operations

Sequential consistency for atomic operations can be a performance bottleneck under some circumstances. Chapel
provides non-SC atomic operations to help alleviate such situations. Such uses of atomic operations must be done
with care and should generally not be used to synchronize tasks.

Non-SC atomic operations are specified by providing a memory order argument to the atomic operations. See Sec-
tion 24.4.1 for more information on the memory order types.

29.2.1 Relaxed Atomic Operations

Although Chapel’s relaxed atomic operations (memory_order_relaxed) do not complete in a total order by them-
selves and might contribute to non-deterministic programs, relaxed atomic operations cannot contribute to a data race
that would prevent sequential consistency.

When relaxed atomics are used only for atomicity and not as part of synchronizing tasks, their effect can be understood
in the memory consistency model described in 29.1 by treating them as ordinary loads or stores with two exceptions:

• Atomic operations (including relaxed atomic operations) cannot create data races.

• All atomic operations (including relaxed atomic operations) will eventually be visible to all other threads. This
property is not true for normal loads and stores.

29.3 Unordered Memory Operations

Open issue. Syntax for unordered operations has not yet been finalized.

Open issue. Should Chapel provide a memory fence that only completes unordered operations started by
the current task?

Open issue. Should unordered operations on a particular memory address always wait for the address to
be computed?

Memory Consistency Model 221

Open issue. Does starting a task or joining with a task necessarily wait for unordered operations to
complete?

Rather than issuing normal loads and stores to read or write local or remote memory, a Chapel program can use
unordered loads and stores when preserving sequential program behavior is not important. The following notation for
unordered memory operations will be used in this section:

• UL(a) indicates an unordered load from a variable at address a. a could point to local or remote memory.

• US(a) indicates an unordered store to a variable at address a. Again, a could point to local or remote memory.

The unordered loads and stores UL(a) and US(a) respect fences but not program order. As in Section 29.1.2,
unordered loads and stores are ordered with SC atomics. That is, unordered loads and stores for a given task are
in total order <m respecting the following rules which preserve the order of unordered loads and stores relative to SC
atomic operations:

• If UL(a) <p Asc(b) then UL(a) <m Asc(b)

• If US(a) <p Asc(b) then US(a) <m Asc(b)

• If Asc(a) <p UL(b) then Asc(a) <m UL(b)

• If Asc(a) <p US(b) then Asc(a) <m US(b)

Unordered loads and stores do not preserve sequential program behavior.

29.3.1 Unordered Memory Operations Examples

Unordered operations should be thought of as happening in a way that overlaps with the program task. Unordered
operations started in different program statements can happen in any order unless an SC atomic operation orders them.

Since unordered operations started by a single task can happen in any order, totally sequential programs can have a
data race when using unordered operations. This follows from our original definition of data race.

var x: int = 0;
unordered_store(x, 10);
unordered_store(x, 20);
writeln(x);

The value of x at the end of this program could be 0, 10, or 20. As a result, programs using unordered loads and stores
are not sequentially consistent unless the program can guarantee that unordered operations can never operate on the
same memory at the same time when one of them is a store. In particular, the following are safe:

• Unordered stores to disjoint regions of memory.

• Unordered loads from potentially overlapping regions of memory when no store could overlap with the loads.

Memory Consistency Model 222

• Unordered loads and stores to the same memory location when these are always separated by an SC atomic
operation.

Unordered loads and stores are available as a performance optimization. For example, a program computing a permu-
tation on an array might want to move data between two arrays without requiring any ordering:

const n = 10;
// P is a permutation on 1..n, in this case reversing its input
var P = for i in 1..n by -1 do i;
// A is an array to permute
var A = for i in 1..n do i;
// Compute, in B, the permutation applied to A
var B:[1..n] int;

for i in 1..n {
unordered_store(B[P[i]], A[i]);

}

29.4 Examples

Example. In this example, a synchronization variable is used to (a) ensure that all writes to an array of
unsynchronized variables are complete, (b) signal that fact to a second task, and (c) pass along the number
of values that are valid for reading.

The program
var A: [1..100] real;
var done$: sync int; // initially empty
cobegin {
{ // Reader task
const numToRead = done$; // block until writes are complete
for i in 1..numToRead do

writeln("A[", i, "] = ", A[i]);
}
{ // Writer task
const numToWrite = 14; // an arbitrary number
for i in 1..numToWrite do

A[i] = i/10.0;
done$ = numToWrite; // fence writes to A and signal done

}
}

produces the output
A[1] = 0.1
A[2] = 0.2
A[3] = 0.3
A[4] = 0.4
A[5] = 0.5
A[6] = 0.6
A[7] = 0.7
A[8] = 0.8
A[9] = 0.9
A[10] = 1.0
A[11] = 1.1
A[12] = 1.2
A[13] = 1.3
A[14] = 1.4

Memory Consistency Model 223

Example (syncSpinWait.chpl). One consequence of Chapel’s memory consistency model is that a task
cannot spin-wait on a normal variable waiting for another task to write to that variable. The behavior of
the following code is undefined:

var x: int;
cobegin with (ref x) {

while x != 1 do ; // INCORRECT spin wait
x = 1;

}

In contrast, spinning on a synchronization variable has well-defined behavior:

var x$: sync int;
cobegin {

while x$.readXX() != 1 do ; // spin wait
x$.writeXF(1);

}

In this code, the first statement in the cobegin statement executes a loop until the variable is set to one.
The second statement in the cobegin statement sets the variable to one. Neither of these statements block.

Example (atomicSpinWait.chpl). Atomic variables provide an alternative means to spin-wait. For exam-
ple:

var x: atomic int;
cobegin {

while x.read() != 1 do ; // spin wait - monopolizes processor
x.write(1);

}

Example (atomicWaitFor.chpl). The main drawpack of the above example is that it prevents the thread
executing the spin wait from doing other useful work. Atomic variables include a waitFor method that
will block the calling thread until a read of the atomic value matches a particular value. In contrast to the
spin wait loop above, waitFor will allow other tasks to be scheduled. For example:

var x: atomic int;
cobegin {

x.waitFor(1);
x.write(1);

}

Future. Upon completion, Chapel’s atomic statement (§24.10) will serve as an additional means of
correctly synchronizing between tasks.

30 Interoperability

Chapel’s interoperability features support cooperation between Chapel and other languages. They provide the ability
to create software systems that incorporate both Chapel and non-Chapel components. Thus, they support the reuse of
existing software components while leveraging the unique features of the Chapel language.

Interoperability can be broken down in terms of the exchange of types, variables and procedures, and whether these
are imported or exported. An overview of procedure importing and exporting is provided in §30.1. Details on sharing
types, variables and procedures are supplied in §30.2.

Future.

At present, the backend language for Chapel is C, which makes it relatively easy to call C libraries from
Chapel and vice versa. To support a variety of platforms without requiring recompilation, it may be
desirable to move to an intermediate-language model.

In that case, each supported platform must minimally support that virtual machine. However, in addition
to increased portability, a virtual machine model may expose elements of the underlying machine’s pro-
gramming model (hardware task queues, automated garbage collection, etc.) that are not easily rendered
in C. In addition, the virtual machine model can support run-time task migration.

The remainder of this chapter documents Chapel support of interoperability through the existing C-language backend.

30.1 Interoperability Overview

The following two subsections provide an overview of calling externally-defined (C) routines in Chapel, and setting
up Chapel routines so they can be called from external (C) code.

30.1.1 Calling External Functions

To use an external function in a Chapel program, it is necessary to inform the Chapel compiler of that routine’s
signature through an external function declaration. This permits Chapel to bind calls to that function signature during
function resolution. The user must also supply a definition for the referenced function by naming a C source file, an
object file or an object library on the chpl command line.

An external procedure declaration has the following syntax:

external-procedure-declaration-statement:
extern external-nameopt proc function-name argument-list return-intentopt return-typeopt

224

Interoperability 225

Chapel will call the external function using the parameter types supplied in the extern declaration. Therefore, in
general, the type of each argument in the supplied argument-list must be the Chapel equivalent of the corresponding
external type.

The return value of the function can be used by Chapel only if its type is declared using the optional return-type
specifier. If it is omitted, Chapel assumes that no value is returned, or equivalently that the function returns void.

At present, external iterators are not supported.

Future. The overloading of function names is also not supported directly in the compiler. However,
one can use the external-name syntax to supply a name to be used by the linker. In this way, function
overloading can be implemented “by hand”. This syntax also supports calling external C++ routines: The
external-name to use is the mangled function name generated by the external compilation environment1.

Future. Dynamic dispatch (polymorphism) is also unsupported in this version. But this is not ruled
out in future versions. Since Chapel already supports type-based procedure declaration and resolution,
it is a small step to translate a type-relative extern method declaration into a virtual method table entry.
The mangled name of the correct external function must be supplied for each polymorphic type avail-
able. However, most likely the generation of .chpl header files from C and C++ libraries can be fully
automated.

There are three ways to supply to the Chapel compiler the definition of an external function: as a C source file (.c
or .h), as an object file and as an object library. It is platform-dependent whether static libraries (archives), dynamic
libraries or both are supported. See the chpl man page for more information on how these file types are handled.

30.1.2 Calling Chapel Functions

To call a Chapel procedure from external code, it is necessary to expose the corresponding function symbol to the
linker. This is done by adding the export linkage specifier to the function definition. The export specifier ensures
that the corresponding procedure will be resolved, even if it is not called within the Chapel program or library being
compiled.

An exported procedure declaration has the following syntax:

exported-procedure-declaration-statement:
export external-nameopt proc function-name argument-list return-intentopt return-typeopt

function-body

external-name:
identifier
string-literal

If the optional external-name is supplied, then it is used verbatim as the exported function symbol. Otherwise, the
Chapel name of the procedure is exported. The rest of the procedure declaration is the same as for a non-exported
function. An exported procedure can be called from within Chapel as well. Currently, iterators cannot be exported.

1In UNIX-like programming environments, nm and grep can be used to find the mangled name of a given function within an object file or
object library.

Interoperability 226

Future. Currently, exported functions cannot have generic, param or type arguments. This is because
such functions actually represent a family of functions, specific versions of which are instantiated as need
during function resolution.

Instantiating all possible versions of a template function is not practical in general. However, if explicit
instantiation were supported in Chapel, an explicit instantiation with the export linkage specifier would
clearly indicate that the matching template function was to be instantiated with the given param values
and argument types.

30.2 Shared Language Elements

This section provides details on how to share Chapel types, variables and procedures with external code. It is written
assuming that the intermediate language is C.

30.2.1 Shared Types

This subsection discusses how specific types are shared between Chapel and external code.

Referring to Standard C Types

In Chapel code, all standard C types must be expressed in terms of their Chapel equivalents. This is true, whether
the entity is exported, imported or private. Standard C types and their corresponding Chapel types are shown in the
following table.

C Type Chapel Type C Type Chapel Type C Type Chapel Type
int8 t int(8) uint8 t uint(8) real32 real(32)

int16 t int(16) uint16 t uint(16) real64 real(64)
int32 t int(32) uint32 t uint(32) imag32 imag(32)
int64 t int(64) uint64 t uint(64) imag64 imag(64)

chpl bool bool const char* c string
complex64 complex(64) complex128 complex(128)

Standard C types are built-in. Their Chapel equivalents do not have to be declared using the extern keyword.

In C, the “colloquial” integer type names char, signed char, unsigned char, (signed) short (int), unsigned short

(int), (signed) int, unsigned int, (signed) long (int), unsigned long (int), (signed) long long (int)
and unsigned long long (int) may have an implementation-defined width.2. When referring to C types in a
Chapel program, the burden of making sure the type sizes agree is on the user. A Chapel implementation must ensure
that all of the C equivalents in the above table are defined and have the correct representation with respect to the
corresponding Chapel type.

2However, most implementations have settled on using 8, 16, 32, and 64 bits (respectively) to represent char, short, int and long, and
long long types

Interoperability 227

Referring to External C Types

An externally-defined type can be referenced using a external type declaration with the following syntax.

external-type-alias-declaration-statement:
extern type type-alias-declaration-list ;

In each type-alias-declaration, if the type-specifier part is supplied, then Chapel uses the supplied type specifier inter-
nally. Otherwise, it treats the named type as an opaque type. The definition for an external type must be supplied by a
C header file named on the chpl command line.

Fixed-size C array types can be described within Chapel using its homogenous tuple type. For example, the C typedef
typedef double vec[3];

can be described in Chapel using
extern type vec = 3*real(64);

Referring to External C Structs

External C struct types can be referred to within Chapel by prefixing a Chapel record definition with the extern

keyword.

external-record-declaration-statement:
extern external-nameopt simple-record-declaration-statement

For example, consider an external C structure defined in foo.h called fltdbl.
typedef struct _fltdbl {

float x;
double y;

} fltdbl;

This type could be referred to within a Chapel program using
extern record fltdbl {
var x: real(32);
var y: real(64);

}

and defined by supplying foo.h on the chpl command line.

Within the Chapel declaration, some or all of the fields from the C structure may be omitted. The order of these
fields need not match the order they were specified within the C code. Any fields that are not specified (or that cannot
be specified because there is no equivalent Chapel type) cannot be referenced within the Chapel code. Some effort
is made to preserve the values of the undefined fields when copying these structs but Chapel cannot guarantee the
contents or memory story of fields of which it has no knowledge.

If the optional external-name is supplied, then it is used verbatim as the exported struct symbol.

A C header file containing the struct’s definition in C must be specified on the chpl compiler command line. Note that
only typdef’d C structures are supported by default. That is, in the C header file, the struct must be supplied with a
type name through a typedef declaration. If this is not true, you can use the external-name part to apply the struct
specifier. As an example of this, given a C declaration of:

Interoperability 228

struct Vec3 {
double x, y, z;

};

in Chapel you would refer to this struct via

extern "struct Vec3" record Vec3 {
var x, y, z: real(64);

}

Referring to External Structs Through Pointers

An external type which is a pointer to a struct can be referred to from Chapel using an external class declaration.
External class declarations have the following syntax.

external-class-declaration-statement:
extern external-nameopt simple-class-declaration-statement

External class declarations are similar to external record declarations as discussed above, but place additional require-
ments on the C code.

For example, given the declaration

extern class D {
var x: real;

}

the requirements on the corresponding C code are:

1. There must be a struct type that is typedef’d to have the name _D.

2. A pointer-to-_D type must be typedef’d to have the name D.

3. The _D struct type must contain a field named x of type double.

Like external records/structs, it may also contain other fields that will simply be ignored by the Chapel compiler.

The following C typedef would fulfill the external Chapel class declaration shown above:

typedef struct __D {
double x;
int y;

} _D, *D;

where the Chapel compiler would not know about the ’y’ field and therefore could not refer to it or manipulate it.

If the optional external-name is supplied, then it is used verbatim as the exported class symbol.

Interoperability 229

Opaque Types

It is possible refer to external pointer-based C types that cannot be described in Chapel by using the ”opaque” keyword.
As the name implies, these types are opaque as far as Chapel is concerned and cannot be used for operations other
than argument passing and assignment.

For example, Chapel could be used to call an external C function that returns a pointer to a structure (that can’t or
won’t be described as an external class) as follows:

extern proc returnStructPtr(): opaque;

var structPtr: opaque = returnStructPtr();

However, because the type of structPtr is opaque, it can be used only in assignments and the arguments of functions
expecting the same underlying type.

var copyOfStructPtr = structPtr;

extern proc operateOnStructPtr(ptr: opaque);
operateOnStructPtr(structPtr);

Like a void* in C, Chapel’s opaque carries no information regarding the underlying type. It therefore subverts type
safety, and should be used with caution.

30.2.2 Shared Data

This subsection discusses how to access external variables and constants.

A C variable or constant can be referred to within Chapel by prefixing its declaration with the extern keyword. For
example:

extern var bar: foo;

would tell the Chapel compiler about an external C variable named bar of type foo. Similarly,

extern const baz: int(32);

would refer to an external 32-bit integer constant named baz in the C code. In practice, external consts can be used to
provide Chapel definitions for #defines and enum symbols in addition to traditional C constants.

Cray’s Chapel Implementation. Note that since params must be known to Chapel at compile-time (and
because the Chapel compiler doesn’t have the ability to parse C code), external params are not supported.

30.2.3 Shared Procedures

This subsection provides additional detail and examples for calling external procedures from Chapel and for exporting
Chapel functions for external use.

Interoperability 230

Calling External C Functions

To call an external C function, a prototype of the routine must appear in the Chapel code. This is accomplished by
providing the Chapel signature of the function preceded by the extern keyword. For example, for a C function foo()
that takes no arguments and returns nothing, the prototype would be:

extern proc foo();

To refer to the return value of a C function, its type must be supplied through a return-type clause in the prototype.3

If the above function returns a C double, it would be declared as:

extern proc foo(): real;

Similarly, for external functions that expect arguments, the types of those arguments types may be declared in Chapel
using explicit argument type specifiers.

The types of function arguments may be omitted from the external procedure declaration, in which case they are
inferred based on the Chapel callsite. For example, the Chapel code

extern proc foo(x: int, y): real;
var a, b: int;
foo(a, b);

would imply that the external function foo takes two 64-bit integer values and returns a 64-bit real. External function
declarations with omitted type arguments can also be used call external C macros.

External function arguments can be declared using the default-expression syntax. In this case, the default argument will
be supplied by the Chapel compiler if the corresponding actual argument is omitted at the callsite. For example:

extern proc foo(x: int, y = 1.2): real;
foo(0);

Would cause external function foo() to be invoked with the arguments 0 and 1.2.

C varargs functions can be declared using Chapel’s variable-argument-expression syntax (...). For example, the C
printf function can be declared in Chapel as

extern proc printf(fmt: c_string, vals...?numvals): int;

External C functions or macros that accept type arguments can also be prototyped in Chapel by declaring the argument
as a type. For example:

extern foo(type t);

Calling such a routine with a Chapel type will cause the type identifier (e.g., ’int’) to be passed to the routine.4

3The return type cannot be inferred, since an extern procedure declaration has no body.
4In practice, this will typically only be useful if the external function is a macro or built-in that can handle type identifiers.

Interoperability 231

30.2.4 Calling Chapel Procedures Externally

To call a Chapel procedure from external code, the procedure name must be exported using the export keyword. An
exported procedure taking no arguments and returning void can be declared as:

export proc foo();

If the procedure body is omitted, the procedure declaration is a prototype; the body of the procedure must be supplied
elsewhere. In a prototype, the return type must be declared; otherwise, it is assumed to be void. If the body is
supplied, the return type of the exported procedure is inferred from the type of its return expression(s).

If the optional external-name is supplied, that is the name used in linking with external code. For example, if we declare

export "myModule_foo" proc foo();

then the name foo is used to refer to the procedure within chapel code, whereas a call to the same function from C code
would appear as myModule_foo();. If the external name is omitted, then its internal name is also used externally.

When a procedure is exported, all of the types and functions on which it depends are also exported. Iterators cannot
be explicitly exported. However, they are inlined in Chapel code which uses them, so they are exported in effect.

30.2.5 Argument Passing

The manner in which arguments are passed to an external function can be controlled using argument intents. The
following table shows the correspondence between Chapel intents and C argument type declarations. These corre-
spondences pertain to both imported and exported function signatures.

Chapel C
T const T

in T T
inout T T*

out T T*
ref T T*
param
type char*

Currently, param arguments are not allowed in an extern function declaration, and type args are passed as a string
containing the name of the actual type being passed. Note that the level of indirection is changed when passing
arguments to a C function using inout, out, or ref intent. The C code implementing that function must dereference
the argument to extract its value.

A Collected Lexical and Syntax Productions

This appendix collects the syntax productions listed throughout the specification. There are no new syntax productions
in this appendix. The productions are listed both alphabetically and in depth-first order for convenience.

A.1 Alphabetical Lexical Productions

binary-digit: one of
0 1

binary-digits:
binary-digit
binary-digit binary-digits

bool-literal: one of
true false

digit: one of
0 1 2 3 4 5 6 7 8 9

digits:
digit
digit digits

double-quote-delimited-characters:
string-character double-quote-delimited-charactersopt

’ double-quote-delimited-charactersopt

exponent-part:
e signopt digits
E signopt digits

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-escape-character:
\x hexadecimal-digits

identifier:
letter-or-underscore legal-identifier-charsopt

imaginary-literal:
real-literal i
integer-literal i

232

Collected Lexical and Syntax Productions 233

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
0o octal-digits
0O octal-digits
0b binary-digits
0B binary-digits

legal-identifier-char:
letter-or-underscore
digit
$

legal-identifier-chars:
legal-identifier-char legal-identifier-charsopt

letter-or-underscore:
letter

letter: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

octal-digit: one of
0 1 2 3 4 5 6 7

octal-digits:
octal-digit
octal-digit octal-digits

p-exponent-part:
p signopt digits
P signopt digits

real-literal:
digitsopt . digits exponent-partopt

digits .opt exponent-part
0x hexadecimal-digitsopt . digits p-exponent-partopt

0X hexadecimal-digitsopt . digits p-exponent-partopt

0x hexadecimal-digits .opt p-exponent-part
0X hexadecimal-digits .opt p-exponent-part

sign: one of
+ -

simple-escape-character: one of
\’ \” \? \a \b \f \n \r \t \v

single-quote-delimited-characters:
string-character single-quote-delimited-charactersopt

” single-quote-delimited-charactersopt

Collected Lexical and Syntax Productions 234

string-character:
any character except the double quote, single quote, or new line
simple-escape-character
hexadecimal-escape-character

string-literal:
” double-quote-delimited-charactersopt ”
’ single-quote-delimited-charactersopt ’

A.2 Alphabetical Syntax Productions

aligned-range-expression:
range-expression align expression

argument-list:
(formalsopt)

array-alias-declaration:
identifier reindexing-expressionopt => array-expression ;

array-expression:
expression

array-literal:
rectangular-array-literal
associative-array-literal

array-type:
[domain-expression] type-specifier

assignment-operator: one of
= += -= ∗= /= %= ∗∗= &= |= ˆ= &&= ||= <<= >>=

assignment-statement:
lvalue-expression assignment-operator expression

associative-array-literal:
[associative-expr-list]

associative-domain-literal:
{ associative-expression-list }

associative-domain-type:
domain (associative-index-type)
domain (enum-type)
domain (opaque)

associative-expr-list:
index-expr => value-expr
index-expr => value-expr, associative-expr-list

Collected Lexical and Syntax Productions 235

associative-expression-list:
non-range-expression
non-range-expression, associative-expression-list

associative-index-type:
type-specifier

atomic-statement:
atomic statement

atomic-type:
atomic type-specifier

base-domain-type:
rectangular-domain-type
associative-domain-type

begin-statement:
begin task-intent-clauseopt statement

binary-expression:
expression binary-operator expression

binary-operator: one of
+ - ∗ / % ∗∗ & | ˆ << >> && || == != <= >= < > by #

block-statement:
{ statementsopt }

break-statement:
break identifieropt ;

call-expression:
lvalue-expression (named-expression-list)
lvalue-expression [named-expression-list]
parenthesesless-function-identifier

cast-expression:
expression : type-specifier

class-declaration-statement:
simple-class-declaration-statement
external-class-declaration-statement

class-inherit-list:
: class-type-list

class-name:
identifier

class-statement-list:
class-statement
class-statement class-statement-list

Collected Lexical and Syntax Productions 236

class-statement:
variable-declaration-statement
method-declaration-statement
type-declaration-statement
empty-statement

class-type-list:
class-type
class-type , class-type-list

class-type:
identifier
identifier (named-expression-list)

cobegin-statement:
cobegin task-intent-clauseopt block-statement

coforall-statement:
coforall index-var-declaration in iteratable-expression task-intent-clauseopt do statement
coforall index-var-declaration in iteratable-expression task-intent-clauseopt block-statement
coforall iteratable-expression task-intent-clauseopt do statement
coforall iteratable-expression task-intent-clauseopt block-statement

conditional-statement:
if expression then statement else-partopt

if expression block-statement else-partopt

config-or-extern: one of
config extern

constructor-call-expression:
new class-name (argument-list)

continue-statement:
continue identifieropt ;

counted-range-expression:
range-expression # expression

dataparallel-type:
range-type
domain-type
mapped-domain-type
array-type
index-type

default-expression:
= expression

delete-statement:
delete expression ;

dmap-value:
expression

Collected Lexical and Syntax Productions 237

do-while-statement:
do statement while expression ;

domain-assignment-expression:
domain-name = domain-expression

domain-expression:
domain-literal
domain-name
domain-assignment-expression
domain-striding-expression
domain-slice-expression

domain-literal:
rectangular-domain-literal
associative-domain-literal

domain-name:
identifier

domain-slice-expression:
domain-expression [slicing-index-set]
domain-expression (slicing-index-set)

domain-striding-expression:
domain-expression by expression

domain-type:
base-domain-type
simple-subdomain-type
sparse-subdomain-type

else-part:
else statement

empty-statement:
;

enum-constant-expression:
enum-type . identifier

enum-constant-list:
enum-constant
enum-constant , enum-constant-listopt

enum-constant:
identifier init-partopt

enum-declaration-statement:
enum identifier { enum-constant-list }

enum-type:
identifier

Collected Lexical and Syntax Productions 238

exported-procedure-declaration-statement:
export external-nameopt proc function-name argument-list return-intentopt return-typeopt

function-body

expression-list:
expression
expression , expression-list

expression-statement:
variable-expression ;
member-access-expression ;
call-expression ;
constructor-call-expression ;
let-expression ;

expression:
literal-expression
nil-expression
variable-expression
enum-constant-expression
call-expression
iteratable-call-expression
member-access-expression
constructor-call-expression
query-expression
cast-expression
lvalue-expression
parenthesized-expression
unary-expression
binary-expression
let-expression
if-expression
for-expression
forall-expression
reduce-expression
scan-expression
module-access-expression
tuple-expression
tuple-expand-expression
locale-access-expression
mapped-domain-expression

external-class-declaration-statement:
extern external-nameopt simple-class-declaration-statement

external-name:
identifier
string-literal

external-procedure-declaration-statement:
extern external-nameopt proc function-name argument-list return-intentopt return-typeopt

external-record-declaration-statement:
extern external-nameopt simple-record-declaration-statement

Collected Lexical and Syntax Productions 239

external-type-alias-declaration-statement:
extern type type-alias-declaration-list ;

field-access-expression:
receiver-clauseopt identifier

for-expression:
for index-var-declaration in iteratable-expression do expression
for iteratable-expression do expression

for-statement:
for index-var-declaration in iteratable-expression do statement
for index-var-declaration in iteratable-expression block-statement
for iteratable-expression do statement
for iteratable-expression block-statement

forall-expression:
forall index-var-declaration in iteratable-expression task-intent-clauseopt do expression
forall iteratable-expression task-intent-clauseopt do expression
[index-var-declaration in iteratable-expression task-intent-clauseopt] expression
[iteratable-expression task-intent-clauseopt] expression

forall-statement:
forall index-var-declaration in iteratable-expression task-intent-clauseopt do statement
forall index-var-declaration in iteratable-expression task-intent-clauseopt block-statement
forall iteratable-expression task-intent-clauseopt do statement
forall iteratable-expression task-intent-clauseopt block-statement
[index-var-declaration in iteratable-expression task-intent-clauseopt] statement
[iteratable-expression task-intent-clauseopt] statement

formal-intent:
const
const in
const ref
in
out
inout
ref
param
type

formal-type:
: type-specifier
: ? identifieropt

formal:
formal-intentopt identifier formal-typeopt default-expressionopt

formal-intentopt identifier formal-typeopt variable-argument-expression
formal-intentopt tuple-grouped-identifier-list formal-typeopt default-expressionopt

formal-intentopt tuple-grouped-identifier-list formal-typeopt variable-argument-expression

formals:
formal
formal , formals

Collected Lexical and Syntax Productions 240

function-body:
block-statement
return-statement

function-name:
identifier
operator-name

identifier-list:
identifier
identifier , identifier-list
tuple-grouped-identifier-list
tuple-grouped-identifier-list , identifier-list

if-expression:
if expression then expression else expression
if expression then expression

index-expr:
expression

index-type:
index (domain-expression)

index-var-declaration:
identifier
tuple-grouped-identifier-list

init-part:
= expression

initialization-part:
= expression

integer-parameter-expression:
expression

io-expression:
expression
io-expression io-operator expression

io-operator:
<∼>

io-statement:
io-expression io-operator expression

iteratable-call-expression:
call-expression

iteratable-expression:
expression
zip (expression-list)

Collected Lexical and Syntax Productions 241

iterator-body:
block-statement
yield-statement

iterator-declaration-statement:
privacy-specifieropt iter iterator-name argument-listopt return-intentopt return-typeopt where-clauseopt

iterator-body

iterator-name:
identifier

label-statement:
label identifier statement

let-expression:
let variable-declaration-list in expression

linkage-specifier:
inline

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string-literal
range-literal
domain-literal
array-literal

locale-access-expression:
expression . locale

lvalue-expression:
variable-expression
member-access-expression
call-expression
parenthesized-expression

mapped-domain-expression:
domain-expression dmapped dmap-value

mapped-domain-type:
domain-type dmapped dmap-value

member-access-expression:
field-access-expression
method-call-expression

method-call-expression:
receiver-clauseopt expression (named-expression-list)
receiver-clauseopt expression [named-expression-list]
receiver-clauseopt parenthesesless-function-identifier

Collected Lexical and Syntax Productions 242

method-declaration-statement:
linkage-specifieropt proc-or-iter this-intentopt type-bindingopt function-name argument-listopt

return-intentopt return-typeopt where-clauseopt function-body

module-access-expression:
module-identifier-list . identifier

module-declaration-statement:
privacy-specifieropt module module-identifier block-statement

module-identifier-list:
module-identifier
module-identifier . module-identifier-list

module-identifier:
identifier

module-name-list:
module-name
module-name , module-name-list

module-name:
identifier
module-name . module-name

named-expression-list:
named-expression
named-expression , named-expression-list

named-expression:
expression
identifier = expression

nil-expression:
nil

no-initialization-part:
= noinit

non-range-expression:
expression

on-statement:
on expression do statement
on expression block-statement

operator-name: one of
+ - ∗ / % ∗∗ ! == != <= >= < > << >> & | ˆ ˜
+= -= ∗= /= %= ∗∗= &= |= ˆ= <<= >>= <=>

param-for-statement:
for param identifier in param-iteratable-expression do statement
for param identifier in param-iteratable-expression block-statement

Collected Lexical and Syntax Productions 243

param-iteratable-expression:
range-literal
range-literal by integer-literal

parenthesesless-function-identifier:
identifier

parenthesized-expression:
(expression)

primitive-type-parameter-part:
(integer-parameter-expression)

primitive-type:
void
bool primitive-type-parameter-partopt

int primitive-type-parameter-partopt

uint primitive-type-parameter-partopt

real primitive-type-parameter-partopt

imag primitive-type-parameter-partopt

complex primitive-type-parameter-partopt

string

privacy-specifier:
private
public

proc-or-iter:
proc
iter

procedure-declaration-statement:
privacy-specifieropt linkage-specifieropt proc function-name argument-listopt return-intentopt return-typeopt where-clauseopt

function-body

query-expression:
? identifieropt

range-expression-list:
range-expression
range-expression, range-expression-list

range-expression:
expression
strided-range-expression
counted-range-expression
aligned-range-expression
sliced-range-expression

range-literal:
expression .. expression
expression ..
.. expression
..

Collected Lexical and Syntax Productions 244

range-type:
range (named-expression-list)

receiver-clause:
expression .

record-declaration-statement:
simple-record-declaration-statement
external-record-declaration-statement

record-inherit-list:
: record-type-list

record-statement-list:
record-statement
record-statement record-statement-list

record-statement:
variable-declaration-statement
method-declaration-statement
type-declaration-statement
empty-statement

record-type-list:
record-type
record-type , record-type-list

record-type:
identifier
identifier (named-expression-list)

rectangular-array-literal:
[expression-list]

rectangular-domain-literal:
{ range-expression-list }

rectangular-domain-type:
domain (named-expression-list)

reduce-expression:
reduce-scan-operator reduce iteratable-expression
class-type reduce iteratable-expression

reduce-scan-operator: one of
+ ∗ && || & | ˆ min max minloc maxloc

reindexing-expression:
: [domain-expression]

remote-variable-declaration-statement:
on expression variable-declaration-statement

return-intent: one of
ref const param type

Collected Lexical and Syntax Productions 245

return-statement:
return expressionopt ;

return-type:
: type-specifier

scan-expression:
reduce-scan-operator scan iteratable-expression
class-type scan iteratable-expression

select-statement:
select expression { when-statements }

serial-statement:
serial expressionopt do statement
serial expressionopt block-statement

simple-class-declaration-statement:
class identifier class-inherit-listopt { class-statement-listopt }

simple-record-declaration-statement:
record identifier record-inherit-listopt { record-statement-list }

simple-subdomain-type:
subdomain (domain-expression)

single-type:
single type-specifier

sliced-range-expression:
range-expression (range-expression)
range-expression [range-expression]

slicing-index-set:
domain-expression
range-expression-list

sparse-subdomain-type:
sparse subdomainopt (domain-expression)

statement:
block-statement
expression-statement
assignment-statement
swap-statement
io-statement
conditional-statement
select-statement
while-do-statement
do-while-statement
for-statement
label-statement
break-statement
continue-statement
param-for-statement

Collected Lexical and Syntax Productions 246

use-statement
empty-statement
return-statement
yield-statement
module-declaration-statement
procedure-declaration-statement
external-procedure-declaration-statement
exported-procedure-declaration-statement
iterator-declaration-statement
method-declaration-statement
type-declaration-statement
variable-declaration-statement
remote-variable-declaration-statement
on-statement
cobegin-statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic-statement
forall-statement
delete-statement

statements:
statement
statement statements

step-expression:
expression

strided-range-expression:
range-expression by step-expression

structured-type:
class-type
record-type
union-type
tuple-type

swap-operator:
<=>

swap-statement:
lvalue-expression swap-operator lvalue-expression

sync-statement:
sync statement
sync block-statement

sync-type:
sync type-specifier

synchronization-type:
sync-type
single-type
atomic-type

Collected Lexical and Syntax Productions 247

task-intent-clause:
with (task-intent-list)

task-intent-list:
formal-intent identifier
formal-intent identifier, task-intent-list

this-intent:
param
ref
type

tuple-component-list:
tuple-component
tuple-component , tuple-component-list

tuple-component:
expression

tuple-expand-expression:
(... expression)

tuple-expression:
(tuple-component ,)
(tuple-component , tuple-component-list)

tuple-grouped-identifier-list:
(identifier-list)

tuple-type:
(type-specifier , type-list)

type-alias-declaration-list:
type-alias-declaration
type-alias-declaration , type-alias-declaration-list

type-alias-declaration-statement:
privacy-specifieropt configopt type type-alias-declaration-list ;
external-type-alias-declaration-statement

type-alias-declaration:
identifier = type-specifier
identifier

type-binding:
identifier .

type-declaration-statement:
enum-declaration-statement
class-declaration-statement
record-declaration-statement
union-declaration-statement
type-alias-declaration-statement

Collected Lexical and Syntax Productions 248

type-list:
type-specifier
type-specifier , type-list

type-part:
: type-specifier

type-specifier:
primitive-type
enum-type
structured-type
dataparallel-type
synchronization-type

unary-expression:
unary-operator expression

unary-operator: one of
+ - ˜ !

union-declaration-statement:
externopt union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type-declaration-statement
procedure-declaration-statement
iterator-declaration-statement
variable-declaration-statement
empty-statement

union-type:
identifier

use-statement:
use module-name-list ;

value-expr:
expression

variable-argument-expression:
... expression
... ? identifieropt

...

variable-declaration-list:
variable-declaration
variable-declaration , variable-declaration-list

variable-declaration-statement:
privacy-specifieropt config-or-externopt variable-kind variable-declaration-list ;

Collected Lexical and Syntax Productions 249

variable-declaration:
identifier-list type-partopt initialization-part
identifier-list type-part no-initialization-partopt

array-alias-declaration

variable-expression:
identifier

variable-kind: one of
param const var

when-statement:
when expression-list do statement
when expression-list block-statement
otherwise statement

when-statements:
when-statement
when-statement when-statements

where-clause:
where expression

while-do-statement:
while expression do statement
while expression block-statement

yield-statement:
yield expression ;

A.3 Depth-First Lexical Productions

bool-literal: one of
true false

identifier:
letter-or-underscore legal-identifier-charsopt

letter-or-underscore:
letter

letter: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

legal-identifier-chars:
legal-identifier-char legal-identifier-charsopt

legal-identifier-char:
letter-or-underscore
digit
$

Collected Lexical and Syntax Productions 250

digit: one of
0 1 2 3 4 5 6 7 8 9

imaginary-literal:
real-literal i
integer-literal i

real-literal:
digitsopt . digits exponent-partopt

digits .opt exponent-part
0x hexadecimal-digitsopt . digits p-exponent-partopt

0X hexadecimal-digitsopt . digits p-exponent-partopt

0x hexadecimal-digits .opt p-exponent-part
0X hexadecimal-digits .opt p-exponent-part

exponent-part:
e signopt digits
E signopt digits

sign: one of
+ -

digits:
digit
digit digits

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

p-exponent-part:
p signopt digits
P signopt digits

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
0o octal-digits
0O octal-digits
0b binary-digits
0B binary-digits

octal-digits:
octal-digit
octal-digit octal-digits

octal-digit: one of
0 1 2 3 4 5 6 7

binary-digits:
binary-digit
binary-digit binary-digits

Collected Lexical and Syntax Productions 251

binary-digit: one of
0 1

string-literal:
” double-quote-delimited-charactersopt ”
’ single-quote-delimited-charactersopt ’

double-quote-delimited-characters:
string-character double-quote-delimited-charactersopt

’ double-quote-delimited-charactersopt

string-character:
any character except the double quote, single quote, or new line
simple-escape-character
hexadecimal-escape-character

simple-escape-character: one of
\’ \” \? \a \b \f \n \r \t \v

hexadecimal-escape-character:
\x hexadecimal-digits

single-quote-delimited-characters:
string-character single-quote-delimited-charactersopt

” single-quote-delimited-charactersopt

A.4 Depth-First Syntax Productions

module-declaration-statement:
privacy-specifieropt module module-identifier block-statement

privacy-specifier:
private
public

module-identifier:
identifier

block-statement:
{ statementsopt }

statements:
statement
statement statements

statement:
block-statement
expression-statement
assignment-statement
swap-statement
io-statement
conditional-statement
select-statement
while-do-statement

Collected Lexical and Syntax Productions 252

do-while-statement
for-statement
label-statement
break-statement
continue-statement
param-for-statement
use-statement
empty-statement
return-statement
yield-statement
module-declaration-statement
procedure-declaration-statement
external-procedure-declaration-statement
exported-procedure-declaration-statement
iterator-declaration-statement
method-declaration-statement
type-declaration-statement
variable-declaration-statement
remote-variable-declaration-statement
on-statement
cobegin-statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic-statement
forall-statement
delete-statement

expression-statement:
variable-expression ;
member-access-expression ;
call-expression ;
constructor-call-expression ;
let-expression ;

variable-expression:
identifier

member-access-expression:
field-access-expression
method-call-expression

field-access-expression:
receiver-clauseopt identifier

receiver-clause:
expression .

expression:
literal-expression
nil-expression
variable-expression
enum-constant-expression
call-expression

Collected Lexical and Syntax Productions 253

iteratable-call-expression
member-access-expression
constructor-call-expression
query-expression
cast-expression
lvalue-expression
parenthesized-expression
unary-expression
binary-expression
let-expression
if-expression
for-expression
forall-expression
reduce-expression
scan-expression
module-access-expression
tuple-expression
tuple-expand-expression
locale-access-expression
mapped-domain-expression

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string-literal
range-literal
domain-literal
array-literal

range-literal:
expression .. expression
expression ..
.. expression
..

domain-literal:
rectangular-domain-literal
associative-domain-literal

rectangular-domain-literal:
{ range-expression-list }

range-expression-list:
range-expression
range-expression, range-expression-list

range-expression:
expression
strided-range-expression
counted-range-expression
aligned-range-expression
sliced-range-expression

Collected Lexical and Syntax Productions 254

strided-range-expression:
range-expression by step-expression

step-expression:
expression

counted-range-expression:
range-expression # expression

aligned-range-expression:
range-expression align expression

sliced-range-expression:
range-expression (range-expression)
range-expression [range-expression]

associative-domain-literal:
{ associative-expression-list }

associative-expression-list:
non-range-expression
non-range-expression, associative-expression-list

non-range-expression:
expression

array-literal:
rectangular-array-literal
associative-array-literal

rectangular-array-literal:
[expression-list]

expression-list:
expression
expression , expression-list

associative-array-literal:
[associative-expr-list]

associative-expr-list:
index-expr => value-expr
index-expr => value-expr, associative-expr-list

index-expr:
expression

value-expr:
expression

nil-expression:
nil

enum-constant-expression:
enum-type . identifier

Collected Lexical and Syntax Productions 255

enum-type:
identifier

iteratable-call-expression:
call-expression

query-expression:
? identifieropt

cast-expression:
expression : type-specifier

type-specifier:
primitive-type
enum-type
structured-type
dataparallel-type
synchronization-type

primitive-type:
void
bool primitive-type-parameter-partopt

int primitive-type-parameter-partopt

uint primitive-type-parameter-partopt

real primitive-type-parameter-partopt

imag primitive-type-parameter-partopt

complex primitive-type-parameter-partopt

string

primitive-type-parameter-part:
(integer-parameter-expression)

integer-parameter-expression:
expression

structured-type:
class-type
record-type
union-type
tuple-type

class-type:
identifier
identifier (named-expression-list)

named-expression-list:
named-expression
named-expression , named-expression-list

named-expression:
expression
identifier = expression

record-type:
identifier
identifier (named-expression-list)

Collected Lexical and Syntax Productions 256

union-type:
identifier

tuple-type:
(type-specifier , type-list)

type-list:
type-specifier
type-specifier , type-list

dataparallel-type:
range-type
domain-type
mapped-domain-type
array-type
index-type

range-type:
range (named-expression-list)

domain-type:
base-domain-type
simple-subdomain-type
sparse-subdomain-type

base-domain-type:
rectangular-domain-type
associative-domain-type

rectangular-domain-type:
domain (named-expression-list)

associative-domain-type:
domain (associative-index-type)
domain (enum-type)
domain (opaque)

associative-index-type:
type-specifier

simple-subdomain-type:
subdomain (domain-expression)

domain-expression:
domain-literal
domain-name
domain-assignment-expression
domain-striding-expression
domain-slice-expression

domain-name:
identifier

domain-assignment-expression:
domain-name = domain-expression

Collected Lexical and Syntax Productions 257

domain-striding-expression:
domain-expression by expression

domain-slice-expression:
domain-expression [slicing-index-set]
domain-expression (slicing-index-set)

slicing-index-set:
domain-expression
range-expression-list

sparse-subdomain-type:
sparse subdomainopt (domain-expression)

mapped-domain-type:
domain-type dmapped dmap-value

dmap-value:
expression

array-type:
[domain-expression] type-specifier

index-type:
index (domain-expression)

synchronization-type:
sync-type
single-type
atomic-type

sync-type:
sync type-specifier

single-type:
single type-specifier

atomic-type:
atomic type-specifier

lvalue-expression:
variable-expression
member-access-expression
call-expression
parenthesized-expression

parenthesized-expression:
(expression)

unary-expression:
unary-operator expression

unary-operator: one of
+ - ˜ !

Collected Lexical and Syntax Productions 258

binary-expression:
expression binary-operator expression

binary-operator: one of
+ - ∗ / % ∗∗ & | ˆ << >> && || == != <= >= < > by #

if-expression:
if expression then expression else expression
if expression then expression

for-expression:
for index-var-declaration in iteratable-expression do expression
for iteratable-expression do expression

forall-expression:
forall index-var-declaration in iteratable-expression task-intent-clauseopt do expression
forall iteratable-expression task-intent-clauseopt do expression
[index-var-declaration in iteratable-expression task-intent-clauseopt] expression
[iteratable-expression task-intent-clauseopt] expression

index-var-declaration:
identifier
tuple-grouped-identifier-list

tuple-grouped-identifier-list:
(identifier-list)

identifier-list:
identifier
identifier , identifier-list
tuple-grouped-identifier-list
tuple-grouped-identifier-list , identifier-list

iteratable-expression:
expression
zip (expression-list)

task-intent-clause:
with (task-intent-list)

task-intent-list:
formal-intent identifier
formal-intent identifier, task-intent-list

formal-intent:
const
const in
const ref
in
out
inout
ref
param
type

Collected Lexical and Syntax Productions 259

reduce-expression:
reduce-scan-operator reduce iteratable-expression
class-type reduce iteratable-expression

reduce-scan-operator: one of
+ ∗ && || & | ˆ min max minloc maxloc

scan-expression:
reduce-scan-operator scan iteratable-expression
class-type scan iteratable-expression

module-access-expression:
module-identifier-list . identifier

module-identifier-list:
module-identifier
module-identifier . module-identifier-list

tuple-expression:
(tuple-component ,)
(tuple-component , tuple-component-list)

tuple-component:
expression

tuple-component-list:
tuple-component
tuple-component , tuple-component-list

tuple-expand-expression:
(... expression)

locale-access-expression:
expression . locale

mapped-domain-expression:
domain-expression dmapped dmap-value

method-call-expression:
receiver-clauseopt expression (named-expression-list)
receiver-clauseopt expression [named-expression-list]
receiver-clauseopt parenthesesless-function-identifier

parenthesesless-function-identifier:
identifier

call-expression:
lvalue-expression (named-expression-list)
lvalue-expression [named-expression-list]
parenthesesless-function-identifier

constructor-call-expression:
new class-name (argument-list)

Collected Lexical and Syntax Productions 260

class-name:
identifier

argument-list:
(formalsopt)

formals:
formal
formal , formals

formal:
formal-intentopt identifier formal-typeopt default-expressionopt

formal-intentopt identifier formal-typeopt variable-argument-expression
formal-intentopt tuple-grouped-identifier-list formal-typeopt default-expressionopt

formal-intentopt tuple-grouped-identifier-list formal-typeopt variable-argument-expression

default-expression:
= expression

formal-type:
: type-specifier
: ? identifieropt

variable-argument-expression:
... expression
... ? identifieropt

...

let-expression:
let variable-declaration-list in expression

assignment-statement:
lvalue-expression assignment-operator expression

assignment-operator: one of
= += -= ∗= /= %= ∗∗= &= |= ˆ= &&= ||= <<= >>=

swap-statement:
lvalue-expression swap-operator lvalue-expression

swap-operator:
<=>

io-statement:
io-expression io-operator expression

io-expression:
expression
io-expression io-operator expression

io-operator:
<∼>

conditional-statement:
if expression then statement else-partopt

if expression block-statement else-partopt

Collected Lexical and Syntax Productions 261

else-part:
else statement

select-statement:
select expression { when-statements }

when-statements:
when-statement
when-statement when-statements

when-statement:
when expression-list do statement
when expression-list block-statement
otherwise statement

while-do-statement:
while expression do statement
while expression block-statement

do-while-statement:
do statement while expression ;

for-statement:
for index-var-declaration in iteratable-expression do statement
for index-var-declaration in iteratable-expression block-statement
for iteratable-expression do statement
for iteratable-expression block-statement

label-statement:
label identifier statement

break-statement:
break identifieropt ;

continue-statement:
continue identifieropt ;

param-for-statement:
for param identifier in param-iteratable-expression do statement
for param identifier in param-iteratable-expression block-statement

param-iteratable-expression:
range-literal
range-literal by integer-literal

use-statement:
use module-name-list ;

module-name-list:
module-name
module-name , module-name-list

module-name:
identifier
module-name . module-name

Collected Lexical and Syntax Productions 262

empty-statement:
;

return-statement:
return expressionopt ;

yield-statement:
yield expression ;

module-declaration-statement:
privacy-specifieropt module module-identifier block-statement

procedure-declaration-statement:
privacy-specifieropt linkage-specifieropt proc function-name argument-listopt return-intentopt return-typeopt where-clauseopt

function-body

linkage-specifier:
inline

function-name:
identifier
operator-name

operator-name: one of
+ - ∗ / % ∗∗ ! == != <= >= < > << >> & | ˆ ˜
+= -= ∗= /= %= ∗∗= &= |= ˆ= <<= >>= <=>

return-intent: one of
ref const param type

return-type:
: type-specifier

where-clause:
where expression

function-body:
block-statement
return-statement

external-procedure-declaration-statement:
extern external-nameopt proc function-name argument-list return-intentopt return-typeopt

exported-procedure-declaration-statement:
export external-nameopt proc function-name argument-list return-intentopt return-typeopt

function-body

iterator-declaration-statement:
privacy-specifieropt iter iterator-name argument-listopt return-intentopt return-typeopt where-clauseopt

iterator-body

iterator-name:
identifier

Collected Lexical and Syntax Productions 263

iterator-body:
block-statement
yield-statement

method-declaration-statement:
linkage-specifieropt proc-or-iter this-intentopt type-bindingopt function-name argument-listopt

return-intentopt return-typeopt where-clauseopt function-body

proc-or-iter:
proc
iter

this-intent:
param
ref
type

type-binding:
identifier .

type-declaration-statement:
enum-declaration-statement
class-declaration-statement
record-declaration-statement
union-declaration-statement
type-alias-declaration-statement

enum-declaration-statement:
enum identifier { enum-constant-list }

enum-constant-list:
enum-constant
enum-constant , enum-constant-listopt

enum-constant:
identifier init-partopt

init-part:
= expression

class-declaration-statement:
simple-class-declaration-statement
external-class-declaration-statement

simple-class-declaration-statement:
class identifier class-inherit-listopt { class-statement-listopt }

class-inherit-list:
: class-type-list

class-type-list:
class-type
class-type , class-type-list

Collected Lexical and Syntax Productions 264

class-statement-list:
class-statement
class-statement class-statement-list

class-statement:
variable-declaration-statement
method-declaration-statement
type-declaration-statement
empty-statement

external-class-declaration-statement:
extern external-nameopt simple-class-declaration-statement

external-name:
identifier
string-literal

record-declaration-statement:
simple-record-declaration-statement
external-record-declaration-statement

simple-record-declaration-statement:
record identifier record-inherit-listopt { record-statement-list }

record-inherit-list:
: record-type-list

record-type-list:
record-type
record-type , record-type-list

record-statement-list:
record-statement
record-statement record-statement-list

record-statement:
variable-declaration-statement
method-declaration-statement
type-declaration-statement
empty-statement

external-record-declaration-statement:
extern external-nameopt simple-record-declaration-statement

union-declaration-statement:
externopt union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type-declaration-statement
procedure-declaration-statement
iterator-declaration-statement
variable-declaration-statement
empty-statement

Collected Lexical and Syntax Productions 265

type-alias-declaration-statement:
privacy-specifieropt configopt type type-alias-declaration-list ;
external-type-alias-declaration-statement

type-alias-declaration-list:
type-alias-declaration
type-alias-declaration , type-alias-declaration-list

type-alias-declaration:
identifier = type-specifier
identifier

external-type-alias-declaration-statement:
extern type type-alias-declaration-list ;

variable-declaration-statement:
privacy-specifieropt config-or-externopt variable-kind variable-declaration-list ;

config-or-extern: one of
config extern

variable-kind: one of
param const var

variable-declaration-list:
variable-declaration
variable-declaration , variable-declaration-list

variable-declaration:
identifier-list type-partopt initialization-part
identifier-list type-part no-initialization-partopt

array-alias-declaration

initialization-part:
= expression

type-part:
: type-specifier

no-initialization-part:
= noinit

array-alias-declaration:
identifier reindexing-expressionopt => array-expression ;

reindexing-expression:
: [domain-expression]

array-expression:
expression

remote-variable-declaration-statement:
on expression variable-declaration-statement

Collected Lexical and Syntax Productions 266

on-statement:
on expression do statement
on expression block-statement

cobegin-statement:
cobegin task-intent-clauseopt block-statement

coforall-statement:
coforall index-var-declaration in iteratable-expression task-intent-clauseopt do statement
coforall index-var-declaration in iteratable-expression task-intent-clauseopt block-statement
coforall iteratable-expression task-intent-clauseopt do statement
coforall iteratable-expression task-intent-clauseopt block-statement

begin-statement:
begin task-intent-clauseopt statement

sync-statement:
sync statement
sync block-statement

serial-statement:
serial expressionopt do statement
serial expressionopt block-statement

atomic-statement:
atomic statement

forall-statement:
forall index-var-declaration in iteratable-expression task-intent-clauseopt do statement
forall index-var-declaration in iteratable-expression task-intent-clauseopt block-statement
forall iteratable-expression task-intent-clauseopt do statement
forall iteratable-expression task-intent-clauseopt block-statement
[index-var-declaration in iteratable-expression task-intent-clauseopt] statement
[iteratable-expression task-intent-clauseopt] statement

delete-statement:
delete expression ;

Index

!=, 63
!= (record), 129
!= (string), 64
#, 65
(domain), 158
&, 58
&&, 61
&&=, 69
&=, 69
*, 55
**, 57
**=, 69
*=, 69
+, 53
+ (unary), 52
+=, 69
-, 54
- (unary), 53
-=, 69
... (tuple expansion), 106
/, 56
/=, 69
: (cast), 49
<, 62
<<, 59
<<=, 69
<=, 62
= (see also assignment), 69
==, 63
== (record), 129
== (string), 64
=> (array), 168
>, 62
>=, 63
>>, 59
>>=, 69
? (type query), 48
%, 57
%=, 69
˜, 58
ˆ, 59
ˆ=, 69

acknowledgments, 18
actual arguments, 85, 86

add (atomic var), 193
align, 141
and (atomic var), 193
argument

intents, 90
argument passing

domains, 155
arguments

array, 168
records, 126

arrays, 162
actual arguments, 168
aliases, 168
assignment, 166, 204
association with domains, 170
associative

literals, 163
count operator, 168
domain, 170
domain maps, 164, 214
element type, 162
eltType, 170
indexing, 164
initialization, 162
iteration, 166
literals, 162
numElements, 171
predefined functions, 170
promotion, 168
rank, 170
rectangular

default values, 163
literals, 163

reshape, 171
runtime representation, 164
size, 171
slicing, 167

rectangular, 167
sparse, 169
types, 162
values, 162

assignment, 69
array, 166
class, 119
domain, 156, 215

267

Index 268

tuple, 102
whole array, 204

associative array literals, 163
associative arrays

indexing, 165
associative domains (see also domains, associative), 151
atomic, 192, 198
atomic statement, 198
atomic transactions, 198
atomic types

memory order, 192
atomic variables

atomic, 192
predefined methods on, 192

begin, 188
block, 68
bool, 29
break, 75
by, 65

on rectangular domains, 157
by (range), 140

call site, 85
calls

function, 85
case sensitivity, 22
casts, 49
class, 109
class type, 110
class value, 110
classes, 109

allocation, 130
arguments, 130
assignment, 119, 130
base

field access, 112
comparison, 131
constructors, 114

compiler-generated, 115
user-defined, 114

declarations, 109
default initialization, 114
delete, 120
derived, 112

constructors, 113
destructor, 120
field access, 116

base class, 112
fields, 111
generic, 180

getter method, 116
implicit conversion, 119
indexing, 118
inheritance, 112

multiple, 113
initialization, 114

default, 114
instances, 109
iterating over, 119
method calls, 117
methods, 111
nested classes, 112
new, 114
nil, 114
object, 112
overriding, 131
receiver, 116, 117
shadowing, 131
these, 119
this, 117, 118
types, 110
values, 110

clear (atomic bool), 193
cobegin, 194
coforall, 194
comments, 22
compareExchange (atomic var), 193
compareExchangeStrong (atomic var), 193
compareExchangeWeak (atomic var), 193
compiler-generated constructors, 115
compilerError, 184
compilerWarning, 184
complex, 30
conditional expressions, 65
conditional statement

dangling else, 71
conditional statements, 71
config, 40
const, 40
const in (intent), 91
const ref (intent), 91
constants, 39, 40

compile-time, 39
configuration, 40
in classes or records, 181
runtime, 40

constructors, 114
compiler-generated, 115

for generic classes or records, 182
derived class, 113
type constructors, 182

Index 269

user-defined, 114
for generic classes or records, 183

continue, 75
conversions, 41

boolean, 42
in a statement, 43

class, 45, 119
enumerated types, 42
enumeration, 44
explicit, 43

class, 45
enumeration, 44
numeric, 43
records, 45
tuple to complex, 44

implicit, 41
allowed types, 41
boolean, 42, 43
class, 119
enumerated types, 42
numeric, 42
occurs at, 41
parameter, 43
records, 129

numeric, 42, 43
parameter, 43

records, 45, 129
source type, 41
target type, 41
tuple to complex, 44

data parallelism, 200
configuration constants, 207
evaluation order, 204
forall, 200
forall expressions, 201
forall intents, 203
knobs for default data parallelism, 207
leader iterator, 201
reductions, 205
scans, 205

dataParIgnoreRunningTasks, 207
dataParMinGranularity, 207
dataParTasksPerLocale, 207
declarations

records, 121
union, 132
variables, 35

multiple, 37
default initialization

classes, 114

variables, 36
default values, 89
delete

classes, 120
illegal for records, 131

derived class, 112
destructor

classes, 120
records, 126

distributions (see also domain maps, distributions), 212
dmap value, 212
dmapped clause, 212
domain maps, 212

distribution, 212
dmap value, 212
dmapped clause, 212
domain assignment, 215
for arrays, 214
for domain values, 214
layout, 212

domain maps for domain types, 212
domain-based slicing, 157
domains, 148

#, 158
+, 161
-, 161
adding indices, 158
as arguments, 155
assignment, 156, 215
association with arrays, 170
associative, 151

default values, 152
initialization, 152
literals, 152
values, 152

clear, 159
common methods, 159
count operator, 158
dim, 160
dims, 160
enumerated, 151
expand, 160
exterior, 160
high, 160
idxType, 159
index types, 154
interior, 161
isEnumDom, 159
isIrregularDom, 159
isOpaqueDom, 159
isRectangularDom, 159

Index 270

isSparseDom, 160
iteration, 155
kinds, 148
low, 161
member, 160
methods

common, 159
irregular, 161
regular, 160

numIndices, 160
opaque, 151
predefined functions, 159
promotion, 156
rank, 161
rectangular, 149

default value, 150
literals, 150
types, 149
values, 150

removing indices, 158
requestCapacity, 161
size, 161
slicing, 157
sparse, 154

default value, 154
initialization, 154
types, 154
values, 154

stridable, 161
stride, 161
striding, 157
translate, 161
types and values, 149
values

associative, 152
rectangular, 150

dynamic dispatch, 113

else, 65, 71
enumerated (generic type), 178
enumerated domains

types, 151
enumerated types, 31
exchange (atomic var), 193
execution environment, 209
explicit return type, 96
exploratory programming, 83
expression statement, 68
expressions, 46

associativity, 50
binary operator, 52

call, 48
cast, 49
conditional, 65
enumeration constant, 47
for, 66

filtering predicates, 66
forall, 201

and conditional expressions, 202
filtering, 202
semantics, 202
syntax, 202
zipper iteration, 202

if-then-else, 65
indexing, 48
literal, 47
lvalue, 49
member access, 48
operator, 52
parenthesized, 47
precedence, 50
reduction, 205
scan, 206
statement, 68
type query, 48
unary operator, 52
variable, 47
where, 183

fetchAdd (atomic var), 193
fetchAnd (atomic var), 193
fetchOr (atomic var), 193
fetchSub (atomic var), 193
fetchXor (atomic var), 193
field access, 127

class, 116
fields

class, 111
generic, 180
parameter, 181
records, 123
type alias, 180
variable and constant, without types, 181

for, 66, 74, 75
filtering predicates, 66

for loops, 74
parameters, 75

forall (see also statements, forall), 200
forall expressions (see also expressions, forall), 201
forall intents, 203
formal arguments, 85, 88

array, 178

Index 271

defaults, 89
generic, 177
naming, 89
with queried types, 176
without types, 176

function calls, 48, 85
functions, 85

actual arguments, 85, 86
arguments

defaults, 89
formal, 88
intents, 90
named, 89

arrays
predefined, 170

as parameters, 94
as types, 95
call site, 85
candidates, 98
default argument values, 89
formal arguments, 85, 88
generic, 175
iterators, 172
lvalues, 94
main, 82
method, 85
most specific, 98
named arguments, 89
nested, 96
operator, 85
overloading, 97
parameter function, 94
procedure, 85
procedure definition, 86
ref keyword and, 94
resolution, 97

legal argument mapping, 98
most specific, 98
valid mapping, 98

return intent, 93
return types, 96

explicit, 96
implicit, 96

setter argument, 94
tuples

predefined, 108
type functions, 95
varargs, 93
variable number of arguments, 93
visible, 97
without parentheses, 88

generics, 175
classes, 180
constructors

compiler-generated, 182
user-defined, 183

examples
stack, 185

fields, 180
function visibility, 179
functions, 175
instantiated type, 182
methods, 182
records, 180
type constructor, 182
types, 180
where, 183

getter method
class, 116

here, 210

identifiers, 23
if, 65, 71
imaginary, 30
implicit modules, 78
implicit return type, 96
in (intent), 90
indexing, 48

arrays, 164
associative arrays, 165
rectangular arrays, 164

inheritance, 112
multiple, 113
records, 123, 130

initialization
arrays, 162
classes, 114

default, 114
record, 125

initializations
sparse domains, 154

inout (intent), 90
input/output, 186
instance methods, 117
int, 29
integral (generic type), 178
intents, 90

abstract, 91
concrete, 90
const, 91
const in, 91

Index 272

const ref, 91
default, 92
in, 90
inout, 90
out, 90
param, 176
ref, 90
type, 175

interoperability, 224
argument passing, 231
C structs

external, 227
C types

external, 227
standard, 226

Chapel functions
calling, 225

Chapel procedures
calling, 231

external C types, 227
external functions

calling, 224, 230
opaque types, 229
overview, 224
shared data, 229
shared procedures, 229
sharing, 226
standard C types, 226

IO
operator, 70
statement, 70

irregular domains
methods, 161

isFull (sync var), 191
iteration

array, 166
domain, 155
tuple, 102
zipper, 74

iterators, 172
and arrays, 173
and generics, 174
calls, 173
definition, 172
in for loops, 173
in forall loops, 173
parallel, 174
recursive, 174
yield, 172

keywords, 23

label, 75
language overview, 19
language principles, 19

general parallel programming, 19
generic programming, 21
locality-aware programming, 20
object-oriented programming, 20

layouts (see also domain maps, layouts), 212
leading the execution of a loop, 201
let, 65
lexical structure, 22

braces, 26
brackets, 26
case sensitivity, 22
comments, 22
identifiers, 23
keywords, 23
literals, 24
operator, 26
parentheses, 26
punctuation, 26
tokens, 22
white space, 22

literal expressions, 47
literals

primitive type, 24
local, 208
locale, 208, 210
Locales, 209
locales, 208

callStackSize, 208
here, 210
id, 208
local, 208
maxTaskPar, 208
methods, 208
name, 208
numCores, 209
physicalMemory, 209
remote, 208

loops
forall (see also statements, forall), 200

lvalues, 49

main, 21, 82
mapped

domain maps, 212
member access, 48
memory consistency model, 217

examples, 222
non-sequentially consisten atomic operations, 220

Index 273

sequential consistency for data-race-free programs,
217

unordered memory operations, 220
memory management, 120
method calls, 127
methods

base class
overriding, 113

calling, 117
class

getter, 116
classes, 111
generic, 182
instance, 117
primary, 111
records, 123
secondary, 111
type, 117

module, 77
modules, 21, 77

access, 79
and files, 77
definitions, 77
explicitly named, 79
implicit, 78
initialization, 82
initialization order, 83
nested, 78
using, 76, 81

multiple inheritance, 113

named arguments, 89
nested classes, 112
nested function, 96
nested records, 123
new

classes, 114
new, 114
nil, 114

not provided for records, 131
noinit, 37

variables, 37
notation, 14
numeric (generic type), 178
numLocales, 209

object, 112
objects, 109
on, 211
opaque domains

types, 151

operator
align, 141

operators, 61
!=, 63
!= (string), 64
#, 65
(domain), 158
(on arrays), 168
(range), 142
&, 58
&&, 61
*, 55
**, 57
+, 53
+ (string), 64
+ (unary), 52
-, 54
- (unary), 53
/, 56
: (cast), 49
<, 62
<<, 59
<=, 62
==, 63
== (string), 64
=> (array), 168
>, 62
>=, 63
>>, 59
? (type query), 48
%, 57
˜, 58
ˆ, 59
addition, 53
arithmetic, 52

range, 143
assignment, 69

compound, 69
simple, 69

associativity, 50
binary, 52
bitwise, 58

and, 58
complement, 58
exclusive or, 59
or, 59

by, 65
by (domain), 157
by (range), 140
compound assignment, 69
concatenation

Index 274

string, 64
division, 56
equality, 63
exponentiation, 57
greater than, 62
greater than or equal, 63
IO, 70
less than, 62
less than or equal, 62
let, 65
lexical structure, 26
logical, 60

and, 61
not, 60
or, 61

modulus, 57
multiplication, 55
negation, 53
overloading, 97
precedence, 50
procedure, 85
range

count, 65
relational, 61
shift, 59
simple assignment, 69
string concatenation, 64
subtraction, 54
swap, 70
tuple

binary, 107
relational, 107
unary, 107

unary, 52
or (atomic var), 193
organization, 16
out (intent), 90
overloading, 97
overloading functions (see also functions, overloading),

97
overloading operators (see also operators, overloading),

97
overview, 19

parallel iterators, 174
parallelism

data, 200
task, 187

param, 39, 75
parameter function, 94
parameters, 39

configuration, 40
in classes or records, 181

peek (atomic var), 192
poke (atomic var), 193
predefined functions

+ (domain), 161
- (domain), 161
add (atomic var), 193
aligned, 144
alignedHigh, 145
alignedLow, 145
alignHigh (range), 147
alignLow (range), 147
alignment, 145
and (atomic var), 193
arrays, 170
boundedType, 144
boundsCheck, 146
callStackSize, 208
clear, 159
clear (atomic bool), 193
compareExchange (atomic var), 193
compareExchangeStrong (atomic var), 193
compareExchangeWeak (atomic var), 193
dim (domain), 160
dims (domain), 160
domain (array), 170
eltType (array), 170
exchange (atomic var), 193
expand (domain), 160
expand, 147
exterior (domain), 160
exterior (range), 147
fetchAdd (atomic var), 193
fetchAnd (atomic var), 193
fetchOr (atomic var), 193
fetchSub (atomic var), 193
fetchXor (atomic var), 193
first, 145
hasFirst, 145
hasHighBound, 145
hasLast, 145
hasLowBound, 145
high, 145
high (domain), 160
id, 208
ident, 146
idxType, 144, 159
indexOrder, 146
interior (domain), 161
interior (range), 147

Index 275

isAmbiguous, 145
isEnumDom, 159
isFull (sync var), 191
isIrregularDom, 159
isOpaqueDom, 159
isRectangularDom, 159
isSparseDom, 160
isTuple, 108
isTupleType, 108
last, 145
length, 146
locale, 208
low, 146
low (domain), 161
max, 108
maxTaskPar, 208
member, 146
member (domain), 160
min, 108
name, 208
numCores, 209
numElements (array), 171
numIndices (domain), 160
offset (range), 147
or (atomic var), 193
peek (atomic var), 192
physicalMemory, 209
poke (atomic var), 193
rank (array), 170
rank (domain), 161
read (atomic var), 192
readFE (sync var), 190
readFF (sync var), 190
readXX (sync var), 190
requestCapacity, 161
reset (sync var), 191
reshape (array), 171
size, 108, 146
size (array), 171
size (domain), 161
stridable, 144
stridable (domain), 161
stride, 146
stride (domain), 161
sub (atomic var), 193
testAndSet (atomic bool), 193
translate (domain), 161
translate (range), 147
tuples, 108
waitFor (atomic var), 193
write (atomic var), 193

writeEF (sync var), 190
writeFF (sync var), 191
writeXF (sync var), 191
xor (atomic var), 193

primary methods, 111
proc, 86
procedure, 85
procedures

definition, 86
program execution, 82
program initialization, 82
promotion, 203

arrays, 168
domain, 156
zipper iteration, 204

range-based slicing, 158
ranges, 134

#, 142
align, 141
aligned, 144
aligned high bound, 135
aligned integer, 135
aligned low bound, 135
alignedHigh, 145
alignedLow, 145
alignHigh, 147
alignLow, 147
alignment, 134

ambiguous, 134, 135
alignment, 145
arithmetic operators, 143
assignment, 139
bounded, 136
boundedHigh, 136
boundedLow, 136
boundedNone, 136
boundedType, 136
boundedType, 144
boundsCheck, 146
by operator, 140
comparisons, 139
concepts, 134
count operator, 142
default values, 138
empty, 135
expand, 147
exterior, 147
first, 145
first index, 135
hasFirst, 145

Index 276

hasHighBound, 145
hasLast, 145
hasLowBound, 145
high, 145
high bound, 134
ident, 146
idxType, 136
idxType, 144
indexOrder, 146
interior, 147
isAmbiguous, 145
iterable, 135
iteration, 139

zippered, 139
last, 145
last index, 135
length, 146
literals, 137
low, 146
low bound, 134
member, 146
offset, 147
operations, 138
operators, 140
other queries, 146
predefined functions, 144
properties, 144
represented sequence, 134

decreasing, 135
increasing, 135

sequence, 134
size, 146
slicing, 143
stridable, 136
stridable, 144
stride, 134
stride, 146
stride type, 136
strided, 140
transformations, 147
translate, 147
type accessors, 144
types, 136
values, 137

rank-change slicing, 158
read (atomic var), 192
readFE (sync var), 190
readFF (sync var), 190
readXX (sync var), 190
real, 30
receiver, 117, 127

class, 116
record, 121
records, 121

!=, 129
==, 129
allocation, 125, 130
arguments, 126, 130
assignment, 128, 130
base method

overriding, 124
comparison, 131
declarations, 121

differences with classes, 129
delete illegal, 131
destructor, 126
differences with classes, 129
equality, 129
field access, 127
fields, 123

shadowing, 124
generic, 180
getters, 127
implicit conversions, 129
indexing, 128
inequality, 129
inheritance, 123, 130
initialization, 125
iterating, 128
method calls, 127
methods, 123
nested, 123
overriding, 131
receiver, 127
record types, 122
shadowing, 131
types, 122
variable declarations, 124

rectangular array literals, 163
rectangular arrays

indexing, 164
rectangular domains (see also domains, rectangular), 149
reduction expressions, 205
reductions, 205
ref (intent), 90
regular domains

methods, 160
remote, 208
reset (sync var), 191
return, 95

types, 96

Index 277

scan expressions, 206
scans, 205
scope, 13
secondary methods, 111
select, 71
serial, 197
setter, 94
shadowing

base class fields, 113
single, 188
slicing

array, 167
arrays

rectangular, 167
domain-based, 157
domains, 157
range-based, 158
rank-change, 158

sparse domains
default value, 154
initialization, 154
literals

lack thereof, 154
statement, 67
statements

assignment, 69
atomic, 198
begin, 188
break, 75
cobegin, 194
coforall, 194
conditional, 71
continue, 75
empty, 76
expression, 68
for, 74
forall, 200

semantics, 201
syntax, 200
zipper iteration, 201

IO, 70
jumps, 75
label, 75
on, 211
param for, 75
return, 95
select, 71
serial, 197
swap, 70
sync, 197
use, 76

when, 71
while, 72

string, 30
sub (atomic var), 193
subdomains, 153

simple, 153
default values, 153
types, 153
values, 153

sparse, 154
types, 154
values, 154

types
simple, 153

swap
operator, 70
statement, 70

sync, 188, 197
synchronization, 187
synchronization types

actual arguments, 190
formal arguments, 190

synchronization variables
predefined methods on, 190
single, 188
sync, 188

task creation, 187
task function, 187
task intents, 195
task parallelism, 187

task creation, 187
task function, 187
task functions, 195
task intents, 195

testAndSet (atomic bool), 193
then, 65, 71
these, 119
this, 117, 118, 127
tuples, 100

assignment, 102
assignments grouped as, 103
destructuring, 103
expanding in place, 106
formal arguments grouped as, 105
homogeneous, 100
indexing, 102
indices grouped as, 105
isTuple, 108
isTupleType, 108
iteration, 102

Index 278

max, 108
min, 108
omitting components, 103–106
operators, 107
predefined functions, 108
size, 108
types, 100
values, 101
variable declarations grouped as, 104

type aliases
in classes or records, 180

type inference, 37
local, 37
of return types, 96

type methods, 117
types, 28

* tuples, 100
aliases, 34
associative domains, 151
bool, 29
complex, 30
dataparallel, 33
domains

domain maps for, 212
sparse, 154

enumerated, 31
enumerated domains, 151
generic, 180
imaginary, 30
int, 29
locale, 208
opaque domains, 151
primitive, 28
range, 136
real, 30
records, 122
rectangular domains, 149
string, 30
structured, 32
subdomains

simple, 153
sparse, 154

synchronization, 33
tuple, 100
uint, 29
unions, 132
void, 29

uint, 29
union, 132
union types, 132

unions, 132
assignment, 133
fields, 132

use, 76
user-defined compiler diagnostics, 184
user-defined compiler errors, 184
user-defined compiler warnings, 184
user-defined constructors, 114

values
domains

domain maps for, 214
sparse, 154

subdomains
simple, 153
sparse, 154

tuple, 101
variable declarations

remote, 211
variables, 35

configuration, 40
declarations, 35

multiple, 37
default initialization, 36
default values, 36
in classes or records, 181
local, 39
module level, 38
records, 124

void, 29

waitFor (atomic var), 193
when, 71
where, 183

implicit, 177
while, 72
while loops, 72
white space, 22
whole array assignment, 204
write (atomic var), 193
writeEF (sync var), 190
writeFF (sync var), 191
writeXF (sync var), 191

xor (atomic var), 193

yield, 172

zipper iteration, 74

	Title
	Table of Contents
	Scope
	Notation
	Organization
	Acknowledgments
	Language Overview
	Guiding Principles
	General Parallel Programming
	Locality-Aware Programming
	Object-Oriented Programming
	Generic Programming

	Getting Started

	Lexical Structure
	Comments
	White Space
	Case Sensitivity
	Tokens
	Identifiers
	Keywords
	Literals
	Operators and Punctuation
	Grouping Tokens

	Types
	Primitive Types
	The Void Type
	The Bool Type
	Signed and Unsigned Integral Types
	Real Types
	Imaginary Types
	Complex Types
	The String Type

	Enumerated Types
	Structured Types
	Class Types
	Record Types
	Union Types
	Tuple Types

	Data Parallel Types
	Range Types
	Domain, Array, and Index Types

	Synchronization Types
	Type Aliases

	Variables
	Variable Declarations
	Default Initialization
	Deferred Initialization
	Local Type Inference
	Multiple Variable Declarations

	Module Level Variables
	Local Variables
	Constants
	Compile-Time Constants
	Runtime Constants

	Configuration Variables

	Conversions
	Implicit Conversions
	Implicit Numeric, Bool and Enumeration Conversions
	Implicit Compile-Time Constant Conversions
	Implicit Statement Bool Conversions

	Explicit Conversions
	Explicit Numeric Conversions
	Explicit Tuple to Complex Conversion
	Explicit Enumeration Conversions
	Explicit Class Conversions
	Explicit Record Conversions

	Expressions
	Literal Expressions
	Variable Expressions
	Enumeration Constant Expression
	Parenthesized Expressions
	Call Expressions
	Indexing Expressions
	Member Access Expressions
	The Query Expression
	Casts
	LValue Expressions
	Precedence and Associativity
	Operator Expressions
	Arithmetic Operators
	Unary Plus Operators
	Unary Minus Operators
	Addition Operators
	Subtraction Operators
	Multiplication Operators
	Division Operators
	Modulus Operators
	Exponentiation Operators

	Bitwise Operators
	Bitwise Complement Operators
	Bitwise And Operators
	Bitwise Or Operators
	Bitwise Xor Operators

	Shift Operators
	Logical Operators
	The Logical Negation Operator
	The Logical And Operator
	The Logical Or Operator

	Relational Operators
	Ordered Comparison Operators
	Equality Comparison Operators

	Miscellaneous Operators
	The String Concatenation Operator
	The By Operator
	The Range Count Operator

	Let Expressions
	Conditional Expressions
	For Expressions
	Filtering Predicates in For Expressions

	Statements
	Blocks
	Expression Statements
	Assignment Statements
	The Swap Statement
	The I/O Statement
	The Conditional Statement
	The Select Statement
	The While Do and Do While Loops
	The For Loop
	Zipper Iteration
	Parameter For Loops

	The Break, Continue and Label Statements
	The Use Statement
	The Empty Statement

	Modules
	Module Definitions
	Files and Implicit Modules
	Nested Modules
	Access of Module Contents
	Visibility Of A Module
	Visibility Of A Module's Symbols
	Explicit Naming
	Using Modules
	Module Initialization

	Program Execution
	The main Function
	Module Initialization Order

	Procedures
	Function Calls
	Procedure Definitions
	Functions without Parentheses
	Formal Arguments
	Named Arguments
	Default Values

	Argument Intents
	Concrete Intents
	The In Intent
	The Out Intent
	The Inout Intent
	The Ref Intent
	The Const In Intent
	The Const Ref Intent
	Summary of Concrete Intents

	Abstract Intents
	The Const Intent
	The Default Intent

	Variable Number of Arguments
	Return Intents
	The Ref Return Intent
	The Param Return Intent
	The Type Return Intent

	The Return Statement
	Return Types
	Explicit Return Types
	Implicit Return Types

	Nested Functions
	Function and Operator Overloading
	Function Resolution
	Determining Visible Functions
	Determining Candidate Functions
	Valid Mapping
	Legal Argument Mapping

	Determining More Specific Functions

	Tuples
	Tuple Types
	Tuple Values
	Tuple Indexing
	Iteration over Tuples
	Tuple Assignment
	Tuple Destructuring
	Splitting a Tuple with Assignment
	Splitting a Tuple in a Declaration
	Splitting a Tuple into Multiple Indices of a Loop
	Splitting a Tuple into Multiple Formal Arguments in a Function Call
	Splitting a Tuple via Tuple Expansion

	Tuple Operators
	Unary Operators
	Binary Operators
	Relational Operators

	Predefined Functions and Methods on Tuples

	Classes
	Class Declarations
	Class Types
	Class Values
	Class Fields
	Class Methods
	Nested Classes

	Inheritance
	The object Class
	Accessing Base Class Fields
	Derived Class Constructors
	Shadowing Base Class Fields
	Overriding Base Class Methods
	Inheriting from Multiple Classes
	The nil Value
	Default Initialization

	Class Constructors
	User-Defined Constructors
	The Compiler-Generated Constructor

	Field Accesses
	Variable Getter Methods

	Class Method Calls
	The Method Receiver and the this Argument

	The this Method
	The these Method
	Common Operations
	Class Assignment
	Implicit Class Conversions

	Dynamic Memory Management
	Class Destructor

	Records
	Record Declarations
	Record Types
	Record Fields
	Record Methods
	Nested Record Types

	Record Inheritance
	Shadowing Base Record Fields
	Overriding Base Record Methods

	Record Variable Declarations
	Storage Allocation
	Record Initialization
	Record Destructor

	Record Arguments
	Record Field Access
	Field Getter Methods

	Record Method Calls
	The Method Receiver and the this Argument

	The this Method
	The these Method
	Common Operations
	Record Assignment
	Default Comparison Operators
	Implicit Record Conversions

	Differences between Classes and Records
	Declarations
	Storage Allocation
	Assignment
	Arguments
	Inheritance
	Shadowing and Overriding
	No nil Value
	The delete operator
	Default Comparison Operators

	Unions
	Union Types
	Union Declarations
	Union Fields

	Union Assignment

	Ranges
	Range Concepts
	Range Types
	Range Values
	Range Literals
	Default Values

	Common Operations
	Range Assignment
	Range Comparisons
	Iterating over Ranges
	Iterating over Unbounded Ranges in Zippered Iterations

	Range Operators
	By Operator
	Align Operator
	Count Operator
	Arithmetic Operators
	Range Slicing

	Predefined Functions on Ranges
	Range Type Parameters
	Range Properties
	Other Queries
	Range Transformations

	Domains
	Domain Overview
	Base Domain Types and Values
	Rectangular Domains
	Rectangular Domain Types
	Rectangular Domain Values

	Associative Domains
	Associative Domain Types
	Associative Domain Values

	Simple Subdomain Types and Values
	Simple Subdomain Types
	Simple Subdomain Values

	Sparse Subdomain Types and Values
	Sparse Subdomain Types
	Sparse Subdomain Values

	Domain Index Types
	Iteration Over Domains
	Domains as Arguments
	Formal Arguments of Domain Type
	Domain Promotion of Scalar Functions

	Domain Operations
	Domain Assignment
	Domain Striding
	Domain Slicing
	Domain-based Slicing
	Range-based Slicing
	Rank-Change Slicing

	Count Operator
	Adding and Removing Domain Indices

	Predefined Methods on Domains
	Methods on All Domain Types
	Methods on Regular Domains
	Methods on Irregular Domains

	Arrays
	Array Types
	Array Values
	Rectangular Array Literals
	Associative Array Literals
	Runtime Representation of Array Values

	Array Indexing
	Rectangular Array Indexing
	Associative Array Indexing

	Iteration over Arrays
	Array Assignment
	Array Slicing
	Rectangular Array Slicing
	Rectangular Array Slicing with a Rank Change

	Count Operator
	Array Arguments to Functions
	Array Promotion of Scalar Functions

	Array Aliases
	Sparse Arrays
	Association of Arrays to Domains
	Predefined Functions and Methods on Arrays

	Iterators
	Iterator Definitions
	The Yield Statement
	Iterator Calls
	Iterators in For and Forall Loops
	Iterators as Arrays
	Iterators and Generics
	Recursive Iterators

	Parallel Iterators

	Generics
	Generic Functions
	Formal Type Arguments
	Formal Parameter Arguments
	Formal Arguments without Types
	Formal Arguments with Queried Types
	Formal Arguments of Generic Type
	Formal Arguments of Generic Array Types

	Function Visibility in Generic Functions
	Generic Types
	Type Aliases in Generic Types
	Parameters in Generic Types
	Fields without Types
	The Type Constructor
	Generic Methods
	The Compiler-Generated Constructor
	User-Defined Constructors

	Where Expressions
	User-Defined Compiler Diagnostics
	Example: A Generic Stack

	Input and Output
	See Library Documentation

	Task Parallelism and Synchronization
	Tasks and Task Parallelism
	The Begin Statement
	Synchronization Variables
	Predefined Single and Sync Methods

	Atomic Variables
	Predefined Atomic Methods

	The Cobegin Statement
	The Coforall Loop
	Task Intents
	The Sync Statement
	The Serial Statement
	Atomic Statements

	Data Parallelism
	The Forall Statement
	Syntax
	Execution and Serializability
	Zipper Iteration

	The Forall Expression
	Syntax
	Execution and Serializability
	Zipper Iteration
	Filtering Predicates in Forall Expressions

	Forall Intents
	Promotion
	Zipper Promotion
	Whole Array Assignment
	Evaluation Order

	Reductions and Scans
	Reduction Expressions
	Scan Expressions

	Configuration Constants for Default Data Parallelism

	Locales
	Locales
	Locale Types
	Locale Methods
	The Predefined Locales Array
	The here Locale
	Querying the Locale of an Expression

	The On Statement
	Remote Variable Declarations

	Domain Maps
	Domain Maps for Domain Types
	Domain Maps for Domain Values
	Domain Maps for Arrays
	Domain Maps Are Not Retained upon Domain Assignment

	User-Defined Reductions and Scans
	Memory Consistency Model
	Sequential Consistency for Data-Race-Free Programs
	Program Order
	Memory Order

	Non-Sequentially Consistent Atomic Operations
	Relaxed Atomic Operations

	Unordered Memory Operations
	Unordered Memory Operations Examples

	Examples

	Interoperability
	Interoperability Overview
	Calling External Functions
	Calling Chapel Functions

	Shared Language Elements
	Shared Types
	Referring to Standard C Types
	Referring to External C Types
	Referring to External C Structs
	Referring to External Structs Through Pointers
	Opaque Types

	Shared Data
	Shared Procedures
	Calling External C Functions

	Calling Chapel Procedures Externally
	Argument Passing

	Collected Lexical and Syntax Productions
	Alphabetical Lexical Productions
	Alphabetical Syntax Productions
	Depth-First Lexical Productions
	Depth-First Syntax Productions

	Index

