Chapel Language Specification 0.796
October 21, 2010
Cray Inc

901 Fifth Avenue, Suite 1000
Seattle, WA 98164

Chapel Language Specification

Contents
2_Notation|
[3 Organization|
4 Acknowledgments|
|5 Language Overview|
5.1 Guiding Principles| L
5.1.1 General Parallel Programming|
5.1.2 Locality-Aware Programming|
[5.1.3 Object-Oriented Programming|,
5.1.4 Generic Programming| e
5.2 Getting Started| L
6 Lexical Structure
6.1 Comments|
6.2 White Space| L
6.3 Case Sensitivity| e e e e e e e e
6.4 Tokensl e e
0641 Identifiers|
6.4.2 Keywords|
643 Literals| e
16.4.4 Operators and Punctuation| L L L L
6.4.5 Grouping Tokens|
[7_Types|
[7.1 Primitive Types| e
[7.1.1 The Bool Type|l
7.1.2 Signed and Unsigned Integral Types|,
[7.1.3 Real Types| e
[7.1.4 TImagimary Types| e
[7.1.5 Complex Types|
[7.1.6 ~ The String Type|.
7.2 Enumerated Types|
173 Locality Types| o o
[7.4 Structured Types| o o o e e e
[74.1 Class'Types| o e e
[74.2 Record Types| o
1743 Union Types| e
[7.4.4 Tuple'Types|. e
7.5 DataParallel Types|
[7.5.1 Range Types|
[7.5.2 Domain, Array, and Index Types|

[7.6 Type Aliases| o L e

O O &

10
10
11
11

13
13
13
13
13
14
14
15
17
17

ii

Chapel Language Specification

8 Variables! 25
1 Varable Declarations] . . - - - .« v v oo e 25
8.1.1 Default Imtializationl L oo 26

8.1.2 Local Type Inference| L 26

[8.1.3 Multiple Variable Declarations|, 27

82 Global Variables| 28
83 Tocal Variables] 28
8.4 Constants|. e 28
8.4.1 Compile-Time Constants| 28

4.2 Runtim NSEANES| e e e e e e 29

8.5 Configuration Variables| L 29
9 Conversions! 31
9.1 Implicit Conversions|. L L 31
[0-TT Tmplicit Bool and Numeric CONVersions|o v v v v v v 31

9.1.2 Implicit Enumeration Conversions| 32
[O13 Tmplicit Class CONVETSIONS| . « .« . v v v v v v e et e e e e e e e e 32

9.1.4 Implicit Record Conversions| 32
[0-T5 Tmplicit Compile-Time Constant CONVErsions|« oo ... 32

[9.1.6 Implicit Statement Bool Conversions| 33

02 Explicit CONVErsions|. v v v e e e e 33
9.2.1 Explicit Numeric Conversions| 33

9.2.2 Explicit Enumeration Conversions| 33

9.2.3 Explicit Class Conversions| e 33

9.2.4 Explicit Record Conversions| 33

10 Expressions 35
[10.1 Literal EXpressions| e e e e 35
110.2 Variable Expressions|. 35
|10.3 Enumeration Constant Expression|. 36
110.4 Parenthesized Expressions|. o oL 36
[10.5 Call EXpressions|o v it ittt s e e e e e e e e e 36
110.6 Indexing Expressions| 36
[10.7 Member Access Expressions| e 36
110.8 The Query Expression| 37
.. 37

[110.10 LValue Expressions| o e 38
|10.11 Precedence and Associativity| L 38
[10.12 Operator Expressions| e 41
[10.13 Arithmetic Operators| v i v v it e e e e e e e e 41
[10.13.1 Unary Plus Operators|. it e 41
[10.13.2 Unary Minus Operators|. 42
[10.13.3 Addition Operators| o e e e 42
[10.13.4 Subtraction Operators| v i it 43
[10.13.5 Multiplication Operators| o e 43
[10.13.6 Division Operators| e 44
[10.13.7 Modulus Operators| 45
[10.13.8 Exponentiation Operators| 45
[10.14 Bitwise Operators| L 46
[10.14.1 Bitwise Complement Operators| 46
[10.14.2 Bitwise And Operators| 46

Chapel Language Specification

110.14.3 Bitwise Or Operators| oo it e
110.14.4 Bitwise Xor Operators| o v v v it e e
[10.15 Shift Operators|. o e
[10.16 Logical Operators| e e e e
[10.16.1 The Logical Negation Operator]
110.16.2 The Logical And Operator|
110.16.3 The Logical Or Operator]
[10.17 Relational Operators|
[10.17.1 Ordered Comparison Operators| oo v v v v v v v v v ..
110.17.2 Equality Comparison Operators|
|110.18 Miscellaneous Operators| e
[10.18.1 The String Concatenation Operator{
[10.18.2 The By Operator]
[10.18.3 The Range Count Operator]
110.19 Let Expressions| o o o
110.20 Conditional Expressions|.
[10.21 For Expressions| o e

|10.21.1 Filtering Predicates in For Expressions|.

I11.2° Expression Statements|. L Lo
I11.3 Assignment Statements| e e e e e
[11.4 The Swap Statement| e

I11.7 The While and Do While Loops|. o o 0 L.
I11.8 The For Loop|
[11.8.1 Zipper Iteration| L

[11.8.3 Parameter For Loops|
111.9 The Label, Break, and Continue Statements|

|L11.11 The Type Select Statement|
|11.12 The Empty Statement| e

12 Modules|

il

47
47
47
48
48
48
49
49
49
50
51
51
51
51
52
52
52
53

55
55
56
56
57
57
58
58
59
60
60
60
61
61
62
63

v Chapel Language Specification

I3 Functions| 71
3.1 Function Calls| e 71
[13.2 Function Definitionsl 71
[13.3 Functions without Parentheses| L . 73
[13.4 Formal Arguments|. e e 73

[13.4.1 Named Arguments| e e e 73
1342 DefaultValues| 74
ME35INENM - - o o oot e e 74
[13.5.1 TheBlankIntentl L 74
332 Thelndntend o i 75
1353 TheOutlntent] 75
354 ThelnoutIntentl. 75
13.6 Variable Length Argument Lists|. 75
37 Varable Functions]« « v vt vt e e 76
[13.8 Parameter Functions| 77
113.9 Type Functions|. 77
[13.10 The Return Statementl 78
[13.11 Return Types|. o o e e e e 78
I13.11.1 Explicit Return Types|. o 78
[13.11.2 Implicit Return Types|. 78
|13.12 Function Overloading| 79
13.1 Functions| 79
[13.14 Function Resolution| 79
[13.14.1 Determining Visible Functions| 0. 80
|13.14.2 Determining Candidate Functions| 80
|13.14.3 Determining More Specific Functions| 80

[T Tupleg 83
[14.1 Tuple Types| o o e e e e e 83
[14.2 Tuple Values| 84
[14.3 Tuple Assignment] e e e e e e 85
|[14.4 Tuple Destructuring| 85

|14.4.1 Splitting a Tuple with Assignment| 85
|14.4.2 Splitting a Tuple into Multiple Variables| 86
|14.4.3 Splitting a Tuple into Mutiple Indices| 87
|14.4.4 Splitting a Tuple into Multiple Formal Arguments|. 87
|14.4.5 Splitting a Tuple via Tuple Expansion| 88
[14.5 Tuple Indexing|. 89
[14.6 Tuple Operators| e e e e e 89
[14.6.1 Unary Operators| e 89
[14.6.2 Binary Operators| i i e e e e 89
[14.6.3 Relational Operators| e 90
|14.7 Predefined Functions and Methods on Tuples|. 90

I5_Classes 91
[15.1 Class Types| e 91
[15.2 Class Declarationsl 91
[15.3 Class Assignment]| ot i e e e e e 92
154 ClassFields| 92

1541 Class Field Accesses| 92

Chapel Language Specification

115.8.4 Shadowing Base Class Fields|.
[15.8.5 Overriding Base Class Methods|
[15.8.6 Inheriting from Multiple Classes|

15,10 The nil Valuel e

16 Records!

16.1 Diafferen n Cl nd Records|.

[17.3 Union Assignment| L
|I1'7.4 The Type Select Statement and Unions|

[18.1 Range Types| o e
|18.2 Literal Range Values|. L
|118.2.1 Bounded Range Literals|
|18.2.2 Unbounded Range Literals|
[18.3 Range Assignment|. e
I18.4 Range Operators| e
[18.4.1 By Operator]. e e e
[18.4.2 Count Operator] o v i ittt e e e e
|118.4.3 Arithmetic Operators| e
[18.4.4 Range Slicing| e e
|18.5 Predefined Functions and Methods on Ranges|

vi Chapel Language Specification

19 Domains 111
(19.1 Domain Taxonomy| 111
[[0.1.17 Root Domains and Subdomainsl v v i 111
119.1.2 Regular and Irregular Domain Types|. 111

119.2 Domain Characteristicsl o o e e e e e e 112
[19.2.1 Domain Types| e e e 112
022 DomainValues| 112
119.2.3 Domain Identity] L 112
[19.2.4 Runtime Representation of Domain Values| 112

119.3 Root Domain Types| 113
[19.3.1 Arnthmetic Domain Types| 113
119.3.2 Associative Domain Types| L 113
119.3.3 Opaque Domain Types| oL 113

[19.4 Root Domain Values|. 114
19.4.1 Anthmetic Domain Values| 114
[19.4.2 Associative Domain Valuesl. oo 115
119.4.3 Opaque Domain Values|. oL 115

1 MAINS| . . . o v e 115
[19.5.1 Subdomain Types|. 116

M08 Sparse SUBAOMAIS] . - - « « « « « + e e e e e e 116
[19.6.1 Sparse Domain Types|. e 116
19.6.2 Sparse Domain Values| o oo oL 116

[I077 Tndex Types| o e 117
[19.8 Domain ASSIZNMent] oL e e e e e e e 117
[19.9 Domain Index Set Manipulation|. 118
9. uerying Index Set Membership|o oo oL 118

119.9.2 Clearing a Domain’s Index Setf 118
[19.9.3 Adding and Removing Domain Indices| 118
[[0.10 ITteration over DOMAINS| - « - « « « « « v v o vt ee e et e e e 118
19.11 Slicing] o e 118
[I19.11.1 Domain-based Slicing| 119
[[OTT:2 Range-based STicing] v v vt it e e 119
[19.11.3 Rank-Change Slicing] i 119
[19.12 Domain Arguments to Functions| 119
.12.1 Formal Arguments of DomainType| 120

[19.12.2 Domain Promotion of Scalar Functions| 120

[(19.13 Domain Operators| 120
[[OI3T By Operator]. v v v vt e e e e e e e 120
[19.14 Predefined Functions and Methods on Domainsl 120
(19.14.1 Predefined Functions and Methods on Anthmetic Domains| 121

20 Arrays 123
0.1 Array Types| o o o e 123
[20.2 Array Values| 123
[20.2.T Runtime Representation of Array Values|.o oot oo n .. 124

20.3 Array Indexing|. L 124
[20.3.1 Arithmetic Array Indexing| 0oL 124

P04 Teoration OVer ATTAYS| - - -+« + « « « o e e e e 125
[20.5 Array ASSIZNMENt|o e e e e e e e e e e e e 125
[20.6 Array Slicing|. 126

[20.6.1 Arithmetic Array SHCING| v . v v e et e e e 126

Chapel Language Specification

20.7 Array Arguments to Functions| Lo L oo
[20.7.1 Formal Arguments of Arithmetic Array Type]
[20.7.2 " Array Promotion of Scalar Functions|
20.7.3 Array Aliases|

[20.8 Sparse Arrays| oL e e e e e

[20.9 Association of Arraysto Domains|. oo oL

[20.10 Predefined Functions and Methods on Arrays|.

21 Tterators

[21.3.1 Tterators in For and Forall Loops|
[21.3.2 Tterators as AIrays| e e e e e

22 Generics

22.1.1 Formal Type Arguments|
22.1.2 Formal Parameter Arguments|
22.1.3 Formal Arguments without Types|
22.1.4 Formal Arguments with Queried Types|
22.1.5 Formal Arguments of Generic Type|
22.1.6 Formal Arguments of Generic Array Types|
[22.2 Function Visibility in Generic Functions| 0 0L
22.3 Generic 'Types| e
22.3.1 Type Aliases in Generic Types|
[22.3.2 Parameters in Generic Types|
22.3.3 Fields without Types|
22.3.4 The Type Constructor]. v i ittt e

[22.4 Where EXpressions| e e e
22.5 User-Defined Compiler Diagnostics|.
[22.6 Example: A Generic Stack|

23 Input and Output|
23.1 Thefiletype| o o e e e e
123.2 Standard files stdout, stdin, and stderr].
123.3 'The write, writeln, read, and read{n functions|

vii

127
127
127
128
128
129
130

131
131
131
131
131
132
132
132
132

133
133
133
134
134
134
135
136
136
137
138
139
139
140
140
140
141
141
142
143

viii Chapel Language Specification

[24 Task Parallelism and Synchronization| 149
24.1 Unstructured Task-Parallel Constructs| 149
[24.1.1 The Begin Statement], 149

4 > Vartables| 150

4T3 Single Varables|. 151
|2§ I E Eregeﬁneg Smg eand Sync Methods|.o 151

24.2 Structured Task-Parallel Constructs 153
24.2.1 The Cobegin Statement|. i vt 153
[24.2.2 The Coforall Loop| 153

4.2, edSync Statement] L. L e e e 154

D424 The Serfal Statementl v vttt e e e 155

24.3 _Atomic Statementsl. L L 156
24.4 Memory Consistency Model|. o oo oo 157
25 Data Parallelisml 159

5.1 The Forall Statementl. e 159
... 159
[25.1.2 Execution and Serializability| L. 159
R5.1.3 Parallelisml e e 160
[25.1.4 Zipper lteration| 160
D515 Tensor Product Tteration] v v v oo v e e e e e e e e 160

[25.2 The Forall Expression| oo 160
52T Syntax]. 160
[25.2.2 Execution, Serializability, and Parallelism| 161
[25.2.3 Hiltering Predicates in Forall Expressions| 161

|Z§§ E bole Array Assignment| 161

B34 Promotionl« . v ov e e e 161
[25.4.1 Zipper Promotion| oo 162
D235.42 Tensor Product Promotion] . .« « v v v oo v e e e e e e e e 162

255 ReductionsandScansl 163
[25.5.1 Reduction Expressions| 163
................................... 164

5.6 Data Parallelism and Evaluation Order] oo oo vo oo e 164

257 Knobs for Default Data Parallelisml| 165

26 Locales 167

26.1 _Toocales|. e e e 167
[26.1.1 Locale Types| 167
26.1.2 TocaleMethodsl. 167

26.2 The On Statement

D Map 171
.1 Domain Map Types| e 171
...................................... 171
................................. 172
. efault Mapped Domains and Arrays|o oo oL 172

28 User-Defined Reductions and Scans| 173

Chapel Language Specification

[29 User-Defined Domain Maps|

..
...
3023 Random|.
30.2.4 Searchl. e
30.2.5 Sortl e e e e
30.2.6 _Timel e e

131.2 The Standard Cyclic Distribution| L.

32 Standard Layouts|

[A_ Collected Lexical and Syntax Productions|

A1 Alphabetical Loxical PIOQUCHONS] - - . « « « « « v o oo oo
[A2_ Alphabetical Syntax ProdUCTIONS] . . . - « -« « « o oo oo
[A3 Depth-First Lexical Productions]
[A4” Depth-First Syntax Productions]

Index

iX

175

177
177
177
181
182
182
182
183
183
184
185
185

187
187
188

191

193
193
194
206
208

221

Chapel Language Specification

Scope 1
1 Scope

Chapel is a new parallel programming language that is under development at Cray Inc. in the context of the
DARPA High Productivity Computing Systems initiative.

This document is ultimately intended to be the definitive specification of the Chapel language. The current
draft is a work-in-progress and therefore incomplete.

Chapel Language Specification

Notation 3

2 Notation

Special notations are used in this specification to denote Chapel code and to denote Chapel syntax.

Chapel code is represented with a fixed-width font where keywords are bold and comments are italicized.

Example.
for i in D do // iterate over domain D
writeln (i) ; // output indices in D

Chapel syntax is represented with standard syntax notation in which productions define the syntax of the
language. A production is defined in terms of non-terminal (italicized) and terminal (non-italicized) symbols.
The complete syntax defines all of the non-terminal symbols in terms of one another and terminal symbols.

A definition of a non-terminal symbol is a multi-line construct. The first line shows the name of the non-
terminal that is being defined followed by a colon. The next lines before an empty line define the alternative
productions to define the non-terminal.

Example. The production

bool-literal:
true
false

defines bool-literal to be either the symbol true or false.

In the event that a single line of a definition needs to break across multiple lines of text, more indentation is
used to indicate that it is a continuation of the same alternative production.

As a short-hand for cases where there are many alternatives that define one symbol, the first line of the
definition of the non-terminal may be followed by “one of” to indicate that the single line in the production
defines alternatives for each symbol.

Example. The production

unary—-operator: one of
+-7!

is equivalent to

unary-operator:
+

!

As a short-hand to indicate an optional symbol in the definition of a production, the subscript “opt” is suffixed
to the symbol.

Example. The production

formal:
formal-tag identifier formal-type,,. default—expression,:

is equivalent to

formal:
formal-tag identifier formal—-type default-expression
formal-tag identifier formal-type
formal-tag identifier default-expression
formal-tag identifier

Chapel Language Specification

Organization 5

3 Organization

This specification is organized as follows:

e Chapter[I] Scope, describes the scope of this specification.

e Chapter 2] Notation, introduces the notation that is used throughout this specification.

e Chapter [3] Organization, describes the contents of each of the chapters within this specification.
e Chapter[d] Acknowledgments, offers a note of thanks to people and projects.

e Chapter[5] Language Overview, describes Chapel at a high level.

e Chapter[6] Lexical Structure, describes the lexical components of Chapel.

e Chapter[7] Types, describes the types in Chapel and defines the primitive and enumerated types.
e Chapter|[8] Variables, describes variables and constants in Chapel.

e Chapter [} Conversions, describes the legal implicit and explicit conversions allowed between values
of different types. Chapel does not allow for user-defined conversions.

e Chapter[I0} Expressions, describes the non-parallel expressions in Chapel.
e Chapter[IT} Statements, describes the non-parallel statements in Chapel.

e Chapter [12] Modules, describes modules in Chapel., Chapel modules allow for name space manage-
ment.

° Chapter Functions, describes functions and function resolution in Chapel.
e Chapter[T4] Tuples, describes tuples in Chapel.

e Chapter[I5] Classes, describes reference classes in Chapel.

e Chapter[I6] Records, describes records or value classes in Chapel.

e Chapter[I7} Unions, describes unions in Chapel.

e Chapter[I8] Ranges, describes ranges in Chapel.

e Chapter Domains, describes domains in Chapel. Chapel domains are first-class index sets that
support the description of iteration spaces, array sizes and shapes, and sets of indices.

e Chapter[20] Arrays, describes arrays in Chapel. Chapel arrays are more general than in most languages
including support for multidimensional, sparse, associative, and unstructured arrays.

. Chapter@ Iterators, describes iterator functions.
e Chapter[22] Generics, describes Chapel’s support for generic functions and types.

e Chapter Input and Output, describes support for input and output in Chapel, including file input
and output..

e Chapter [24] Task Parallelism and Synchronization, describes task-parallel expressions and statements
in Chapel as well as synchronization constructs, atomic sections, and memory consistency.

Chapel Language Specification

Chapter [25] Data Parallelism, describes data-parallel expressions and statements in Chapel including
reductions and scans, whole array assignment, and promotion.

Chapter Locales, describes constructs for managing locality and executing Chapel programs on
distributed-memory systems.

Chapter[27] Domain Maps, describes Chapel’s domain map construct for defining the layout of domains
and arrays within a single locale and/or the distribution of domains and arrays across multiple locales.

Chapter [28] User-Defined Reductions and Scans, describes how Chapel programmers can define their
own reduction and scan operators.

Chapter 29] User-Defined Domain Maps, describes how Chapel programmers can define their own
domain maps to implement domains and arrays.

Chapter 30} Standard Modules, describes the standard modules that are provided with the Chapel lan-
guage.

Chapter [31] Standard Distributions, describes the standard distributions (multi-locale domain maps)
that are provided with the Chapel language.

Chapter Standard Layouts, describes the standard layouts (single locale domain maps) that are
provided with the Chapel language.

Appendix[A] Collected Lexical and Syntax Productions, contains the syntax productions listed through-
out this specification in both alphabetical and depth-first order.

Acknowledgments 7

4 Acknowledgments

The following people have contributed to the design of the Chapel language: Robert Bocchino, David
Callahan, Bradford Chamberlain, Sung-Eun Choi, Steven Deitz, Roxana Diaconescu, James Dinan, Samuel
Figueroa, Shannon Hoffswell, Mary Beth Hribar, David Iten, Mark James, Mackale Joyner, Jacob Nelson,
John Plevyak, Lee Prokowich, Albert Sidelnik, Andy Stone, Greg Titus, Wayne Wong, and Hans Zima.

Chapel is a derivative of a number of parallel and distributed languages and takes ideas directly from them,
especially the MTA extensions of C, HPF, and ZPL.

Chapel also takes many serial programming ideas from many other programming languages, especially C#,
C++, Java, Fortran, and Ada.

The preparation of this specification was made easier and the final result greatly improved because of the good
work that went in to the creation of other language standards and specifications, in particular the specifications
of C# and C.

Chapel Language Specification

Language Overview 9

5 Language Overview

Chapel is a new programming language under development at Cray Inc. as part of the DARPA High Produc-
tivity Computing Systems (HPCS) program to improve the productivity of parallel programmers.

This section provides a brief overview of the Chapel language by discussing first the guiding principles behind
the design of the language and second how to get started with Chapel.

5.1 Guiding Principles
The following four principles guided the design of Chapel:

1. General parallel programming
2. Locality-aware programming
3. Object-oriented programming

4. Generic programming

The first two principles were motivated by a desire to support general, performance-oriented parallel program-
ming through high-level abstractions. The second two principles were motivated by a desire to narrow the
gulf between high-performance parallel programming languages and mainstream programming and scripting
languages.

5.1.1 General Parallel Programming

First and foremost, Chapel is designed to support general parallel programming through the use of high-level
language abstractions. Chapel supports a global-view programming model that raises the level of abstraction
of expressing both data and control flow when compared to parallel programming models currently used in
production. A global-view programming model is best defined in terms of global-view data structures and a
global view of control.

Global-view data structures are arrays and other data aggregates whose sizes and indices are expressed glob-
ally even though their implementations may distribute them across the locales of a parallel system. A locale
is an abstraction of a unit of uniform memory access on a target architecture. That is, within a locale, all
threads exhibit similar access times to any specific memory address. For example, a locale in a commodity
cluster could be defined to be a single core of a processor, a multicore processor or an SMP node of multiple
processors.

Such a global view of data contrasts with most parallel languages which tend to require users to partition
distributed data aggregates into per-processor chunks either manually or using language abstractions. As
a simple example, consider creating a 0-based vector with n elements distributed between p locales. A
language like Chapel that supports global-view data structures allows the user to declare the array to contain
n elements and to refer to the array using the indices 0...7n — 1. In contrast, most traditional approaches
require the user to declare the array as p chunks of n/p elements each and to specify and manage inter-
processor communication and synchronization explicitly (and the details can be messy if p does not divide

10 Chapel Language Specification

n evenly). Moreover, the chunks are typically accessed using local indices on each processor (e.g., 0..n/p),
requiring the user to explicitly translate between logical indices and those used by the implementation.

A global view of control means that a user’s program commences execution with a single logical thread of
control and then introduces additional parallelism through the use of certain language concepts. All paral-
lelism in Chapel is implemented via multithreading, though these threads are created via high-level language
concepts and managed by the compiler and runtime, rather than through explicit fork/join-style program-
ming. An impact of this approach is that Chapel can express parallelism that is more general than the Single
Program, Multiple Data (SPMD) model that today’s most common parallel programming approaches use as
the basis for their programming and execution models. Chapel’s general support for parallelism does not
preclude users from coding in an SPMD style if they wish.

Supporting general parallel programming also means targeting a broad range of parallel architectures. Chapel
is designed to target a wide spectrum of HPC hardware including clusters of commodity processors and
SMPs; vector, multithreading, and multicore processors; custom vendor architectures; distributed-memory,
shared-memory, and shared address space architectures; and networks of any topology. Our portability goal
is to have any legal Chapel program run correctly on all of these architectures, and for Chapel programs that
express parallelism in an architecturally-neutral way to perform reasonably on all of them. Naturally, Chapel
programmers can tune their codes to more closely match a particular machine’s characteristics, though doing
so may cause the program to be a poorer match for other architectures.

5.1.2 Locality-Aware Programming

A second principle in Chapel is to allow the user to optionally and incrementally specify where data and com-
putation should be placed on the physical machine. Such control over program locality is essential to achieve
scalable performance on large machine sizes. Such control contrasts with shared-memory programming
models which present the user with a flat memory model. It also contrasts with SPMD-based programming
models in which such details are explicitly specified by the programmer on a process-by-process basis via
the multiple cooperating program instances.

5.1.3 Object-Oriented Programming

A third principle in Chapel is support for object-oriented programming. Object-oriented programming has
been instrumental in raising productivity in the mainstream programming community due to its encapsulation
of related data and functions into a single software component, its support for specialization and reuse, and
its use as a clean mechanism for defining and implementing interfaces. Chapel supports objects in order to
make these benefits available in a parallel language setting, and to provide a familiar paradigm for members
of the mainstream programming community. Chapel supports traditional reference-based classes as well as
value classes that are assigned and passed by value.

Chapel does not require the programmer to use an object-oriented style in their code, so that traditional
Fortran and C programmers in the HPC community need not adopt a new programming paradigm in order
to use Chapel effectively. Many of Chapel’s standard library capabilities are implemented using objects, so
such programmers may need to utilize a method-invocation style of syntax to use these capabilities. However,
using such libraries does not necessitate broader adoption of object-oriented methodologies.

Language Overview 11

5.1.4 Generic Programming

Chapel’s fourth principle is support for generic programming and polymorphism. These features allow code
to be written in a style that is generic across types, making it applicable to variables of multiple types, sizes,
and precisions. The goal of these features is to support exploratory programming as in popular interpreted
and scripting languages, and to support code reuse by allowing algorithms to be expressed without explicitly
replicating them for each possible type. This flexibility at the source level is implemented by having the
compiler create versions of the code for each required type signature rather than by relying on dynamic
typing which would result in unacceptable runtime overheads for the HPC community.

5.2 Getting Started

A Chapel version of the standard “hello, world” computation is as follows:

writeln ("hello, world");

This complete Chapel program contains a single line of code that makes a call to the standard writeln
function.

In general, Chapel programs define code using one or more named modules, each of which supports top-level
initialization code that is invoked the first time the module is used. Programs also define a single entry point
via a function named main. To facilitate exploratory programming, Chapel allows programmers to define
modules using files rather than an explicit module declaration and to omit the program entry point when the
program only has a single user module.

Chapel code is stored in files with the extension .chpl. Assuming the “hello, world” program is stored
in a file called hello.chpl, it would define a single user module, hello, whose name is taken from the
filename. Since the file defines a module, the top-level code in the file defines the module’s initialization
code. And since the program is composed of the single hello module, the main function is omitted. Thus,
when the program is executed, the single hello module will be initialized by executing its top-level code
thus invoking the call to the writeln function. Modules are described in more detail in

To compile and run the “hello world” program, execute the following commands at the system prompt:

> chpl hello.chpl
> ./a.out

The following output will be printed to the console:

hello, world

12

Chapel Language Specification

Lexical Structure 13

6 Lexical Structure

This section describes the lexical components of Chapel programs. Note that the productions in this section
are lexical; the components are not delimited by white space.

6.1 Comments

Two forms of comments are supported. All text following the consecutive characters // and before the end
of the line is in a comment. All text following the consecutive characters /+ and before the consecutive
characters * / is in a comment.

Comments, including the characters that delimit them, do not affect the behavior of the program (except in
delimiting tokens). If the delimiters that start the comments appear within a string literal, they do not start a
comment but rather are part of the string literal.

Example. The following program makes use of both forms of comment:

/*
* main function
*/

def main() {

writeln("hello, world"); // output greeting with new line

}

6.2 White Space

White-space characters are spaces, tabs, line feeds, and carriage returns. Along with comments, they delimit
tokens, but are otherwise ignored.

6.3 Case Sensitivity

Chapel is a case sensitive language.

Example. The following identifiers are considered distinct: chapel, Chapel, and CHAPEL.

6.4 Tokens

Tokens include identifiers, keywords, literals, operators, and punctuation.

14

6.4.1 Identifiers

Chapel Language Specification

An identifier in Chapel is a sequence of characters that starts with a lowercase or uppercase letter or an
underscore and is optionally followed by a sequence of lowercase or uppercase letters, digits, underscores,
and dollar-signs. Identifiers are designated by the following syntax:

identifier:
letter legal-identifier—chars .
_ legal-identifier—chars

legal-identifier-chars:
legal-identifier-char legal-identifier-chars,, .

legal-identifier-char:
letter
digit
$

letter: one of

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm

nopqrstuvwxyz

digit: one of
0123456789

Rationale. Why include “$” in the language? The inclusion of the $ character is meant to assist
programmers using sync and single variables by supporting a convention (a $ at the end of such
variables) in order to help write properly synchronized code. It is felt that marking such variables
is useful since using such variables could result in deadlocks.

Example. The following are legal identifiers: Crayl, syncvar$, legalldentifier, and

legal_identifier.

6.4.2 Keywords

The following identifiers are reserved as keywords:

index

atomic delete . param
: inout
begin dmapped record
label
break do reduce
. lambda
by domain let return
class else scan
. local
cobegin enum module select
coforall false serial
. new X
config for . single
nil
const forall sparse
X . on .
continue if ; subdomain
. otherwise
def in sync

out

then
true
type
union
use
var
when
where
while
yield

Lexical Structure

6.4.3 Literals

Bool literals are designated by the following syntax:

bool-literal: one of
true false

Signed and unsigned integer literals are designated by the following syntax:

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
Ob binary—digits
0B binary-digits

digits:
digit
digit digits

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digit: one of
0123456789ABCDEFabcdef

binary-digits:
binary-digit
binary-digit binary-digits

binary-digit: one of
01

Rationale. 'Why are there no suffixes on integral literals? Suffixes, like those in C, are not
necessary. The type of an integer literal is the first type of the following that can hold the value
of the digits: int, int (64), uint (64). Explicit conversions can then be used to change the
type of the literal to another integer size.

Real literals are designated by the following syntax:

real-literal:
digits,,. . digits exponent—part,,,;
digits exponent—part

exponent-—part:
e sign,,; digits
E sign,,. digits

sign: one of
+ -

15

16 Chapel Language Specification

Rationale. Why can’t a real literal end with *.’? There is an ambiquity between real literals
ending in ’.’ and the range operator °.." that makes it difficult to parse. For example, we want
to parse 1..10 as a range from 1 to 10 without concern that 1. is a real literal. There is also
an ambiquity between methods invoked on literals. For example, if there is a method named e
defined on integers, than 1 .e should invoke that method.

The type of a real literal is real. Explicit conversions are necessary to change the size of the literal.

Imaginary literals are designated by the following syntax:

imaginary-literal:
real-literal i
integer-literal i

The type of an imaginary literal is imag. Explicit conversions are necessary to change the size of the literal.

There are no complex literals. Rather, a complex value can be specified by adding or subtracting a real literal
with an imaginary literal. Alternatively, a 2-tuple of integral or real expressions can be cast to a complex such
that the first component becomes the real part and the second component becomes the imaginary part.

Example. The following expressions are identical: 1.0 + 2.0iand (1.0, 2.0) :complex.

String literals are designated by the following syntax:

string-literal:
” double-quote-delimited-characters,,; ”
> single—quote—delimited—characters,,: ’

double-quote—delimited-characters:
string—character double—quote—delimited—characters,,:
> double—-quote—delimited—characters, .

single—quote—delimited—characters:
string—character single-quote—delimited—characters,,:
” single—quote-delimited-characters, .

string—character:
any character except the double quote, single quote, or new line
simple—escape—character
hexadecimal-escape—character

simple—escape—character: one of

VA7 AZ \a Ab Af Am A\r A\t

hexadecimal-escape—character:
\x hexadecimal-digits

Lexical Structure

6.4.4 Operators and Punctuation

The following operators and punctuation are defined in the syntax of the language:

symbols use

= assignment

+= —= x= /= xx= %= &= |= "= &&= ||= <<= >>= | compound assignment
<=> swap

.. range specifier

by range/domain stride specifier
range count operator
R variable argument lists
&& |1V & |7 << >> logical/bitwise operators
== l= <= >= < > relational operators

+ - % /% xx arithmetic operators

type specifier
statement separator
expression separator
member access

type query

string delimiters

6.4.5 Grouping Tokens

The following braces are part of the Chapel language:

braces

use

()
[]
{1}

compound statements

parenthesization, function calls, and tuples
domains, forall expressions, function calls, and tuples

17

18

Chapel Language Specification

Types 19

7 Types

Chapel is a statically typed language with a rich set of types. These include a set of predefined primitive
types, enumerated types, locality types, structured types (classes, records, unions, tuples), data parallel types
(ranges, domains, arrays), and synchronization types (sync, single).

The syntax of a type is summarized by the following syntax:

type-specifier:
primitive-type
enum-type
locality—type
structured-type
dataparallel-type
synchronization—type

The structured types are summarized by the following syntax:

structured-type:
class—type
record-type
union-type
tuple-type

Classes are discussed in Records are discussed in §16] Unions are discussed in Tuples are discussed

in §17)
The data parallel types are summarized by the following syntax:

dataparallel-type:
range—type
domain-type
mapped-domain—type
array—type
index—type

Ranges are discussed in Domains, arrays, and index types are discussed in §19)and

The synchronization types are summarized by the following syntax:

synchronization—type:

sync—type
single—type

Sync and single types are discussed in §24.1.2]and §24.1.3]

Programmers can define their own enumerated types, classes, records, unions, and type aliases in type decla-
ration statements summarized by the following syntax:

type—declaration—statement:
enum-declaration—statement
class—declaration—statement
record—declaration—-statement
union—declaration—-statement
type—alias—declaration—-statement

20 Chapel Language Specification

7.1 Primitive Types

The primitive types include the following types: bool, int, uint, real, imag, complex, string, and
locale. These primitive types are defined in this section.

The primitive types are summarized by the following syntax:

primitive—type:
bool primitive-type—parameter—part,:
int primitive—type-parameter—part,
uint primitive—type-parameter—part, .
real primitive-type—parameter—part, .
imag primitive—type—parameter—part, .
complex primitive-type—parameter—part,,,;
string

primitive-type—parameter—part:
(integer—parameter—expression)

integer—parameter—expression:
expression

Open issue. There is an expectation of future support for larger bit width primitive types
depending on a platform’s native support for those types.

7.1.1 The Bool Type

Chapel defines a logical data type designated by the symbol bool with the two predefined values t rue and
false. This default boolean type is stored using an implementation-dependent number of bits. A particular
number of bits can be specified using a parameter value following the bool keyword, such as bool (8) to
request an 8-bit boolean value. Legal sizes are 8, 16, 32, and 64 bits.

Some statements require expressions of bool type and Chapel supports a special conversion of values to

bool type when used in this context (§9.1.6).

7.1.2 Signed and Unsigned Integral Types

The integral types can be parameterized by the number of bits used to represent them. The default signed
integral type, int, and the default unsigned integral type, uint, are 32 bits.

The integral types and their ranges are given in the following table:

Types 21

Type Minimum Value Maximum Value
int (8) -128 127
uint (8) 0 255
int (16) -32768 32767
uint (16) 0 65535
int (32), int -2147483648 2147483647
uint (32),uint 0 4294967295
int (64) -9223372036854775808 | 9223372036854775807
uint (64) 0 | 18446744073709551615

The unary and binary operators that are pre-defined over the integral types operate with 32- and 64-bit pre-
cision. Using these operators on integral types represented with fewer bits results in a coercion according to
the rules defined in

Open issue. There is on going discussion on whether the default size of the integral types should
be changed to 64 bits.

7.1.3 Real Types

Like the integral types, the real types can be parameterized by the number of bits used to represent them.
The default real type, real, is 64 bits. The real types that are supported are machine-dependent, but usually
include real (32) (single precision) and real (64) (double precision) following the IEEE 754 standard.

7.1.4 Imaginary Types

The imaginary types can be parameterized by the number of bits used to represent them. The default imag-
inary type, imag, is 64 bits. The imaginary types that are supported are machine-dependent, but usually
include imag (32) and imag (64).

Rationale. The imaginary type is included to avoid numeric instabilities and under-optimized
code stemming from always coercing real values to complex values with a zero imaginary part.

7.1.5 Complex Types

Like the integral and real types, the complex types can be parameterized by the number of bits used to
represent them. A complex number is composed of two real numbers so the number of bits used to represent a
complex is twice the number of bits used to represent the real numbers. The default complex type, complex,
is 128 bits; it consists of two 64-bit real numbers. The complex types that are supported are machine-
dependent, but usually include complex (64) and complex (128).

The real and imaginary components can be accessed via the methods re and im. The type of these compo-
nents is real. See §30.1.1|for math routines for complex types.

Example. Given a complex number ¢ with the value 3.14+2.721i, the expressions c.re and
c.imrefer to 3.14 and 2. 72 respectively.

22 Chapel Language Specification

7.1.6 The String Type

Strings are a primitive type designated by the symbol st ring comprised of ASCII characters. Their length
is unbounded. See §30.1.2|for routines for manipulating strings.

Open issue. There is an expectation of future support for fixed-length strings.

Open issue. There is an expectation of future support for different character sets, possibly
including internationalization.

7.2 Enumerated Types

Enumerated types are declared with the following syntax:

enum-declaration—statement:
enum identifier { enum-constant-list } ;

enum-constant-list:
enum-constant
enum-constant , enum-constant—list

enum-constant:
identifier init-part, .

init—part:
= expression

The enumerated type can then be specified with its name as summarized by the following syntax:

enum-type:
identifier

An enumerated type defines a set of named constants that can be specified in a program as a member access
on the enumerated type. These are associated with parameters of integral type. Each enumerated type is a
distinct type. If the init—part is omitted, the enum-constant has an integral value one higher than the previous
enum-constant in the enum, with the first having the value 1.

Example. The code

enum statesman { Aristotle, Roosevelt, Churchill, Kissinger } ;

defines an enumerated type with four constants. The function

def quote(s: statesman) {
select s {
when statesman.Aristotle do
writeln ("All paid jobs absorb and degrade the mind.");
when statesman.Roosevelt do
writeln ("Every reform movement has a lunatic fringe.");
when statesman.Churchill do
writeln("A joke is a very serious thing.");

Types 23

when statesman.Kissinger do
{ write("No one will ever win the battle of the sexes; ");
writeln("there’s too much fraternizing with the enemy."); }
}
}

outputs a quote from the given statesman. Note that enumerated constants must be prefixed by
the enumerated type and a dot.

7.3 Locality Types
Locale types are summarized by the following syntax:

locality—type:
locale

The 1ocale type is defined in §26.1.1]

Open issue. We expect to support realms as another locality type.

7.4 Structured Types
7.4.1 Class Types

The class type defines a type that contains variables and constants, called fields, and functions, called meth-
ods. Classes are defined in The class type can also contain type aliases and parameters. Such a class is
generic and is defined in §22.3]

7.4.2 Record Types

The record type is similar to a class type; the primary difference is that a record is a value rather than a
reference. Records are defined in

7.4.3 Union Types

The union type defines a type that contains one of a set of variables. Like classes and records, unions may
also define methods. Unions are defined in

7.4.4 Tuple Types

A tuple is a light-weight record that consists of one or more anonymous fields. If all the fields are of the same
type, the tuple is homogeneous. Tuples are defined in

24 Chapel Language Specification

7.5 Data Parallel Types
7.5.1 Range Types

A range defines an integral sequence of some integral type. Ranges are defined in

7.5.2 Domain, Array, and Index Types

A domain defines a set of indices and an array defines a set of elements that are mapped by the indices in an
associated domain. A domain’s indicies can be of any type. Domains, arrays, and index types are defined

in §19]and

7.6 Type Aliases

Type aliases are declared with the following syntax:

type-alias—declaration-statement:
config,,. type type—alias—declaration-list ;

type-alias—declaration-list:
type-alias—declaration
type—alias—declaration , type—alias—declaration—list

type-alias—declaration:
identifier = type-specifier
identifier

A type alias is a symbol that aliases the type specified in the type-part. A use of a type alias has the same
meaning as using the type specified by type-part directly.

If the keyword config precedes the keyword type, the type alias is called a configuration type alias. Con-
figuration type aliases are set at compilation time via compilation flags or other implementation dependent
means. The type-specifier in the program is ignored if the type-alias is alternatively set.

The type—-part is optional in the definition of a class or record. Such a type alias is called an unspecified type
alias. Classes and records that contain type aliases, specified or unspecified, are generic (§22.3.1).

Open issue. There is on going discussion on whether a type alias is a new type or simply an
alias. The former should enable redefinition of default values, identity elements, etc.

Variables 25

8 Variables

A variable is a symbol that represents memory. Chapel is a statically-typed, type-safe language so every
variable has a type that is known at compile-time and the compiler enforces that values assigned to the
variable can be stored in that variable as specified by its type.

8.1 Variable Declarations

Variables are declared with the following syntax:

variable—declaration— statement:
config,,. variable-kind variable—-declaration-list ;

variable-kind: one of
param const var

variable—declaration—list:
variable—declaration
variable—declaration—-list , variable—declaration

variable-declaration:
identifier-list type—part,,. initialization—part
identifier-list type—part
array—-alias—declaration

type—part:
: type-specifier

initialization—part:
= expression

identifier-list:
identifier-list , tuple—grouped-identifier-list
identifier-list , identifier
tuple- grouped-identifier—list
identifier

tuple—grouped-identifier—list:
(identifier—list)

A variable-declaration-statement is used to define one or more variables. If the statement is a top-level module
statement, the variables are global; otherwise they are local. Global variables are discussed in Local
variables are discussed in

The optional keyword config specifies that the variables are configuration variables, described in Sec-

tion

The variable-kind specifies whether the variables are parameters (param), constants (const), or regular vari-
ables (var). Parameters are compile-time constants whereas constants are runtime constants. Both levels of
constants are discussed in

26 Chapel Language Specification

The type-part of a variable declaration specifies the type of the variable. It is optional if the initialization—part
is specified. If the type—part is omitted, the type of the variable is inferred using local type inference described

in §8.1.2]

The initialization—part of a variable declaration specifies an initial expression to assign to the variable. If the
initialization-part is omitted, the variable is initialized to a default value described in §8.1.1|

Multiple variables can be defined in the same variable-declaration-list. The semantics of declaring multiple
variables that share a initialization—part and/or type—part is defined in §8.1.3]

Multiple variables can be grouped together using a tuple notation as described in §14.4.2

The array-alias—declaration is defined in §20.7.3

8.1.1 Default Initialization

If a variable declaration has no initialization expression, a variable is initialized to the default value of its
type. The default values are as follows:

Type Default Value

bool (x) false

int (%) 0

uint (*) 0

real (x) 0.0

imag (x) 0.01

complex (%) | 0.0 + 0.01

string "

enums first enum constant

classes nil

records default constructed record
ranges 1..0

arrays elements are default values
tuples components are default values
sync/single base default value and empty status

Open issue. Array initialization is potentially time-consuming. There is an expectation that
there will be a way to declare an array that is explicitly left uninitialized in order to address this
concern.

8.1.2 Local Type Inference
If the type is omitted from a variable declaration, the type of the variable is defined to be the type of the
initialization expression. With the exception of sync and single expressions, the declaration

var v = e;

is equivalent to

Variables 27

var v: e.type;
v o= e;

for an arbitrary expression e. For expressions of sync or single type, this translation does not hold because
the evaluation of e results in a default read of this expression. The type of the variable is thus equal to the
base type of the sync or single expression.

8.1.3 Multiple Variable Declarations

All variables defined in the same identifier-list are defined such that they have the same type and value, and
so that the type and initialization expression are evaluated only once.

Example. In the declaration
def g() { writeln("side effect"); return "a string"; }

var a, b = 1.0, ¢, d:int, e, £ = g();

variables a and b are of type real with value 1. 0. Variables c and d are of type int and are ini-
tialized to the default value of 0. Variables e and f are of type st ring with value "a string".
The string "side effect" has been written to the display once. It is not evaluated twice.

The exact way that multiple variables are declared is defined as follows:

o If the variables in the identifier-list are declared with a type, but without an initialization expression as
in
var vl, v2, v3: t;
for an arbitrary type expression t, then the declarations are rewritten so that the first variable is declared
to be of type t and each later variable is declared to be of the type of the first variable as in

var vl: t; var v2: vl.type; var v3: vl.type;

o I[f the variables in the identifier-list are declared without a type, but with an initialization expression as
in

var vl, v2, v3 = ¢e;

for an arbitrary expression e, then the declarations are rewritten so that the first variable is initialized
by expression e and each later variable is initialized by the first variable as in

var vl = e; var v2 = vl; var v3 = vl;

e If the variables in the identifier-list are declared with both a type and an initialization expression as in

var vl, v2, v3: t = e;

for an arbitrary type expression t and an arbitrary expression e, then the declarations are rewritten so
that the first variable is declared to be of type t and initialized by expression e, and each later variable
is declared to be of the type of the first variable and initialized by the result of calling the function
readxX on the first variable as in

var vl: t = e; var v2: vl.type = readXX(vl); var v3: vl.type = readXX(vl);

28 Chapel Language Specification

where the function readxX is defined as follows:

def readXX(x: sync) return x.readXX();
def readXX(x: single) return x.readXX();
def readXX(x) return x;

Note that the readxx function cannot be called directly by a Chapel programmer and that adding an
additional overload or shadowing this function will not change the semantics of variable declarations.
This function is defined solely for the purposes of this specification.

Rationale. This algorithm is complicated by the existence of sync and single variables. If
these did not exist, we could rewrite any multi-variable declaration such that later variables were
simply initialized by the first variable and the first variable was defined as if it appeared alone
in the identifier-list. However, both sync and single variables require careful handling to avoid
unintentional changes to their full/empty state.

8.2 Global Variables

Variables declared in statements that are in a module but not in a function or block within that module are
global variables. Global variables can be accessed anywhere within that module after the declaration of that
variable. They can also be accessed in other modules that use that module.

8.3 Local Variables

Local variables are variables that are not global. Local variables are declared within block statements. They
can only be accessed within the scope of that block statement (including all inner nested block statements
and functions).

A local variable only exists during the execution of code that lies within that block statement. This time is
called the lifetime of the variable. When execution has finished within that block statement, the local variable
and the storage it represents is removed. Variables of class type are the sole exception. Constructors of
class types create storage that is not associated with any scope. Such storage can be reclaimed as described

in §15.11

8.4 Constants

Constants are divided into two categories: parameters, specified with the keyword param, are compile-time
constants and constants, specified with the keyword const, are runtime constants.

8.4.1 Compile-Time Constants

A compile-time constant, or “parameter”, must have a single value that is known statically by the compiler.
Parameters are restricted to primitive and enumerated types.

Parameters can be assigned expressions that are parameter expressions. Parameter expressions are restricted
to the following constructs:

Variables 29

e Literals of primitive or enumerated type.
e Parenthesized parameter expressions.

e Casts of parameter expressions to primitive or enumerated types.

e Applications of the unary operators +, —, !, and ~ on operands that are bool or integral parameter
expressions.
e Applications of the binary operators +, —, %, /, %, **, &&, | |, &, |, 7, <<, >>, ==, = <=, >=, <,

and > on operands that are bool or integral parameter expressions.

e Applications of the string concatenation operator +, string comparison operators ==, ! =, <=, >=, <, >,
and the string length and ascii functions on parameter string expressions.

e The conditional expression where the condition is a parameter and the then- and else-expressions are
parameters.

e Call expressions of parameter functions. See §13.§]

There is an expectation that parameters will be expanded to more types and more operations.

8.4.2 Runtime Constants

Runtime constants, or simply “constants”, do not have the restrictions that are associated with parameters.
Constants can be any type. They require an initialization expression and contain the value of that expression
throughout their lifetime.

A variable of a class type that is a constant is a constant reference. That is, the variable always points to the
object that it was initialized to reference. However, the fields of that object are allowed to be modified.

8.5 Configuration Variables

If the keyword config precedes the keyword var, const, or param, the variable, constant, or parame-
ter is called a configuration variable, configuration constant, or configuration parameter respectively. Such
variables, constants, and parameters must be global.

The initialization of these variables can be set via implementation dependent means, such as command-line
switches or environment variables. The initialization expression in the program is ignored if the initialization
is alternatively set.

Configuration parameters are set at compilation time via compilation flags or other implementation dependent
means. The value passed via these means can be an arbitrary Chapel expression as long as the expression can
be evaluated at compile-time.

Example. A configuration parameter can be set via a compiler flag. For example,

config param rank = 2;

sets a integer parameter rank to 2. At compile-time, rank can be set via to 3 or 2xn (assuming
n is also a param variable) or any other expression that can be evaluated at compile-time. This
can be used to write rank-independent code.

30

Chapel Language Specification

Conversions 31

9 Conversions

A conversion allows an expression of one type to be converted into another type. Conversions can be either

implicit (§9.1)) or explicit (§9.2)).

9.1 Implicit Conversions

Implicit conversions can occur during an assignment (from the expression on the right-hand side to the vari-
able on the left-hand side) or during a function call (from the actual expression to the formal argument). An
implicit conversion does not require a cast.

Implicit conversions are allowed between numeric types (§9.1.1), from enumerated types to numeric types (§9.1.2)),
between class types (§9.1.3), and between record types (§9.1.4). A special set of implicit conversions are al-
lowed from compile-time constants of type int and int (64) to other smaller numeric types if the value is

in the range of the smaller numeric type (§9.1.5). Lastly, implicit conversions are supported from integral and
class types to bool in the context of a statement (§9.1.6).

9.1.1 Implicit Bool and Numeric Conversions

The implicit numeric conversions are as follows:

e From bool to bool (k), int (8), int (16), int (32), int (64), uint (8), uint (16), uint (32),
or uint (64) for any legal value of k

e From bool (j) to bool, bool (k), int (8), int (16), int (32), int (64), uint (8), uint (16),
uint (32),or uint (64), for any legal values of j and k

e From int (8) to int (16), int (32), int (64), real (64), Oor complex (128)
e From int (16) to int (32),int (64), real (64),0r complex (128)

e From int (32) to int (64), real (64), or complex (128)

e From int (64) to real (64), Oor complex (128)

e From uint (8) to int (16), int (32), int (64), uint (16), uint (32), uint (64), real (64), or
complex (128)

e From uint (16) to int (32), int (64), uint (32), uint (64), real (64), or complex (128)
e From uint (32) to int (64), uint (64), real (64), or complex (128)

e From uint (64) to real (64), or complex (128)

e From real (32) to real (64), complex (64), Oor complex (128)

e From real (64) to complex (128)

e From imag (32) to imag (64), complex (64), Oor complex (128)

e From imag (64) to complex (128)

32 Chapel Language Specification

e From complex (64) to complex (128)

The implicit numeric conversions do not result in any loss of information except for the conversions from
int (64) oruint (64) to real (64) Oor complex (128).

Rationale. In C#, implicit conversions from int (32) or int (64) to real (32) are supported
and allow for a loss of precision. Since the default real size is 64 and the default int size
is 32 in Chapel, we did not follow the lead of C# in this regard since it seemed unfortunate to
favor real (32) over real in the default case. That is, given the sqrt function defined over
real (32) and real, itis preferable to choose the version over real when calling with an actual
of type int rather than lose precision and half of the bits to call the real (32) version.

Additionally, we don’t allow implicit conversions from int (8) or int (16) to real (32) be-
cause to do so would result in an ambiguity when computing, e.g., int (8) + int (8).

9.1.2 Implicit Enumeration Conversions

An expression that is an enumerated type can be implicitly converted to any integral type as long as all of the
constants defined by the enumerated type are within range of the integral type.

9.1.3 Implicit Class Conversions

An expression of class type D can be implicitly converted to another class type C provided that D is a subclass
of c.

9.1.4 Implicit Record Conversions

An expression of record type D can be implicitly converted to another record type C provided that D is a
nominal subtype of C.

9.1.5 Implicit Compile-Time Constant Conversions

The following two implicit conversions of parameters are supported:

e A parameter of type int (32) can be implicitly converted to int (8), int (16), or any unsigned
integral type if the value of the parameter is within the range of the target type.

e A parameter of type int (64) can be implicitly converted to uint (64) if the value of the parameter
is nonnegative.

Conversions 33

9.1.6 Implicit Statement Bool Conversions

In the condition of an if-statement, while-loop, and do-while-loop, the following implicit conversions are
supported:

e An expression of integral type is taken to be true if it is non-zero and is false otherwise.
e An expression of a class type is taken to be true if it is not nil and is false otherwise.
9.2 Explicit Conversions

Explicit conversions require a cast in the code. Casts are defined in §10.9] Explicit conversions are supported
between more types than implicit conversions, but explicit conversions are not supported between all types.

The explicit conversions are a superset of the implicit conversions.
9.2.1 Explicit Numeric Conversions

Explicit conversions are allowed from any numeric type, bool, or string to any other numeric type, bool, or
string. The definitions of how these explicit conversions work is forthcoming.

9.2.2 Explicit Enumeration Conversions

Explicit conversions are allowed from any enumerated types to any numeric type, bool, or string, and vice
versa.

9.2.3 Explicit Class Conversions

An expression of static class type C can be explicitly converted to a class type D provided that C is derived
from D or D is derived from C. In the event that D is derived from c, it is a runtime error if the the dynamic
class type of C is not derived from or equal to D.

9.2.4 Explicit Record Conversions

An expression of record type C can be explicitly converted to another record type D provided that C is derived
from D. There are no explicit record conversions that are not also implicit record conversions.

34

Chapel Language Specification

Expressions 35
10 Expressions

This section defines expressions in Chapel with the following exceptions: The forall expression, reduce
expressions, and scan expressions are defined in Module access expressions are defined in §12.4.1
Tuple expressions and tuple expand expressions are defined in Locale access expressions are defined

in Mapped domain expressions are defined in

The syntax for an expression is given by:

expression:
literal-expression
variable—expression
enum-constant—expression
member—access—expression
call-expression
query—expression
cast—expression
Ivalue-expression
parenthesized—expression
unary—expression
binary-expression
let—expression
if-expression
for—expression
forall-expression
reduce—expression
scan—expression
module—access—expression
tuple—expression
tuple-expand-expression
locale—access—expression
mapped—-domain—expression

10.1 Literal Expressions

A literal value for any of the built-in types (§6.4.3) is a literal expression. Literal expressions are given by the
following syntax:

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string—literal
range-literal
domain-literal

10.2 Variable Expressions

A use of a variable, constant, parameter, or formal argument, is itself an expression. The syntax of a variable
expression is given by:

36 Chapel Language Specification

variable—expression:
identifier

10.3 Enumeration Constant Expression
A use of an enumeration constant is itself an expression. Such a constant must be preceded by the enumeration

type name. The syntax of an enumeration constant expression is given by:

enum-constant—expression:
enum-type . identifier

Example. For an example of using enumeration constants, see

10.4 Parenthesized Expressions

A parenthesized—expression is an expression that is delimited by parentheses as given by:

parenthesized—expression:
(expression)

Such an expression evaluates to the expression. The parentheses is ignored and has only syntactic effect.

10.5 Call Expressions

Functions and function calls are defined in

10.6 Indexing Expressions

Indexing into arrays, tuples, and domains shares the same syntax of a call expression. Indexing, at its core, is
nothing more than a call to the indexing function defined on these types.

10.7 Member Access Expressions

Member access expressions are call expressions to members of classes, records, or unions. The syntax for a
member access is given by:

member-access—expression:
expression . identifier

The member access may be an access of a field or a function inside a class, record, or union.

Expressions 37

10.8 The Query Expression

A query expression is used to query a type or value within a formal argument type expression. The syntax of
a query expression is given by:

query—expression:
? identifier, .

Querying is restricted to querying the type of a formal argument, the element type of a formal argument that is
an array, the domain of a formal argument that is an array, the size of a primitive type, or a type or parameter
field of a formal argument type.

The identifier can be omitted. This is useful for ensuring the genericity of a generic type that defines default
values for all of its generic fields when specifying a formal argument as discussed in §22.1.5|

Example. The following code defines a generic function where the type of the first parameter
is queried and stored in the type alias t and the domain of the second argument is queried and
stored in the variable D:
def foo(x: ?t, y: [?D] t) {
for i in D do
yIil = x;
}

This allows a generic specification of a function to assign a particular value to all elements of an
array. The value and the elements of the array are constrained to be the same type. This function
can be rewritten without query expression as follows:

def foo(x, y: [] x.type) {
for i in y.domain do
y[i] = x;

There is an expectation that query expressions will be allowed in more places in the future.

10.9 Casts

A cast is specified with the following syntax:

cast—expression:
expression : type-specifier

The expression is converted to the specified type. Except for the casts listed below, casts are restricted to
valid explicit conversions (§9.2).

The following cast has a special meaning and does not correspond to an explicit conversion:

e A cast from a 2-tuple to complex converts the 2-tuple into a complex where the first component
becomes the real part and the second component becomes the imaginary part. The size of the complex
is determined from the size of the components based on implicit conversions.

38 Chapel Language Specification

10.10 LValue Expressions

An lvalue is an expression that can be used on the left-hand side of an assignment statement or on either side
of a swap statement, that can be passed to a formal argument of a function that has out or inout intent, or
that can be returned by a variable function. Valid lvalue expressions include the following:

Variable expressions.

Member access expressions.

Call expressions of variable functions.

Indexing expressions.

LValue expressions are given by the following syntax:

Ivalue—expression:
variable—expression
member—access—expression
call-expression

The syntax is less restrictive than the definition above. For example, not all call-expressions are lvalues.

10.11 Precedence and Associativity

The following table summarizes operator and expression precedence and associativity. Operators and expres-
sions listed earlier have higher precedence than those listed later.

Expressions

Operator Associativity | Use
member access

() left function call or access (zipper)
[] function call or access (tensor)
new right constructor call

left cast
* % right exponentiation
reduce reduction
scan left scan
dmapped domain map application
E right 1(?gic.al negati.on

bitwise negation

* multiplication
/ left division
% modulus
unary + right positiye identity
unary — negation
+ addition

left .
- subtraction
<< left shift

left . .
>> right shift
<= less-than-or-equal-to comparison
>= left greater—than-or—equal-to comparison
< less-than comparison
> greater-than comparison
== left equal-to comparison‘
I= not-equal-to comparison
& left bitwise/logical and
" left bitwise/logical xor
| left bitwise/logical or
&& left short-circuiting logical and
| left short-circuiting logical or

left range construction
in left forall expression
by left range/domain stride application
range count application
if then else conditional expression
forall do forall expression
[] left forall expression
for do for expression
sync single sync and single type
, left comma separated expressions

Rationale. In general, our operator precedence is based on that of the C family of languages
including C++, Java, Perl, and C#. We comment on a few of the differences and unique factors
here.

We find that there is tension between the relative precedence of exponentiation, unary minus/plus,
and casts. The following three expressions show our intuition for how these expressions should
be parenthesized.

40

Chapel Language Specification

—2xx4 wants —(2%%x4)
-2:uint wants (=2) :uilnt
2:ulntx*4:uint wants (2:uint) ** (4:uint)

Trying to support all three of these cases results in a circularity—exponentiation wants prece-
dence over unary minus, unary minus wants precedence over casts, and casts want precedence
over exponentiation. We chose to break the circularity by making unary minus have a lower
precedence. This means that for the second case above:

-2:uint requires (-2) :uint

We also chose to depart from the C family of languages by making unary plus/minus have lower
precedence than binary multiplication, division, and modulus as in Fortran. We have found very
few cases that distinguish between these cases. An interesting one is:

const minint = min (int (32));
...-minint/2...

Intuitively, this should result in a positive value, yet C’s precedence rules results in a negative
value due to asymmetry in modern integer representations. If we learn of cases that argue in
favor of the C approach, we would likely reverse this decision in order to more closely match C.

We were tempted to diverge from the C precedence rules for the binary bitwise operators to make
them bind less tightly than comparisons. This would allow us to interpret:

a | b == as (a | b) ==0

However, given that no other popular modern language has made this change, we felt it unwise
to stray from the pack. The typical rationale for the C ordering is to allow these operators to be
used as non-short-circuiting logical operations.

One final area of note is the precedence of reductions. Two common cases tend to argue for
making reductions very low or very high in the precedence table:

max reduce A - min reduce A wants (max reduce A) — (min reduce A)
max reduce A x B wants max reduce (A * B)

The first statement would require reductions to have a higher precedence than the arithmetic
operators while the second would require them to be lower. We opted to make reductions have
high precedence due to the argument that they tend to resemble unary operators. Thus, to support
our intuition:

max reduce A * B requires max reduce (A * B)

This choice also has the (arguably positive) effect of making the unparenthesized version of this
statement result in an aggregate value if A and B are both aggregates—the reduction of A results
in a scalar which promotes when being multiplied by B, resulting in an aggregate. Our intuition
is that users who forget the parenthesis will learn of their error at compilation time because the
resulting expression is not a scalar as expected.

Expressions 41

10.12 Operator Expressions

The application of operators to expressions is itself an expression. The syntax of a unary expression is given
by:

unary—-expression:
unary-operator expression

unary-operator: one of

+-"!

The syntax of a binary expression is given by:

binary—expression:
expression binary—operator expression

binary-operator: one of
+ %/ Pxx & |"<<>>&&||==1=<=>=< > by #

The operators are defined in subsequent sections.

10.13 Arithmetic Operators

This section describes the predefined arithmetic operators. These operators can be redefined over different
types using operator overloading (§13.12).

All integral arithmetic operators are implemented over integral types of size 32 and 64 bits only. For example,
adding two 8-bit integers is done by first converting them to 32-bit integers and then adding the 32-bit integers.
The result is a 32-bit integer.

10.13.1 Unary Plus Operators

The unary plus operators are predefined as follows:

def +(a: int(32)): int (32)

def +(a: int(64)): int (64)

def +(a: uint (32)): uint (32)

def +(a: uint (64)): uint (64)

def +(a: real(32)): real (32)

def +(a: real(64)): real (64)

def +(a: imag(32)): imag(32)

def +(a: imag(64)): imag(64)

def +(a: complex(32)): complex(32)
def +(a: complex(64)): complex(64)
def +(a: complex(128)): complex(128)

For each of these definitions, the result is the value of the operand.

42

10.13.2 Unary Minus Operators

The unary minus operators are predefined as follows:

def
def
def
def
def
def
def
def
def
def

|
[V I TR R RO U)

complex (32)) :

: complex (64)) :
: complex(128)):

: int (32)): int (32)

: int (64)): int (64)

: uint (64))

: real(32)): real (32)

: real (64)): real(64)
imag (32)): imag(32)

: imag(64)): imag(64)

complex (32)
complex (64)
complex (128)

Chapel Language Specification

For each of these definitions that return a value, the result is the negation of the value of the operand. For
integral types, this corresponds to subtracting the value from zero. For real and imaginary types, this corre-
sponds to inverting the sign. For complex types, this corresponds to inverting the signs of both the real and

imaginary parts.

It is an error to try to negate a value of type uint (64). Note that negating a value of type uint (32) first
converts the type to int (64) using an implicit conversion.

10.13.3 Addition Operators

The addition operators are predefined as follows:

def
def
def
def
def
def

def
def

def
def

def
def

def
def
def
def

def
def
def
def

def
def
def
def

: real (32),

: real (64),

: complex (64),
: complex (128),

imag (32),

o o oo

imag (64),

: real(32), b:
: complex (64),
: real(64), b:
: complex(128),

imag(32), b:

: complex(64),

imag (64), b:

: complex (128),

b: complex (64)

b: complex(128)):

: int (32), b: int(32)): int (32)

: int (64), b: int(64)): int (64)

: uint (32), b: uint (32)): uint (32)
uint (64), b: uint (64)): uint (64)

: uint (64), b: int (64))

: int (64), b: uint (64))

: real(32), b: real(32)): real(32)

: real (64), b: real(64)): real(64)

: imag(32), b: imag(32)): imag(32)

: imag(64), b: imag(64)): imag (64)

) : complex (64)
complex (128)

imag (32)): complex(64)
real (32)): complex(64)
imag (64)): complex(128)
real (64)): complex(128)

complex (64)) :
b: real(32)):
complex (128)) :
b: real (64)):

complex (64)) :
b: imag(32)):
complex (128)) :
b: imag(64)):

complex (64)
complex (64)
complex (128)
complex (128)

complex (64)
complex (64)
complex (128)
complex (128)

Expressions 43

For each of these definitions that return a value, the result is the sum of the two operands.
It is a compile-time error to add a value of type uint (64) and a value of type int (64).

Addition over a value of real type and a value of imaginary type produces a value of complex type. Addition
of values of complex type and either real or imaginary types also produces a value of complex type.

10.13.4 Subtraction Operators

The subtraction operators are predefined as follows:

def -(a: int(32), b: int(32)): int(32)

def -(a: int(64), b: int (64)): int (64)

def -(a: uint (32), b: uint(32)): uint (32)

def -(a: uint(64), b: uint(64)): uint (64)

def -(a: uint (64), b: int (64))

def -(a: int(64), Db: uint (64))

def -(a: real(32), b: real(32)): real(32)

def -(a: real(64), b: real(64)): real(64)

def -(a: imag(32), b: imag(32)): imag(32)

def -(a: imag(64), b: imag(64)): imag(64)

def - (a: complex(64), b: complex(64)): complex(64)
def -(a: complex(128), b: complex(128)): complex(128)
def -(a: real(32), b: imag(32)): complex(64)

def -(a: imag(32), b: real(32)): complex(64)

def -(a: real(64), b: imag(64)): complex(128)

def -(a: imag(64), b: real(64)): complex(128)

def -(a: real(32), b: complex(64)): complex(64)
def - (a: complex(64), b: real(32)): complex(64)
def -(a: real(64), b: complex(128)): complex(128)
def -(a: complex(128), b: real(64)): complex(128)
def -(a: imag(32), b: complex(64)): complex(64)
def - (a: complex(64), b: imag(32)): complex(64)
def -(a: imag(64), b: complex(128)): complex(128)
def -(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the value obtained by subtracting the second
operand from the first operand.

It is a compile-time error to subtract a value of type uint (64) from a value of type int (64), and vice versa.
Subtraction of a value of real type from a value of imaginary type, and vice versa, produces a value of complex

type. Subtraction of values of complex type from either real or imaginary types, and vice versa, also produces
a value of complex type.

10.13.5 Multiplication Operators

The multiplication operators are predefined as follows:

44

def
def
def
def
def
def

def
def

def
def

def
def

def
def
def
def

def
def
def
def

def
def
def
def

: real (32),
: imag(32),
: real(64),
: imag(64),

: complex(64),

complex (128),

o o oo

real (32), b:

: complex (64),
: real(64), b:
: complex (128),

: imag(32), b:
: complex (64),

imag(64), b:

: complex (128),

b: complex (64)):
b: complex(128)):

imag(32)) :
real (32)) :
imag (64)):
real (64)) :

Chapel Language Specification

: int (32), b: int(32)): int (32)
: int (64), b: int (64)): int (64)
: uint (32), b: uint(32)): uint (32)
: uint (64), b: uint (64)): uint (64)
: uint (64), b: int (64))

int (64), b: uint (64))
: real(32), b: real(32)): real(32)
: real (64), b: real(64)): real(64)
: imag(32), b: imag(32)): real (32)
: imag(64), b: imag(64)): real (64)

complex (64)
complex (128)

imag (32)
imag (32)
imag (64)
imag (64)

complex (64)) :
b: real(32)):
complex (128)) :
b: real(64)):

complex (64)) :
b: imag(32)):
complex (128)) :
b: imag(64)):

complex (64)
complex (64)
complex (128)
complex (128)

complex (64)
complex (64)
complex (128)
complex (128)

For each of these definitions that return a value, the result is the product of the two operands.

It is a compile-time error to multiply a value of type uint (64) and a value of type int (64).

Multiplication of values of imaginary type produces a value of real type. Multiplication over a value of real
type and a value of imaginary type produces a value of imaginary type. Multiplication of values of complex

type and either real or imaginary types produces a value of complex type.

10.13.6 Division Operators

The division operators are predefined as follows:

def /(a: int(32), b: int (32)): int (32)

def /(a: int(64), b: int (64)): int (64)

def /(a: uint (32), b: uint (32)): uint (32)

def /(a: uint (64), b: uint (64)): uint (64)

def /(a: uint (64), b: int (64))

def /(a: int (64), b: uint (64))

def /(a: real(32), b: real(32)): real(32)

def /(a: real(64), b: real(64)): real (64)

def /(a: imag(32), b: imag(32)): real(32)

def /(a: imag(64), b: imag(64)): real (64)

def /(a: complex(64), b: complex(64)): complex (64)
def /(a: complex(128), b: complex(128)): complex(128)

Expressions

def /(a: real(32), b: imag(32)): imag(32)

def /(a: imag(32), b: real(32)): imag(32)

def /(a: real(64), b: imag(64)): imag(64)

def /(a: imag(64), b: real(64)): imag(64)

def /(a: real(32), b: complex(64)): complex(64)
def /(a: complex(64), b: real(32)): complex (64)
def /(a: real(64), b: complex(128)): complex(128)
def /(a: complex(128), b: real(64)): complex(128)
def /(a: imag(32), b: complex(64)): complex (64)
def /(a: complex(64), b: imag(32)): complex(64)
def /(a: imag(64), b: complex(128)): complex(128)
def /(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the quotient of the two operands.

It is a compile-time error to divide a value of type uint (64) by a value of type int (64), and vice versa.

45

Division of values of imaginary type produces a value of real type. Division over a value of real type and a
value of imaginary type produces a value of imaginary type. Division of values of complex type and either

real or imaginary types produces a value of complex type.

10.13.7 Modulus Operators

The modulus operators are predefined as follows:

def % (a: int (32), b: int(32)): int (32)
def %(a: int(64), b: int (64)): int (64)
def % (a: uint (32), b: uint(32)): uint (32)
def % (a: uint (64), b: uint (64)): uint (64)
def % (a: uint(64), b: int(64))

def % (a: int (64), b: uint (64))

For each of these definitions that return a value, the result is the remainder when the first operand is divided

by the second operand.

It is a compile-time error to take the remainder of a value of type uint (64) and a value of type int (64),

and vice versa.

There is an expectation that the predefined modulus operators will be extended to handle real, imaginary, and

complex types in the future.

10.13.8 Exponentiation Operators

The exponentiation operators are predefined as follows:

def *x(a: int(32), b: int (32)): int (32)
def *x(a: int (64), b: int (64)): int (64)
def **(a: uint(32), b: uint (32)): uint (32)
def **(a: uint (64), b: uint (64)): uint (64)
def **(a: uint (64), b: int (64))

def **(a: int(64), b: uint (64))

def **(a: real(32), b: real(32)): real(32)

def **(a: real(64), b: real(64)): real(64)

46 Chapel Language Specification

For each of these definitions that return a value, the result is the value of the first operand raised to the power
of the second operand.

It is a compile-time error to take the exponent of a value of type uint (64) by a value of type int (64), and
vice versa.

There is an expectation that the predefined exponentiation operators will be extended to handle imaginary
and complex types in the future.

10.14 Bitwise Operators

This section describes the predefined bitwise operators. These operators can be redefined over different types
using operator overloading (§13.12)).

10.14.1 Bitwise Complement Operators

The bitwise complement operators are predefined as follows:

def " (a: bool): bool

def " (a: int (32)): int (32)
def " (a: int (64)): int (64)
def " (a: uint (32)): uint (32)
def " (a: uint (64)): uint (64)

For each of these definitions, the result is the bitwise complement of the operand.

10.14.2 Bitwise And Operators

The bitwise and operators are predefined as follows:

def & (a: bool, b: bool): bool

def &(a: int(32), b: int(32)): int (32)
def &(a: int(64), b: int (64)): int (64)
def & (a: uint(32), b: uint(32)): uint (32)
def & (a: uint (64), b: uint (64)): uint (64)
def &(a: int(32), b: uint(32)): uint (32)
def & (a: int (64), b: uint(64)): uint (64)
def &(a: uint (32), b: int (32)): uint (32)
def & (a: uint(64), b: int(64)): uint (64)

For each of these definitions, the result is computed by applying the logical and operation to the bits of the
operands.

Chapel allows mixing signed and unsigned integers of the same size when passing them as arguments to
bitwise and. In the mixed case the result is of the same size as the arguments and is unsigned.

Rationale. The mathematical meaning of integer arguments is discarded when they are passed
to bitwise operators. Instead the arguments are treated simply as bit vectors. The bit-vector
meaning is preserved when converting between signed and unsigned of the same size. The choice
of unsigned over signed as the result type in the mixed case reflects the semantics of standard C.

Expressions 47

10.14.3 Bitwise Or Operators

The bitwise or operators are predefined as follows:

def | (a: bool, b: bool): bool

def | (a: int(32), b: int(32)): int (32)
def | (a: int(64), b: int (64)): int (64)
def | (a: uint(32), b: uint(32)): uint (32)
def | (a: uint (64), b: uint (64)): uint (64)
def | (a: int (32), b: uint(32)): uint (32)
def | (a: int(64), b: uint (64)): uint (64)
def | (a: uint (32), b: int(32)): uint (32)
def | (a: uint (64), b: int (64)): uint (64)

For each of these definitions, the result is computed by applying the logical or operation to the bits of the
operands.

Chapel allows mixing signed and unsigned integers of the same size when passing them as arguments to
bitwise or.

Rationale. The same as for bitwise and (§10.14.2).

10.14.4 Bitwise Xor Operators

The bitwise xor operators are predefined as follows:

def " (a: bool, b: bool): bool

def " (a: int(32), b: int(32)): int (32)
def " (a: int(64), b: int (64)): int (64)
def " (a: uint (32), b: uint(32)): uint (32)
def " (a: uint(64), b: uint(64)): uint (64)
def " (a: int (32), b: uint (32)): uint (32)
def “(a: int (64), b: uint(64)): uint (64)
def " (a: uint (32), b: int (32)): uint (32)
def " (a: uint (64), b: int (64)): uint (64)

For each of these definitions, the result is computed by applying the XOR operation to the bits of the operands.

Chapel allows mixing signed and unsigned integers of the same size when passing them as arguments to
bitwise xor.

Rationale. The same as for bitwise and (§10.14.2).

10.15 Shift Operators

This section describes the predefined shift operators. These operators can be redefined over different types
using operator overloading (§13.12).

The shift operators are predefined as follows:

48 Chapel Language Specification

def <<(a: int(32), b): int (32)
def >>(a: int (32), b): int (32)
def << (a: int (64), b): int(64)
def >>(a: int (64), b): int (64)
def << (a: uint (32), b): uint (32)
def >>(a: uint (32), b): uint (32)
def << (a: uint (64), b): uint (64)
def >>(a: uint (64), b): uint (64)

The type of the second actual argument must be any integral type.
The << operator shifts the bits of a left by the integer b. The new low-order bits are set to zero.

The >> operator shifts the bits of a right by the integer b. When a is negative, the new high-order bits are set
to one; otherwise the new high-order bits are set to zero.

The value of b must be non-negative.

10.16 Logical Operators

This section describes the predefined logical operators. These operators can be redefined over different types
using operator overloading (§13.12]).

10.16.1 The Logical Negation Operator

The logical negation operator is predefined as follows:
def ! (a: bool): bool

The result is the logical negation of the operand.

10.16.2 The Logical And Operator

The logical and operator is predefined over bool type. It returns true if both operands evaluate to true;
otherwise it returns false. If the first operand evaluates to false, the second operand is not evaluated and the
result is false.

The logical and operator over expressions a and b given by

a && b

is evaluated as the expression

if isTrue(a) then isTrue(b) else false

The function isTrue is predefined over bool type as follows:

def isTrue (a:bool) return a;

Overloading the logical and operator over other types is accomplished by overloading the i sTrue function
over other types.

Expressions 49
10.16.3 The Logical Or Operator

The logical or operator is predefined over bool type. It returns true if either operand evaluate to true; otherwise
it returns false. If the first operand evaluates to true, the second operand is not evaluated and the result is true.

The logical or operator over expressions a and b given by

a |l b

is evaluated as the expression

if isTrue(a) then true else isTrue (b)

The function isTrue is predefined over bool type as described in §10.16.2] Overloading the logical or
operator over other types is accomplished by overloading the isTrue function over other types.

10.17 Relational Operators

This section describes the predefined relational operators. These operators can be redefined over different
types using operator overloading (§13.12).

10.17.1 Ordered Comparison Operators

The “less than” comparison operators are predefined over numeric types as follows:

def <(a: int(32), b: int (32)): bool

def <(a: int(64), b: int (64)): bool

def <(a: uint (32), b: uint (32)): bool
def <(a: uint(64), b: uint(64)): bool
def <(a: real(32), b: real(32)): bool
def <(a: real(64), b: real(64)): bool
def <(a: imag(32), b: imag(32)): bool
def <(a: imag(64), b: imag(64)): bool

The result of a < b is true if a is less than b; otherwise the result is false.

The “greater than” comparison operators are predefined over numeric types as follows:

def >(a: int (32), b: int (32)): bool

def >(a: int(64), b: int (64)): bool

def > (a: uint (32), b: uint (32)): bool
def >(a: uint (64), b: uint (64)): bool
def >(a: real(32), b: real(32)): bool
def > (a: real(64), b: real(64)): bool
def > (a: imag(32), b: imag(32)): bool
def >(a: imag(64), b: imag(64)): bool

The result of a > b is true if a is greater than b; otherwise the result is false.

The “less than or equal to” comparison operators are predefined over numeric types as follows:

50 Chapel Language Specification

def <=(a: int(32), b: int(32)): bool

def <=(a: int (64), b: int (64)): bool

def <=(a: uint(32), b: uint (32)): bool
def <=(a: uint (64), b: uint (64)): bool
def <=(a: real(32), b: real(32)): bool
def <=(a: real(64), b: real(64)): bool
def <=(a: imag(32), b: imag(32)): bool
def <=(a: imag(64), b: imag(64)): bool

The result of a <= b is true if a is less than or equal to b; otherwise the result is false.

The “greater than or equal to”” comparison operators are predefined over numeric types as follows:

def >=(a: int (32), b: int (32)): bool

def >=(a: int(64), b: int(64)): bool

def >=(a: uint (32), b: uint (32)): bool
def >=(a: uint(64), b: uint (64)): bool
def >=(a: real(32), b: real(32)): bool
def >=(a: real(64), b: real(64)): bool
def >=(a: imag(32), b: imag(32)): bool
def >=(a: imag(64), b: imag(64)): bool

The result of a >= b is true if a is greater than or equal to b; otherwise the result is false.

The ordered comparison operators are predefined over strings as follows:

def <(a: string, b: string): bool
def > (a: string, b: string): bool
def <=(a: string, b: string): bool
def >=(a: string, b: string): bool

Comparisons between strings are defined based on the ordering of the character set used to represent the
string, which is applied elementwise to the string’s characters in order.

10.17.2 Equality Comparison Operators

The equality comparison operators are predefined over bool and the numeric types as follows:

def ==(a: int (32), b: int (32)): bool

def ==(a: int(64), b: int(64)): bool

def ==(a: uint (32), b: uint (32)): bool

def ==(a: uint (64), b: uint (64)): bool

def ==(a: real(32), b: real(32)): bool

def ==(a: real(64), b: real(64)): bool

def ==(a: imag(32), b: imag(32)): bool

def ==(a: imag(64), b: imag(64)): bool

def ==(a: complex(64), b: complex(64)): bool

def ==(a: complex(128), b: complex(128)): bool
The result of a == b is true if a and b contain the same value; otherwise the result is false. The result of
a != bisequivalentto ! (a == b).

The equality comparison operators are predefined over classes as follows:

def ==(a: object, b: object): bool
def !=(a: object, b: object): bool

Expressions 51

The result of a == b is true if a and b reference the same storage location; otherwise the result is false. The
resultof a != bisequivalentto ! (a == b).

Default equality comparison operators are generated for records if the user does not define them. These
operators are described in

The equality comparison operators are predefined over strings as follows:

def ==(a: string, b: string): bool

def !=(a: string, b: string): bool
The result of a == b is true if the sequence of characters in a matches exactly the sequence of characters in
b; otherwise the result is false. The result of a !'= b is equivalentto ! (a == b).

10.18 Miscellaneous Operators

This section describes several miscellaneous operators. These operators can be redefined over different types
using operator overloading (§13.12).

10.18.1 The String Concatenation Operator

The string concatenation operator + is predefined over numeric, boolean, and enumerated types with strings.
It casts its operands to string type and concatenates them together.

Example. The code

"result: "+i

where i is an integer appends the string representation of i to the string literal "result: ". If
i is 3, then the resulting string would be "result: 3".

10.18.2 The By Operator

The operator by is predefined on ranges and arithmetic domains. It is described in §18.4.1| for ranges
and §19.13.1|for domains.

10.18.3 The Range Count Operator

The operator # is predefined on ranges. It is described in §18.4.2

52 Chapel Language Specification

10.19 Let Expressions

A let expression allows variables to be declared at the expression level and used within that expression. The
syntax of a let expression is given by:

let-expression:
let variable—declaration—list in expression

The scope of the variables is the let-expression.

Example. Let expressions are useful for defining variables in the context of expression. In the
code

let x: real = axb, y = x*x in 1/y

the value determined by axb is computed and converted to type real if it is not already a real.
The square of the real is then stored in y and the result of the expression is the reciprocal of that
value.

10.20 Conditional Expressions

A conditional expression is given by the following syntax:

if-expression:
if expression then expression else expression
if expression then expression

The conditional expression is evaluated in two steps. First, the expression following the i £ keyword is eval-
uated. Then, if the expression evaluated to true, the expression following the then keyword is evaluated and
taken to be the value of this expression. Otherwise, the expression following the else keyword is evaluated
and taken to be the value of this expression. In both cases, the unselected expression is not evaluated.

The ‘else’ keyword can be omitted only when the conditional expression is immediately nested inside a forall
expression. Such an expression is used to filter predicates as described in §10.21.1]and §25.2.3}

10.21 For Expressions

A for expression is given by the following syntax:

for-expression:
for index—var—declaration in iterator-expression do expression
for iterator—expression do expression

The for-expression evaluates a for-loop (§11.8)) in the context of an expression and has the semantics of calling
an iterator (§21)) that yields the evaluated expressions on each iteration.

Expressions 53

10.21.1 Filtering Predicates in For Expressions

A conditional expression that is immediately enclosed in a for expression does not require an else-part. Such a
conditional expression filters the evaluated expressions and only returns an expression if the condition holds.

Example. The code

var A = for i in 1..10 do if i % 3 != 0 then i;

declares an array A that is initialized to the integers between 1 and 10 that are not divisible by 3.

54

Chapel Language Specification

Statements

11 Statements

55

Chapel is an imperative language with statements that may have side effects. Statements allow for the se-

quencing of program execution. They are as follows:

statement:
block—statement
expression—statement
assignment-statement
swap-statement
conditional-statement
select—statement
while—do-statement
do—while-statement
for—statement
label-statement
break—statement
continue-statement
param-for—statement
use—statement
type-select-statement
empty-statement
return—statement
yield-statement
module—declaration—- statement
function—declaration—statement
method—declaration— statement
type—declaration—-statement
variable—declaration—-statement
remote— variable—declaration—statement
on-statement
cobegin—statement
coforall-statement
begin—statement
sync-statement
serial-statement
atomic—statement
forall-statement

Return statements are defined in §13.10} Yield statements are defined in §21.2] Module declaration statements
are defined in Function declaration statements are defined in Method declaration statements are

defined in Type declaration statements are defined in
in 8] Remote variable declaration statements are defined in §
Cobegin, coforall, begin, sync, serial and atomic statements are

in §23]

11.1 Blocks

Variable declaration statements are defined

26.2.1} On statements are defined in §26.2]

defined in §24] Forall statements are defined

A block is a statement or a possibly empty list of statements that form their own scope. A block is given by

block—statement:
{ statements,,; }

56 Chapel Language Specification

statements:
Statement
statement statements

Variables defined within a block are local variables (§8.3)).

The statements within a block are executed serially unless the block is in a cobegin statement (§24.2.T)).

11.2 Expression Statements

The expression statement evaluates an expression solely for side effects. The syntax for an expression state-
ment is given by

expression—statement:
expression ;

11.3 Assignment Statements

An assignment statement assigns the value of an expression to another expression that can appear on the
left-hand side of the operator, for example, a variable. Assignment statements are given by

assignment-statement:
Ivalue—-expression assignment-operator expression

aSSigHment—OpefatOT: one of
= 4= —=x= /= Y= xx= &= |: = &&= H: <<L=>>=

The expression on the left-hand side of the assignment operator must be a valid Ivalue (§10.10). It is evaluated
before the expression on the right-hand side of the assignment operator, which can be any expression.

The assignment operators that contain a binary operator as a prefix is a short-hand for applying the binary
operator to the left and right-hand side expressions and then assigning the value of that application to the al-
ready evaluated left-hand side. Thus, for example, x += vy is equivalentto x = x + y where the expression
x s evaluated once.

In a compound assignment, a cast to the type on the left-hand side is inserted before the simple assignment if
the operator is a shift or both the right-hand side expression can be assigned to the left-hand side expression
and the type of the left-hand side is a primitive type.

Rationale. This cast is necessary to handle += where the type of the left-hand side is, for
example, int (8) because the + operator is defined on int (32), not int (8).

Values of one primitive or enumerated type can be assigned to another primitive or enumerated type if an
implicit coercion exists between those types (§9.1).

The validity and semantics of assigning between classes (§15.3)), records (§16.1.6), unions (§17.3), tuples (§14.3),
ranges (§18.3)), domains (§19.8)), and arrays (§20.5)) is discussed in these later sections.

Statements 57

11.4 The Swap Statement

The swap statement indicates to swap the values in the expressions on either side of the swap operator. Since
both expressions are assigned to, each must be a valid lvalue expression (§10.10).

swap-statement:
Ivalue-expression swap—operator Ivalue-expression

swap—operator:
<=>

To implement the swap operation, the compiler uses temporary variables as necessary.

Example. The following swap statement

var a, b: real;

a <=> b;

is semantically equivalent to:

const t = Db;
b = a;
a = t;

11.5 The Conditional Statement

The conditional statement allows execution to choose between two statements based on the evaluation of an
expression of bool type. The syntax for a conditional statement is given by

conditional-statement:
if expression then statement else-part, .
if expression block—statement else—part,,;

else—part:
else statement

A conditional statement evaluates an expression of bool type. If the expression evaluates to true, the first
statement in the conditional statement is executed. If the expression evaluates to false and the optional else-
clause exists, the statement following the e1se keyword is executed.

If the expression is a parameter, the conditional statement is folded by the compiler. If the expression eval-
uates to true, the first statement replaces the conditional statement. If the expression evaluates to false, the
second statement, if it exists, replaces the conditional statement; if the second statement does not exist, the
conditional statement is removed.

If the statement that immediately follows the optional then keyword is a conditional statement and it is not
in a block, the else-clause is bound to the nearest preceding conditional statement without an else-clause.

Each statement embedded in the conditional-statement has its own scope whether or not an explicit block
surrounds it.

58 Chapel Language Specification
11.6 The Select Statement

The select statement is a multi-way variant of the conditional statement. The syntax is given by:

select—statement:
select expression { when-statements }

when- statements:
when-statement
when-statement when—statements

when-statement:
when expression-list do statement
when expression-list block-statement
otherwise statement

expression—list:
expression
expression , expression—list

The expression that follows the keyword select, the select expression, is compared with the list of expres-
sions following the keyword when, the case expressions, using the equality operator ==. If the expressions
cannot be compared with the equality operator, a compile-time error is generated. The first case expression
that contains an expression where that comparison is t rue will be selected and control transferred to the asso-
ciated statement. If the comparison is always false, the statement associated with the keyword otherwise,
if it exists, will be selected and control transferred to it. There may be at most one otherwise statement and
its location within the select statement does not matter.

Each statement embedded in the when-statement has its own scope whether or not an explicit block surrounds

it.

11.7 The While and Do While Loops

There are two variants of the while loop in Chapel. The syntax of the while-do loop is given by:

while-do-statement:
while expression do statement
while expression block—statement

The syntax of the do-while loop is given by:

do—while—-statement:
do statement while expression ;

In both variants, the expression evaluates to a value of type bool which determines when the loop terminates
and control continues with the statement following the loop.

The while-do loop is executed as follows:

1. The expression is evaluated.

Statements 59

2. If the expression evaluates to false, the statement is not executed and control continues to the state-
ment following the loop.

3. If the expression evaluates to t rue, the statement is executed and control continues to step 1, evaluating
the expression again.

The do-while loop is executed as follows:

1. The statement is executed.
2. The expression is evaluated.
3. If the expression evaluates to false, control continues to the statement following the loop.

4. If the expression evaluates to t rue, control continues to step 1 and the the statement is executed again.

In this second form of the loop, note that the statement is executed unconditionally the first time.

11.8 The For Loop

The for loop iterates over ranges, domains, arrays, iterators, or any class that implements an iterator named
these. The syntax of the for loop is given by:

for-statement:
for index—var-declaration in iterator-expression do statement
for index—var-declaration in iterator—expression block—statement
for iterator—expression do statement
for iterator—expression block—statement

index— var—declaration:
identifier
tuple-grouped-identifier-list

iterator—expression:
expression

The index—var—declaration declares new variables for the scope of the loop. It may specify a new identifier or
may specify multiple identifiers grouped using a tuple notation in order to destructure the values returned by
the iterator expression, as described in §14.4.3]

The index-var-declaration is optional and may be omitted if the indices do not need to be referenced in the
loop.

If the iterator-expression is a tuple delimited by parentheses, the components of the tuple must support itera-
tion, e.g., a tuple of arrays, and those components are iterated over using a zipper iteration defined in
If the iterator-expression is a tuple delimited by brackets, the components of the tuple must support iteration
and these components are iterated over using a tensor product iteration defined in

60 Chapel Language Specification

11.8.1 Zipper Iteration

When multiple iterators are iterated over in a zipper context, on each iteration, each expression is iterated over,
the values are returned by the iterators in a tuple and assigned to the index, and the statement is executed.

The shape of each iterator, the rank and the extents in each dimension, must be identical.

Example. The output of
for (i, j) in (1..3, 4..6) do

write(i, " ", j, "oy,

is142536”.

11.8.2 Tensor Product Iteration

When multiple iterators are iterated over in a tensor product context, they are iterated over as if they were
nested in distinct for loops. There is no constraint on the iterators as there is in the zipper context.

Example. The output of

for (i, j) in [1..3, 4..6] do
write(i, " ", j, nowy

is“141516242526343536 7. The statement is equivalent to

for i in 1..3 do
for j in 4..6 do

write (i, " ", j/ "oy,

11.8.3 Parameter For Loops

Parameter for loops are unrolled by the compiler so that the index variable is a parameter rather than a
variable. The syntax for a parameter for loop statement is given by:

param-iterator—expression:
range-literal
range-literal by integer-literal

param-—for—statement:
for param identifier in param-iterator—expression do statement
for param identifier in param-iterator—expression block—-statement

Parameter for loops are restricted to iteration over range literals with an optional by expression where the
bounds and stride must be parameters. The loop is then unrolled for each iteration.

Statements 61
11.9 The Label, Break, and Continue Statements

The label-statement is used to name a specific loop which can then be the target of a break- or continue-
statement. If a break- or continue-statement has no label, the target is the lexically inner-most loop. Labels
can only be given to for-, while-do- and do-while-statements.

The syntax for label, break, and continue statements is given by:

label-statement:
label identifier statement

break—statement:
break identifier,,: ;

continue-statement:
continue identifier,,: ;

If a break-statement is encountered, control will be transferred to after the associated loop. If a continue-
statement is encountered, control will be transferred to the end of the associated loop, but still inside the loop.
Break-statements cannot be used to break out of parallel loops. Neither break- nor continue-statements can
cross out of cobegin-, coforall-, begin-, or sync-statements.

Example. In the following code, the index of the first element in each row of a that is equal to
findval is printed. Once a match is found, the continue statement is executed causing the outer
loop to move to the next row.

label outer for i in 1..n {
for j in 1..n {
if A[i, Jj] == findval {
writeln("index: ", (i, 3j), " matches.");
continue outer;

}

11.10 The Use Statement

The use statement makes symbols in modules available without accessing them via the module name. The
syntax of the use statement is given by:

use—statement:
use module—name-list ;

module—name-list:
module—name
module—name , module—name-list

module—name:
identifier
module-name . module—name

62 Chapel Language Specification

The use statement makes symbols in each listed module’s scope available from the scope where the use
statement occurs.

Symbols injected by a use statement are at an outer scope from those defined directly in the scope where the
use statement occurs, but at a nearer scope than symbols defined in the scope containing the scope where the
use statement occurs.

If used modules themselves use other modules, symbols are scoped according the depth of use statements
followed to find them. It is an error for two variables, types, or modules to be defined at the same depth.

Open issue. There is an expectation that this statement will be extended to allow the programmer
to restrict which symbols are "used’ as well as to rename symbols that are used.

11.11 The Type Select Statement

A type select statement has two uses. It can be used to determine the type of a union, as discussed in §17.4] In
its more general form, it can be used to determine the types of one or more values using the same mechanisms
used to disambiguate function definitions. It syntax is given by:

type-select-statement:
type select expression-list { type—when-statements }

type- when-statements:
type—when-statement
type—when-statement type—when-statements

type—when-statement:
when type-list do statement
when type-list block—statement
otherwise statement

expression—list:
expression
expression , expression—list

type-list:
type—specifier
type-specifier , type-list

Call the expressions following the keyword select, the select expressions. The number of select expressions
must be equal to the number of types following each of the when keywords. Like the select statement, one
of the statements associated with a when will be executed. In this case, that statement is chosen by the
function resolution mechanism. The select expressions are the actual arguments, the types following the
when keywords are the types of the formal arguments for different anonymous functions. The function that
would be selected by function resolution determines the statement that is executed. If none of the functions
are chosen, the the statement associated with the keyword otherwise, if it exists, will be selected.

As with function resolution, this can result in an ambiguous situation. Unlike with function resolution, in the
event of an ambiguity, the first statement in the list of when statements is chosen.

Statements

11.12 The Empty Statement

An empty statement has no effect. The syntax of an empty statement is given by

empty-statement:

s

63

64

Chapel Language Specification

Modules 65

12 Modules

Chapel supports modules to manage name spaces. A program consists of one or more modules. Every
symbol, including variables, functions, and types, is associated with some module.

Module definitions are described in §12.1} The relation between files and modules is described in
Nested modules are described in §12.3] Module uses and explicit naming of symbols are described in §12.4]
The execution of a program and module initialization is described in

12.1 Module Definitions

A module is declared with the following syntax:

module-declaration—statement:
module module-identifier block—statement

module—identifier:
identifier

A module’s name is specified after the module keyword. The block-statement opens the module’s scope.
Symbols defined in this block statement are defined in the module’s scope and are called top-level module
symbols.

Module declaration statements must be top-level statements within a module. A module that is declared
within another module is called a nested module (§12.3)).

12.2 Files and Implicit Modules

Multiple modules can be defined in the same file and need not bear any relation to the file in terms of their
names.

Example. The following file contains two explicitly named modules (§12.4.1), MX and MY.

module MX {
var x: int = 0;
def printX() {
writeln(x);
}
}

module MY {
var y: int = 0O;
def printY() {
writeln(y);
}
}

Module MX defines top-level module symbols x and printX, while MX defines top-level module
symbols y and printY.

66 Chapel Language Specification

For any file that contains top-level statements other than module declarations, the file itself is treated as the
module declaration. In this case, the module is implicit and takes its name from the file. If the file name is
not a legal Chapel identifier, the module name cannot be used in a use statement.

Example. The following file, named myModule.chpl, defines an implicitly named module called

myModule.
var x: int = 0;
var y: int = 0;

def printX() {
writeln (x);

}

def printY() {
writeln(y);

}

Module myModule defines the top-level module symbols X, y, printX, and printY.

12.3 Nested Modules

A nested module is a module that is defined within another module, the outer module. Nested modules
automatically have access to all of the symbols in the outer module. However, the outer module needs to
explicitly use a nested module to have access to its symbols.

A nested module can be used without using the outer module by explicitly naming the module in the use
statement.

Example. The code

use libsci.blas;

uses a module named blas that is nested inside a module named 1ibsci.

Files with both module declarations and top-level statements result in nested modules.

Example. The following file, named myModule.chpl, defines an implicitly named module called
myModule, with nested modules MX and MY.
module MX {

var x: int

}

0;

module MY {
var y: int = 0;

}
use MX, MY;

def printX() {
writeln (x);

}

def printY() {
writeln(y);

}

Modules 67

12.4 Using Modules

A module can be used by code outside of that module. This allows access to the top-level module symbols
without the need for explicit naming (§12.4.1). Using modules is accomplished via the use statement as

defined in §IT.10]

12.4.1 Explicit Naming

All top-level module symbols can be named explicitly with the following syntax:

module-access—expression:
module—identifier-list . identifier

module—identifier—list:
module—identifier
module—identifier . module—identifier—list

This allows two variables that have the same name to be distinguished based on the name of their module.

Using explicit module naming in a function call restricts the set of candidate functions to those in the specified
module.

If code refers to symbols that are defined by multiple modules, the compiler will issue an error. Explicit
naming can be used to disambiguate the symbols in this case.

Example. In the following example,

module M1 {
var x: int = 1;
var y: int = -1;
def printX() {
writeln("M1l’s x is: ", x);
}
def printY() {
writeln("Ml’s y is: ", vy);
}
}
module M2 {
use M3;
use MI;

var x: int = 2;

def printX() {
writeln("M2’s x is: ", x);

}

def main() {
Ml.x = 4;
Ml.printX();
writeln (x);
printX(); // This is not ambiguous
printY(); // ERROR: This is ambiguous

68 Chapel Language Specification

module M3 {
var x: int = 3;
var y: int = -3;
def printY() {
writeln("™3’s y is: ", vy);
}
}

The call to printX() is not ambiguous because M2’s definition shadows that of M 1. On the other
hand, the call to printY() is ambiguous because it is defined in both M1 and M3. This will result
in a compiler error.

12.4.2 Module Initialization

Module initialization occurs at program start-up. All top-level statements in a module other than function and
type declarations are executed during module initialization.

Example. In the code,

var x = foo(); // executed at module initialization
writeln ("Hi!"); // executed at module initialization
def sayGoodbye {

writeln ("Bye!"); // not executed at module initialization

}

The function foo() will be invoked and its result assigned to x. Then “Hi!” will be printed.

Module initialization order is discussed in §12.5.2)

12.5 Program Execution

Chapel programs start by initializing all modules and then executing the main function (§12.5.1).

12.5.1 The main Function

The main function must be called main and must have zero arguments. It can be specified with or without
parentheses. In any Chapel program, there is a single main function that defines the program’s entry point.
If a program defines multiple potential entry points, the implementation may provide a compiler flag that
disambiguates between main functions in multiple modules.

Cray’s Chapel Implementation. In the Cray Chapel compiler implementation, the — —main-
module flag can be used to specify the module from which the main function definition will be
used. Only modules passed to the compiler on the command line will be searched for main
functions unless the — —main-module flag is used.

Example. If the following code is compiled without specifying a main module, it will yield an
error.

Modules 69

module M1 {
const x = 1;
def main() {
writeln("M", x, "’s main");
}
}

module M2
use M1;

const x = 2;

def main() {
M1l.main () ;
writeln("M", x, "’s main");

}

If M1 is specified as the main module, the program will output:
M1’s main
If M2 is specified as the main module the program will output:

M1’s main
M2’s main

Notice that main is treated like just another function if it not in the main module and can be
called as such.

To aid in exploratory programming, if the file(s) listed on the compiler’s command line only define a single
module, the module need not define a main function. In this case, a default main function is created to execute
the module initialization code.

Example. The code

writeln("hello, world");
is a legal and complete Chapel program. Its initialization function, which also serves as the

program’s main function, is the top-level writeln() statement. The module declaration is taken to
be the file as described in §12.2]

12.5.2 Module Initialization Order

Module initialization is performed using the following algorithm.

Module use can be represented by a directed graph over the modules. Starting from the module that defines
the main function, modules are initialized in the order implied by a depth-first, post-order traversal of the
graph. Modules are initialized in the order in which they appear in the program text. For nested modules,
uses in the parent module are initialized before uses in the nested module.

Example. The code

70

Chapel Language Specification

module M1 {
use M2.M3;
use M2;
writeln("In M1’s initializer");
def main() {
writeln("In main");
}
}

module M2 {
use M4;
writeln("In M2’s initializer");
module M3 {
writeln("In M3’s initializer");
}
}

module M4
writeln("In M4’s initializer");

}

prints the following

In M4’s initializer
In M2’s initializer
In M3’s initializer
In M1’s initializer
In main

M1, the main module, uses M2.M3 and then M2, thus M2.M3 must be initialized. Because
M2.M3 is a nested module, M4 (which is used by M2) must be initialized first. M2 itself is
initialized, followed by M2.M3. Finally M1 is initialized, and the main function is run.

Functions 71

13 Functions

This section defines functions. Methods and iterators are functions and most of this section applies to them as
well. They are defined separately in §21]and §I5.5] Recursive and mutually-recursive functions are supported.

13.1 Function Calls

The syntax to call a function is given by:

call-expression:
expression (named-expression—list)
expression [named-expression-list]
parenthesesless—function-identifier

named-expression-list:
named-expression
named-expression , named-expression-list

named-expression:
expression
identifier = expression

parenthesesless—function—-identifier:
identifier

A call-expression is resolved to a particular function according to the algorithm for function resolution de-

scribed in §13.14

Functions can be called using either parentheses or brackets. The only difference in the call has to do with
promotion and is discussed in §25.4]

Functions that are defined without parentheses are called without parentheses as defined by scope resolution.
Functions without parentheses are discussed in §13.3]

A named-expression is an expression that may be optionally named. It provides an actual argument to the
function being called. The optional identifier refers to a named formal argument described in §13.4.1

13.2 Function Definitions

Functions are declared with the following syntax:

function-declaration—statement:
def function—name argument-list,,, var-param-type-clause,,, where—clause,;
function—body

function—name:
identifier
operator-name

72 Chapel Language Specification

operator-name: one of

+ %/ % kx| == <= >= < > << >> & | "7
argument-list:

(formals,p:)

formals:
formal
formal , formals

formal:
formal-intent,,,, identifier formal-type,,: default-expression, .
formal-intent,,,, identifier formal-type,,. variable—argument—expression
formal-intent,,. tuple-grouped-identifier-list formal-type,,: default-—expression,:
formal-intent,,,, tuple-grouped—identifier—list formal-type,,. variable-argument-expression

formal-type:
: type—-specifier
: ? identifier,.

default—expression:
= expression

variable—-argument—expression:
... expression
... 7 identifier, .

formal-intent. one of
in out inout param type

var-param-type-clause:
var return—=type,:
const return—type, .
param return—type,,.
type

return—type:
: type-specifier

where—clause:
where expression

function-body:
block-statement
return-statement

Functions do not require parentheses if they have no arguments. Such functions are described in §13.3]
Formal arguments can be grouped together using a tuple notation as described in §14.4.4]

Default expressions allow for the omission of actual arguments at the call site, resulting in the implicit passing
of a default value. Default values are discussed in §13.4.2

Functions 73

The intents in, out, and inout are discussed in §13.5] The intents param and t ype make a function generic
and are discussed in §22.1] If the formal argument’s type is omitted, generic, or prefixed with a question
mark, the function is also generic and is discussed in §22.1]

Functions can take a variable number of arguments. Such functions are discussed in §13.6

The optional var-param-type-clause defines a variable function, discussed in §13.7] or a parameter function,
discussed in §13.8] or a type function, discussed in §13.9] By default, a function call cannot be treated as an
Ivalue and is constant. This may be explicitly specified via the keyword const.

Return types are optional and are discussed in §13.11

The optional where—clause is only applicable if the function is generic. It is discussed in §22.4]

Function and operator overloading is supported in Chapel and is discussed in §13.12] Operator overloading
is supported on the operators listed above (see operator—name).

13.3 Functions without Parentheses

Functions do not require parentheses if they have empty argument lists. Functions declared without paren-
theses around empty argument lists must be called without parentheses.

Example. Given the definitions

def foo { writeln("In foo"); }
def bar() { writeln("In bar"); }

the function foo can be called by writing foo and the function bar can be called by writing
bar (). Itis an error to apply parentheses to foo or omit them from bar.

13.4 Formal Arguments

Chapel supports an intuitive formal argument passing mechanism. An argument is passed by value unless it
is a class, array, or domain, in which case it is passed by reference.

Intents (§13.5) may be used to override the default argument passing mechanism. This may result in assign-
ments to and from the formal argument during a function call. For example, when passing an array by intent
in, the actual argument array will be copied into the formal argument for use within the function.

13.4.1 Named Arguments

A formal argument can be named at the call site to explicitly map an actual argument to a formal argument.

Example. In the code

74 Chapel Language Specification

def foo(x: int, y: int) { writeln(x); writeln(y); }

foo (x=2, y=3);
foo (y=3, x=2);

named argument passing is used to map the actual arguments to the formal arguments. The two
function calls are equivalent.

Named arguments are sometimes necessary to disambiguate calls or ignore arguments with default values.
For a function that has many arguments, it is sometimes good practice to name the arguments at the call site
for compiler-checked documentation.

13.4.2 Default Values

Default values can be specified for a formal argument by appending the assignment operator and a default
expression to the declaration of the formal argument. If the actual argument is omitted from the function call,
the default expression is evaluated when the function call is made and the evaluated result is passed to the
formal argument as if it were passed from the call site.

Example. In the code

def foo(x: int = 5, y: int = 7) { writeln(x); writeln(y); }

foo();
foo (7);

foo(y=5);

default values are specified for the formal arguments x and y. The three calls to foo are
equivalent to the following three calls where the actual arguments are explicit: foo (5, 7),
foo(7, 7),and foo (5, 5). The example foo (y=5) shows that we have to use a named ar-
gument for y in order to use the default value for x in the case when x appears earlier than y in
the formal argument list.

13.5 Intents

Intents allow the actual arguments to be copied to a formal argument and also to be copied back.

13.5.1 The Blank Intent

If the intent is omitted, it is called a blank intent. In such a case, the value is copied in using the assignment
operator. Thus classes are passed by reference and records are passed by value. Arrays and domains are an
exception because assignment does not apply from the actual to the formal. Instead, arrays and domains are
passed by reference.

With the exception of arrays, any argument that has blank intent cannot be assigned within the function.

Functions 75
13.5.2 The In Intent

If in is specified as the intent, the actual argument is copied to the formal argument as usual, but it may also
be assigned to within the function. This assignment is not reflected back at the call site.

If an array is passed to a formal argument that has in intent, a copy of the array is made via assignment.
Changes to the elements within the array are thus not reflected back at the call site.

13.5.3 The Out Intent

If out is specified as the intent, the actual argument is ignored when the call is made, but after the call, the
formal argument is assigned to the actual argument at the call site. The actual argument must be a valid
Ivalue. The formal argument can be assigned to and read from within the function.

The formal argument cannot not be generic and is treated as a variable declaration.

13.5.4 The Inout Intent

If inout is specified as the intent, the actual argument is both passed to the formal argument as if the in
intent applied and then copied back as if the out intent applied. The formal argument can be generic and
takes its type from the actual argument. The formal argument can be assigned to and read from within the
function.

13.6 Variable Length Argument Lists

Functions can be defined to take a variable number of arguments where those arguments can have any intent
or can be types. A variable number of parameters is not supported. This allows the call site to pass a different
number of actual arguments. There must be at least one actual argument.

If the variable argument expression contains an identifier prepended by a question mark, the number of actual
arguments can vary, and the identifier will be bound to an integer parameter value indicating the number of
arguments at a given call site. If the variable argument expression contains an expression without a question
mark, that expression must evaluate to an integer parameter value requiring the call site to pass that number
of arguments to the function.

Within the function, the formal argument that is marked with a variable argument expression is a tuple of the
actual arguments.

Example. The code

def mywriteln(x ...%k) {
for param i in 1..k do
writeln(x(i));

76 Chapel Language Specification

defines a generic function called mywriteln that takes a variable number of arguments of any
type and then writes them out on separate lines. The parameter for-loop (§11.8.3) is unrolled by
the compiler so that i is a parameter, rather than a variable. This needs to be a parameter for-loop
because the expression x (i) will have a different type on each iteration. The type of x can be
specified in the formal argument list to ensure that the actuals all have the same type.

Example. Either or both the number of variable arguments and their types can be specified. For
example, a basic function to sum the values of three integers can be wrtten as

def sum(x: int...3) return x (1) + x(2) + x(3);

Specifying the type is useful if it is important that each argument have the same type. Specifying
the number is useful in, for example, defining a method on a class that is instantiated over a rank
parameter.

Example. The function

def tuple(x ...) return x;

creates a generic function that returns tuples. When passed two or more actuals in a call, it
is equivalent to building a tuple so the expressions tuple (1, 2) and (1, 2) are equivalent.
When passed one actual, it builds a 1-tuple which is different than the evaluation of the paren-
thesized expression. Thus the expressions tuple (1) and (1) are not equivalent.

13.7 Variable Functions

A variable function is a function that can be assigned a value. Note that a variable function does not return a
reference. That is, the reference cannot be captured.

A variable function is specified by following the argument list with the var keyword. A variable function
must return an lvalue.

When a variable function is called on the left-hand side of an assignment statement or in the context of a call
to a formal argument by out or inout intent, the lvalue that is returned by the function is assigned a value.

Variable functions support an implicit argument setter of type bool that is a compile-time constant (and
can thus be folded). If the variable function is called in a context such that the returned lvalue is assigned a
value, the argument setter is t rue; otherwise it is false. This argument is useful for controlling different
behavior depending on the call site.

Example. The following code creates a function that can be interpreted as a simple two-element
array where the elements are actually global variables:

var x, y = 0;

def A(i: int) wvar {
if 1 <0 |] i > 1 then
halt ("array access out of bounds");
if i == 0 then
return x;
else
return y;

Functions 77

This function can be assigned to in order to write to the “elements” of the array as in
A(0) = 1;
A(l) = 2;

It can be called as an expression to access the “elements” as in

writeln(A(0) + A(1l));

This code outputs the number 3.

The implicit setter argument can be used to ensure, for example, that the second element in
the pseudo-array is only assigned a value if the first argument is positive. To do this, add the
following:

if setter && i == 1 && x <= 0 then
halt ("cannot assign value to A(l) if A(0) <= 0");

13.8 Parameter Functions

A parameter function is a function that returns a parameter expression. It is specified by following the
function’s argument list by the keyword param. It is often, but not necessarily, generic.

It is a compile-time error if a parameter function does not return a parameter expression. The result of a
parameter function is computed during compilation and the result is inlined at the call site.

Example. In the code

def sumOfSquares (param a: int, param b: int) param
return axx2 + bx*2;

var x: sumOfSquares (2, 3)x*int;

the function sumOfSquares is a parameter function that takes two parameters as arguments.
Calls to this function can be used in places where a parameter expression is required. In this
example, the call is used in the declaration of a homogeneous tuple and so is required to be a
parameter.

Parameter functions may not contain control flow that is not resolved at compile-time. This includes loops
other than the parameter for loop §11.8.3|and conditionals with a conditional expressions that is not a param-
eter.

13.9 Type Functions

A type function is a function that returns a type. It is specified by following the function’s argument list by
the keyword type. It is often, but not necessarily, generic.

It is a compile-time error if a type function does not return a type. The result of a type function is computed
during compilation.

As with parameter functions, type functions may not contain control flow that is not resolved at compile-time.
This includes loops other than the parameter for loop §11.8.3|and conditionals with a conditional expressions
that is not a parameter.

78 Chapel Language Specification

Example. In the code

def myType (x) type {
if numBits (x.type) <= 32 then return int;
else return int (64);

}

the function myType is a type function that takes a single argument x and returns int if the
number of bits used to represent x is less than or equal to 32, otherwise it returns int (64). The
function numBits is a param function defined in the Types module (§30.1.3).

13.10 The Return Statement

The return statement can only appear in a function. It exits that function, returning control to the point at
which that function was called. It can optionally return a value. The syntax of the return statement is given
by

return-statement:
return expression, . ;

Example. The following code defines a function that returns the sum of three integers:

def sum(il: int, i2: int, i3: int)
return il + 12 + 1i3;

13.11 Return Types

A function can optionally return a value. If the function does not return a value, its return type is void.
Specifying the return type in a function declaration is optional.

13.11.1 Explicit Return Types

If a return type is specified and is not void, the values that the function returns via return statements must
be assignable to a variable of the return type. For variable functions (§I3.7), the return type must match the
type returned in all of the return statements exactly, when checked after generic instantiation and parameter
folding (if applicable).

13.11.2 Implicit Return Types

If a return type is not specified, it will be inferred from the return statements. Given the types that are returned
by the different statements, if exactly one of those types can be a target, via implicit conversions, of every
other type, then that is the inferred return type. Otherwise, it is an error. For variable functions (§13.7), every
return statement must return the same exact type and it becomes the inferred type. For functions without any
return statements, the return type is void.

Functions 79

13.12 Function Overloading

Functions that have the same name but different argument lists are called overloaded functions. Function
calls to overloaded functions are resolved according to the algorithm in §13.14

Operator overloading is achieved by defining a function with a name specified by that operator. The operators
that may be overloaded are listed in the following table:

arity | operators
unary | + - ! 7
binary | + — * / % x%x | == <= >= < > << >> & | "~ by

The arity and precedence of the operator must be maintained when it is overloaded. Operator resolution
follows the same algorithm as function resolution.

13.13 Nested Functions

A function defined in another function is called a nested function. Nesting of functions may be done to
arbitrary degrees, i.e., a function can be nested in a nested function.

Nested functions are only visible to function calls within the lexical scope in which they are defined.

Nested functions may refer to variables defined in the function(s) in which they are nested.

13.14 Function Resolution

Given a function call, the function that the call resolves to is determined according to the following algorithm:

o Identify the set of visible functions for the function call. A visible function is any function that satisfies
the criteria in §13.14.1} If no visible function can be found, the compiler will issue an error stating that
the call cannot be resolved.

e From the set of visible functions for the function call, determine the set of candidate functions for the
function call. A candidate function is any function that satisfies the criteria in If no candidate
function can be found, the compiler will issue an error stating that the call cannot be resolved. If exactly
one candidate function is found, this is determined to be the function.

e From the set of candidate functions, the most specific function is determined. The most specific
function is a candidate function that is more specific than every other candidate function as defined
in If there is no function that is more specific than every other candidate function, the com-
piler will issue an error stating that the call is ambiguous.

80 Chapel Language Specification

13.14.1 Determining Visible Functions

Given a function call, a function is determined to be a visible function if the name of the function is the same
as the name of the function call and the function is defined in the same scope as the function call or a lexical
outer scope of the function call, or if the function is defined in a module that is used from the same scope
as the function call or a lexical outer scope fo the function call. Function visibility in generic functions is

discussed in §22.2)

13.14.2 Determining Candidate Functions

Given a function call, a function is determined to be a candidate function if there is a valid mapping from
the function call to the function and each actual argument is mapped to a formal argument that is a legal
argument mapping.

Valid Mapping The following algorithm determines a valid mapping from a function call to a function if
one exists:

e Each actual argument that is passed by name is matched to the formal argument with that name. If
there is no formal argument with that name, there is no valid mapping.

e The remaining actual arguments are mapped in order to the remaining formal arguments in order. If
there are more actual arguments then formal arguments, there is no valid mapping. If any formal
argument that is not mapped to by an actual argument does not have a default value, there is no valid

mapping.

e The valid mapping is the mapping of actual arguments to formal arguments plus default values to
formal arguments that are not mapped to by actual arguments.

Legal Argument Mapping An actual argument of type 74 can be mapped to a formal argument of type
Tr if any of the following conditions hold:

T4 and T'r are the same type.

There is an implicit coercion from 7’4 to 1.

Ty is derived from 1.

T4 is scalar promotable to Tr.

13.14.3 Determining More Specific Functions

Given two functions F and F5, the more specific function is determined by the following steps:

e If F does not require promotion and F5 does require promotion, then F} is more specific.

e If F5 does not require promotion and F} does require promotion, then F5 is more specific.

Functions 81

o If at least one of the legal argument mappings to F} is a more specific argument mapping than the
corresponding legal argument mapping to F» and none of the legal argument mappings to F5 is a more
specific argument mapping than the corresponding legal argument mapping to Fi, then Fj is more
specific.

e If at least one of the legal argument mappings to F5 is a more specific argument mapping than the
corresponding legal argument mapping to F and none of the legal argument mappings to F} is a more
specific argument mapping than the corresponding legal argument mapping to F5, then Fj is more
specific.

e If F} shadows F5, then F} is more specific.
e If F;, shadows F1, then [is more specific.
e If F has a where clause and F> does not have a where clause, then F} is more specific.
e If F5 has a where clause and F does not have a where clause, then F5 is more specific.

e Otherwise neither function is more specific.

Given an argument mapping, M7, from an actual argument, A, of type T4 to a formal argument, F'1, of type
Tr1 and an argument mapping, M, from the same actual argument to a formal argument, F'2, of type T'ro,
the more specific argument mapping is determined by the following steps:

o If Try and Tro are the same type, F'1 is an instantiated parameter, and F'2 is not an instantiated
parameter, M is more specific.

o If Try and Tro are the same type, F'2 is an instantiated parameter, and F'1 is not an instantiated
parameter, Mo is more specific.

e If M; does not require scalar promotion and M» requires scalar promotion, M7 is more specific.
e If M, requires scalar promotion and M5 does not require scalar promotion, M5 is more specific.
o If Tr; and T'ro are the same type, F'1 is generic, and F'2 is not generic, M; is more specific.

e If Ty and Tro are the same type, F'2 is generic, and F'1 is not generic, M5 is more specific.

e If F'1 is not generic over all types and F'2 is generic over all types, M is more specific.

e If F'1 is generic over all types and F'2 is not generic over all types, M> is more specific.

e If T’y and T’r; are the same type and T’y and T’ro are not the same type, M is more specific.

e If T’y and T’ry are not the same type and T4 and T'ro are the same type, Mo is more specific.

o If T'r; is derived from T'ro, then M; is more specific.

o If Trs is derived from T'rq, then M5 is more specific.

e If there is an implicit coercion from T to Tr9, then M is more specific.

e If there is an implicit coercion from 7Ty to T'r1, then Mo is more specific.

e If T'rq is any int type and T'ro is any uint type, M; is more specific.

o If T'ro is any int type and Trq is any uint type, M5 is more specific.

e Otherwise neither mapping is more specific.

82

Chapel Language Specification

Tuples 83

14 Tuples

A tuple is an ordered set of components that allows for the specification of a light-weight collection of values.
As the examples in this chapter illustrate, tuples are a boon to the Chapel programmer. In addition to making
it easy to return multiple values from a function, tuples help to support multidimensional indices, to group
arguments to functions, and to specify mathematical concepts.

14.1 Tuple Types

A tuple type is defined by a fixed number (a compile-time constant) of component types. It can be specified
by a parenthesized, comma-separated list of types. The number of types in the list defines the size of the
tuple; the types themselves specify the component types.

The syntax of a tuple type is given by:

tuple-type:
(type-specifier , type-list)

type-list:
type-specifier
type-specifier , type—list

A homogeneous tuple is a special-case of a general tuple where the types of the components are identical.
Homogeneous tuples have fewer restrictions for how they can be indexed (§14.5). Homogeneous tuple types
can be defined using the above syntax, or they can be defined as a product of an integral parameter (a compile-
time constant integer) and a type. This latter specification is implemented by overloading « with the following
prototype:

def x (param p: int, type t) type

Rationale. Homogeneous tuples require the size to be specified as a parameter (compile-time
constant). This avoids any overhead associated with storing the runtime size in the tuple. It also
avoids the question as to whether a non-parameter size should be part of the type of the tuple. If
a programmer requires a non-parameter value to define a data structure, an array may be a better
choice.

Example. The statement

var x1: (string, real),
x2: (int, int, int),
x3: 3*int;

defines three variables. Variable x1 is a 2-tuple with component types string and real. Vari-
ables x2 and x3 are homogeneous 3-tuples with component type int. The types of x2 and =3
are identical even though they are specified in different ways.

Note that if a single type is delimited by parentheses, the parentheses only impact precedence. Thus (int)
is equivalent to int. Nevertheless, tuple types with a single component type are legal and useful. One way
to specify a 1-tuple is to use the overloaded » operator since every 1-tuple is trivially a homogeneous tuple.

84 Chapel Language Specification

Rationale. Like parentheses around expressions, parentheses around types are necessary for
grouping in order to avoid the default precedence of the grammar. Thus it is not the case that
we would always want to create a tuple. The type 3« (3xint) specifies a 3-tuple of 3-tuples of
integers rather than a 3-tuple of 1-tuples of 3-tuples of integers. The type 3x3xint, on the other
hand, specifies a 9-tuple of integers.

14.2 Tuple Values

A value of a tuple type attaches a value to each component type. Tuple values can be specified by a paren-
thesized, comma-separated list of expressions. The number of expressions in the list defines the size of the
tuple; the types of these expressions specify the component types of the tuple.

The syntax of a tuple expression is given by:
tuple—expression:

(expression , expression—list)

expression-list:
expression
expression , expression—list

Example. The statement

var xl1l: (string, real) = ("hello", 3.14),
x2: (int, int, int) = (1, 2, 3),
x3: 3%int = (4, 5, 6);

defines three variables. Variable x1 is a 2-tuple with component types string and real. Itis ini-
tialized such that the first component is "hello" and the second component is 3.14. Variables
x2 and x3 are homogeneous 3-tuples with component type int. Their initialization expressions
specify 3-tuples of integers.

The function

def tuple(x...) return x;

is defined in the standard context to create arbitrary tuples.

Example. The statement

var x1 = ("hello", 3.14),
x2 = tuple("hello", 3.14),
x3 = tuple(l);

creates two identical tuples x1 and x2, and a 1-tuple of an integer x3 with its component initial-
ized to 1.

Note that if a single expression is delimited by parentheses, the parentheses only impact precedence. Thus
(1) is equivalent to 1. Tuple expressions with a single component are legal and useful. As seen in the
example above, one way to specify a 1-tuple is to use the standard tuple function.

Tuple expressions are evaluated similarly to function calls where the arguments are all generic with no explicit
intent. So a tuple expression containing an array does not copy the array. The semantics regarding passing
tuples to functions is forthcoming.

Tuples 85

14.3 Tuple Assignment

In tuple assignment, the components of the tuple on the left-hand side of the assignment operator are each
assigned the components of the tuple on the right-hand side of the assignment. These assignments occur in
component order (component one followed by component two, etc.).

14.4 Tuple Destructuring
Tuples can be split into their components in four ways:

e In assignment where multiple expression on the left-hand side of the assignment operator are grouped
using tuple notation.

e In variable declarations where multiple variables in a declaration are grouped using tuple notation.

e In for, forall, and coforall loops (statements and expressions) where multiple indices in a loop are
grouped using tuple notation.

e In function calls where multiple formal arguments in a function declaration are grouped using tuple
notation.

e In an expression context that accepts a comma-separated list of expressions where a tuple expression
is expanded in place using the tuple expansion expression.

14.4.1 Splitting a Tuple with Assignment

When multiple expression on the left-hand side of an assignment operator are grouped using tuple notation,
the tuple on the right-hand side is split into its components. The number of grouped expressions must be
equal to the size of the tuple on the right-hand side. In addition to the usual assignment evaluation order of
left to right, the assignment is evaluated in component order.

Example. The code

var a, b, c: int;
(a, (b, ¢)) = (1, (2, 3));

defines three integer variables a, b, and c. The second line then splits the tuple (1, (2, 3))
such that 1 is assigned to a, 2 is assigned to b, and 3 is assigned to c.

Example. The code

var A = [1i in 1..4] 1i;

writeln (A);

(A(1..2), A(3..4)) = (A(3..4), A(1..2));
writeln (A);

creates a non-distributed, one-dimensional array containing the four integers from 1 to 4. Line
2 outputs 1 2 3 4. Line 3 does what appears to be a swap of array slices. However, because
the tuple is created with array aliases (like a function call), the assignment to the second com-
ponent uses the values just overwritten in the assignment to the first component. Line 4 outputs
3 4 3 4.

86 Chapel Language Specification

When splitting a tuple with assignment, the expressions that are grouped using the tuple notation may be
omitted. In this case, the expression on the right-hand side of the assignment operator is evaluated, but its
value is not assigned.

Example. The code
def f()

return (1, 2);

var x: int;
(x,) = £07;

defines a function that returns a 2-tuple, declares an integer variable x, calls the function, assigns
the first component in the returned tuple to x, and ignores the second component in the returned
tuple. The value of x becomes 1.

14.4.2 Splitting a Tuple into Multiple Variables

When multiple variables in a declaration are grouped using tuple notation, the tuple type and/or tuple initial-
ization expression are split into their components. The number of grouped variables must be equal to the size
of the tuple type and/or tuple initialization expression. The variables are initialized in component order.

The syntax of grouped variable declarations is defined in

Example. The code

var (a, (b, c)) = (1, (2, 3));

defines three integer variables a, b, and c. It splits the tuple (1, (2, 3)) such that 1 initializes
a, 2 initializes b, and 3 initializes c.

Grouping variable declarations using tuple notation allows a 1-tuple to be destructured by enclosing a single
variable declaration in parentheses.

Example. The code

var (a) = tuple(l);

initialize the new variable a to 1.

When splitting a tuple into multiple variable declarations, the variables that are grouped using the tuple
notation may be omitted. In this case, a variable is not defined for any omitted component.

Example. The code
def £()
return (1, 2);

var (x,) = £();

defines a function that returns a 2-tuple, calls the function, declares and initializes variable x to
the first component in the returned tuple, and ignores the second component in the returned tuple.
The value of x is initialized to 1.

Tuples 87

14.4.3 Splitting a Tuple into Mutiple Indices

When multiple indices in a loop are grouped using tuple notation, the values returned by the iterator are split
into their components. The number of grouped indices must be equal to the size of the tuple returned by the
iterator.

Example. The code

def bar () {
yield (1, 1);
yield (2, 2);
}

for (i,j) in bar() do
writeln (i+3j);

defines a simple iterator that yields two 2-tuples before completing. The for-loop uses a tuple
notation to group two indices that take their values from the iterator.

When splitting a tuple into multiple indices, the indices that are grouped using the tuple notation may be
omitted. In this case, a new index is not defined for any omitted component. The iterator is evaluated as if an
index were defined.

14.4.4 Splitting a Tuple into Multiple Formal Arguments

When multiple formal arguments in a function declaration are grouped using tuple notation, the actual ex-
pression is split into its components during a function call. The number of grouped formal arguments must
be equal to the size of the actual tuple expression. The actual arguments are passed in component order to the
formal arguments.

The syntax of grouped formal arguments is defined in §13.2]

Example. The function

def f(x: int, (y, z): (int, int)) {
// body
}

is defined to take an integer value and a 2-tuple of integer values. The 2-tuple is split when the
function is called into two formals. A call may look like the following:

£(1, (2, 3));

An implicit where clause is created when arguments are grouped using a tuple notation to ensure that the
function is called with an actual tuple of the correct size. Grouping arguments in tuples may be arbitrarily
nested. Functions with tuple-grouped arguments may not be called using named-argument passing on the
tuple-grouped arguments. In addition, tuple-grouped arguments may not be specified individually with types
or default values (only in aggregate). They may not be specified with any qualifier appearing before the group
of arguments (or individual arguments) such as inout or type. They may not be followed by . . . to indicate
that there are a variable number of them.

88 Chapel Language Specification

Example. The function f defined as
def £((x, (v, z))) {
writeln((x, y, z));
}
is equivalent to the function g defined as

def g(t) where isTuple(t) && t.size == 2 && isTuple(t(2)) && t(2).size == {
writeln ((t (1), t(2) (1), t(2)(2)));
}

except without the definition of the argument name t.

Grouping formal arguments using tuple notation allows a 1-tuple to be destructured by enclosing a single
formal argument in parentheses.

Example. The empty function
def f£((x)) { }

accepts a 1-tuple actual with any component type.

When splitting a tuple into multiple formal arguments, the arguments that are grouped using the tuple notation
may be omitted. In this case, a new argument is not defined for any omitted component. The call is evaluated
as if an argument were defined.

14.4.5 Splitting a Tuple via Tuple Expansion

Tuples can be expanded in place using the following syntax:

tuple—-expand-expression:
(... expression)

In this expression, the tuple defined by expression is expanded in place to represent its components. This can
only be used in a context where a comma-separated list of components is valid.

Example. Given two 2-tuples

var x1 = (1, 2.0), x2 = ("three", "four");

the following statement
var x3 = ((...x1), (...x2));

creates the 4-tuple x3 with the value (1, 2.0, "three", "four").

Example. The following code defines two functions, a function first that returns the first
component of a tuple and a function rest that returns a tuple containing all of the components
of a tuple except for the first:

def first(t) where isTuple(t) {
return t (1);

}

def rest (t) where isTuple(t) {
def helper (first, rest...)

return rest;

return helper((...t));

}

Tuples 89

14.5 Tuple Indexing

A tuple may be accessed by an integral parameter (compile-time constant) as if it were an array. Tuples are
1-based so the first component in the tuple is accessed by the value 1, and so forth.

Example. The loop

var tuple = (1, 2.0, "three");
for param i in 1..3 do
writeln (tuple(i));

uses a param loop to output the components of a tuple.
Homogeneous tuples may be accessed by integral values that are not necessarily compile-time constants.

Example. The loop
var tuple = (1, 2, 3);
for i in 1..3 do
writeln (tuple(i));
uses a serial loop to output the components of a homogeneous tuple. Since the index is not a
compile-time constant, this would result in an error were tuple not homogeneous.

Rationale. Non-homogeneous tuples can only be accessed by compile-time constants so that
the type of the expression is statically known.

14.6 Tuple Operators
14.6.1 Unary Operators

The unary operators +, —, ~, and ! are overloaded on tuples by applying the operator to each argument
component and returning the results as a new tuple.

The size of the result tuple is the same as the size of the argument tuple. The type of each result component
is the result type of the operator when applied to the corresponding argument component.

14.6.2 Binary Operators

The binary operators +, —, *, /, %, **, &, |, ", <<, and >> are overloaded on tuples by applying them to
pairs of the respective argument components and returning the results as a new tuple. The sizes of the two
argument tuples must be the same.

The size of the result tuple is the same as the argument tuples. The type of each result component is the result
type of the operator when applied to the corresponding pair of the argument components.
Example. The code
var x = (1, 1, 1) + (2, 2.0, "2");

creates a 3-tuple of an int, a real and a string with the value (3, 3.0, "12").

90

Chapel Language Specification

14.6.3 Relational Operators

The relational operators >, >=, <, <=, ==, and != are defined over tuples of matching size. They return a
single boolean value indicating whether the two arguments satisfy the corresponding relation.

The operators >, >=, <, and <= check the corresponding lexicographical order based on pair-wise comparisons
between the argument tuples’ components. The operators == and ! = check whether the two arguments are
pair-wise equal or not. The relational operators on tuples may be short-circuiting, i.e. they may execute only
the pair-wise comparisons that are necessary to determine the result.

Example. The code

var x = (1, 1, 0) > (1, 0, 1);

creates a variable initialized to true. After comparing the first components and determining
they are equal, the second components are compared to determine that the first tuple is greater
than the second tuple.

14.7 Predefined Functions and Methods on Tuples

def

def

def

def

def

def

Tuple.size param

Returns the size of the tuple.
isHomogeneousTuple (t: Tuple) param
Returns true if t is a homogeneous tuple; otherwise false.
isTuple (t: Tuple) param
Returns true if t is a tuple; otherwise false.
isTupleType (type t) param
Returns true if t is a tuple of types; otherwise false.
max (tkype t) where isTupleType (t)

Returns a tuple of type t with each component set to the maximum value that can be stored in its
position.

min (type t) where isTupleType (t)

Returns a tuple of type t with each component set to the minimum value that can be stored in its
position.

Classes 91

15 Classes

Classes are data structures with associated state and methods. Storage for a class instance, or object, is
allocated independently of the scope of the variable that refers to it. An object is created by calling a class
constructor (, which allocates storage, initializes it, and returns a reference to the newly-created object.
Storage can be reclaimed by deleting the object (§15.11]).

A class declaration (§15.2)) generates a class type (§15.1). A variable of a class type can refer to an instance
of that class or any of its derived classes.

A class is generic if it has generic fields. Generic classes and fields are discussed in §22.3]

15.1 Class Types

The syntax of a class type is summarized as follows:

class—type:
identifier
identifier (named—-expression—list)

For non-generic classes, the class name is sufficient to specify the type. Generic classes must be instantiated
to serve as a fully-specified type, for example to declare a variable. This is done with type constructors, which
are defined in Section[22.3.4]

15.2 Class Declarations

A class is defined with the following syntax:

class—declaration—statement:
class identifier class—inherit-list,,; {
class—statement-list,,; }

class—inherit-list:
: class—type-list

class—type-list:
class—type
class—type , class—type-list

class—statement—list:
class—statement
class—statement class—statement—1list

class—statement:
type—declaration—-statement
function—declaration—statement
variable—declaration—-statement
empty—statement

92 Chapel Language Specification

A class—declaration-statement defines a new type symbol specified by the identifier. Classes inherit data and
functionality from other classes if the inherit-type-list is specified. Inheritance is described in

The body of a class declaration consists of a sequence of statements where each of the statements either
defines a variable (called a field), a function (called a method), or a type alias. In addition, empty statements
are allowed in class declarations, and they have no effect.

If a class contains a type alias or a parameter field, or it contains a variable or constant without a specified
type or an initialization expression, the class is generic. Generic classes are described in §22.3]

15.3 Class Assignment

Classes are assigned by reference. After an assignment from one variable of class type to another, the vari-
ables reference the same class instance, i.e. the same storage location.

15.4 Class Fields

Variable declarations within a class define fields within that class. Parameter fields make a class generic.
Variable and constant fields define the storage associated with a class.

Example. The code

class Actor {
var name: string;
var age: uint;

}

defines a new class type called Actor that has two fields: the string field name and the unsigned
integer field age.

15.4.1 Class Field Accesses

The field in a class is accessed via a member access expression as described in §10.7} Fields in a class can
be modified via an assignment statement where the left-hand side of the assignment is a member access
expression. Accessing a parameter field returns a parameter.

Example. Given a variable anActor of type Actor, defined above, the code

var s: string = anActor.name;
anActor.age = 27;

reads the field name and assigns the value to the variable s, and assigns the storage location in
the object anActor associated with the field age the value 27.

15.5 Class Methods

A method is a function or iterator that is bound to a class. A method is called by passing an instance of the
class to the method via a special syntax that is similar to a field access.

Classes 93
15.5.1 Class Method Declarations

Methods are declared with the following syntax:

method-declaration-statement:
def param-clause,,. type-binding function-name argument-list,,, var-param-type-clause,,:
return-type,,: where-clause,,; function-body

param-clause:
param

type-binding:
identifier .

If a method is declared within the lexical scope of a class, record, or union, the type binding can be omitted
and is taken to be the innermost class, record, or union that the method is defined in. If a method declaration
contains the optional param-clause, it implies that it can only be applied to param objects of the given type
binding.

15.5.2 Class Method Calls

A method is called by using the member access syntax as described in §10.7 where the accessed expression
is the name of the method.

Example. A method to output information about an instance of the Actor class can be defined
as follows:
def Actor.print () {

writeln ("Actor ", name, " is

}

", age, " years old");

This method can be called on an instance of the Actor class, anActor, by writing anActor.print ().

15.5.3 The this Reference

The instance of a class is passed to a method using special syntax. It does not appear in the argument list to
the method. The reference this is an alias to the instance of the class on which the method is called.

Example. Let class c, method foo, and function bar be defined as

class C {
def foo() {
bar (this);
}
}
def bar(c: C) { writeln(c); }

Then given an instance of C called c, the method call c. foo () results in a call to bar where the
argument is c.

94 Chapel Language Specification

15.5.4 The this Method

A method declared with the name this allows a class to be “indexed” similarly to how an array is indexed.
Indexing into a class has the semantics of calling a method on the class named this. There is no other way
to call a method called this. The this method must be declared with parentheses even if the argument list
is empty.

Example. In the following code, the this method is used to create a class that acts like a simple
array that contains three integers indexed by 1, 2, and 3.
class ThreeArray {
var x1, x2, x3: int;
def this(i: int) wvar {
select i {
when 1 do return x1;
when 2 do return x2;
when 3 do return x3;
}
halt ("ThreeArray index out of bounds: ", 1i);

}

15.5.5 The these Method

A method declared with the name these allows a class to be “iterated over” similarly to how a domain or
array is iterated over. Using a class in the context of a loop where an iterator-expression is expected has the
semantics of calling a method on the class named these.

Example. 1In the following code, the these method is used to create a class that acts like a
simple array that can be iterated over and contains three integers.
class ThreeArray {
var x1, x2, x3: int;
def these () var {
yield x1;
yield x2;
yield x3;
}

15.6 Class Constructors

Class instances are created by invoking class constructors. A class constructor is a method with the same
name as the class. It is invoked by the new operator, where the class name and constructor arguments are
preceded with the new keyword.

When the constructor is called, memory is allocated to store a class instance, its fields are initialized to default
values (field defaults when specified in the class declaration, type defaults otherwise), then the constructor
method is invoked on this newly-created instance.

If the program declares a class constructor method, it is a user-defined constructor. There is also the default
constructor that is automatically created for each class. The default constructor is invoked by the new operator
when there are no user-defined constructors for that class, otherwise it cannot be accessed explicitly.

Classes 95
15.6.1 User-Defined Constructors

A user-defined constructor is a constructor method explicitly declared in the program. The usual function
resolution mechanism (§13.14)) is applied to determine which user-defined constructor to invoke.

Any user-defined constructor begins with an implicit call to the default constructor (§15.6.2)) for that class.
This call passes no arguments explicitly, so each field is set to the initializer expression if given in the field’s
declaration and to the default value for the field’s type otherwise.

Example. The following example shows a class with two constructors:

class MessagePoint {
var x, y: real;
var message: string;

def MessagePoint (x: real, y: real) {

this.x = x;
this.y = y;
this.message = "a point";

}

def MessagePoint (message: string) {
this.x = 0;
this.y = 0;
this.message = message;

}
} // class MessagePoint

// create two objects
var mpl = new MessagePoint (1.0,2.0);
var mp2 = new MessagePoint ("point mp2");

The first constructor lets the user specify the initial coordinates and the second constructor lets
the user specify the initial message when creating a MessagePoint.

Constructors for generic classes (§22.3) handle certain arguments differently and may need to satisfy addi-
tional requirements. See Section for details.

15.6.2 The Default Constructor

The default constructor is automatically created for every class in the Chapel program. It has one argument for
every field in the class with the argument name matching the field’s name. This includes fields inherited from
superclasses, type aliases and parameter fields, if any. The order of the arguments matches the order of the
field declarations within the class, with the arguments for a superclass’s fields occurring before the arguments
for a subclass’s fields. Each argument has a default value. For a field that has an initializer expression, the
default value is that expression. Otherwise, it is the default value for the field’s type (§8.1.1). This rule does
not apply to generic fields without initializers, which are discussed in Section[22.3.6]

The default constructor for a class can be invoked by a new operator only when the class does not have any
user-defined constructors. In this case the usual function resolution mechanism (§13.14)) determines whether
an invocation of the default constructor is legal.

96 Chapel Language Specification

When invoked, the default constructor initializes each field in the class to the value of the corresponding
actual. This ensures that upon return from the constructor it is safe to use the object being created, as each
field contains a legal value for its type. The initialization is done in the order the fields are declared, with a
superclass’s fields initialized before a subclass’s fields.

The program may define a constructor with the same arguments and types as the default constructor for that
class. If there is such a constructor, it is a user-defined constructor and is distinct from the default constructor.

Example. Given the class
class C {
var x: int;

var y: real = 3.14;
var z: string = "Hello, World!";

there are no user-defined constructors for C, so new operators will invoke C’s default constructor.
The x argument of the default constructor has the default value 0. The y and z arguments have
the default values 3.14 and "Hello, World”!, respectively.

C instances can be created by calling the default constructor as follows:

e The call new C () isequivalentto C (0,3.14, "Hello, World”)!l.
e The call new C(2) isequivalentto C(2,3.14, "Hello, World’)!.

e The call new C(z="") is equivalentto C (0,3.14,"").

The call new C(2, z="") is equivalentto C(2,3.14,"").

The call new C(0,0.0,"") specifies the initial values for all fields explicitly.

15.7 Variable Getter Methods

All field accesses are resolved via getters that are variable methods (§13.7) defined in the class with the same
name as the field. The default getter is defined to simply return the field if the user does not define their own.

Example. In the code

class C {
var setCount: int;
var x: int;
def x var {
if setter then
setCount += 1;
return x;

}

an explicit variable getter method is defined for field x. It returns the field x and increments
another field that records the number of times x was assigned a value.

Classes 97
15.8 Inheritance

A “derived” class can inherit from one or more other classes by specifying those classes, the base classes,
following the name of the derived class in the declaration of the derived class. When inheriting from multiple
base classes, only one of the base classes may contain fields. The other classes can only define methods.
Note that a class can still be derived from a class that contains fields which is itself derived from a class that
contains fields.

15.8.1 The object Class

All classes are derived from the object class either directly, or through the classes they are derived from. A
variable of type object can hold a reference to an object of any class type.

15.8.2 Accessing Base Class Fields

A derived class contains data associated with the fields in its base classes. The fields can be accessed in the
same way that they are accessed in their base class unless the getter or setter method is overridden in the
derived class, as discussed in §15.8.5]

15.8.3 Derived Class Constructors

Derived class constructors automatically call the default constructor of the base class. There is an expectation
that a more standard way of chaining constructor calls will be supported.

15.8.4 Shadowing Base Class Fields

A field in the derived class can be declared with the same name as a field in the base class. Such a field
shadows the field in the base class in that it is always referenced when it is accessed in the context of the
derived class. There is an expectation that there will be a way to reference the field in the base class but this
is not defined at this time.

15.8.5 Overriding Base Class Methods

If a method in a derived class is declared with the identical signature as a method in a base class, then it is
said to override the base class’s method. Such a method is a candidate for dynamic dispatch in the event that
a variable that has the base class type references a variable that has the derived class type.

The identical signature requires that the names, types, and order of the formal arguments be identical. The
return type of the overriding method must be the same as the return type of the base class’s method, or must

be a subclass of the base class method’s return type.

Methods without parentheses are not candidates for dynamic dispatch.

98 Chapel Language Specification

Rationale. Methods without parentheses are primarily used for field accessors of which a default
is created if none is specified. The field accessor should not dynamically dispatch in general since
that would make it impossible to access a base field within a base method should that field be
shadowed by a subclass.

15.8.6 Inheriting from Multiple Classes

A class can be derived from multiple base classes provided that only one of the base classes contains fields
either directly or from base classes that it is derived from. The methods defined by the other base classes can
be overridden.

15.9 Nested Classes

A class defined within another class is a nested class.

Nested classes can refer to fields and methods in the outer class implicitly or explicitly with an outer refer-
ence.

15.10 The ni1 Value

Chapel provides nil to indicate the absence of a reference to any object. nil can be assigned to a variable
of any class type. Invoking a class method or accessing a field of the ni1 value results in a run-time error.

15.11 Dynamic Memory Management

Memory associated with class instances can be reclaimed with the delete keyword.

Example. The following example allocates a new object c of class type C and then deletes it.

var ¢ = new C();
delete c;

Open issue. Chapel was originally specified without a delete keyword. The intention was that
Chapel would be implemented with a distributed-memory garbage collector. This is a research
challenge. In order to focus elsewhere, the design has been scaled back. There is an expectation
that Chapel will eventually support an optional distributed-memory garbage collector as well
as a region-based memory management scheme similar to that used in the Titanium language.
Support of delete will likely continue even as these optional features become supported.

Records 99
16 Records

A record is a data structure that is like a class but has value semantics. Like classes, records can be generic
(§22.3). The key differences between records and classes are listed below.

16.1 Differences between Classes and Records
16.1.1 References vs. Values

The main difference between records and classes is that records are value classes. Record instances are
manipulated as values, in the same manner as values of primitive types. Records are assigned by value; see
§16.1.6|for more details. Records are also passed by value to functions, unless argument intents (§13.5) are
used.

Example. The following example defines and manipulates a simple record.

record MyColor {
var color: int;

}

def printMyColor (mc: MyColor) {
writeln("my color is ", mc.color);

mc.color = 6; // does not affect the caller’s record
}
var mcl: MyColor; // ’color’ defaults to 0
var mc2: MyColor = mcl; // mcl’s value is copied into mc2
mcl.color = 3; // mcl’s value 1s modified
printMyColor (mc2) ; // mc2 is not affected by assignment to mcl
printMyColor (mc2) ; // ... or by assignment in printMyColor ()

def modifyMyColor (inout mc: MyColor, newcolor: int) {
mc.color = newcolor;

}

modifyMyColor (mc2, 7); // mc2 1is affected because of the ’inout’ intent
printMyColor (mc2) ;

The assignment to mc1.color affects only the record stored in mc1. The record in mc2 is not
affected by the assignment to mc1 or by the assignment in printMyColor. mc2 is affected by
the assignment in modi fyMyColor because the intent inout is used.

16.1.2 Storage Allocation

Storage for a record variable directly contains the data associated with the fields in the record, in the same
manner as variables of primitive types directly contain the primitive values. Record storage is reclaimed when
the record variable goes out of scope. No additional storage for a record is allocated or reclaimed. Field data
of one variable’s record is not shared with data of another variable’s record.

By contrast, the memory for a class variable contains only a reference to a class instance. Storage for a
class instance, including storage for the data associated with the fields in the class, is allocated and reclaimed
separately from variables referencing that instance. The same class instance can be referenced by multiple
variables.

100 Chapel Language Specification

16.1.3 Record Inheritance

When a record is derived from a base record, it contains the data in the base record. The difference between
record inheritance and class inheritance is that there is no dynamic dispatch. The record type of a variable is
the exact type of that variable, i.e. a variable of a base record type cannot store a derived record type.

16.1.4 No Dynamic Dispatch

Records do not support dynamic dispatch.

16.1.5 No nil Value

Records do not provide a counterpart of the nil value. A record with all fields set to their types’ default
values might be the closest concept to nil. Such a record is different, however, in that it is a legal record
instance, whereas nil does not refer to any legal class instance.

16.1.6 Record Assignment

In record assignment, the fields of the record on the left-hand side of the assignment are assigned the corre-
sponding field values of the record on the right-hand side of the assignment. Record assignment is generic
and structural in that the right-hand side expression can be of any type as long as it contains at least the same
fields (by name) as the record on the left-hand side.

A left-hand-side field must be assignable the corresponding right-hand-side field, i.e., an implicit conversion
(§9.1) must exist between the fields types. Fields on the right-hand side that do not exist on the left-hand side
are ignored during record assignment. For example, when a base record is assigned a derived record, just the
fields that exist in the base record are assigned. Assignment from a class instance to a record is allowed, but
assignment from record to class is not.

16.2 Record Declarations

A record is defined with the following syntax:

record-declaration-statement:
record identifier record—inherit-list,,: {
record-statement-list }

record-inherit-list:
: record-type-list

record-type-list:
record-type
record—-type , record—type-list

record-statement-list:
record-statement

Records 101

record-statement record-statement—list

record-statement:
type—declaration-statement
function—declaration—statement
variable—declaration—statement
empty-statement

The only difference between record and class declarations is that the record keyword replaces the class
keyword.

The record type is specified as a class type is and is summarized by the following syntax:

record-type:
identifier
identifier (named-expression—list)

16.3 Record Construction

A variable of a record type declared without an initialization expression is initialized to a record instance by
calling the record’s default constructor. To construct a record instance as an expression, i.e. without binding
it to a variable, the new keyword is required. In this case, storage is allocated and reclaimed as for a record

variable declaration (§16.1.2]).

Rationale. The new keyword disambiguates types from values. This is needed because of the
close relationship between constructors and type specifiers for classes and records.

16.4 Default Comparison Operators on Records

Default functions to overload == and != are defined for records if there is none defined for the record in the
Chapel program. The default implementation of == applies == to each field of the two argument records and
reduces the result with the s & operator. The default implementation of != applies != to each field of the two
argument records and reduces the result with the | | operator.

102 Chapel Language Specification

Unions 103

17 Unions

Unions have the semantics of records, however, only one field in the union can contain data at any particular
point in the program’s execution. Unions are safe so that an access to a field that does not contain data is a
runtime error. When a union is constructed, it is in an unset state so that no field contains data.

17.1 Union Types

The syntax of a union type is summarized as follows:

union-type:
identifier

The union type is specified by the name of the union type. This simplification from class and record types is
possible because generic unions are not supported.

17.2 Union Declarations

A union is defined with the following syntax:

union—declaration—statement:
union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type—declaration—-statement
function—declaration—statement

variable—declaration—-statement
empty—statement

17.2.1 Union Fields

Union fields are accessed in the same way that record fields are accessed. It is a runtime error to access a
field that is not currently set.

Union fields should not be specified with initialization expressions.

17.3 Union Assignment

Union assignment is by value. The field set by the union on the right-hand side of the assignment is assigned
to the union on the left-hand side of the assignment and this same field is marked as set.

104 Chapel Language Specification

17.4 The Type Select Statement and Unions

The type-select statement can be applied to unions to access the fields in a safe way by determining the type
of the union.

Ranges 105

18 Ranges

Ranges represent a sequence of integral values. Ranges are either bounded or unbounded.

Bounded ranges are characterized by a low bound [, a high bound h, and a stride s. If the stride is positive, the
values described by the range are [, + s,1 + 2s,1 4 3s, ... such that all of the values in the sequence are less
than or equal to h. If the stride is negative, the values described by the range are h, h + s, h + 2s, h + 3s, ...
such that all of the values in the sequence are greater than or equal to /. If [> h, the range is considered
degenerate and represents an empty sequence. Ranges support iteration over the values they represent as
described in §11.8

Unbounded ranges are those in which the low and/or high bounds are omitted. Unbounded ranges conceptu-
ally represent a countably infinite number of values.

18.1 Range Types

The type of a range is characterized by three things: (1) the type of the values being represented, (2) the
boundedness of the range, and (3) whether or not the range is stridable.

The type of the range’s values is represented using a type parameter named idxType. This must be one of the
int or uint types. The default type is int.

Open issue. It has been hypothesized that ranges of other types, such as floating point values,
might also be of interest to represent a range of legal tolerances, for example. If you believe such
support would be of interest to you, please let us know.

The boundedness of the range is represented using an enumerated parameter named boundedType of type
BoundedRangeType. Legal values are bounded, boundedLow, boundedHigh, and boundedNone. The
first value specifies a bounded range while the other three values specify a range in which the high bound is
omitted, the low bound is omitted, or both bounds are omitted, respectively. The default value is bounded.

The stridability of a range is represented by a boolean parameter named stridable. If this parameter is set to
true, the range’s stride can take on any signed integer value other than O of the same bit-width as idxType.
If set to false, the range’s stride is fixed to 1. The default value is false.

Rationale. The boundedType and stridable values of a range are used to optimize the generated
code for common cases of ranges, as well as to optimize the implementation of domains and
arrays defined using ranges.

The syntax of a range type is summarized as follows:

range-type:
range (named-expression-list)

Example. The following declaration declares a variable r of range type that can represent ranges
of 64-bit integers, with both high and low bounds specified, and the ability to have a stride other
than 1.

106 Chapel Language Specification

var r: range (int (64), BoundedRangeType.bounded, stridable=true);

The default value for a range is 1. .0.

18.2 Literal Range Values

Range literals are specified as follows:

range-literal:
bounded-range-literal
unbounded-range-literal

18.2.1 Bounded Range Literals

A bounded range is specified by the syntax

bounded-range-literal:
expression .. expression

The first expression is taken to be the lower bound [and the second expression is taken to be the upper bound
h. The stride of the range is 1 and can be modified with the by operator as described in §18.4.1

The element type of the range type is determined by the type of the low and high bound. It is either int,
uint, int (64), or uint (64). The type is determined by conceptually adding the low and high bounds
together. The boundedness of such a range is BoundedRangeType .bounded. The stridability of the range
is false.

18.2.2 Unbounded Range Literals

An unbounded range is specified by the syntax

unbounded-range-literal:
expression ..
.. expression

The first form results in a BoundedRangeType . boundedLow range, the second in a BoundedRangeType .boundedHigh
range, and the third in a BoundedRangeType .boundedNone range.

Unbounded ranges can be iterated over with zipper iteration (§11.8.1)) and their shape conforms to the shape
of the other iterators they are being iterated over with.

Example. The code

for i in (1..5, 3..) do
write(i, "; ");

Ranges 107

produces the output “(1, 3); (2, 4); (3, 5); (4, 6); (5, 7); ™.

Itis an error to iterate over a BoundedRangeType . boundedNone range, a BoundedRangeType . boundedLow
range with negative stride or a BoundedRangeType .boundedHigh range with positive stride.

Unbounded ranges can also be used to index into ranges, domains, arrays, and strings. In these cases, omitted
bounds are inherited from the bounds of the expression being indexed.

18.3 Range Assignment

Assigning one range to another results in its low, high, and stride values being copied from the source range
to the destination range.

In order for range assignment to be legal, the element type of the source range must be implicitly coercible to
the element type of the destination range. The two range types must have the same boundedness parameter.
It is legal to assign a non-stridable range to a stridable range, but illegal to assign a stridable range to a
non-stridable range unless the stridable range has a stride value of 1.

18.4 Range Operators

18.4.1 By Operator

The by operator can be applied to any range to create a strided range.

The by operator takes a range and an integer value to yield a new range that is strided by the integer. Striding
a strided range results in a stride whose value is the product of the two strides. The stride argument can
either be of type idxType or some other integer value that can coerce to a signed integer value of the same
bit-width as idxType.

Example. In the following declarations, range r1 represents the odd integers between 1 and 20.
Range r2 strides r1 by two and represents every other odd integer between 1 and 20: 1, 5,9, ...

var rl = 1..20 by 2;
var r2 rl by 2;

Rationale. Why isn’t the high bound specified first if the stride is negative? The reason for
this choice is that the by operator is binary, not ternary. Given a range R initialized to 1. . 3, we
want R by -1 to contain the ordered sequence 3,2,1. But then R by -1 would be different
than 3..1 by -1 even though it should be identical by substituting the value in R into the
expression.

108 Chapel Language Specification

18.4.2 Count Operator

The # operator can be applied to a range that has a high bound, a low bound, or both.

The # operator takes a range and an integral count and creates a new range with count elements. The stride
of the resulting range is the same as that of the initial range. It is an error for the count to be negative. The
idxType of the resulting range is the same type that would be obtained by adding the integral count value to a
value with the range’s idxType.

When applied to a BoundedRangeType .bounded range with a positive stride, count elements are taken
starting from the low bound. When the stride is negative, count elements are taken starting from the high
bound. It is an error for count to be larger than the length of the range.

When applied to a BoundedRangeType .boundedLow range, the low bound is fixed and and the high bound
is set based on the count and the absolute value of the stride.

When applied to a BoundedRangeType . boundedHigh range, the high bound is fixed and the low bound is
set based on the count and the absolute value of the stride.

It is an error to apply the count operator to a BoundedRangeType . boundedNone range.

Example. The following declarations result in equivalent ranges.

var rl = 2.. by -2 # 3;
var r2 = ..6 by -2 # 3;
var r3 = 0..6 by -2 # 3;
var r4d = 1..#6 by -2;

Each of these ranges represents the ordered set of three values: 6, 4, 2.

18.4.3 Arithmetic Operators

The following arithmetic operators are defined on ranges and integral types:

def +(r: range, s: integral): range
def +(s: integral, r: range): range
def -(r: range, s: integral): range

The + and - operators apply the scalar via the operator to the range’s low and high bounds, producing a shifted
version of the range. The element type of the resulting range is the type of the value that would result from
an addition between the scalar value and a value with the range’s element type. The bounded and stridable
parameters for the result range are the same as for the input range.

Example. The following code creates a bounded, non-stridable range r which has an element
type of int representing the values 0, 1, 2, 3. It then uses the + operator to create a second range
r2 representing the values 1,2,3,4. The r2 range is bounded, non-stridable, and represents
values of type int.

var r = 0..3;
var r2 = r + 1;

Ranges 109

18.4.4 Range Slicing

Ranges can be sliced using other ranges to create new sub-ranges. The resulting range represents the inter-
section between the two ranges. Range slicing is defined by using the range as a function in a call expression
where the argument is another range. If the slicing range is unbounded in one or both directions, it inherits
its missing bounds from the range being sliced.

Example. In the following example, r represents the integers from 1 to 20 inclusive. Ranges r2
and r3 are defined using range slices and represent the indices from 3 to 20 and the odd integers
between 1 and 20 respectively. Range r4 represents the odd integers between 1 and 20 that are
also divisible by 3.

var r = 1..20;

var r2 = r[3..];

var r3 = r[l.. by 2];
var r4 = r3[0.. by 3];

18.5 Predefined Functions and Methods on Ranges

def range.idxType type
Returns the index type of the range.

def range.stridable type

Returns true if the range is stridable, false otherwise.

def range.boundedType type

Returns boundedType of the range.

def range.low : idxType

Returns the low bound of the range.

def range.high : idxType

Returns the high bound of the range.

def range.stride : int (numBits (idxType))

Returns the stride of the range.

def range.length : idxType

Returns the number of elements in the range.

def range.member (i: idxType): bool

Returns whether or not i is in the range.

def range.member (other: range): bool

110 Chapel Language Specification

Returns whether or not every element in other is also in this.

def range.indexOrder (i: idxType): idxType

If i is a member of the range, returns an integer giving the ordinal value of i within the range using
0-based indexing. Otherwise, it returns (-1) : idxType.

Example. The following calls show the order of index 4 in each of the given ranges:

(0..10) .indexOrder (4) == 4
(1..10) .indexOrder (4) == 3

(3..5) .indexOrder (4) == 1
(0..10 by 2).indexOrder (4) ==
(3..5 by 2).indexOrder (4) == -1

Domains 111

19 Domains

A domain is a first-class representation of an index set. Domains are used to specify iteration spaces, to define
the size and shape of arrays (§20), and to specify aggregate operations like slicing. The indices described by
a domain may be regular and structured or they may be irregular and unstructured. Chapel also supports the
ability to create subdomains and sparse subdomains to represent subsets of a domain’s index set. A domain’s
indices may potentially be distributed across multiple locales as described in supporting global-view
data structures.

19.1 Domain Taxonomy

This section describes Chapel’s taxonomy of domain types.

19.1.1 Root Domains and Subdomains

A domain is either a root domain or a subdomain. This is represented as follows:

domain-type:
root-domain-type
subdomain-type

A root domain has no parent domain and can represent an arbitrary set of indices of its index type. A sub-
domain has an associated parent domain value and is constrained to only store indices that are also described
by its parent domain.

19.1.2 Regular and Irregular Domain Types

Domain types can be thought of as falling into two major categories: regular and irregular. This is represented
for root domain types as follows:

root-domain—type:
regular-domain—type
irregular-domain—type

Regular domains, known as arithmetic domains, describe multidimensional rectangular index sets. They are
characterized by a tensor product of ranges and represent indices that are tuples of an integral type. Regular
domains can be represented using O(1) space. They are useful for representing multidimensional rectangular
index sets and arrays.

An irregular domain can store an arbitrary set of indices of an arbitrary but homogenous index type. Irregular
domains typically require space proportional to the number of indices being represented.

The two major classes of irregular domains in Chapel are associative domains and opaque domains:

irregular-domain-type:
associative—domain-type
opaque—domain-type

112 Chapel Language Specification

Associative domains represent an arbitrary set of indices of a given type and can be used to describe sets or to
create dictionary-style arrays. Opaque domains are those for which the indices have no inherent names and
are therefore anonymous. They can be used for representing sets and for building unstructured arrays, similar
to pointer-based data structures in conventional languages.

Sparse subdomains, described in §19.6] are also considered to be irregular domains. A non-sparse subdomain
inherits the regularity or irregularity of its parent domain.

19.2 Domain Characteristics

19.2.1 Domain Types

All domain types are characterized by the type of indices that they store (see §19.7). The way in which these
index types are specified in the domain’s type signature varies across domain types. It is defined for root

domain types in §19.3|and for subdomains in §19.5.1

19.2.2 Domain Values

A domain’s value is the index set that it represents. A domain’s index set can be considered either ordered or
unordered, indicating whether or not there is a well-defined order defined for its indices for the purposes of
things like serial iteration and I/O. The domain values for the root domain types are defined in §19.2.2] The
domain values for sparse subdomain types are defined in

19.2.3 Domain Identity

In addition to storing a value, domain variables have an identity that distinguishes them from other domains
of the same type with the same value. This identity is used to define the domain’s relationship with subdo-
mains (§19.5), index types (§19.7)), and arrays (§20.9). The identity of a domain is represented by its name.

Open issue. In the future, it is likely that we will support a means of creating domain aliases,
much as we support array aliases currently.

19.2.4 Runtime Representation of Domain Values

While domains are a high-level abstraction, users have control over the runtime representation of a do-
main’s index set through Chapel’s support for domain maps (§27), both standard (§32] and and user-
defined (§29). Chapel implementations should also document their choice of implicit domain maps (used to
implement domains with no domain map specifiers).

Domains 113

19.3 Root Domain Types
19.3.1 Arithmetic Domain Types
Arithmetic domain types are parameterized by three things:

e rank, a positive int value indicating the number of dimensions that the domain represents;

e idxType, a type member representing the index type for each dimension. If unspecified, idxType
defaults to int.

e stridable, abool value indicating whether or not any of the domain’s dimensions will be character-
ized by a strided range. If unspecified, st ridable defaults to false.

If rank is 1, the index type represented by an arithmetic domain is idxType. Otherwise, the index type is
the homogenous tuple type rank+idxType.

The syntax of an arithmetic domain type is summarized as follows:

regular-domain-type:
domain (named-expression-list)

where named-expression-list permits the values of rank, idxType, and stridable to be specified using
standard function call syntax.

19.3.2 Associative Domain Types

An associative domain type is parameterized by idxType, the type of the index that it stores. The syntax is
as follows:

associative—domain-type:
domain (associative-index—type)

associative—index—type:
type-specifier

If the associative-index—type is an enumerated type, the associative domain is called an enumerated domain
type—a variant of associative domain types that has some distinct characteristics, described in subsequent
sections.

19.3.3 Opaque Domain Types

An opaque domain type is parameterized by the type opaque, indicating that the index values are anonymous
and have no obvious representational name or value. The opaque domain type is given by the following
syntax:
opaque-domain-type:
domain (opaque)

114 Chapel Language Specification

19.4 Root Domain Values

This section describes the values, literal formats (if applicable), and default values for each root domain type.

19.4.1 Arithmetic Domain Values

An arithmetic domain’s value is represented as rank ranges of type range (idxType, BoundedRangeType .bounded,
stridable). The index set for a rank 1 domain is the set of indices described by its singleton range. The

index set for a rank n domain is the set of all nxidxType tuples described by the tensor product of its ranges.
Arithmetic domain indices are ordered according to the lexicographic order of their values.

Literal arithmetic domain values are represented by a comma-separated list of range expressions of matching
idxType enclosed in square brackets:

domain-literal:
[range—expression-list |

range—expression-list:

range—expression

range—expression, range—expression—1list
range-expression:

expression

The type of an arithmetic domain literal is defined as follows:

e rank = the number of range expressions in the literal
e idxType = the type of the range expressions

e stridable = true if any of the range expressions are stridable, otherwise false

Example. Theexpression [1..5, 1..5] defines an arithmetic domain with type domain (rank=2,
idxType=int, strided=false).

Example. The expression [1..5, 1..5] defines a5 x 5 arithmetic domain with the indices
(1,1),(1,2),...,(1,5),(2,1),...(5,5).

Example. In the code
var D: domain(2) = [1..n, 1..n];
D is defined as a two-dimensional, nonstridable arithmetic domain with an index type of 2+int

and is initialized to contain the set of indices (¢, j) for all ¢ and j such thati € 1,2,...,n and
7€L,2 ... n.

The default value of a range type is the rank default range values for type range (idxType, BoundedRangeType.bounded,
stridable).

Domains 115

19.4.2 Associative Domain Values

An associative domain’s value is simply the set of all index values that the domain describes. The indices of
an associative domain are typically unordered. The only exception is associative domains over enumerated
types which are ordered according to the order in which the enumeration’s identifiers were declared.

There is no literal syntax for an associative domain, though a tuple of values of type idxType can be used to
initialize a variable of associative domain type.

The default value for an associative domain is the empty set unless idxType is an enumerated type in which
case the default value is the set of all identifiers in the enumeration.

Rationale.

The decision to have enumerated domains start fully populated was based on the observation that
enumerations have a finite, typically small number of elements and that it would be common to
declare arrays with values corresponding to each identifier in the enumeration. Furthermore, we
considered it simpler to clear a fully-populated domain than to fully populate an empty one.

In addition, we believe that fully-populated constant enumerated domains are an important case
for compiler optimizations, particularly if the numeric values of the enumeration are consecutive.

19.4.3 Opaque Domain Values

An opaque domain’s value is simply the unordered set of anonymous indices that the domain describes.
There is no literal syntax for an opaque domain due to the fact that the indices have no inherent names.

The default value for an opaque domain is the empty set.

19.5 Subdomains

A subdomain is a domain whose indices are guaranteed to be a subset of those described by another domain
known as its parent domain. Subdomains have the same type as their parent domain, and by default they
inherit the domain map of their parent domain. All domain types support subdomains.

Rationale. Subdomains are provided in Chapel for a number of reasons: to facilitate the ability
of the compiler or a reader to reason about the inter-relationship of distinct domain variables;
to support the author’s ability to omit redundant domain mapping specifications; to support the
compiler’s ability to reason about the relative alignment of multiple domains; and to improve the
compiler’s ability to prove away bounds checks for array accesses.

116 Chapel Language Specification

19.5.1 Subdomain Types

A subdomain type is specified using the following syntax:

subdomain-type:
sparse,,; subdomain (domain-expression)

This declares that domain—expression is the parent domain of this subdomain type. The subdomain type has
the same type as its parent domain. By default it will share the parent domain’s domain map. The optional
sparse keyword permits the ability to create sparse subdomains described in §19.6]

Open issue.

An open semantic issue for subdomains is when a subdomain’s subset property should be re-
verified when its parent domain is reassigned and whether this should be done aggressively or
lazily.

19.6 Sparse Subdomains

Sparse subdomains are irregular domains that describe an arbitrary subset of a domain, even if the parent
domain is a regular domain. Sparse subdomains are useful in Chapel for defining sparse arrays in which
a single element value occurs frequently enough that it is worthwhile to avoid storing it redundantly. The
difference between a sparse subdomain’s index set and its parent domain’s describes the set of indices for
which the sparse array will store this replicated value. See §20.8]|for details about sparse arrays.

19.6.1 Sparse Domain Types

Each root domain type has a unique corresponding sparse subdomain type. Sparse subdomains whose parent
domains are also sparse subdomains share the same type.

19.6.2 Sparse Domain Values

A sparse subdomain’s value is simply the set of all index values that the domain describes. If the parent
domain’s indices were ordered, the sparse subdomain’s are as well.

There is no literal syntax for an associative domain, though for a domain D, a tuple of values of type index (D)
can be used to initialize a variable of sparse domain type.

The default value for a sparse subdomain value is the empty set.

Example. The following code declares a two-dimensional dense domain D, followed by a two
dimensional sparse subdomain of D named SpsD. Since SpsD is uninitialized, it will initially
describe the empty set of indices from D.

const D: domain(2) = [1..n, 1..n];
var SpsD: sparse subdomain (D) ;

Domains 117
19.7 Index Types

Each domain value has a corresponding compiler-provided index type which can be used to represent values
belonging to that domain’s index set. Index types are described using the following syntax:

index—type:
index (domain—expression)

Rationale.

Index types are included in Chapel with two goals in mind. The first is to improve readability of
the Chapel program by declaring variables to be members of specific domains with the intention
of giving them more semantic meaning to a reader as compared to, say, storing all indices as int
types where the semantic meanings blur.

The second goal is to provide the compiler with the ability to prove away bounds checks by
giving the user the capability to assure the compiler that a given variable belongs to a particular
domain and is therefore in bounds for its arrays and its parent domains’ arrays.

Since index types are known to be legal for a given domain, they may also afford the opportunity
to represent an index using an optimized format that doesn’t simply store the index variable’s
value in order to support accelerated access to arrays declared over that domain. For both this
reason and the previous, it may be less expensive to index into arrays using index type variables
of their domains or subdomains.

Open issue.

An open issue for index types is what the semantics should be for an index type value that is live
across a modification to its domain’s index set—particularly one that shrinks the index set. Our
hypothesis is that most stored indices will either have short lifespans or belong to constant or
monotonically growing domains. But these semantics need to be defined nevertheless.

19.8 Domain Assignment

All domain types support domain assignment. Domain assignment is by value and causes the target domain
variable to take on the index set of the right-hand side expression. In practice, the right-hand side expression
is often another domain value; a tuple of ranges (for regular domains); or a tuple of indices or a loop that
enumerates indices (for irregular domains). If the domain variable being assigned was used to declare arrays,
these arrays are reallocated as discussed in

Example. The following three assignments show ways of assigning indices to a sparse domain,
SpsD. The first assigns the domain two index values, (1, 1) and (n, n). The second assigns the
domain all of the indices along the diagonal from (1, 1)...(n, n). The third invokes an iterator
that is written to yield indices read from a file named “inds.dat”. Each of these assignments
has the effect of replacing the previous index set with a completely new set of values.

SpsD = ((1,1), (n,n));

SpsD = [1 in 1..n] (i,1i);
SpsD = readIndicesFromFile ("inds.dat");

118 Chapel Language Specification

19.9 Domain Index Set Manipulation
19.9.1 Querying Index Set Membership

Every domain type supports a member (i) method that returns a boolean value indicating whether or not the
given index i is a member of the domain’s index set.

19.9.2 Clearing a Domain’s Index Set

Every domain type supports a clear () method that resets a domain’s index set to its default value as specified

in {194

Example. The following call will cause the sparse domain SpsD to describe an empty set of
indices as it was when initially declared.

SpsD.clear () ;

Example. The following call causes the associative domain HashD to describe an empty set of
indices as it did when it was initially declared.

HashD.clear () ;

19.9.3 Adding and Removing Domain Indices

All irregular domain types support the ability to incrementally add and remove indices from their index sets.
This can either be done using add (i:idxType) and remove (i:idxType) methods on a domain variable
or by using the += and —= assignment operators. It is legal to add the same index to an irregular domain’s
index set twice, but illegal to remove an index that does not belong to the domain’s index set.

As with normal domain assignments, arrays declared in terms of a domain being modified in this way will be
reallocated as discussed in §20.9|

19.10 Iteration over Domains

All domains support iteration via standard for, forall, and coforall loops. These loops iterate over all of the
indices that the domain describes. The type of the iterator variable for an iteration over a domain named D is
that domain’s index type, index (D). If the domain’s indices are ordered, a for loop will traverse the indices
in order.

19.11 Slicing

In Chapel, slicing is the application of an index set to another variable using either parentheses or square
brackets.

Domains 119

19.11.1 Domain-based Slicing

The index set used to express a slice can be represented using a domain value.
Slicing an array results in an alias to a subset of the array’s elements as described in §20.6)

Slicing a domain evaluates to a new domain value whose index set is the intersection of the domain’s index
set and the slicing index set. The type and domain map of the result match the domain being sliced.

19.11.2 Range-based Slicing

When slicing arithmetic domains or arrays, the slice can be expressed as a list of rank ranges. These ranges
can either be bounded or unbounded. When unbounded, they inherit their bounds from the domain or array
being sliced.

Example. The following code declares a two dimensional arithmetic domain D, and then
a number of subdomains of D by slicing into D using bounded and unbounded ranges. The
InnerD domain describes the inner indices of D, Co120£D describes the 2nd column of D, and
AllButLastRow describes all of D except for the last row.

const D: domain(2) = [l1..n, 1..n],
InnerD = D[2..n-1, 2..n-1],
Col20fD = D[.., 2..21,

AllButLastRow = D[..n-1, ..];

Open issue. For slices that use a list of ranges, our intention is to use zipper semantics vs. tensor
semantics when evaluating the ranges depending on whether square brackets or parentheses are
used. Currently all slices are defined using tensor semantics for simplicity. Since this may change
in the future, we recommend using square brackets to express array-based slicing.

19.11.3 Rank-Change Slicing

For multidimensional arithmetic domains and arrays, substituting integral values for one or more of the ranges
in a range-based slice will result in domain or array of lower rank.

The result of a rank-change slice on an array is an alias to a subset of the array’s elements as described

in §20.6.1

The result of rank-change slice on a domain is a subdomain of the domain being sliced, as described in
The resulting subdomain’s type will be the same as the original domain, but with a rank equal to the number
of dimensions that were sliced by ranges rather than integers.

19.12 Domain Arguments to Functions

This section describes the semantics of passing domains as arguments to functions.

120 Chapel Language Specification
19.12.1 Formal Arguments of Domain Type

When a domain value is passed to a formal argument of compatible domain type by blank intent, it is passed
by reference in order to preserve the domain’s identity.

19.12.2 Domain Promotion of Scalar Functions

Domain values may be passed to a scalar function argument whose type matches the domain’s index type.
This results in a promotion of the scalar function as defined in §25.4]

Example. Given a function foo () that accepts real floating point values and an associative
domain D of type domain (real), foo can be called with D as its actual argument which will
result in the function being invoked for each value in the index set of D.

Example. Given an array A with element type int declared over a one-dimensional domain
D with idxType int, the array elements can be assigned their corresponding index values by
writing:

A = D;

This is equivalent to:

forall (a,i) in (A,D) do
a = 1i;

19.13 Domain Operators
19.13.1 By Operator

The by operator can be applied to an arithmetic domain value in order to create a strided arithmetic domain
value. The right-hand operand to the by operator can either be an integral value or an integral tuple whose
size matches the domain’s rank.

The type of the resulting domain is the same as the original domain but with stridable set to true. In the
case of an integer stride value, the value of the resulting domain is computed by applying the integer value to
each range in the value using the by operator. In the case of a tuple stride value, the resulting domain’s value
is computed by applying each tuple component to the corresponding range using the by operator.

19.14 Predefined Functions and Methods on Domains

def Domain.numIndices: dim_type

Returns the number of indices in the domain.

Domains 121

19.14.1 Predefined Functions and Methods on Arithmetic Domains

def

def

def

def

def

def
def

def
def

def
def

def
def

def
def

Domain.dim(d: int): range
Returns the range of indices described by dimension d of the domain.

Example. In the code

for i in D.dim (1) do
for j in D.dim(2) do
writeln(A (i, 3));

domain D is iterated over by two nested loops. The first dimension of D is iterated over in the
outer loop. The second dimension is iterated over in the inner loop.

Domain.rank param : int

Returns the rank of the domain as a parameter int.

Domain.stridable param : bool

Returns whether or not the domain is stridable as a parameter bool.

Domain.low: index (Domain)

Returns the low index of the domain as a value of the domain’s index type.

Domain.high: index (Domain)

Returns the high index of the domain as a value of the domain’s index type.

Domain.stride: int (numBits (idxType)) where rank ==
Domain.stride: rankxint (numBits (idxType))

Returns the stride of the domain as the domain’s stride type (for 1D domains) or a tuple of the domain’s
stride type (for multidimensional domains).

Domain.translate (off: integral): domain
Domain.translate (off: rankxintegral): domain

Returns a new domain that is the current domain translated by of £ or of £ (d) for each dimension d.

Domain.expand (off: integral): domain
Domain.expand (off: rankxintegral): domain

Returns a new domain that is the current domain expanded in dimension d if o£f or o££ (d) is positive
or contracted in dimension d if off or of £ (d) is negative.

Domain.exterior (off: integral): domain
Domain.exterior (off: rankxintegral): domain

Returns a new domain that is the exterior portion of the current domain with off or of £ (d) indices
for each dimension d. If off or off (d) is negative, compute the exterior from the low bound of the
dimension; if positive, compute the exterior from the high bound.

Domain.interior (off: integral): domain
Domain.interior (off: rankxintegral): domain

Returns a new domain that is the interior portion of the current domain with off or off (d) indices
for each dimension d. If off or off (d) is negative, compute the interior from the low bound of the
dimension; if positive, compute the interior from the high bound.

122 Chapel Language Specification

Arrays 123

20 Arrays

An array is a map from a domain’s indices to a collection of variables of homogenous type. Since Chapel
domains support a rich variety of index sets, Chapel arrays are also richer than the traditional linear or
rectilinear array types in conventional languages. Like domains, arrays may be distributed across multiple
locales without explicitly partitioning them using Chapel’s Domain Maps (§27).

20.1 Array Types

An array type is specified by the identity of the domain that it is declared over and the element type of the
array. Array types are given by the following syntax:

array-type:
[domain-expression] type-specifier

domain-expression:
domain-literal
expression

The domain-expression must specify a domain that the array can be declared over. This can be a domain literal.
If it is a domain literal, the duplicate square brackets around the domain literal can be omitted.

Example. In the code
const D: domain(2) = [1..10, 1..10];

var A: [D] real;

A is declared to be an arithmetic array over arithmetic domain D with elements of type real.
As a result, it represents a 2-dimensional 10 x 10 real floating point variables indexed using the
indices (1,1),(1,2),...,(1,10),(2,1),...,(10,10).

An array’s element type can be referred to using the member symbol e1tType.

Example. In the following example, x is declared to be of type real since that is the element
type of array A.

var A: [D] real;
var x: A.eltType;

20.2 Array Values

An array’s value is the collection of its elements’ values. Assignments between array variables are performed
by value as described in Chapel semantics are defined so that the compiler will never need to insert
temporary arrays of the same size as a user array variable.

Arrays do not have a literal format in Chapel, but arithmetic array variables can be initialized using tuple
values. These tuples must match the size and shape of the array itself.

124 Chapel Language Specification

Example. The following example declares a 2 x 3 array A using an anonymous domain value
and initializes the elements of the array using a 2-tuple of 3-tuples which matches the array’s
size and shape.

var A: [1..2, 1..3] real = ((1.1, 1.2, 1.3), (2.1, 2.2, 2.3));

An array’s default value is to have its elements all initialized to the default values for their types.

20.2.1 Runtime Representation of Array Values

The runtime representation of an array in memory is controlled by its domain’s domain map. Through this
mechanism, users can reason about and control the runtime representation of an array’s elements. See §27]
for more details.

20.3 Array Indexing

Arrays can be indexed using index values from the domain over which they are declared. Array indexing is
expressed using either parenthesis or square brackets. This results in a reference to the element that corre-
sponds to the index value.

Example. Given:

var A: [1..10] real;

the first two elements of A can be assigned the value 1.2 and 3.4 respectively using the assign-
ment:

A(1)
A[2]

w
SN
~e o~

If an array is indexed using an index that is not part of its domain’s index set, the reference is considered
out-of-bounds and a runtime error will occur, halting the program.

20.3.1 Arithmetic Array Indexing

Since the indices for multidimensional arithmetic domains are tuples, for convenience, arithmetic arrays can
be indexed using the list of integer values that make up the tuple index. This is semantically equivalent to
creating a tuple value out of the integer values and using that tuple value to index the array. For symmetry,
1-dimensional arithmetic arrays can be accessed using 1-tuple indices even though their index type is an
integral value. This is semantically equivalent to de-tupling the integral value from the 1-tuple and using it to
index the array.

Example. Given:

var A: [1..5, 1..5] real;
var ij: 2+int = (1, 1);

Arrays 125

the elements of array A can be indexed using any of the following idioms:

A(13)
A((L,
A(1,
Alij]
A[(1,
All,

~

I~ =
N

w
=l
w

~ .

=l = Nl
I — 1

-

-
(S

1Sy

(&
|

Example. The code
def f(A: [], is...)

return A (is);

defines a function that takes an array as the first argument and a variable-length argument list.
It then indexes into the array using the tuple that captures the actual arguments. This function
works even for one-dimensional arrays because one-dimensional arrays can be indexed into by
1-tuples.

20.4 Iteration over Arrays

All arrays support iteration via for, forall and coforall loops. These loops iterate over all of the array elements
as described by its domain. A loop of the form:

[colfor[all] a in A
Lla. ..

is semantically equivalent to:

[colfor[all] i in A.domain
LLA(L) ..

Thus, the iterator variable for an array traversal is a reference to the array element type.

20.5 Array Assignment

Array assignment is by value. Arrays can be assigned arrays, ranges, domains, iterators, or tuples. If A is
an lvalue of array type and B is an expression of either array, range, or domain type, or an iterator, then the
assignment

A = B;

is equivalent to

forall (a,b) in (A,B) do
a = b;

126 Chapel Language Specification

If the zipper iteration is illegal, then the assignment is illegal. Notice that the assignment is implemented with
the semantics of a forall loop.

Arrays can be assigned tuples of values of their element type if the tuple contains the same number of elements
as the array. For multidimensional arrays, the tuple must be a nested tuple such that the nesting depth is equal
to the rank of the array and the shape of this nested tuple must match the shape of the array. The values are
assigned element-wise.

Arrays can also be assigned single values of their element type. In this case, each element in the array is
assigned this value. If e is an expression of the element type of the array or a type that can be implicitly
converted to the element type of the array, then the assignment

A = e;

is equivalent to

forall a in A do
a = e;

20.6 Array Slicing

An array can be sliced using a domain that has the same type as the domain over which it was declared. The
result of an array slice is an alias to the subset of the array elements from the original array corresponding to
the slicing domain’s index set.

Example. Given the definitions

var OuterD: domain(2) = [0..n+1, O0..n+1];
var InnerD: domain(2) = [1l..n, 1..n];
var A, B: [OuterD] real;

the assignment given by

A[InnerD] = B[InnerD];

assigns the elements in the interior of B to the elements in the interior of A.

20.6.1 Arithmetic Array Slicing

An arithmetic array can be sliced by any arithmetic domain that is a subdomain of the array’s defining domain.
If the subdomain relationship is not met, an out-of-bounds error will occur. The result is a subarray whose
indices are those of the slicing domain and whose elements are an alias of the original array’s.

Arithmetic arrays also support slicing by ranges directly. If each dimension is indexed by a range, this is
equivalent to slicing the array by the arithmetic domain defined by those ranges. These range-based slices
may also be expressed using partially unbounded or completely unbounded ranges. This is equivalent to
slicing the array’s defining domain by the specified ranges to create a subdomain as described in and
then using that subdomain to slice the array.

For multidimensional arithmetic arrays, slicing with a rank change is supported by substituting integral values
within a dimension’s range for an actual range. The resulting array will have a rank less than the arithmetic
array’s rank and equal to the number of ranges that are passed in to take the slice.

Arrays 127

Example. Given an array

var A: [l..n, 1..n] int;

the slice A[1..n, 1] is aone-dimensional array whose elements are the first column of A.

20.7 Array Arguments to Functions

Arrays are passed to functions by reference. Formal arguments that receive arrays are aliases of the actual
arguments.

When a formal argument has array type, the element type of the array can be omitted and/or the domain of
the array can be queried or omitted. In such cases, the argument is generic and is discussed in §22.1.6]

If a non-queried domain is specified in the array type of a formal argument, the domain must match the
domain of the actual argument. This is verified at runtime. There is an exception if the domain is an arithmetic

domain, described in §20.7.1

20.7.1 Formal Arguments of Arithmetic Array Type

Formal arguments of arithmetic array type allow an arithmetic domain to be specified that does not match the
arithmetic domain of the actual arithmetic array that is passed to the formal argument. In this case, the shape
(size in each dimension and rank) of the domain of the actual array must match the shape of the domain of
the formal array. The indices are translated in the formal array, which is a reference to the actual array.

Example. In the code

def foo(X: [1..5] int) { ... }
var A: [1..10 by 2] int;
foo (A);

the array A is strided and its elements can be indexed by the odd integers between one and nine.
In the function foo, the array x references array A and the same elements can be indexed by the
integers between one and five.

20.7.2 Array Promotion of Scalar Functions

Array promotion of a scalar function is defined over the array type and the element type of the array. The
domain of the returned array, if an array is captured by the promotion, is the domain of the array that promoted
the function. In the event of zipper promotion over multiple arrays, the promoted function returns an array
with a domain that is equal to the domain of the first argument to the function that enables promotion. If the
first argument is an iterator or a range, the result is a one-based one-dimensional array.

Example. Whole array operations is a special case of array promotion of scalar functions. In the
code

A =B + C;

if &, B, and C are arrays, this code assigns each element in A the element-wise sum of the elements
in B and C.

128 Chapel Language Specification

20.7.3 Array Aliases

Array slices alias the data in arrays rather than copying it. Such array aliases can be captured and optionally
reindexed with the array alias operator =>. The syntax for capturing an alias to an array requires a new
variable declaration:

array-alias—declaration:
identifier reindexing—expression,,,; => array—expression ;

reindexing—expression:
[domain—expression]

array—expression:
expression

The identifier is an alias to the array specified in the array—expression.

The optional reindexing—expression allows the domain of the array alias to be reindexed. The shape of the
domain in the reindexing—expression must match the shape of the domain of the array—expression. Indexing via
the alias is governed by the new indices.

Example. In the code

var A: [1..5, 1..5] int;
var AA: [0..2, 0..2] => A[2..4, 2..471;

an array alias AA is created to alias the interior of array A given by the slicea[2..4, 2..4]. The
reindexing expression changes the indices defined by the domain of the alias to be zero-based in
both dimensions. Thus Aa (1, 1) is equivalent to A (3, 3).

20.8 Sparse Arrays

Sparse arrays in Chapel are those whose domain is a sparse array. A sparse array differs from other array
types in that it stores a single value corresponding to multiple indices. This value is commonly referred to as
the zero value, but we refer to it as the implicitly replicated value or IRV since it can take on any value of the
array’s element type in practice including non-zero numeric values, a class reference, a record or tuple value,
etc.

An array declared over a sparse domain can be indexed using any of the indices in the sparse domain’s parent
domain. If it is read using an index that is not part of the sparse domain’s index set, the IRV value is returned.
Otherwise, the array element corresponding to the index is returned.

Sparse arrays can only be written at locations corresponding to indices in their domain’s index set. In general,
writing to other locations corresponding to the IRV value will result in a runtime error.

By default a sparse array’s IRV is defined as the default value for the array’s element type. The IRV can be
set to any value of the array’s element type by assigning to a pseudo-field named IRV in the array.

Arrays 129

Example. The following code example declares a sparse array, SpsA using the sparse domain
SpsD (For this example, assume that n>1). Line 2 assigns two indices to SpsD’s index set and
then lines 3—4 store the values 1.1 and 9.9 to the corresponding values of SpsaA. The IRV of
Spsa will initially be 0.0 since its element type is real. However, the fifth line sets the IRV to
be the value 5.5, causing SpsA to represent the value 1.1 in its low corner, 9.9 in its high corner,
and 5.5 everywhere else. The final statement is an error since it attempts to assign to SpsA at an
index not described by its domain, SpsD.

var SpsA: [SpsD] real;

SpsD = ((1,1), (n,n));
SpsA(1,1) = 1.1;

SpsA(n,n) = 9.9;

SpsA.IRV = 5.5;

SpsA(l,n) = 0.0; // ERROR!

20.9 Association of Arrays to Domains

When an array is declared, it is linked during execution to the domain identity over which it was declared.
This linkage is invariant for the array’s lifetime and cannot be changed.

When indices are added or removed from a domain, the change impacts the arrays declared over this particular
domain. In the case of adding an index, an element is added to the array and initialized to the IRV for sparse
arrays, and to the default value for the element type for dense arrays. In the case of removing an index, the
element in the array is removed.

When a domain is reassigned a new value, its arrays are also impacted. Values that correspond to indices in
the intersection of the old and new domain are preserved in the arrays. Values that could only be indexed by
the old domain are lost. Values that can only be indexed by the new domain have elements added to the new
array, initialized to the IRV for sparse arrays, and to the element type’s default value for other array types.

For performance reasons, there is an expectation that a method will be added to domains to allow non-
preserving assignment, i.e., all values in the arrays associated with the assigned domain will be lost. Today
this can be achieved by assigning the array’s domain an empty index set (causing all array elements to be
deallocated) and then re-assigning the new index set to the domain.

An array’s domain can only be modified directly, via the domain’s name or an alias created by passing it to
a function via blank intent. In particular, the domain may not be modified via the array’s .domain method,
nor by using the domain query syntax on a function’s formal array argument (§22.1.6)).

Rationale. 'When multiple arrays are declared using a single domain, modifying the domain
affects all of the arrays. Allowing an array’s domain to be queried and then modified suggests
that the change should only affect that array. By requiring the domain to be modified directly,
the user is encouraged to think in terms of the domain distinctly from a particular array.

In addition, this choice has the beneficial effect that arrays declared via an anonymous domain
have a constant domain. Constant domains are considered a common case and have potential
compilation benefits such as eliminating bounds checks. Therefore making this convenient syn-
tax support a common, optimizable case seems prudent.

130 Chapel Language Specification

20.10 Predefined Functions and Methods on Arrays
There is an expectation that this list of predefined functions and methods will grow.
def Array.eltType type

Returns the element type of the array.

def Array.rank param

Returns the rank of the array.

def Array.domain: this.domain

Returns the domain of the given array. This domain is constant, implying that the domain cannot be
resized by assigning to its domain field, only by modifying the domain directly.

def Array.numElements: this.domain.dim_type

Returns the number of elements in the array.

def reshape (A: Array, D: Domain): Array

Returns a copy of the array containing the same values but in the shape of the new domain. The number
of indices in the domain must equal the number of elements in the array. The elements of the array are
copied into the new array using the default iteration orders over both arrays.

Iterators 131

21 Iterators

An iterator is a function that conceptually returns multiple values rather than simply a single value.

Open issue. The parallel iterator story is under development. It is expected that the specification
will be expanded regarding parallel iterators soon.

21.1 Iterator Functions

The syntax of an iterator declaration is identical to that of a function declaration. A function is an iterator if
it includes yield statements. When a yield is encountered, the value is returned, but the iterator is not finished
evaluating when called within a loop. It will continue from the point after the yield and can yield or return
more values. When a return is encountered, the value is returned and the iterator finishes. An iterator also
completes after the last statement in the iterator function is executed.

21.2 The Yield Statement

The yield statements can only appear in iterators. The syntax of the yield statement is given by

yield-statement:
yield expression ;

21.3 Iterator Calls

Iterator functions can be called within for or forall loops, in which case they are executed in an interleaved
manner with the body of the loop. An iterator function call, or iterator invocation, can be used in an expression
context, in which case it evaluates to a 1-based array of values. An iterator invocation can also be passed to
a generic function argument, in which case it will not be evaluted until the formal argument is referenced
within the function.

21.3.1 Iterators in For and Forall Loops

When an iterator is accessed via a for or forall loop, the iterator is evaluated alongside the loop body in an
interleaved manner. For each iteration, the iterator yields a value and the body is executed.

132 Chapel Language Specification

21.3.2 Iterators as Arrays

If an iterator function is captured into a new variable declaration or assigned to an array, the iterator is
iterated over in total and the expression evaluates to a one-dimensional arithmetic array that contains the
values returned by the iterator on each iteration.

Example. Given an iterator

def squares(n: int): int {
for i in 1..n do
yield i * 1i;
}

the expression squares (5) evaluates to the array 1, 4, 9, 16, 25.

21.3.3 Iterators and Generics

An iterator call expression can be passed to a generic function argument that has neither a declared type nor
default value (§22.1.3). In this case the iterator is passed without being evaluated. Within the generic function
the corresponding formal argument can be used as an iterator, e.g. in for loops. The arguments to the iterator
call expression, if any, are evaluated at the call site, i.e. prior to passing the iterator to the generic function.

21.3.4 Recursive Iterators
Recursive iterators are allowed. A recursive iterator invocation is typically made by iterating over it in a loop.

Example. A post-order traversal of a tree data structure could be written like this:
def postorder(tree: Tree): string {
if tree != nil {
for child in postorder (tree.left) do
yield child;
for child in postorder(tree.right) do
yield child;
yield tree.data;
}
}

By contrast, using calls postorder (tree.left) and postorder (tree.right) as stand-
alone statements would result in generating temporary arrays containing the outcomes of these
recursive calls, which would then be discarded.

21.4 Parallel Iterators

Iterators used in explicit forall-statements or -expressions must be parallel iterators. Reductions, scans and
promotion over serial iterators will be serialized.

The definition of parallel iterators is forthcoming. Parallel iterators are defined over standard constructs in
Chapel such as ranges, domains, and arrays (including Block- and Cyclic-distributed domains and arrays),
thereby allowing these constructs to be used with forall-statements and -expressions.

Generics 133

22

Generics

Chapel supports generic functions and types that are parameterizable over both types and parameters. The
generic functions and types look similar to non-generic functions and types already discussed.

22.1 Generic Functions

A function is generic if any of the following conditions hold:

Some formal argument is specified with an intent of t ype or param.
Some formal argument has no specified type and no default value.
Some formal argument is specified with a queried type.

The type of some formal argument is a generic type, e.g., List. Queries may be inlined in generic
types, e.g., List (?eltType).

The type of some formal argument is an array type where either the element type is queried or omitted
or the domain is queried or omitted.

These conditions are discussed in the next sections.

22.1.1 Formal Type Arguments

If a formal argument is specified with intent t ype, then a type must be passed to the function at the call site.
A copy of the function is instantiated for each unique type that is passed to this function at a call site. The
formal argument has the semantics of a type alias.

Example. The following code defines a function that takes two types at the call site and returns
a 2-tuple where the types of the components of the tuple are defined by the two type arguments
and the values are specified by the types default values.

def build2Tuple (type t, type tt) {
var x1: t;
var x2: tt;
return (x1, x2);

}

This function is instantiated with “normal” function call syntax where the arguments are types:

var t2 = build2Tuple (int, string);
t2 = (1, "hello");

134 Chapel Language Specification

22.1.2 Formal Parameter Arguments

If a formal argument is specified with intent param, then a parameter must be passed to the function at the
call site. A copy of the function is instantiated for each unique parameter that is passed to this function at a
call site. The formal argument is a parameter.

Example. The following code defines a function that takes an integer parameter p at the call site
as well as a regular actual argument of integer type x. The function returns a homogeneous tuple
of size p where each component in the tuple has the value of x.
def fillTuple(param p: int, x: int) {
var result: pxint;
for param i in 1..p do
result (i) = x;
return result;

}

The function call £fi11Tuple (3, 3) returns a 3-tuple where each component contains the value
3.

22.1.3 Formal Arguments without Types

If the type of a formal argument is omitted, the type of the formal argument is taken to be the type of the
actual argument passed to the function at the call site. A copy of the function is instantiated for each unique
actual type.

Example. The example from the previous section can be extended to be generic on a parameter
as well as the actual argument that is passed to it by omitting the type of the formal argument
x. The following code defines a function that returns a homogeneous tuple of size p where each
component in the tuple is initialized to x:
def fillTuple (param p: int, x) {
var result: p*x.type;
for param i in 1..p do
result (i) = x;
return result;

}

In this function, the type of the tuple is taken to be the type of the actual argument. The call
fillTuple (3, 3.14) returns a 3-tuple of real values (3.14, 3.14, 3.14). The return
typeis (real, real, real).

22.1.4 Formal Arguments with Queried Types

If the type of a formal argument is specified as a queried type, the type of the formal argument is taken to be
the type of the actual argument passed to the function at the call site. A copy of the function is instantiated
for each unique actual type. The queried type has the semantics of a type alias.

Example. The example from the previous section can be rewritten to use a queried type for
clarity:

Generics 135

def fillTuple(param p: int, x: ?t) {
var result: px*t;
for param i in 1..p do
result (i) = x;
return result;

}

22.1.5 Formal Arguments of Generic Type

If the type of a formal argument is a generic type, the type of the formal argument is taken to be the type
of the actual argument passed to the function at the call site with the constraint that the type of the actual
argument is an instantiation of the generic type. A copy of the function is instantiated for each unique actual

type.

Example. The following code defines a function writeTop that takes an actual argument that
is a generic stack (see §22.6) and outputs the top element of the stack. The function is generic
on the type of its argument.

def writeTop(s: Stack) {

write(s.top.item);

}

Types and parameters may be queried from the top-level types of formal arguments as well. In the example
above, the formal argument’s type could also be specified as Stack (?type) in which case the symbol type
is equivalent to s.itemType.

Note that generic types which have default values for all of their generic fields, e.g. range, are not generic
when simply specified and require a query to mark the argument as generic. For simplicity, the identifier may
be omitted.

Example. The following code defines a class with a type field that has a default value. Function £
is defined to take an argument of this class type where the type field is instantiated to the default.
Function g, on the other hand, is generic on its argument because of the use of the question mark.

class C {

type t = int;
}
def f(c: C) {

// c.type is always int
}
def g(c: C(?)) {

// c.type may not be int
}

The generic type may be specified with some queries and some exact values. Thesse exact values result in
implicit where clauses for the purpose of function resolution.

Example. Given the class definition

136 Chapel Language Specification

class C {
type t;
type tt;
}

then the function definition

def f(c: C(?t,real)) {
// body
}

is equivalent to

def f(c: C(?t,?tt)) where tt == real {
// body
}

For tuples with query arguments, an implicit where clause is always created to ensure that the size of the
actual tuple matches the implicitly specified size of the formal tuple.

Example. The function definition

def f (tuple: (?t,real)) {
// body
}

is equivalent to

def f (tuple: (?t,7?tt)) where tuple.size == 2 && tt == real {
// body
}

The generic types integral, numeric and enumerated are generic types that can only be instantiated
with, respectively, the signed and unsigned integral types, all of the numeric types, and enumerated types.

22.1.6 Formal Arguments of Generic Array Types

If the type of a formal argument is an array where either the domain or the element type is queried or omitted,
the type of the formal argument is taken to be the type of the actual argument passed to the function at the
call site. If the domain is omitted, the domain of the formal argument is taken to be the domain of the actual
argument.

A queried domain may not be modified via the name to which it is bound (see §20.9|for rationale).

22.2 Function Visibility in Generic Functions

Function visibility in generic functions is altered depending on the instantiation. When resolving function
calls made within generic functions, the visible functions are taken from any call site at which the generic
function is instantiated for each particular instantiation. The specific call site chosen is arbitrary and it is
referred to as the point of instantiation.

For function calls that specify the module explicitly (§12.4.1)), an implicit use of the specified module exists
at the call site.

Generics 137

Example. Consider the following code which defines a generic function bar:

module M1 {
record R {
var x: int;
def foo () { }
}
}

module M2 {
def bar (x) {
x.foo();
}
}

module M3 {
use M1, M2;
def main() {
var r: R;
bar(r);
}

In the function main, the variable r is declared to be of type R defined in module M1 and a
call is made to the generic function bar which is defined in module M2. This is the only place
where bar is called in this program and so it becomes the point of instantiation for bar when
the argument x is of type R. Therefore, the call to the foo method in bar is resolved by looking
for visible functions from within main and going through the use of module M1.

If the generic function is only called indirectly through dynamic dispatch, the point of instantiation is defined
as the point at which the derived type (the type of the implicit this argument) is defined or instantiated (if
the derived type is generic).

Rationale. Visible function lookup in Chapel’s generic functions is handled differently than in
C++’s template functions in that there is no split between dependent and independent types.

Also, dynamic dispatch and instantiation is handled differently. Chapel supports dynamic dis-
patch over methods that are generic in some of its formal arguments.

Note that the Chapel lookup mechanism is still under development and discussion. Comments
or questions are appreciated.

22.3 Generic Types

Generic types are generic classes and generic records. A class or record is generic if it contains one or more
generic fields. A generic field is one of:

e a specified or unspecified type alias,
e a parameter field, or

e avar or const field that has no type and no initialization expression.

138 Chapel Language Specification

For each generic field, the class or record is parameterized over:

e the type bound to the type alias,
e the value of the parameter field, or

o the type of the var or const field, respectively.

Correspondingly, the class or record is instantiated with a set of types and parameter values, one type or value
per generic field.

22.3.1 Type Aliases in Generic Types

If a class or record defines a type alias, the class or record is generic over the type that is bound to that alias.
Such a type alias is accessed as if it were a field; similar to a parameter field, it cannot be assigned except in
its declaration.

The type alias becomes an argument with intent type to the default constructor (§22.3.6) for its class or
record. This makes the default constructor generic. The type alias also becomes an argument with intent
type to the type constructor (§22.3.4). If the type alias declaration binds it to a type, that type becomes the
default for these arguments, otherwise they have no defaults.

The class or record is instantiated by binding the type alias to the actual type passed to the corresponding
argument of a user-defined (§22.3.7) or default constructor or type constructor. If that argument has a default,
the actual type can be omitted, in which case the default will be used instead.

Example. The following code defines a class called Node that implements a linked list data
structure. It is generic over the type of the element contained in the linked list.

class Node {
type eltType;
var data: eltType;
var next: Node (eltType);

The call new Node (real, 3.14) creates a node in the linked list that contains the value 3.14.
The next field is set to nil. The type specifier Node is a generic type and cannot be used to define
a variable. The type specifier Node (real) denotes the type of the Node class instantiated over
real. Note that the type of the next field is specified as Node (eltType) ; the type of next is
the same type as the type of the object that it is a field of.

Generics 139
22.3.2 Parameters in Generic Types

If a class or record defines a parameter field, the class or record is generic over the value that is bound to
that field. The parameter becomes an argument with intent param to the default constructor (§22.3.6)) for that
class or record. This makes the default constructor generic. The parameter also becomes an argument with
intent param to the type constructor (§22.3.4). If the parameter declaration has an initialization expression,
that expression becomes the default for these arguments, otherwise they have no defaults.

The class or record is instantiated by binding the parameter to the actual value passed to the corresponding
argument of a user-defined (§22.3.7) or default constructor or type constructor. If that argument has a default,
the actual value can be omitted, in which case the default will be used instead.

Example. The following code defines a class called IntegerTuple that is generic over an
integer parameter which defines the number of components in the class.
class IntegerTuple {
param size: int;

var data: sizexint;

}

The call new IntegerTuple (3) creates an instance of the IntegerTuple class that is instan-
tiated over parameter 3. The field data becomes a 3-tuple of integers. The type of this class
instance is IntegerTuple (3). The type specified by IntegerTuple is a generic type.

22.3.3 Fields without Types

If a var or const field in a class or record has no specified type or initialization expression, the class
or record is generic over the type of that field. The field becomes an argument with blank intent to the
default constructor (§22.3.6). That argument has no specified type and no default value. This makes the
default constructor generic. The field also becomes an argument with type intent and no default to the type
constructor (§22.3.4). Correspondingly, an actual value must always be passed to the default constructor
argument and an actual type to the type constructor argument.

The class or record is instantiated by binding the type of the field to the type of the value passed to the cor-
resonding argument of a user-defined (§22.3.7) or default constructor. When the type constructor is invoked,
the class or record is instantiated by binding the type of the field to the actual type passed to the corresponding
argument.

Example. The following code defines another class called Node that implements a linked list
data structure. It is generic over the type of the element contained in the linked list. This code
does not specify the element type directly in the class as a type alias but rather omits the type
from the data field.

class Node {

var data;

var next: Node (data.type) = nil;
}

A node with integer element type can be defined in the call to the constructor. The call new Node (1)
defines a node with the value 1. The code

140 Chapel Language Specification

var list = new Node(l);
list.next = new Node (2);

defines a two-element list with nodes containing the values 1 and 2. The type of each object
could be specified as Node (int).

22.3.4 The Type Constructor

A type constructor is automatically created for each class or record. A type constructor is a type function
(§13.9) that has the same name as the class or record. It takes one argument per the class’s or record’s generic
field, including fields inherited from the superclasses, if any. The formal argument has intent type for a
type alias field and is a parameter for a parameter field. It accepts the type to be bound to the type alias and
the value to be bound to the parameter, respectively. For a generic var or const field, the corresponding
formal argument also has intent type. It accepts the type of the field, as opposed to a value as is the case
for a parameter field. The formal arguments occur in the same order as the fields are declared and have the
same names as the corresponding fields. Unlike the default constructor, the type constructor has only those
arguments that correspond to generic fields.

A call to a type constructor accepts actual types and parameter values and returns the type of the class or
record that is instantiated appropriately for each field (§22.3.1} §22.3.2] §22.3.3). Such an instantiated type
must be used as the type of a variable, array element, non-generic formal argument, and in other cases where
uninstantiated generic class or record types are not allowed.

When a generic field declaration has an initialization expression or a type alias is specified, that initializer
becomes the default value for the corresponding type constructor argument. Uninitialized fields, including all
generic var and const fields, and unspecified type aliases result in arguments with no defaults; actual types
or values for these arguments must always be provided when invoking the type constructor.

22.3.5 Generic Methods

All methods bound to generic classes or records, including constructors, are generic over the implicit this
argument. This is in addition to being generic over any other argument that is generic.

22.3.6 The Default Constructor

The default constructor for a class or record (§15.6.2) is generic over each argument that corresponds to a
generic field, as specified above. The argument has intent t ype for a type alias field and is a parameter for a
parameter field. It accepts the type to be bound to the type alias and the value to be bound to the parameter,
respectively. This is the same as for the type constructor. For a generic var or const field, the corresponding
formal argument has the blank intent and accepts the value for the field to be initialized with. The type of the
field is inferred automatically to be the type of the initialization value.

The default values for the generic arguments of the default constructor are the same as for the type constructor
(§22.3.4)). For example, the arguments corresponding to the generic var and const fields, if any, never have
defaults, so the corresponding actual values must always be provided.

Generics 141

22.3.7 User-Defined Constructors

If a generic field of a class does not have an initialization expression or a type alias is unspecified, each
user-defined constructor for that class must provide a formal argument whose name matches the name of the
field.

If the name of a formal argument in a user-defined constructor matches the name of a generic field that does
not have an initialization expression, is a type alias, or is a parameter field, the field is automatically initialized
at the beginning of the constructor invocation to the actual value of that argument. This is done by passing that
formal argument to the implicit invocation of the default constructor at the start of the user-defined constructor

({15.6.1).

Example. In the following code:

class MyGenericClass {
type tl1;
param pl;
const cl;
var vl;
var x1: tl; // this field is not generic

type t5 = real;

param p5 = "a string";
const c5 = 5.5;
var v5 = 555;

var x5: t5; // this field is not generic

def MyGenericClass(cl, vl, type tl, param pl) { }
def MyGenericClass (type t5, param p5, c5, v5, x5,
type tl, param pl, cl, vl, x1) { }
} // class MyGenericClass

var gl = new MyGenericClass (11, 111, int, 1);
var g2 = new MyGenericClass (int, "this is g2", 3.3, 333, 3333,
real, 2, 222, 222.2, 22);

The arguments t 1, p1, c1, and v1 are required in all constructors for MyGenericClass. They
can appear in any order. Both MyGenericClass constructors initialize the corresponding fields
implicitly because these fields do not have initialization expressions. The second constructor also
initializes implicitly the fields t5 and p5 because they are a type field and a parameter field. It
does not initialize the fields c5 and v5 because they have initialization expressions, or the fields
x1 and x5 because they are not generic fields (even though they are of generic types).

Open issue. The design of constructors, especially for generic classes, is under development, so
the above specification may change.

22.4 Where Expressions

The instantiation of a generic function can be constrained by where clauses. A where clause is specified in the
definition of a function (§13.2). When a function is instantiated, the expression in the where clause must be
a parameter expression and must evaluate to either t rue or false. If it evaluates to false, the instantiation
is rejected and the function is not a possible candidate for function resolution. Otherwise, the function is
instantiated.

142 Chapel Language Specification

Example. Given two overloaded function definitions

def foo(x) where x.type == int { writeln("int"); }
def foo(x) where x.type == real { writeln("real"); }

the call foo(3) resolves to the first definition because when the second function is instantiated the
where clause evaluates to false.

22.5 User-Defined Compiler Diagnostics

The special compiler diagnostic function calls compilerError and compilerWarning generate compiler
diagnostic of the indicated severity if the function containing these calls may be called when the program is
executed and the function call is not eliminated by parameter folding.

The compiler diagnostic is defined by the actual arguments which must be string parameters. The diagnostic
points to the spot in the Chapel program from which the function containing the call is called. Compilation
halts if a compilerError is encountered whereas it will continue after encountering a compilerWarning.

Note that when a variable function is called in a context where the implicit set ter argument is true or false,
both versions of the variable function are resolved by the compiler. Consequently, the setter argument
cannot be effectively used to guard a compiler diagnostic statements.

Example. The following code shows an example of using user-defined compiler diagnostics to
generate warnings and errors:
def foo(x, y) {
if (x.type != y.type) then
compilerError ("foo() called with non-matching types: ",
typeToString(x.type), " != ", typeToString(y.type));
writeln("In 2-argument foo...");

}

def foo(x) {
compilerWarning ("l-argument version of foo called");
writeln("In generic foo!");

}

The first routine generates a compiler error whenever the compiler encounters a call to it where
the two arguments have different types. It prints out an error message indicating the types of the
arguments. The second routine generates a compiler warning whenver the compiler encounters
a call to it.

Thus, if the program foo.chpl contained the following calls:

foo(l, 2.3);
foo("hi", 2.3);

1 foo(3.4);

> foo("hi");

3 foo(1l, 2);

4 foo(l.2, 3.4);

s foo("hi", "bye");
6 (

7 (

compiling the program would generate output like:

foo.chpl:1: warning: l-argument version of foo called with type: real
foo.chpl:2: warning: l-argument version of foo called with type: string
foo.chpl:6: error: foo() called with non-matching types: int != real

Generics 143

22.6 Example: A Generic Stack

class MyNode {
type itemType; // type of item
var item: itemType; // item in node
var next: MyNode (itemType); // reference to next node (same type)

record Stack {
type itemType; // type of items
var top: MyNode (itemType); // top node on stack linked list

def push(item: itemType) {
top = new MyNode (itemType, item, top);

def pop() {
if isEmpty then
halt ("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

def isEmpty return top == nil;

144 Chapel Language Specification

Input and Output 145

23 Input and Output

Chapel provides a built-in £ile class to handle input and output to files using functions and methods called
read, readln, write, and writeln.

23.1 Thefile type

The file class contains the following fields:

The filename field is a st ring that contains the name of the file.

The path field is a st ring that contains the path of the file.

The mode field is a FileAccessMode enum value that indicates whether the file is being read or
written.

The style field can be set to text or binary to specify that reading from or writing to the file should
be done with text or binary formats.

These fields can be modified any time that the file is closed.

The mode field supports the following FileAccessMode values:

e FileAccessMode.read The file can be read.

e FileAccessMode.write The file can be written.
The file type supports the following methods:

e The open () method opens the file for reading and/or writing.
e The close () method closes the file for reading and/or writing.

e The isOpen method returns true if the file is open for reading and/or writing, and otherwise returns
false.

e The f1lush () method flushes the file, finishing outstanding reading and writing.

Additionally, the file type supports the methods read, readln, write, and writeln for input and output as

discussed in §23.5]and

23.2 Standard files stdout, stdin, and stderr

The files stdout, stdin, and stderr are predefined and map to standard output, standard input, and stan-
dard error as implemented in a platform dependent fashion.

146 Chapel Language Specification

23.3 The write, writeln, read, and readln functions

The built-in function write can take an arbitrary number of arguments and writes each of the arguments out
in turn to stdout. The built-in function writeln has the same semantics as write but outputs an end-of-
line character after writing out the arguments. The built-in function read can take an arbitrary number of
arguments and reads each of the arguments in turn from stdin. The built-in function readln also takes an
arbitrary number of arguments, reading each argument from stdin. These arguments may be entered on a
single line or on multiple lines. After all arguments of the readln call are read, an end-of-line character
is expected to be read, ignoring any additional input between the last argument read and the end-of-line
character.

The read and readln functions are also defined to take an arbitrary number of types as arguments. In this
case, the semantics are the same except that the value returned is a tuple of the values that were read. If only
one type is read, the value is not returned in a tuple, but is returned directly.

These functions are wrappers for the methods on files described next.

Example. The writeln wrapper function allows for a simple implementation of the Hello-
World program:

writeln("Hello, World!");

23.4 User-Defined writeThis methods

To define the output for a given type, the user must define a method called writeThis on that type that takes
a single argument of Writer type. If such a method does not exist, a default method is created.

23.5 The write and writeln method on files

The file type supports methods write and writeln for output. These methods are defined to take an
arbitrary number of arguments. Each argument is written in turn by calling the writeThis method on that
argument. Default writeThis methods are bound to any type that the user does not explicitly create one for.

A lock is used to ensure that output is serialized across multiple tasks.

23.5.1 The write and writeln method on strings

The write and writeln methods can also be called on strings to write the output to a string instead of a file.

Input and Output 147

23.5.2 Generalized write and writeln

The Writer class contains no arguments and serves as a base class to allow user-defined classes to be written
to. If a class is defined to be a subclass of Writer, it must override the writeIt method that takes a string
as an argument.

Example. The following code defines a subclass of Writer that overrides the writeIt method
to allow it to be written to. It also overrides the writeThis method to override the default way
that it is written.
class C: Writer {
var data: string;
def writelIt (s: string) {
data += s.substring(l);
}
def writeThis(x: Writer) {
x.write (data);
}
}

var ¢ = new C();
c.write (41, 32, 23, 14);
writeln(c);

The c class filters the arguments sent to it, printing out only the first letter. The output to the
above is thus 4321.

23.6 The read and readln methods on files

The file type supports read and readln methods. The read method takes an arbitrary number of argu-
ments, reading in each argument from file. The read1n method also takes an arbitrary number of arguments,
reading in each argument from a single line or multiple lines in the file and advancing the file pointer to the
next line after the last argument is read.

The £ile type also supports overloaded methods read and readln that take an arbitrary number of types as
arguments. These methods read values of the specified types from the file and return them in a tuple. If only
one type is read, the value is not returned in a tuple, but is returned directly.

Example. The following line of code reads a value of type int from stdin and uses it to
initialize variable x (causing x to have an inferred type of int):

var x = stdin.read(int);

23.7 Default read and write methods

Default write methods are created for all types for which a user write method is not defined. They have
the following semantics:

e arrays Outputs the elements of the array in row-major order where rows are separated by line-feeds
and blank lines are used to separate other dimensions.

148 Chapel Language Specification

e domains Outputs the dimensions of the domain enclosed by [and].

e ranges Outputs the lower bound of the range followed by . . followed by the upper bound of the range.
If the stride of the range is not one, the output is additionally followed by the word by followed by the
stride of the range.

e tuples Outputs the components of the tuple in order delimited by (and), and separated by commas.

e classes Outputs the values within the fields of the class prefixed by the name of the field and the
character =. Each field is separated by a comma. The output is delimited by { and }.

e records Outputs the values within the fields of the class prefixed by the name of the field and the
character =. Each field is separated by a comma. The output is delimited by (and).

Default read methods are created for all types for which a user read method is not defined. The default
read methods are defined to read in the output of the default write method.

Task Parallelism and Synchronization 149
24 Task Parallelism and Synchronization

Chapel supports both task parallelism and data parallelism, and the mixing thereof. This chapter details tasks
parallelism in four parts:

e §24.1|describes the begin statement, an unstructured way to introduce concurrency into a program, and
synchronization variables, an unstructured mechanism for synchronizing a program.

o §24.2) describes the cobegin and coforall statement, structured ways to introduce concurrency into a
program, and the sync- and serial statement, structured ways to control and suppress parallelism.

o §24.3|describes the atomic statement, a construct to support atomic transactions.

o §04.4describes the memory consistency model.

The term task is used to refer to a distinct context of execution that may be running concurrently.

24.1 Unstructured Task-Parallel Constructs

Chapel provides a simple construct, the begin statement, to spawn tasks, thus introducing concurrency into a
program in an unstructured way. In addition, Chapel introduces two type qualifiers, sync and single, for
synchronization of tasks.

More structured ways to achieve concurrency are discussed in §24.2| These structured ways to introduce con-
currency may be easier to use in many common cases. They can be implemented using only the unstructured
constructs described in this section.

24.1.1 The Begin Statement

The begin statement spawns a task to execute a statement. The begin statement is thus an unstructured way
to create a new task that is executed only for its side-effects. The syntax for the begin statement is given by

begin-statement:
begin statement

Control continues concurrently with the statement following the begin statement.

Example. The code

begin writeln ("output from spawned task");
writeln ("output from main task");

executes two writeln statements that output the strings to the terminal, but the ordering is
purposely unspecified. There is no guarantee as to which statement will execute first. When the
begin statement is executed, a new task is created that will execute the writeln statement within
it. However, execution will continue immediately with the next statement. In this same
example will be synchronized so that the output from the spawned task always happens second.

The following statements may not be lexically enclosed in begin statements: break statements, continue
statements, yield statements, and return statements.

150 Chapel Language Specification

24.1.2 Sync Variables

The use of and assignment to variables of sync type implicitly control the execution order of a task, making
them well-suited to producer-consumer data sharing.

A sync variable is logically either full or empty. When it is empty, tasks that attempt to read that variable are
suspended until the variable becomes full by the next assignment to it, which atomically changes the state to
full. When the variable is full, a read of that variable consumes the value and atomically transitions the state
to empty. If there is more than one task waiting on a sync variable, one is non-deterministically selected to
use the variable and resume execution. The other tasks continue to wait for the next assignment.

If a task attempts to assign to a sync variable that is full, the task is suspended and the assignment is delayed.
When the sync variable becomes empty, the task is resumed and the assignment proceeds, transitioning the
state back to full. If there are multiple tasks attempting such an assignment, one is non-deterministically
selected to proceed and the other assignments continue to wait until the sync variable is emptied again.

A sync variable is specified with a sync type given by the following syntax:

sync—type:
sync type-specifier

If a sync variable declaration has an initialization expression, then the variable is initially full, otherwise it is
initially empty.

Example. The code

var finishedMainOutput$: sync bool;
begin {

finishedMainOutput$;

writeln ("output from spawned task");
}
writeln ("output from main task");
finishedMainOutput$ = true;

modifies the example in §24.1.1 When the read of the sync variable is encountered in the
spawned task, the task waits until the sync variable is assigned in the main task.

Example. Sync variables are useful for tallying data from multiple tasks as well. A sync variable
of type int is read and then written during an update so the full-empty semantics make these
updates atomic when used in a stylized way. The code

var count$: sync int = 0;

begin count$ += 1;

begin count$ += 1;

begin count$ += 1;

spawns three tasks to increment count$. If count$ was not a sync variable, this code would be
unsafe because between the points at which one task reads count$ and writes count$, another
task may increment it.

If the base type of a sync type is a class or a record, the sync semantics only apply to the class or record, not
to its individual fields or methods. A record or class type may have fields of sync type to get sync semantics
on individual field accesses.

Task Parallelism and Synchronization 151

If a formal argument is a sync type, the actual is passed by reference and the argument itself is a valid lvalue.
The unqualified type sync can also be used to specify a generic formal argument. In this case, the actual
must be a sync variable and it is passed by reference.

For generic formal arguments with unspecified types (§22.1.5), an actual that is sync is “read” before being
passed to the function and the generic formal argument’s type is set to the base type of the actual.

24.1.3 Single Variables

A single (assignment) variable specializes sync variables by restricting the number of times it can be assigned
to no more than one during its lifetime. A use of a single variable before it is assigned causes the task’s
execution to suspend until the variable is assigned. Otherwise, the use proceeds as with normal variables and
the task continues. After a single assignment variable is assigned, all tasks with pending uses resume in an
unspecified order. A single variable is specified with a single type given by the following syntax:
single—type:
single type-specifier

Example. In the code

class Tree {
var isLeaf: bool;
var left, right: Tree;
var value: int;

def sum () :int {
if (isLeaf) then
return value;

var x$: single int;
begin x$ = left.sum();

var y = right.sum();
return x$+v;

}

the single variable x$ is assigned by an asynchronous task created with the begin statement. The
task returning the sum waits on the reading of x$ until it has been assigned.

24.1.4 Predefined Single and Sync Methods

The following methods are defined for variables of sync and single type.

def (sync t).readFE(): t

Wait for full, leave empty, and return the value of the sync variable. This method blocks until the sync
variable is full. The state of the sync variable is set to empty when this method completes.

def (sync t).readfFF(): t
def (single t).readFF(): t

Returns the value of the sync or single variable. This method blocks until the sync or single variable is
full. The state of the sync or single variable remains full when this method completes.

152

def
def

def
def

def

def

def

def
def

Chapel Language Specification

(sync t) .readXX(): t
(single t).readXX(): t

Returns the value of the sync or single variable. This method is non-blocking and the state of the sync
or single variable is unchanged when this method completes.

(sync t).writeEF (v: t)
(single t) .writeEF (v: t)

Assigns v to the value of the sync or single variable. This method blocks until the sync or single
variable is empty. The state of the sync or single variable is set to full when this method completes.

(sync t).writeFF(v: t)

Assigns v to the value of the sync variable. This method blocks until the sync variable is full. The state
of the sync variable remains full when this method completes.

(sync t).writeXF(v: t)

Assigns v to the value of the sync variable. This method is non-blocking and the state of the sync
variable is set to full when this method completes.

(sync t) .reset ()

Assigns the default value of type t to the value of the sync variable. This method is non-blocking and
the state of the sync variable is set to empty when this method completes.

(sync t) .isFull: bool
(single t) .isFull: bool

Returns t rue if the sync or single variable is full and false otherwise. This method is non-blocking
and the state of the sync or single variable is unchanged when this method completes.

Rationale. 1In general, these methods are provided such that other traditional synchronization
primitives, such as semaphores and mutexes, can be constructed.

Note that the implicitly-invoked writeEF and readFE/readfF methods (for sync and single
variables, respectively) could be considered unnecessary due to their implicit invocations, yet
are provided to support programmers who wish to make the semantics of these operations more
explicit. It might be desirable to have a compiler option that disables the implicit application of
these methods.

Example. Given the following declarations

var x$: sync int;
var y$: single int;
var z: int;

the code
x$ = 5;
v$ = 6;
z = x$ + v$;

is equivalent to

x$.writeEF (5);
v$.writeEF (6);
z = x$.readFE() + y$.readFF();

Task Parallelism and Synchronization 153

24.2 Structured Task-Parallel Constructs

Chapel provides two constructs, the cobegin and coforall statements, to introduce concurrency in a more
structured way. These constructs spawn multiple tasks but do not continue until the tasks have completed. In
addition, Chapel provides two constructs, the sync- and serial statements, to suppress parallelism and insert
synchronization. All four of these constructs can be implemented through judicious uses of the unstructured
task-parallel constructs described in the previous section.

24.2.1 The Cobegin Statement

The cobegin statement is used to introduce concurrency within a block. The cobegin statement syntax is

cobegin—statement:
cobegin block-statement

Each statement within the block statement is executed concurrently and is considered a separate task. Control
continues when all of the tasks have finished.

The following statements may not be lexically enclosed in cobegin statements: break statements, continue
statements, and return statements. Yield statement may only be lexically enclosed in cobegin statements in

parallel iterators §21.4]

Example. The cobegin statement

cobegin {
stmtl () ;
stmt2 () ;
stmt3();
}

is equivalent to the following code that uses only begin statements and single variables to intro-
duce concurrency and synchronize:

var sl1$, s2$, s3$%$: single bool;

begin { stmtl(); s1$ = true; }
begin { stmt2(); s2$ = true; }
begin { stmt3(); s3$ = true; }

s1$; s2%; s3%;

Each begin statement is executed concurrently but control does not continue past the final line
above until each of the single variables is written, thereby ensuring that each of the functions has
finished.

24.2.2 The Coforall Loop

The coforall loop is a variant of the cobegin statement and a loop. The syntax for the coforall loop is given
by

coforall-statement:
coforall index—var—declaration in iterator-expression do statement
coforall index—var—declaration in iterator-expression block—statement
coforall iterator-expression do statement
coforall iterator-expression block—statement

154 Chapel Language Specification

The semantics of the coforall loop are identical to a cobegin statement where each iteration of the
coforall loop is equivalent to a separate statement in a cobegin block.

Control continues with the statement following the coforall loop only after all iterations have been com-
pletely evaluated.

The following statements may not be lexically enclosed in coforall statements: break statements, continue
statements, and return statements. Yield statement may only be lexically enclosed in coforall statements in

parallel iterators §21.4]

Example. The coforall statement

coforall i in iterator() {
body () ;
}

is equivalent to the following code that uses only begin statements and sync and single variables
to introduce concurrency and synchronize:

var runningCount$: sync int = 1;
var finished$: single bool;
for i in iterator() {
runningCount$ += 1;
begin {
body () ;
var tmp = runningCount$;
runningCount$ = tmp-1;

if tmp == 1 then finished$ = true;
}
}
var tmp = runningCount$;
runningCount$ = tmp-1;
if tmp == 1 then finished$ = true;
finished$;

Each call to body () executes concurrently because it is in a begin statement. The sync variable
runningCount$ is used to keep track of the number of executing tasks plus one for the main
task. When this variable reaches zero, the single variable finished$ is used to signal that all of
the tasks have completed. Thus control does not continue past the last line until all of the tasks
have completed.

24.2.3 The Sync Statement

The sync statement acts as a join of all dynamically encountered begins from within a statement. The syntax
for the sync statement is given by

sync—statement:
sync statement

The following statements may not be lexically enclosed in sync statements: break statements, continue state-
ments, and return statements. Yield statement may only be lexically enclosed in sync statements in parallel

iterators §21.4]

Task Parallelism and Synchronization 155

Example. The sync statement can be used to wait for many dynamically spawned tasks. Given
the Tree class defined in the example in §24.1.3|and an instance of this class called tree, the
code

def concurrentUpdate (tree: Tree) {
if requiresUpdate (tree) then
begin update (tree);
if !tree.isLeaf {
concurrentUpdate (tree.left);
concurrentUpdate (tree.right) ;
}
}

sync concurrentUpdate (tree);

defines a function concurrentUpdate that recursively walks over a tree and spawns a new task
to update a node if the function requiresUpdate evaluates to true. (Both requiresUpdate
and update are omitted as irrelevant.) The call to concurrentUpdate is made within a sync
statement to ensure that each of the spawned update tasks finishes before execution continues.

Example. The sync statement

sync {
begin stmtl();
begin stmt2();
}

is similar to the following cobegin statement

cobegin {
stmtl () ;
stmt2 () ;

except that if begin statements are dynamically encountered when stmt1 () or stmt2 () are
executed, then the former code will wait for these begin statements to complete whereas the
latter code will not.

24.2.4 The Serial Statement

The serial statement can be used to dynamically disable parallelism. The syntax is:

serial-statement:
serial expression do statement
serial expression block—statement

where the expression evaluates to a bool type. Independent of that value, the statement is evaluated. If the
expression is true, any dynamically encountered code that would result in new tasks is executed without
spawning any new tasks. In effect, execution is serialized.

Example. Given the Tree class defined in the example in §24.1.3|and an instance of this class
called tree, the code

156 Chapel Language Specification

def concurrentUpdate (tree: Tree, depth: int = 1) {
if requiresUpdate (tree) then
update (tree) ;
if !tree.isLeaf {
serial depth > 4 do cobegin {
concurrentUpdate (tree.left, depth+l);
concurrentUpdate (tree.right, depth+l);
}

defines a function concurrentUpdate that recursively walks over a tree using cobegin state-
ments to update the left and right subtrees in parallel. The serial statement inhibits concurrent
execution on the tree for nodes that are deeper than four levels in the tree. This constrains the
number of tasks that will be used for the update.

Example. The code

serial true {
begin stmtl();
cobegin {
stmt2 () ;
stmt3 () ;
}
coforall i in 1..n do stmt4();
forall i in 1..n do stmt5();
}

is equivalent to

stmtl () ;

{
stmt2 () ;
stmt3();

}
for i in 1..n do stmt4d();
for i in 1..n do stmt5();

because the expression evaluated to determine whether to serialize always evaluates to true.

24.3 Atomic Statements

The atomic statement creates an atomic transaction of a statement. The statement is executed with transaction
semantics in that the statement executes entirely, the statement appears to have completed in a single order
and serially with respect to other atomic statements, and no variable assignment is visible until the statement
has completely executed.

Open issue. This definition of an atomic statement is sometimes called strong atomicity because
the semantics are atomic to the entire program. Weak atomicity is defined so that an atomic
statement is atomic only with respect to other atomic statements. Chapel semantics are still
under design.

The syntax for the atomic statement is given by:

Task Parallelism and Synchronization 157

atomic—statement:
atomic statement

Example. The following code illustrates one possible use of atomic statements:

var found = false;
atomic {
if head == obj {
found = true;
head = obj.next;
} else {
var last = head;
while last != nil {
if last.next == obj {
found = true;
last.next = obj.next;
break;
}

last = last.next;

}

Inside the atomic statement is a sequential implementation of removing a particular object de-
noted by obj from a singly linked list. This is an operation that is well-defined, assuming only
one task is attempting it at a time. The atomic statement ensures that, for example, the value of
head does not change after it is first in the first comparison and subsequently read to initialize
last. The variables eventually owned by this task are found, head, obj, and the various next
fields on examined objects.

The effect of an atomic statement is dynamic.

Example. 1If there is a method associated with a list that removes an object, that method may not
be parallel safe, but could be invoked safely inside an atomic statement:

atomic found = head.remove (obj);

24.4 Memory Consistency Model
Open issue. This section is largely forthcoming.

We have been greatly helped in the design of Chapel’s memory consistency model by discussions in and
readings for a seminar at the University of Washington run by Dan Grossman and Luis Ceze as well as
the following paper: Jeremy Mason, William Pugh, and Sarita V. Adve. The Java memory model. In
Proceedings of the 32nd Symposium on Principles of Programming Languages. 2005.

The Chapel memory consistency model is defined for programs that are data-race-free. Programs that are
data-race-free are sequentially consistent. Otherwise, the program is incorrect and no guarantees are made.
In this design choice, Chapel differs from Java because the set of dynamic security concerns is different.

Writing and reading sync and single variables as well as executing atomic statements are the only ways in
Chapel to correctly synchronize a program. It is an error to write to the same memory location or read from
and write to the same memory location in two different tasks without any intervening synchronization.

158 Chapel Language Specification

Example. This has the direct consequence that one task cannot spin-wait on a variable while
another task writes to that variable. The behavior of the following code is undefined:
var x: int;
cobegin {
while x != 1 do ; // spin wait
x = 1;

}

While codes are more efficient in most cases if one avoids spin-waiting altogether, this code
could be rewritten with defined behavior as follows:
var x$: sync int;
cobegin {
while x$.readXX() != 1 do ; // spin wait
x$.writeXF (1) ;
}

In this code, the first statement in the cobegin statement executes a loop until the variable is set
to one. The second statement in the cobegin statement sets the variable to one. Neither of these
statements block.

Data Parallelism 159

25 Data Parallelism

Chapel provides two explicit data-parallel constructs (the forall-statement and the forall-expression) and sev-
eral idioms that support data parallelism implicitly (whole-array assignment, function and operator promo-
tion, reductions, and scans).

25.1 The Forall Statement

The forall statement is a concurrent variant of the for statement described in §11.8|

25.1.1 Syntax

The syntax of the forall statement is given by

forall-statement:
forall index—var—declaration in iterator—expression do statement
forall index—var—declaration in iterator-expression block—statement
forall iterator—expression do statement
forall iterator-expression block—statement
[index—var—declaration in iterator—expression | statement
[iterator—-expression | statement

As with the for statement, the indices may be omitted if they are unnecessary and the do keyword may be
omitted before a block statement. The bracketed form is a syntactic convenience.

25.1.2 Execution and Serializability

The forall statement evaluates the loop body once for each element in the iterator-expression. Each instance
of the forall loop’s statement may be executed concurrently with each other, but this is not guaranteed. The
loop must be serializable. The definition of the iterator determines the actual concurrency based on the
specification of the iterator of the loop.

This differs from the semantics of the coforall loop, discussed in §24.2.2] where each iteration is guaran-
teed to run using distinct tasks. The coforall loop thus has potentially higher overhead than a forall loop,
but in cases where concurrency is required for correctness, it is essential.

Control continues with the statement following the forall loop only after every iteration has been completely
evaluated.

The following statements may not be lexically enclosed in forall statements: break statements, continue
statements, and return statements. Yield statement may only be lexically enclosed in forall statements in

parallel iterators §21.4]

Example. In the code

forall i in 1..N do
a(i) = b(i);

160 Chapel Language Specification

the user has stated that the element-wise assignments can execute concurrently. This loop may
be executed serially, using a distinct task for ever iteration, or somewhere in between (using a
number of tasks where each task executes a number of iterations). This loop can also be written
as

[{ in 1..N] a(i) = b(i);

25.1.3 Parallelism

The iterator expression determines the number of tasks that implement a forall loop as well as which iterations
each task computes. For ranges, default domains, and default arrays, these values can be controlled via

configuration constants (§25.7).

Additionally, the iterator expression can determine the locales on which the tasks should execute its loop
iterations. For ranges, default domains, and default arrays, all tasks are executed on the current locale.
Domains and arrays that are distributed across multiple locales will typically implement forall loops with
multiple tasks on multiple locales.

25.1.4 Zipper Iteration

Zipper iteration has the same semantics as described in §11.8.1} With respect to parallelism, the left-most
iterator expression determines the number of tasks, the iterations each task executes, and the locales on which
these tasks execute.

25.1.5 Tensor Product Iteration

Tensor product iteration has the same semantics as described in All iteration expressions im-
pact parallelism as tensor product iteration is equivalent to nested forall loops. The degree of nested par-
allelism for ranges, default domains, and default arrays can be controlled via the configuration constant
dataParIgnoreRunningTasks (

25.2 The Forall Expression

The forall expression is a concurrent variant of the for expression described in §10.21]

25.2.1 Syntax

The syntax of a forall expression is given by

forall-expression:
forall index—var—declaration in iterator—expression do expression
forall iterator-expression do expression
[index—var—declaration in iterator—expression | expression
[iterator—expression | expression

As with the for expression, the indices may be omitted if they are unnecessary. The do keyword is always
required. The bracketed form is a syntactic convenience.

Data Parallelism 161

25.2.2 Execution, Serializability, and Parallelism

As with the forall statement, the forall expression must be serializable. In addition, the iterator expression
determines the number of tasks, the iterations each task executes, and the locales on which these tasks execute.
When multiple iterator expressions are used in a zipper context, the left-most iterator determines the number
of tasks, the iterations each task executes, and the locales on which these tasks execute.

The semantics are equivalent to calling a parallel iterator where the loop expression is yielded (§21.4).

Example. The code

writeln(+ reduce [i in 1..10] ixx2);

applies a reduction to a forall-expression that evaluates the square of the indices in the range
1..10.

25.2.3 Filtering Predicates in Forall Expressions
An if expression that is immediately enclosed by a forall expression does not require an else part.

Example. The following expression returns every other element starting with the first:

[1 in 1..s.numElements] if i % 2 == 1 then s (i)

25.3 Whole Array Assignment

Whole array assignment is implicitly parallel. The assignment statement

LHS = RHS;

is equivalent to

forall (el,e2) in (LHS,RHS) do
el = e2;

25.4 Promotion

A function that expects one or more scalar argument but is called with one or more arrays, domains, ranges, or
iterators is promoted if the element types of the arrays, the index types of the domains and/or ranges, and the
yielded types of the iterators can resolve to the scalar type of the argument. The rules of when an overloaded
function is promoted are discussed in

If a promoted function returns a value, the promoted function becomes an iterator that is controlled by a loop
over the iterator (or array, domain, or range) that it is promoted by. If the function does not return a value, the
function is controlled by a loop over the iterator that it is promoted by, but the promotion does not become an
iterator.

In addition to scalar promotion of functions, operators and casts are also promoted.

162 Chapel Language Specification

Example. Given the array

var A: [1..5] int = [i in 1..5] 1i;

and the function

def square(x: int) return xxx2;
then the call square (2) results in the promotion of the square function over the values in the

array A. The result is an iterator that returns the values 1, 4, 9, 16, and 25.

Whole array operations are a form of promotion.

25.4.1 Zipper Promotion

Consider a function £ with formal arguments s1, s2, ... that are promoted and formal arguments a1, a2, ...
that are not promoted. The call

f(sl, s2, ..., al, a2, ...)

is equivalent to

[(el, €2, ...) in (sl, s2, ...)] f(el, e2, ..., al, a2, ...)

The usual constraints of zipper iteration apply to zipper promotion so the promoted actuals must have the
same shape.

Example. Given a function defined as

def foo(i: int, j: int) {
erte(l, " ll, j, n ll);

}

and a call to this function written
foo(l..3, 4..6);

then the outputis “142536”.

25.4.2 Tensor Product Promotion

If the function £ were called by using square brackets instead of parentheses, the equivalent rewrite would be
[(el, 2, ...) in [sl1l, s2, ...]1] f(el, e2, ..., al, a2, ...)

There are no constraints on tensor product promotion.

Example. Given a function defined as

def foo(i: int, j: int) {
erte(l, " ll, j, n ll),.

}

and a call to this function written
fool[l..3, 4..6];

then the outputis“141516242526343536".

Data Parallelism 163

25.5 Reductions and Scans

Chapel provides reduction and scan expressions that apply operators to aggregate expressions in stylized
ways. Reduction expressions collapse the aggregate’s values down to a summary value. Scan expressions
compute an aggregate of results where each result value stores the result of a reduction applied to all of the
elements in the aggregate up to that expression. Chapel provides a number of built-in reduction and scan
operators, and also supports a mechanism for the user to define additional reductions and scans (§28).

25.5.1 Reduction Expressions

A reduction expression applies a reduction operator to an aggregate expression, collapsing the aggregate’s
dimensions down into a result value (typically a scalar or summary expression that is independent of the
input aggregate’s size). For example, a sum reduction computes the sum of all the elements in the input
aggregate expression.

The syntax for a reduction expression is given by:

reduce-expression:
reduce-scan—operator reduce expression
class—type reduce expression

reduce-scan—operator: one of
+ * && || & | * min max minloc maxloc

Chapel’s built-in reduction operators are defined by reduce-scan-operator above. In order, they are: sum, prod-
uct, logical-and, logical-or, bitwise-and, bitwise-or, bitwise-exclusive-or, minimum, maximum, minimum-
with-location, and maximum-with-location. The minimum reduction returns the minimum value as defined
by the < operator. The maximum reduction returns the maximum value as defined by the > operator. The
minimum-with-location reduction returns the lowest index position with the minimum value (as defined by
the < operator). The maximum-with-location reduction returns the lowest index position with the maximum
value (as defined by the > operator).

The expression on the right-hand side of the reduce keyword can be of any type that can be iterated over
and to which the reduction operator can be applied. For example, the bitwise-and operator can be applied to
arrays of boolean or integral types to compute the bitwise-and of all the values in the array.

The minimum-with-location and maximum-with-location reductions take a 2-tuple of arguments where the
first tuple element is the collection of values for which the minimum/maximum value is to be computed.
The second tuple element is a collection of indices with the same size and shape that provides names for the
locations of the values in the first argument. The reduction returns a tuple containing the minimum/maximum
value in the first position and the location of the value in the second position.

Example. The first line below computes the smallest element in an array A as well as its index,
storing the results in minA and minALoc, respectively. It then computes the largest element in a
forall expression making calls to a function foo (), storing the value and its number in maxval
and maxValNum.

var (minA, minALoc) = minloc reduce (A, A.domain);
var (maxVal, maxValNum) = maxloc reduce ([i in 1..n] foo(i), 1..n);

User-defined reductions are specified by preceding the keyword reduce by the class type that implements
the reduction interface as described in

164 Chapel Language Specification
25.5.2 Scan Expressions

A scan expression applies a scan operator to an aggregate expression, resulting in an aggregate expression of
the same size and shape. The output values represent the result of the operator applied to all elements up to
and including the corresponding element in the input.

The syntax for a scan expression is given by:

scan—expression:
reduce—scan—operator scan expression
class—type scan expression

The built-in scans are defined in reduce-scan—operator. These are identical to the built-in reductions and are

described in

The expression on the right-hand side of the scan can be of any type that can be iterated over and to which
the operator can be applied.

User-defined scans are specified by preceding the keyword scan by the class type that implements the scan
interface as described in

Example. Given an array

var A: [1..3] int = 1;

that is initialized such that each element contains one, then the code

writeln (+ scan A);

outputs the results of scanning the array with the sum operator. The output is

123

25.6 Data Parallelism and Evaluation Order

Temporary arrays are never inserted by the Chapel compiler. The semantics of whole array assignment,
promotion, etc., are thus different than in array programming languages.

Example. 1If A is an array declared over the indices 1. .5, then the following codes are not

equivalent:
A[2..4] = A[1..3] + A[3..5];
and
var T = A[1..3] + A[3..5];
A[2..4] = T;

This follows because, in the former code, some of the new values that are assigned to A may be
read to compute the sum depending on the number of tasks used to implement the data parallel
statement.

Data Parallelism 165

25.7 Knobs for Default Data Parallelism

The following configuration constants are provided to control the degree of data parallelism over ranges,
default domains, and default arrays:

Config Const Type | Default
dataParTasksPerLocale int Number of cores per locale
dataParIgnoreRunningTasks | bool | true

dataParMinGranularity int 1

The configuration constant dataParTasksPerLocale specifies the number of tasks to use when executing a
forall loop over a range, default domain, or default array. The actual number of tasks may be fewer depending
on the two other configuration constants. A value of zero results in using the default value.

The configuration constant dataParIgnoreRunningTasks, when true, has no effect on the number of tasks
to use to execute the forall loop. When false, the number of tasks per locale is decreased by the number of
tasks that are already running on the locale.

The configuration constant dataParMinGranularity specifies the minimum number of iterations per task
created. The number of tasks is decreased so that the number of iterations per task is never less than the
specified value.

For distributed domains and arrays that have these same knobs (e.g., using the Block and Cyclic distributions),
these same global configuration constants are used to specify their default behavior within each locale.

166 Chapel Language Specification

Locales 167

26 Locales

Chapel provides high-level abstractions that allow programmers to exploit locality by controlling the affinity
of both data and tasks to abstract units of processing and storage capabilities called locales. The on-statement
allows for the migration of tasks to remote locales.

Throughout this section, the term local will be used to describe the locale on which a task is running, the data
located on this locale, and any tasks running on this locale. The term remote will be used to describe another
locale, the data on another locale, and the tasks running on another locale.

26.1 Locales

A locale is a portion of the target parallel architecture that has processing and storage capabilities. Chapel
implementations should typically define locales for a target architecture such that tasks running within a locale
have roughly uniform access to values stored in the locale’s local memory and longer latencies for accessing
the memories of other locales. As an example, a cluster of multicore nodes or SMPs would typically define
each node to be a locale. In contrast a pure shared memory machine would be defined as a single locale.

26.1.1 Locale Types

The identifier 1ocale is a primitive type that abstracts a locale as described above. Both data and tasks
can be associated with a value of locale type. The only operators defined over locales are the equality and
inequality comparison operators.

26.1.2 Locale Methods

The locale type supports the following methods:

def locale.id: int;

Returns a unique integer for each locale, from O to the number of locales less one.
def locale.numCores: int;

Returns the number of processor cores available on a given locale.

use Memory;
def locale.physicalMemory (unit: MemUnits=MemUnits.Bytes, type retType=int (64)): retType;

Returns the amount of physical memory available on a given locale in terms of the specified memory
units (Bytes, KB, MB, or GB) using a value of the specified return type.

168 Chapel Language Specification

26.1.3 The Predefined Locales Array

Chapel provides a predefined environment that stores information about the locales used during program
execution. This execution environment contains definitions for the array of locales on which the program is
executing (Locales), a domain for that array (LocaleSpace), and the number of locales (numLocales).

config const numLocales: int;
const LocaleSpace: domain(l) = [0..numLocales-1];
const Locales: [LocaleSpace] locale;

When a Chapel program starts, a single task executes main on Locales (0).

Note that the Locales array is typically defined such that distinct elements refer to distinct resources on the
target parallel architecture. In particular, the Locales array itself should not be used in an oversubscribed
manner in which a single processor resource is represented by multiple locale values (except during develop-
ment). Oversubscription should instead be handled by creating an aggregate of locale values and referring to
it in place of the Locales array.

Rationale. This design choice encourages clarity in the program’s source text and enables more
opportunities for optimization.

For development purposes, oversubscription is still very useful and this should be supported by
Chapel implementations to allow development on smaller machines.

Example. The code

const MyLocales: [loc in 0..numLocales*4] locale = Locales (loc%numLocales);
on MyLocales (i)

defines a new array MyLocales that is four times the size of the Locales array. Each locale is
added to the MyLocales array four times in a round-robin fashion.

26.1.4 The here Locale

A predefined constant locale here can be used anywhere in a Chapel program. It refers to the locale that the
current task is running on.

Example. The code

on Locales (1) {
writeln (here.id);

}

results in the output 1 because the writeln statement is executed on locale 1.

The identifier here is not a keyword and can be overridden.

Locales 169

26.1.5 Querying the Locale of an Expression

The locale associated with an expression (where the expression is stored) is queried using the following
syntax:

locale—access—expression:
expression . locale

When the expression is a class, the access returns the locale on which the class object exists rather than the
reference to the class. If the expression is a value, it is considered local. The implementation may warn about
this behavior. If the expression is a locale, it is returned directly.

Example. Given a class C and a record R, the code

on Locales (1) {
var x: int;
var c: C;
var r: R;
on Locales(2) {
on Locales (3) {
c = new C();
r = new R();
}
writeln(x.locale);
writeln(c.locale);
writeln(r.locale);

}

results in the output

1
3
1

The variable x is declared and exists on Locales (0). The variable c is a class reference.
The reference exists on Locales (1) but the object itself exists on Locales (3). The locale
access returns the locale where the object exists. Lastly, the variable r is a record and has value
semantics. It exists on Locales (1) even though it is assigned a value on a remote locale.

Global (non-distributed) constants are replicated across all locales.

Example. For example, the following code:

const c = 10;
for loc in Locales do on loc do
writeln(c.locale);

outputs

LOCALEOQ
LOCALE1
LOCALE2
LOCALE3
LOCALE4

when running on 5 locales.

170 Chapel Language Specification

26.2 The On Statement

The on statement controls on which locale a block of code should be executed or data should be placed. The
syntax of the on statement is given by

on-statement:
on expression do statement
on expression block—statement

The locale of the expression is automatically queried as described in Execution of the statement
occurs on this specified locale and then continues after the on-statement.

Return statements may not be lexically enclosed in on statements. Yield statement may only be lexically
enclosed in on statements in parallel iterators §21.4]

26.2.1 Remote Variable Declarations

By default, when new variables and data objects are created, they are created in the locale where the task is
running. Variables can be defined within an on-statement to define them on a particular locale such that the
scope of the variables is outside the on-statement. This is accomplished using a similar syntax but omitting
the do keyword and braces. The syntax is given by:

remote- variable—declaration—statement:
on expression variable-declaration—statement

Domain Maps 171

27 Domain Maps

Domain maps specify the implementation of domains and, in turn, arrays by defining the mapping from
indices in domains to memory locations within or across locales. The term layout is used to describe a
domain map that describes domains and arrays that exist on a single locale. The term distribution is used to
describe a domain map that describes domains and arrays that are partitioned across multiple locales.

The domain map abstraction is not only used to define this mapping, but rather is used to define the imple-
mentation of domains and arrays including their accessors and iterators.

27.1 Domain Map Types

Domain map types are defined by the type of the implementing domain class, but are distinct from the class
type. Typically, the domain map class type is only used on its own in defining the domain map itself. Defining
a domain map is discussed in

Specifying a domain map type involves specifying a domain map class type and wrapping it by the domain
map specifier dmap.

Example. The code
use BlockDist;

var MyBlockDist: dmap (Block (rank=2));

creates a uninitialized two-dimensional Block distribution called MyBlockDist that can be used
to distribute 2-dimensional arithmetic domains. The Block distribution is described in more

detail in §31.1]

27.2 Domain Map Values

Constructing a domain map value involves calling the constructor of a domain map class and defining a new
domain map type dmap.

Example. The code
use BlockDist;

var MyBlockDist: dmap (Block (rank=2)) = new dmap (new Block ([l..n,1..n]));

creates an initialized two-dimensional Block distribution with a bounding box of [1..n, 1..n]
over all of the locales. The Block distribution is described in more detail in §31.1]

172 Chapel Language Specification

27.3 Mapped Domains and Arrays

A domain for which a domain map is specified is referred to as a mapped domain.

The syntax to create a mapped domain type is the same as the syntax to create a mapped domain value:

mapped-domain-type:
domain-type dmapped domain—-map—-expression

mapped-domain—expression:
domain-expression dmapped domain—map—-expression

domain—map-expression:
expression

Example. The code

use BlockDist;
var MyBlockDist = new dmap (new Block([l..n,1..n]));
var Dom: domain (2) dmapped MyBlockDist = [1..n, 1..n];

defines a new Block-distributed domain, mapped via MyBlockDist.

When defining a new domain map inline with the dmapped keyword, a syntactic sugar is supported in which
the “new dmap(new” characters (along with the closing parenthesis) may be omitted.

Example. The code

use BlockDist;

var D = [l..n, 1..n] dmapped new dmap (new Block([l..n,1..n]));
is equivalent to

use BlockDist;
var D = [l..n, 1l..n] dmapped Block([l..n,1..n]);

27.4 Default Mapped Domains and Arrays

If a domain is not mapped via the dmapped keyword, it is implicitly mapped by a default layout to the locale
on which it is declared.

User-Defined Reductions and Scans 173

28 User-Defined Reductions and Scans

User-defined reductions and scans are supported via class definitions where the class implements a structural
interface. The definition of this structural interface is forthcoming. The following paper sketched out such an

interface:

S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder. Global-view abstractions for user-
defined reductions and scans. In Proceedings of the Eleventh ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2006.

174 Chapel Language Specification

User-Defined Domain Maps 175

29 User-Defined Domain Maps

This chapter is forthcoming.

176 Chapel Language Specification

Standard Modules 177

30 Standard Modules

Standard modules provide standard library support and are available to every Chapel program. The functions
and other definitions of automatic modules are always available to a Chapel program. Optional modules can
be accessed via use statements (§12.4)).

The automatic modules are as follows:

Math Math routines
Base Basic routines
Types Routines related to primitive types

The optional modules include:

BitOps Bit manipulation routines

Functions Common higher-order functions

Norm Routines for computing vector and matrix norms
Random Random number generation routines

Search Generic searching routines

Sort Generic sorting routines

Time Types and routines related to time

There is an expectation that each of these modules will be extended and that more standard modules will be
defined over time.

30.1 Automatic Modules

Automatic modules are used by a Chapel program automatically. There is currently no way to avoid their use
by a program, although we anticipate adding such a capability in the future.

30.1.1 Math

The module Math defines routines for mathematical computations. This module is used by default; there is no
need to explicitly use this module. The Math module defines routines that are derived from and implemented
via the standard C routines defined in math.h.

def abs(i: int (?w)): int (w)
def abs(i: uint (?w)): uint (w)
def abs (x: real): real

def abs(x: real(32)): real(32)

def abs(x: complex): real

Returns the absolute value of the argument.

def acos(x: real): real
def acos(x: real(32)): real(32)

Returns the arc cosine of the argument. It is an error if x is less than —1 or greater than 1.

178

def
def

def
def

def
def

def
def

def
def

def
def

def
def

def
def

def

def
def

def
def

Chapel Language Specification

acosh(x: real): real
acosh (x: real(32)): real(32)

Returns the inverse hyperbolic cosine of the argument. It is an error if x is less than 1.

asin(x: real): real
asin(x: real(32)): real(32)

Returns the arc sine of the argument. It is an error if x is less than —1 or greater than 1.

asinh(x: real): real
asinh(x: real (32)): real(32)

Returns the inverse hyperbolic sine of the argument.

atan(x: real): real

atan(x: real (32)): real(32)
Returns the arc tangent of the argument.
atan2 (y: real, x: real): real

atan2(y: real(32), x: real(32)): real(32)

Returns the arc tangent of the two arguments. This is equivalent to the arc tangent of v / x except
that the signs of y and x are used to determine the quadrant of the result.

atanh (x: real): real
atanh(x: real(32)): real (32)

Returns the inverse hyperbolic tangent of the argument. It is an error if x is less than —1 or greater than
1.

cbrt (x: real): real

cbrt (x: real(32)): real(32)
Returns the cube root of the argument.
ceil (x: real): real

ceil (x: real(32)): real(32)

Returns the value of the argument rounded up to the nearest integer.
conjg(a: complex (?w)): complex (w)

Returns the conjugate of a.

cos (x: real): real
cos(x: real(32)): real(32)

Returns the cosine of the argument.

cosh(x: real): real
cosh(x: real(32)): real(32)

Standard Modules 179

def
def

def
def

def
def

def
def

def
def

def
def

def
def

def
def

def
def

Returns the hyperbolic cosine of the argument.

erf(x: real): real

erf(x: real(32)): real(32)
Returns the error function of the argument defined as
2 e
— / e dt
V7 Jo
for the argument .
erfc(x: real): real

erfc(x: real(32)): real(32)
Returns the complementary error function of the argument. This is equivalentto 1.0 - erf (x).
exp (x: real): real

exp (x: real (32)): real(32)

Returns the value of e raised to the power of the argument.

exp2 (x: real): real
exp2 (x: real(32)): real(32)

Returns the value of 2 raised to the power of the argument.

expml (x: real): real

expml (x: real (32)): real(32)
Returns one less than the value of e raised to the power of the argument.
floor (x: real): real

floor(x: real(32)): real(32)

Returns the value of the argument rounded down to the nearest integer.

lgamma (x: real): real

lgamma (x: real (32)): real (32)
Returns the natural logarithm of the absolute value of the gamma function of the argument.
log(x: real): real

log(x: real(32)): real(32)
Returns the natural logarithm of the argument. It is an error if the argument is less than or equal to
Zero.

loglO(x: real): real

loglO(x: real(32)): real(32)

Returns the base 10 logarithm of the argument. It is an error if the argument is less than or equal to
Zero.

180

def
def

def
def
def
def

def
def

def
def

def
def

def
def

def
def

def
def

def
def

def
def

def
def

def
def

Chapel Language Specification

loglp(x: real): real
loglp(x: real(32)): real(32)

Returns the natural logarithm of x+1. It is an error if x is less than or equal to —1.

log2(i: int (?w)): int (w)
log2(i: uint (?w)): uint (w)
log2(x: real): real

log2(x: real(32)): real(32)

Returns the base 2 logarithm of the argument. It is an error if the argument is less than or equal to zero.

nearbyint (x: real): real
nearbyint (x: real (32)): real (32)

Returns the rounded integral value of the argument determined by the current rounding direction.

rint (x: real): real
rint (x: real(32)): real(32)

Returns the rounded integral value of the argument determined by the current rounding direction.

round(x: real): real
round(x: real (32)): real(32)

Returns the rounded integral value of the argument. Cases halfway between two integral values are
rounded towards zero.

sin(x: real): real
sin(x: real(32)): real(32)

Returns the sine of the argument.

sinh(x: real): real
sinh(x: real(32)): real (32)

Returns the hyperbolic sine of the argument.

sgrt (x: real): real
sgrt (x: real(32)): real(32)

Returns the square root of the argument. It is an error if the argument is less than zero.

tan(x: real): real
tan(x: real(32)): real(32)

Returns the tangent of the argument.

tanh (x: real): real
tanh (x: real(32)): real(32)

Returns the hyperbolic tangent of the argument.

tgamma (x: real): real
tgamma (x: real (32)): real(32)

Returns the gamma function of the argument defined as

oo
/ "l tdt
0

for the argument x.

trunc(x: real): real
trunc(x: real (32)): real(32)

Returns the nearest integral value to the argument that is not larger than the argument in absolute value.

Standard Modules 181

30.1.2 Base

def

def

def

def

def

def

def

def

def

def

def

def

def

def

def

ascii(s: string): int
Returns the ASCII code number of the first letter in the argument s.
assert (test: bool) {

Exits the program if test is false and prints to standard error the location in the Chapel code of the
call to assert. If test is true, no action is taken.

assert (test: bool, args ...?numArgs) {

Exits the program if test is false and prints to standard error the location in the Chapel code of the
call to assert as well as the rest of the arguments to the call. If test is true, no action is taken.

complex.re: real

Returns the real component of the complex number.

complex.im: real

Returns the imaginary component of the complex number.

complex.=re (f: real)

Sets the real component of the complex number to £.

complex.=im(f: real)

Sets the imaginary component of the complex number to £.

exit (status: int)

Exits the program with code status.

halt ()

Exits the program and prints to standard error the location in the Chapel code of the call to halt.

halt (args ...?numArgs)
Exits the program and prints to standard error the location in the Chapel code of the call to halt as
well as the rest of the arguments to the call.

string.length: int

Returns the number of characters in the base expression of type string.

max(x, y...?k)
Returns the maximum of the arguments when compared using the “greater-than” operator. The return
type is inferred from the types of the arguments as allowed by implicit coercions.

min(x, y...?%k)
Returns the minimum of the arguments when compared using the “less-than” operator. The return type
is inferred from the types of the arguments as allowed by implicit coercions.

string.substring(x): string
Returns a value of string type that is a substring of the base expression. If x is ¢, a value of type int,
then the result is the sth character. If x is a range, the result is the substring where the characters in the
substring are given by the values in the range.

typeToString (type t) param : string

Returns a string parameter that represents the name of the type t.

182 Chapel Language Specification

30.1.3 Types

def numBits (type t) param : int
Returns the number of bits used to store the values of type t. This is implemented for all numeric types
and fixed-width boo1l types. It is not implemented for default-width bool.

def numBytes (type t) param : int

Returns the number of bytes used to store the values of type t. This is implemented for all numeric
types and fixed-width boo1 types. It is not implemented for default-width bool.

def max (type t): t
Returns the maximum value that can be stored in type t. This is implemented for all numeric types.
def min(type t): t

Returns the minimum value that can be stored in type t. This is implemented for all numeric types.

30.2 Optional Modules

Optional modules can be used by a Chapel program via the use keyword (§12.4).

30.2.1 BitOps

The module BitOps defines routines that manipulate the bits of values of integral types.
def bitPop(i: integral): int

Returns the number of bits set to one in the integral argument i.
def bitMatMultOr (i: uint (64), Jj: uint(64)): uint (64)

Returns the bitwise matrix multiplication of i and j where the values of uint (64) type are treated as
8 x 8 bit matrices and the combinator function is bitwise or.

def bitRotLeft (i: integral, shift: integral): i.type
Returns the value of the integral argument i after rotating the bits to the left shift number of times.
def bitRotRight (i: integral, shift: integral): i.type

Returns the value of the integral argument i after rotating the bits to the right shi £t number of times.

Standard Modules 183

30.2.2 Norm

The module Norm supports the computation of standard vector and matrix norms on Chapel arrays. The
current interface is minimal and should be expected to grow and evolve over time.

enum normType {norml, norm2, normInf, normFrob};

An enumerated type indicating the different types of norms supported by this module: 1-norm, 2-norm,
infinity norm and Frobenius norm, respectively.

x.rank == 2

def norm(x: [], p: normType) where x.rank ==

Compute the norm indicated by p on the 1D or 2D array x.

def norm(x: [])

Compute the default norm on array x. For a 1D array this is the 2-norm, for a 2D array, this is the
Frobenius norm.

30.2.3 Random

The module Random supports the generation of pseudo-random values and streams of values. The current
interface is minimal and should be expected to grow and evolve over time. In particular, we expect to support
other pseudo-random number generation algorithms, more random value types (e.g., int), and both serial and
parallel iterators over the RandomStream class.

class RandomStream

def RandomStream(seed: int (64), param parSafe: bool = true)

def RandomStream (seedGenerator: SeedGenerator = SeedGenerator.currentTime,
param parSafe: bool = true)

Implements a pseudo-random stream of values based on a seed value. The current implementation
generates the values using a linear congruential generator. In future versions of this module, the Ran-
domStream class will offer a wider variety of algorithms for generating pseudo-random values.

To construct a RandomStream class, the seed may be explicitly passed. It must be an odd integer
between 1 and 246 — 1. Alternatively, the RandomStream class can be constructed by passing a value
of the enumerated type SeedGenerator to choose an algorithm to use to set the seed. If neither a seed
nor a SeedGenerator value is passed to the RandomStream class, the seed will be initialized based on
the current time in microseconds (rounded via modular arithmetic to the nearest odd integer between 1
and 246 — 1.

The parSafe parameter defaults to true and allows for safe use of this class by concurrent tasks. This
can be overridden when calling methods to make them safe when called by concurrent tasks. This
mechanism allows for lower overhead calls when there is no threat of concurrent calls, but correct calls
when there is.

enum SeedGenerator { currentTime };

Values of this enumerated type may be used to choose a method for initializing the seed in the Ran-
domStream class. The only value supported at present is current Time which can be used to initialize
the seed based on the current time in microseconds (rounded via modular arithmetic to the nearest odd
integer between 1 and 246 — 1.

184 Chapel Language Specification

def RandomStream.fillRandom(x:[?D], param parSafe = this.parSafe)

Fill the argument array, x, with the next |p| values of the pseudo-random stream in row-major order.
The array must be an array of real(64), imag(64), or complex(128) elements. For complex arrays, each
complex element is initialized with two values from the stream of random numbers.

def RandomStream.skipToNth(in n: integral, param parSafe = this.parSafe)

Skips ahead or back to the n-th value in the random stream. The value of n is assumed to be positive,
such that n == 1 represents the initial value in the stream.

def RandomStream.getNext (param parSafe = this.parSafe): real
Returns the next value in the random stream as a real.
def RandomStream.getNth(n: integral, param parSafe = this.parSafe): real

Returns the n-th value in the random stream as a real. Equivalent to calling skipToNth (n) followed
by getNext ().

def fillRandom(x:[], initseed: int (64))

A routine provided for convenience to support the functionality of the fillRandom method (above)
without explicitly constructing an instance of the RandomStream class. This is useful for filling a
single array or multiple arrays which require no coherence between them. The initseed parameter
corresponds to the seed member of the RandomSt ream class. If unspecified, the default for the class
will be used.

30.2.4 Search

The Search module is designed to support standard search routines. The current interface is minimal and
should be expected to grow and evolve over time.

def LinearSearch(Data: [?Dom], wval): (bool, index (Dom))

Searches through the pre-sorted array Data looking for the value val using a sequential linear search.
Returns a tuple indicating (1) whether or not the value was found and (2) the location of the value if it
was found, or the location where the value should have been if it was not found.

def BinarySearch (Data: [?Dom], val, in lo = Dom.low, in hi = Dom.high)

Searches through the pre-sorted array Data looking for the value val using a sequential binary search.
If provided, only the indices 1o through hi will be considered, otherwise the whole array will be
searched. Returns a tuple indicating (1) whether or not the value was found and (2) the location of the
value if it was found, or the location where the value should have been if it was not found.

Standard Modules 185

30.2.5 Sort

The sort module is designed to support standard sorting routines. The current interface is minimal and
should be expected to grow and evolve over time.

def InsertionSort (Data: [?Dom]) where Dom.rank ==

Sorts the 1D array Data in-place using a sequential insertion sort algorithm.

def QuickSort (Data: [?Dom]) where Dom.rank ==

Sorts the 1D array Data in-place using a sequential implementation of the QuickSort algorithm.

30.2.6 Time

The module Time defines routines that query the system time and a record Timer that is useful for timing
portions of code.

record Timer

A timer is used to time portions of code. Its semantics are similar to a stopwatch.

enum TimeUnits { microseconds, milliseconds, seconds, minutes, hours };
The enumeration TimeUnits defines units of time. These units can be supplied to routines in this
module to specify the desired time units.

enum Day { sunday=0, monday, tuesday, wednesday, thursday, friday, saturday };

The enumeration Day defines the days of the week, with Sunday defined to be 0.

def getCurrentDate(): (int, int, int)
Returns the year, month, and day of the month as integers. The year is the year since 0. The month is
in the range 1 to 12. The day is in the range 1 to 31.

def getCurrentDayOfWeek (): Day

Returns the current day of the week.

def getCurrentTime (unit: TimeUnits = TimeUnits.seconds): real

Returns the elapsed time since midnight in the units specified.

def Timer.clear ()

Clears the elapsed time stored in the Timer.

def Timer.elapsed(unit: TimeUnits = TimeUnits.seconds): real
Returns the cumulative elapsed time, in the units specified, between calls to start and stop. If the
timer is running, the elapsed time since the last call to start is added to the return value.

def Timer.start ()

Starts the timer. It is an error to start a timer that is already running.

def Timer.stop()

Stops the timer. It is an error to stop a timer that is not running.

def sleep(t: uint)

Delays a task for t seconds.

186 Chapel Language Specification

Standard Distributions 187

31 Standard Distributions

The following table lists distributions standard to the Chapel language:

Distribution | Module Supported Domain Types
Block BlockDist Arithmetic
Cyclic CyclicDist | Arithmetic

Rationale. Why supply any standard distributions? A main design goal of Chapel requires that
the standard distributions be defined using the same mechanisms available to Chapel program-
mers wishing to define their own distributions or layouts (§29). That way there shouldn’t be a
necessary performance cost associated with user-defined domain maps. Nevertheless, distribu-
tions are an integral part of the Chapel language which would feel incomplete without a good set
of standard distributions. It is hoped that many distributions will begin as user-defined domain
maps and later become part of the standard set of distributions.

31.1 The Standard Block Distribution

The standard Block distribution, defined in the module BlockDist, maps indices to locales by partitioning
the indices into blocks according to a bounding box argument. It is parameterized by the rank and index type
of the domains it supports. Thus domains of different ranks or different index types must be distributed with
different Block distributions.

For Block distributions of rank d, given a bounding box

i..h1, .., lg..hql

and an array of target locales defined over the domain

[0..n1-1, ..., 0..ng—1]

then a Block distribution maps an index i to a locale by computing the kth component of an index j into the
array of target locales from the kth component of ¢ using the following formula:

0 if i, <y,
. (e —le) |
= =/ fi,. >1 d <h
Jk {hklkJrlJ e =2 b and g < Ny
ng — 1 if i, > hy

The Block class constructor is defined as follows:

def Block (boundingBox: domain,

targetLocales: [] locale = Locales,
dataParTasksPerLocale = value in global config const of the same name,
dataParIgnoreRunningTasks = value in global config const of the same name,

dataParMinGranularity = value in global config const of the same name,
param rank = boundingBox.rank,
type idxType = boundingBox.dim(1l) .eltType)

188 Chapel Language Specification

The argument boundingBox is a non-distributed domain defining a bounding box used to partition the space
of all indices across an array of target locales.

The argument targetLocales is a non-distributed array containing the target locales to which this distri-
bution maps indices and data. The rank of targetLocales must match the rank of the distribution, or be
one. If the rank of targetLocales is one, a greedy heuristic is used to reshape the array of target locales
so that it matches the rank of the distribution and each dimension contains an approximately equal number of
indices.

The arguments dataParTasksPerLocale, dataParIgnoreRunningTasks, and dataParMinGranularity
set the knobs that are used to control intra-locale data parallelism for Block-distributed domains and arrays in
the same way that the global configuration constants of these names control data parallelism for ranges and
default-distributed domains and arrays

The rank and idxType arguments are inferred from the boundingBox argument unless explicitly set.

Example. The following code declares a Block distribution with a bounding box equal to the
domain Space and declares an array, A, over a domain declared over this distribution. The
computation in the forall loop sets each array element to the ID of the locale to which it is
mapped.

use BlockDist;
const Space = [1..8, 1..8];
const D: domain (2) dmapped Block (boundingBox=Space) = Space;

var A: [D] int;

forall a in A do
a = a.locale.id;

writeln (A);

When run on 6 locales, the output is:

S NDDNDDNDO OO
SN NN O OO
BN NN O OO
BB NDDNDDND O OO
O wwwE P
g o wwwrE e
g o wwwE =
o wWwwrE PP

31.2 The Standard Cyclic Distribution

The standard Cyclic distribution, defined in the module Cyc1icDist, maps indices to locales in a round-robin
pattern according to a start index argument. It is parameterized by the rank and index type of the domains it
supports. Thus domains of different ranks or different index types must be distributed with different Cyclic
distributions.

For cyclic distributions of rank d, given a start index

(81, ..., Sq)

Standard Distributions 189

and an array of target locales defined over the domain

[0..n1-1, ..., 0..ng-1]

then a Cyclic distribution maps an index ¢ to a locale by computing the kth component of an index j into the
array of target locales from the kth component of ¢ using the following formula:

jk = ik — Sk (mod nk)

The Cyclic class constructor is defined as follows:

def Cyclic(startIdx,
targetLocales: [] locale = Locales,
dataParTasksPerLocale = value in global config const of the same name,
dataParIgnoreRunningTasks = value in global config const of the same name,
dataParMinGranularity = value in global config const of the same name,
param rank: int = rank inferred from startldx,
type idxType = index type inferred from startldx)

The argument startIdx is a tuple of integers defining an index that will be distributed to the first locale in
targetLocales. For a single dimensional distribution start Idx can be an integer or a tuple with a single
element.

The argument targetLocales is a non-distributed array containing the target locales to which this distri-
bution maps indices and data. The rank of targetLocales must match the rank of the distribution, or be
one. If the rank of targetLocales is one, a greedy heuristic is used to reshape the array of target locales
so that it matches the rank of the distribution and each dimension contains an approximately equal number of
indices.

The arguments dataParTasksPerLocale, dataParIgnoreRunningTasks, and dataParMinGranularity
set the knobs that are used to control intra-locale data parallelism for Cyclic-distributed domains and arrays

in the same way that the global configuration constants of these names control data parallelism for ranges and
default-distributed domains and arrays

The rank and idxType arguments are inferred from the start Idx argument unless explicitly set.

Example. The following code declares a Cyclic distribution with a start index of (1,1) and
declares an array, A, over a domain declared over this distribution. The computation in the
forall loop sets each array element to the ID of the locale to which it is mapped.

use CyclicDist;
const Space = [1..8, 1..8];
const D: domain(2) dmapped Cyclic(startIdx=Space.low) = Space;

var A: [D] int;

forall a in A do
a = a.locale.id;

writeln (A);

When run on 6 locales, the output is:

Chapel Language Specification

190

01010101
23232323

45454545

01010101
23232323

45454545
01010101

23232323

Standard Layouts 191

32 Standard Layouts

This chapter is forthcoming.

192 Chapel Language Specification

Collected Lexical and Syntax Productions 193

A Collected Lexical and Syntax Productions

This appendix collects the syntax productions listed throughout the specification. There are no new syntax
productions in this appendix. The productions are listed both alphabetically and in depth-first order for
convenience.

A.1 Alphabetical Lexical Productions

binary-digit: one of
01

binary-digits:
binary-digit
binary—-digit binary—digits

bool-literal: one of
true false

digit: one of
0123456789

digits:
digit
digit digits

double-quote—delimited-characters:
string—character double-quote—-delimited—characters, .
> double—quote—delimited—characters,, .

exponent-part:
e sign,,,, digits
E sign,,. digits

hexadecimal-digit: one of
0123456789ABCDEFabcdef

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-escape—character:
\x hexadecimal-digits

identifier:
letter legal-identifier—chars,,.
_ legal-identifier—chars

imaginary-literal:
real-literal i
integer-literal i

194

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
Ob binary—digits
0B binary-digits

legal-identifier-char:
letter
digit
$

legal-identifier-chars:
legal-identifier-char legal-identifier-chars,,,.

letter: one of

Chapel Language Specification

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm

nopqrstuvwxyz

real-literal:
digits,, . digits exponent—part,
digits exponent—part

sign: one of
+ —

simple—escape—character: one of

VA A Aa Ab AF An Ar At

single—quote—delimited—characters:
string—character single-quote—delimited—characters,,:
” single—quote—delimited—characters,, .

string—character:
any character except the double quote, single quote, or new line
simple—escape—character
hexadecimal-escape—character

string—literal:
” double-quote—delimited—characters,,; ”
> single—quote—delimited—characters,,: ’

A.2 Alphabetical Syntax Productions

argument-list:
(formals,,;)

array—-alias—declaration:
identifier reindexing—expression,,,, =>> array—expression ;

array—expression:
expression

Collected Lexical and Syntax Productions

array—-type:
[domain-expression | type-specifier

assignment-operator: one of
= 4= —= x= /= Y= xx= &= |: = &&= H: <LKL=>>=

assignment-statement:
Ivalue-expression assignment—operator expression

associative—domain-type:
domain (associative—index—type)

associative—index—type:
type-specifier

atomic—statement:
atomic statement

begin—-statement:
begin statement

binary-expression:
expression binary—operator expression

binary-operator: one of
+-x/Poxx & |"<<>>&&||==1=<=>=< > by #

block—-statement:
{ statements,,: }

bounded-range-literal:
expression .. expression

break-statement:
break identifier,,. ;

call-expression:
expression (named-expression-list)
expression [named-expression-list |
parenthesesless—function—identifier

cast—expression:
expression : type—specifier

class—declaration—statement:
class identifier class—inherit-list,,; {
class—statement-list,,; }

class—inherit-list:
: class—type-list

class—statement-list:
class—statement
class—statement class—statement—list

195

196

class—statement:
type—declaration—-statement
function—declaration—statement
variable—declaration—-statement
empty-statement

class—type-list:
class—type
class—type , class—type-list

class—type:
identifier
identifier (named—expression—list)

cobegin-statement:
cobegin block-statement

coforall-statement:
coforall index—var-declaration in iterator-expression do statement
coforall index—var—declaration in iterator-expression block—statement
coforall iterator-expression do statement
coforall iterator—expression block—-statement

conditional-statement:
if expression then statement else—part, .
if expression block—statement else—part, .

continue- statement:
continue identifier,,: ;

dataparallel-type:
range-type
domain-type
mapped—-domain-type
array—-type
index—type

default—expression:
= expression

do—while-statement:
do statement while expression ;

domain-expression:
domain-literal
expression

domain-literal:
[range—expression-list]

domain—map-expression:
expression

domain-type:
root—domain-type
subdomain-type

Chapel Language Specification

Collected Lexical and Syntax Productions 197

else—-part:
else statement

empty—statement:

s

enum-constant—expression:
enum-type . identifier

enum-constant-list:
enum-constant
enum-constant , enum-constant-list

enum-constant:
identifier init-part, .

enum-—declaration—statement:
enum identifier { enum-constant-list } ;

enum-type:
identifier

expression—list:
expression
expression , expression-list

expression—statement:
expression ;

expression:
literal-expression
variable-expression
enum-constant—expression
member—access—expression
call-expression
query—expression
cast—-expression
Ivalue-expression
parenthesized—expression
unary-expression
binary-expression
let—expression
if-expression
for-expression
forall-expression
reduce—expression
scan—expression
module—access—expression
tuple—expression
tuple—expand—-expression
locale—access—expression
mapped—-domain—expression

for-expression:
for index—var—declaration in iterator-expression do expression
for iterator—expression do expression

198 Chapel Language Specification

for-statement:
for index—var—declaration in iterator-expression do statement
for index—var-declaration in iterator-expression block—statement
for iterator—expression do statement
for iterator—expression block—statement

forall-expression:
forall index—var-declaration in iterator—expression do expression
forall iterator-expression do expression
[index—var—declaration in iterator—expression | expression
[iterator-expression | expression

forall-statement:
forall index—var—declaration in iterator-expression do statement
forall index—var—declaration in iterator—expression block—statement
forall iterator—expression do statement
forall iterator—expression block-statement
[index—var—declaration in iterator—expression | statement
[iterator-expression | statement

formal-intent: one of
in out inout param type

formal-type:
: type—specifier
: ? identifier,,.

formal:
formal-intent,,,, identifier formal-type,,: default-expression,.
formal-intent,,, identifier formal-type,,, variable-argument—expression
formal-intent,,. tuple-grouped-identifier-list formal-type,,: default-expression,:
formal-intent,,,, tuple-grouped—identifier—list formal-type,,. variable-argument-expression

formals:
formal
formal , formals

function-body:
block—-statement
return-statement

function-declaration-statement:
def function-name argument-list,,, var-param-type-clause,,; where—clause,:
function-body

function—name:
identifier
operator-name

identifier-list:
identifier-list , tuple—grouped—identifier—list
identifier-list , identifier
tuple-grouped-identifier—list
identifier

Collected Lexical and Syntax Productions

if-expression:

if expression then expression else expression

if expression then expression

index—type:
index (domain—expression)

index—var—declaration:
identifier
tuple-grouped-identifier—list

init-part:
= expression

initialization—part:
= expression

integer—parameter—expression:
expression

irregular-domain—type:
associative—domain—-type

opaque—domain-—type

iterator—expression:
expression

label-statement:
label identifier statement

let-expression:

let variable—declaration—list in expression

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string—literal
range-literal
domain-literal

locale—access—expression:
expression . locale

locality—type:
locale

Ivalue—expression:
variable—expression
member-access—expression
call-expression

mapped-domain—expression:

domain—expression dmapped domain—map—expression

199

200 Chapel Language Specification

mapped-domain-type:
domain-type dmapped domain—map-expression

member-access—expression:
expression . identifier

method-declaration—statement:
def param-clause,,. type-binding function-name argument-list,,, var-param-type-clause,,:
return-type,,. where-clause,,,; function-body

module-access—expression:
module-identifier-list . identifier

module—declaration—statement:
module module-identifier block—statement

module-identifier—list:
module—identifier
module—identifier . module—identifier—list

module—identifier:
identifier

module—name-list:
module—name
module—name , module—name-list

module—name:
identifier
module—name . module—name

named-expression-list:
named-expression
named-expression , named—expression—list

named-expression:
expression
identifier = expression

on-statement:
on expression do statement
on expression block—statement

opaque—domain-type:
domain (opaque)

operator-name: one of

ook % ok |l == <= >= <> << >> & | 0T
param-clause:

param

param-—for—statement:
for param identifier in param-iterator-expression do statement
for param identifier in param-iterator—expression block—statement

Collected Lexical and Syntax Productions 201

param-—iterator—expression:
range-literal
range-literal by integer-literal

parenthesesless—tfunction—identifier:
identifier

parenthesized—expression:
(expression)

primitive—type—parameter—part:
(integer-parameter—expression)

primitive—type:
bool primitive—type—parameter—part, .
int primitive—type-parameter—part, .
uint primitive—type—parameter—part, .
real primitive—type—parameter—part,
imag primitive—type-parameter—part,
complex primitive—type—parameter—part, .
string

query—expression:
? identifier, .

range—expression-list:
range—expression
range—expression, range—expression-list

range—expression:
expression

range-literal:
bounded-range-literal
unbounded-range-literal

range—type:
range (named-expression-list)

record—declaration—-statement:
record identifier record—inherit-list,,; {
record-statement-list }

record-inherit-Iist:
: record—-type-list

record-statement-list:
record-statement
record-statement record— statement-—list

record—-statement:
type—declaration—-statement
function—declaration—statement
variable—declaration—-statement
empty-statement

202

record-type-list:
record—type
record-type , record-type-list

record—type:
identifier
identifier (named-expression—list)

reduce—expression:
reduce-scan—operator reduce expression

class—type reduce expression

reduce-scan—operator: one of
+ % && || & | " min max minloc maxloc

regular-domain-type:
domain (named-expression—list)

reindexing—expression:
[domain—expression]

remote— variable—declaration—statement:

on expression variable-declaration-statement

return—statement:
return expression, . ;

return-type:
: type-specifier

root-domain-type:
regular—domain-type
irregular-domain—type

scan—expression:
reduce-scan-operator scan expression
class—type scan expression

select-statement:
select expression { when-statements }

serial-statement:
serial expression do statement
serial expression block—statement

single—type:
single type-specifier

statement:
block—statement
expression—statement
assignment-statement
swap-statement
conditional-statement
select—statement

Chapel Language Specification

Collected Lexical and Syntax Productions

while—do-statement
do—while-statement
for—statement

label-statement
break—statement
continue-statement
param-for—statement
use—statement
type-select-statement
empty-statement
return—statement
yield-statement
module—declaration—- statement
function—declaration—statement
method—declaration—- statement
type—declaration-statement
variable—declaration—-statement
remote— variable—declaration—statement
on-statement
cobegin-statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic—statement
forall-statement

statements:
statement
statement statements

structured-type:
class—type
record—-type
union-type
tuple—type

subdomain-type:
sparse,,; subdomain (domain-expression)

swap—operator:
<=>

swap-statement:
Ivalue-expression swap—operator Ivalue-expression

sync—statement:
sync statement

sync-type:
sync type-specifier

synchronization—type:

sync—type
single—type

203

204 Chapel Language Specification

tuple—-expand-expression:
(... expression)

tuple—expression:
(expression , expression—list)

tuple-grouped-identifier-list:
(identifier-list)

tuple-type:
(type—specifier , type—list)

type-alias—declaration-list:
type—alias—declaration
type—alias—declaration , type—alias—declaration-list

type-alias—declaration-statement:
config,,. type type—alias—declaration—list ;

type-alias—declaration:
identifier = type-specifier
identifier

type-binding:
identifier .

type—declaration—statement:
enum-—declaration— statement
class—declaration—statement
record—declaration— statement
union—declaration—-statement
type—alias—declaration-statement

type-list:
type-specifier
type-specifier , type—list

type—part:
: type-specifier

type—select—statement:
type select expression-list { type—when-statements }

type-specifier:
primitive-type
enum-type
locality—type
structured-type
dataparallel-type
synchronization—type

type—when-statement:
when type-list do statement
when type-list block—statement
otherwise statement

Collected Lexical and Syntax Productions 205

type—when-statements:
type—when-statement
type- when-statement type— when-statements

unary—expression:
unary-operator expression

unary-operator: one of
+-"!

unbounded-range-literal:
expression ..
.. expression

union—declaration—statement:
union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type—declaration-statement
function—declaration—statement
variable—declaration—statement
empty-statement

union-type:
identifier

use—statement:
use module—name-list ;

var—param-type—clause:
var return—typeo:
const return—type, .
param return—type, .
type

variable—-argument—expression:
... expression
... 7 identifier, .

variable—declaration—-list:
variable—declaration
variable—declaration—-list , variable—declaration

variable—declaration—statement:
config,,. variable-kind variable-declaration-list ;

variable—declaration:
identifier-list type—part,,,, initialization—part
identifier-list type—part
array—-alias—declaration

206

A3

variable—expression:
identifier

variable-kind: one of
param const var

when-statement:
when expression-list do statement
when expression-list block—statement
otherwise statement

when-statements:
when-statement
when-statement when—statements

where-clause:
where expression

while—do-statement:
while expression do statement
while expression block—-statement

yield-statement:
yield expression ;

Depth-First Lexical Productions

bool-literal: one of
true false

identifier:
letter legal-identifier—chars,,,
_ legal-identifier—chars

letter: one of

Chapel Language Specification

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm

nopqrstuvwxyz

legal-identifier—chars:

legal-identifier-char legal-identifier-chars,, .

legal-identifier—char:
letter
digit
$

digit: one of
0123456789

imaginary-literal:
real-literal i
integer-literal i

Collected Lexical and Syntax Productions

real-literal:
digits,,. . digits exponent—part,
digits exponent-part

digits:
digit
digit digits

exponent-part:
e sign,,; digits
E sign,,. digits

sign: one of
+—

integer-literal:
digits
0x hexadecimal-digits
0X hexadecimal-digits
Ob binary-digits
0B binary—-digits

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digit: one of
0123456789ABCDEFabcdef

binary-digits:
binary-digit
binary-digit binary-digits

binary-digit: one of
01

string—literal:
” double-quote-delimited—-characters,,: ”
> single-quote—-delimited—characters,,, ’

double-quote—delimited-characters:
string—character double—quote—delimited—characters, .
> double—-quote—delimited—characters, .

string—character:
any character except the double quote, single quote, or new line
simple—-escape—character
hexadecimal-escape—character

simple—escape—character: one of

VA7 AZ \a Ab Af Am A\r At

hexadecimal-escape—character:
\x hexadecimal-digits

207

208 Chapel Language Specification

single—quote—-delimited—characters:
string—character single—quote—delimited—characters,,.
” single—quote—delimited—characters,, .

A.4 Depth-First Syntax Productions

module—declaration—statement:
module module-identifier block—statement

module—identifier:
identifier

block—statement:
{ statements, . }

statements:
statement
statement statements

statement:
block-statement
expression—statement
assignment-statement
swap-statement
conditional- statement
select—statement
while—do—statement
do—-while-statement
for—statement
label-statement
break—statement
continue-statement
param-for—statement
use—statement
type—select-statement
empty-statement
return—statement
yield-statement
module—declaration— statement
function—declaration—statement
method—declaration—statement
type—declaration-statement
variable—declaration—-statement
remote— variable—declaration—statement
on-statement
cobegin-statement
coforall-statement
begin—statement
sync-statement
serial-statement
atomic—statement
forall-statement

expression—statement:
expression ;

Collected Lexical and Syntax Productions 209

expression:
literal-expression
variable—expression
enum-constant-expression
member—access—expression
call-expression
query—expression
cast—expression
Ivalue—-expression
parenthesized-expression
unary—expression
binary—expression
let-expression
if-expression
for-expression
forall-expression
reduce—expression
scan—expression
module-access—expression
tuple—expression
tuple—expand-expression
locale—access—expression
mapped—-domain—expression

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string—literal
range-literal
domain-literal

range-literal:
bounded-range-literal
unbounded-range-literal

bounded-range-literal:
expression .. expression

unbounded-range-literal:
expression ..
.. expression

domain-literal:
[range—expression-list]

range—expression-list:
range—expression
range—expression, range—expression-list

range—expression:
expression

210 Chapel Language Specification

variable—expression:
identifier

enum-constant—expression:
enum-type . identifier

enum-type:
identifier

member-access—expression:
expression . identifier

call-expression:
expression (named-expression—list)
expression [named—-expression—list]
parenthesesless—function—identifier

named-expression-list:
named-expression
named-expression , named—expression—list

named-expression:
expression
identifier = expression

parenthesesless—tfunction—identifier:
identifier

query—expression:
? identifier, .,

cast—expression:
expression : type-specifier

type—specifier:
primitive-type
enum-type
locality—type
structured—-type
dataparallel-type
synchronization—type

primitive-type:
bool primitive—-type-parameter—part, .
int primitive-type-parameter—part, .
uint primitive—type—parameter—part, .
real primitive—type—parameter—part, .
imag primitive—type-parameter—part, .
complex primitive—type—parameter—part,
string

primitive-type—parameter—part:
(integer-parameter—expression)

Collected Lexical and Syntax Productions 211

integer—parameter—expression:
expression

locality—type:
locale

structured—-type:
class—type
record-type
union—type
tuple—type

class—type:
identifier
identifier (named-expression—list)

record-type:
identifier
identifier (named-expression—list)

union-type:
identifier

tuple-type:
(type-specifier , type-list)

type-list:
type—specifier
type-specifier , type-list

dataparallel-type:
range—type
domain-type
mapped-domain-type
array—type
index—type

range—type:
range (named-expression—list)

domain-type:
root-domain—type
subdomain-type

root-domain-type:
regular-domain-type
irregular-domain—type

regular—domain-type:
domain (named-expression-list)

irregular-domain—type:
associative—domain—-type
opaque—domain-—type

212 Chapel Language Specification

associative—domain-type:
domain (associative—index—type)

associative—index—type:
type-specifier

opaque-domain-type:
domain (opaque)

subdomain-type:
sparse,,; subdomain (domain-expression)

domain-expression:
domain-literal
expression

mapped—-domain-type:
domain-type dmapped domain—-map-expression

domain—map—-expression:
expression

array—-type:
[domain—expression] type-specifier

index—type:
index (domain—expression)

synchronization—type:

sync—type
single—type

sync-type:
sync type-specifier

single—type:
single type-specifier

Ivalue—expression:
variable—expression
member—access—expression
call-expression

parenthesized—expression:
(expression)

unary—-expression:
unary-operator expression

unary-operator: one of
+-"1

binary—expression:
expression binary—operator expression

Collected Lexical and Syntax Productions 213

binary-operator: one of
+-#/ Dxx & | << >>&&||==1=<=>=< > by #

let-expression:
let variable—declaration—list in expression

if-expression:
if expression then expression else expression
if expression then expression

for-expression:
for index—var-declaration in iterator-expression do expression
for iterator—expression do expression

forall-expression:
forall index—var—declaration in iterator-expression do expression
forall iterator—expression do expression
[index—var—declaration in iterator—expression | expression
[iterator—expression | expression

index— var—declaration:
identifier
tuple—grouped—-identifier—list

tuple-grouped-identifier—list:
(identifier-list)

identifier-list:
identifier-list , tuple—grouped—identifier-list
identifier-list , identifier
tuple-grouped-identifier—list
identifier

iterator—-expression:
expression

reduce—expression:
reduce-scan—operator reduce expression
class—type reduce expression

reduce—-scan—-operator: one of
+ * && || & | * min max minloc maxloc

scan—expression:
reduce—scan-operator scan expression
class—type scan expression

module—access—expression:
module—identifier—list . identifier

module—identifier—list:
module—identifier
module—identifier . module—identifier—list

214

tuple—expression:
(expression , expression—list)

expression—list:
expression

expression , expression—list

tuple—-expand-expression:
(... expression)

locale—access—expression:
expression . locale

mapped—-domain-expression:

domain—expression dmapped domain—map—expression

assignmen t—statement:

Ivalue—expression assignment—operator expression

assignment-operator: one of

= 4= —= x= /= Y= xx= &= |= = &&= H: <L=>>=

swap-—statement:

Ivalue—expression swap—operator Ivalue—expression

swap—operator:
<=>

conditional-statement:
if expression then statement else—part,,,;
if expression block—statement else—part, .

else—part:
else statement

select—statement:
select expression { when-statements }

when-statements:
when-statement
when-statement when—statements

when-statement:
when expression-list do statement
when expression-list block—statement
otherwise statement

while-do-statement:
while expression do statement
while expression block—statement

do—while-statement:
do statement while expression ;

Chapel Language Specification

Collected Lexical and Syntax Productions 215

for-statement:
for index—var—declaration in iterator-expression do statement
for index—var-declaration in iterator-expression block—statement
for iterator—expression do statement
for iterator—expression block—statement

label-statement:
label identifier statement

break-statement:
break identifier, . ;

continue-statement:
continue identifier,,: ;

param-for-statement:
for param identifier in param-iterator-expression do statement
for param identifier in param-iterator—expression block—statement

param-iterator—expression:
range-literal
range-literal by integer-literal

use—statement:
use module—name-list ;

module—name-list:
module—name
module-name , module—name-list

module—name:
identifier
module—name . module—name

type—select—statement:
type select expression-list { type—when-statements }

type—when-statements:
type—when-statement
type—when-statement type—when-statements

type—when-statement:
when type-list do statement
when type-list block—statement
otherwise statement

empty-statement:

s

return—statement:
return expression,p: ;

yield-statement:
yield expression ;

216 Chapel Language Specification

module—declaration—statement:
module module-identifier block—statement

function-declaration-statement:
def function—name argument-list,,, var-param-type-clause,,, where—clause,;
function—body

function—name:
identifier
operator-name

operator-name: one of

+ %/ % oxx | == <= >= < > << >> & | "7
argument-list:

(formals,,;)

formals:
formal
formal , formals

formal:
formal-intent,,. identifier formal-type,,. default—expression,:
formal-intent,,. identifier formal-type,,, variable-argument—expression
formal-intent,,,, tuple-grouped-identifier-list formal-type,,. default—expression,:
formal-intent,,, tuple-grouped-identifier-list formal-type,, variable—argument-expression

default—expression:
= expression

formal-intent: one of
in out inout param type

formal-type:
: type—specifier
: ? identifier,.

variable—argument—expression:
... expression
... 7 identifier, .

var-param-type-clause:
var return——typeop:
const return—type, .
param return—type,:
type

return—type:
: type-specifier

where—clause:
where expression

Collected Lexical and Syntax Productions 217

function-body:
block—-statement
return-statement

method-declaration—statement:
def param-clause,,. type-binding function-name argument-list,,, var-param-type-clause, .
return-type,,. where-clause,,. function—body

param-clause:
param

type—binding:
identifier .

type—declaration—statement:
enum-—declaration—- statement
class—declaration—statement
record—-declaration—statement
union—declaration—-statement
type—alias—declaration-statement

enum-—declaration—statement:
enum identifier { enum-constant-list } ;

enum-constant-list:
enum-—constant
enum-constant , enum-constant—list

enum-constant:
identifier init-part, .

init—part:
= expression

class—declaration—statement:
class identifier class—inherit-list,,; {
class—statement-list,,; }

class—inherit-list:
: class—type-list

class—type-list:
class—type
class—type , class—type—list

class—statement-list:
class—statement
class—statement class—statement—list

class—statement:
type—declaration- statement
function—declaration—-statement
variable—declaration—statement
empty—statement

218

record-declaration—statement:
record identifier record—inherit-1list, . {
record-statement-list }

record—inherit-list:
: record—-type-list

record-type-list:
record—-type
record—type , record—type—list

record-statement-list:
record-statement
record-statement record—statement-—list

record-statement:
type—declaration-statement
function—declaration—statement
variable—declaration—statement
empty—statement

union—declaration—statement:
union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union—statement—list

union-—statement:
type—declaration-statement
function—declaration—statement
variable—declaration—statement
empty—statement

type-alias—declaration-statement:

config,,. type type—alias—declaration-list ;

type-alias—declaration-list:
type—alias—declaration

type—alias—declaration , type—alias—declaration-list

type—alias—declaration:
identifier = type-specifier
identifier

variable—declaration—statement:

config,,. variable-kind variable—declaration—list ;

variable—kind: one of
param const var

variable—declaration—-list:
variable—declaration

variable—declaration—list , variable—declaration

Chapel Language Specification

Collected Lexical and Syntax Productions 219

variable-declaration:
identifier-list type—part,,,, initialization—part
identifier-list type—part
array—alias—declaration

initialization—part:
= expression

type-part:
: type—specifier

array-alias—declaration:
identifier reindexing—expression,,,, => array—expression ;

reindexing-expression:
[domain—expression]

array—expression:
expression

remote- variable—declaration—statement:
on expression variable-declaration—statement

on-statement:
on expression do statement
on expression block—statement

cobegin-statement:
cobegin block-statement

coforall-statement:
coforall index—var-declaration in iterator-expression do statement
coforall index—var—declaration in iterator-expression block—statement
coforall iterator-expression do statement
coforall iterator—expression block—-statement

begin—-statement:
begin statement

sync—statement:
sync statement

serial-statement:
serial expression do statement
serial expression block—statement

atomic-statement:
atomic statement

forall-statement:
forall index—var—declaration in iterator—expression do statement
forall index—var—declaration in iterator—expression block—statement
forall iterator-expression do statement
forall iterator—expression block—-statement
[index—var—declaration in iterator—expression] statement
[iterator-expression | statement

220 Chapel Language Specification

. . . tuple expansion, [3§]

N
P~

ByEEE

3

N2
N

EEEE

Vv
Il

Vv
\2

&

v o o°)
1] hd
5 @@E

N

e

actual arguments,
arithmetic arrays
indexing, [124]
arithmetic domains
by operator, [51]
default value, [TT4]
literals, [TT4]
strided, [31]
types, [I13]
values, [TT4]
arrays, [123]

as formal arguments, [127]

assignment, [T23]
association to domains, [T29]

default values, [124]
domain maps, [124]
function arguments, [127]
indexing, [124]
initialization, [123]
iteration, [123]
literals, lack thereof, [123]
predefined functions,
promotion, [127]
runtime representation, @
slice,[126]
slicing, [126]
sparse, [128]
types, [123|
values, [123]

assignment, [56]
tuples, [83]

associative domains
default values, [T13]
initializations, [TT3]
literals, lack thereof, [TT3]
types, [113|
values, [TT3]

atomic, m

atomic transactions, [156]
automatic modules, [T77]

Base, [187]
Math,

begin,@
block, 53]
bool,
break,lB_TI
py, 51107

on arithmetic domains, [120]

case sensitivity, [13]

casts, 37]

class, @

classes, [0T]
assignment,
class types,

constructors, [94]
default, 93]
user-defined, 03]

declarations,

delete, O8]

fields,[02]

221

222

generic, [137]
getters, [06]
indexing, [94]
inheritance,
instances, [07]
iterating,
methods, [92]
nested, O8]
new,
nil, 0§
setters, [06]
cobegin, m
coforall, @
coforall loops, [153]
comments, [13]
compiler diagnostics
user-defined, [142]
compiler errors
user-defined, [142]
compiler warnings
user-defined, [[42]
compilerError, [142]
compilerWarning, [142]
complex
casts from tuples, [37]
complex, @
conditional
expression, [52]
statement,
conditional statement
dangling else, [57]
config, @
const, @
constants, 29
compile-time, 28]
configuration, 29|
in classes or records, [T39]
runtime, 29]
constructors, [94]
default, 03]
for generic classes or records,
for derived classes,[97]
type constructors,
user-defined,
for generic classes or records, [T4]]
continue,
conversions
bool, 31} 33|
class, 32} B3]
enumeration, 32} 33|
explicit, [33]

Chapel Language Specification

implicit, [3T]
numeric, 31} B3]

parameter, [32]
record, 32} B3]

data parallelism, [T59]
and evaluation order, [164]
knobs for default data parallelism, @]
def,[7]]
default constructors, 03]
default values,
delete
classes, O8]
domain maps, [I71]
domains, [TT1]
adding indices, [TT8]
assignment, [T17]
association to arrays, @
associative, [[T1]
characteristics,[112]
clearing, [TT§|
domain maps, [T12]
function arguments, [T19]
identity,[T12]
index types, [T17]
irregular, [TT1]
iteration, [TT8§]
mapped,
membership, [TT§]
opaque, [IT1]
ordered, [T12]
predefined functions,
promotion,
regular, [TTT]
removing indices, [TT8]
root, [TT1]
root types,
runtime representation, |ﬂ_7|
slicing, [TT9]
sparse, [I16]
subdomains, [T13]
taxonomy, [TT1]
types, [[12]
unordered, [T12]
values,
dynamic dispatch,

else, @

enumerated, m
enumerated types,
execution environment, [[68]

Collected Lexical and Syntax Productions

exploratory programming, [69]
expression

as a statement, [56]
expression statement, 56|
expressions

associativity, 38|

precedence, [38]

fields,[02]

generic,

parameter, [[39]

type alias, [13§]

variable and constant, without types, [I39]
file type, [T43]

methods, [T43]

standard files stdin, stdout, stderr, 143
for,FZ 59
for expressions

and conditional expressions, [53|
for loops, [59]

parameters,
forall, m

forall expressions, [T60]
and conditional expressions, [I6]]
forall loops,[T59]
formal arguments, [73|
arithmetic arrays, [127]
array types, [136]
defaults,
generic types, [133]
naming, [73]
queried types, [[34]
without types, [134]
function arguments
domains, [TT9|
function calls, 36} [71]

function resolution, [79]
functions, [71]
actual arguments, [71]
argument intents, [74]
as Ivalues,
as parameters, [77]
as types, [77]
candidates,
default argument values, |7_Z|
formal arguments, [73|
functions without parentheses, [73|
generic, [133]
most specific,
named arguments, [73|

nested, [79]

223

overloading, [79]
resolution, [79]

return types,[7§|
setter argument, [77]

syntax, [71]
variable functions, [76]
variable number of arguments, [73]

visible,

generics
classes, [137]
constructors, default, ﬂlﬁl
constructors, user-defined, ﬂiﬂ
fields, [137]
function visibility, [T36]
functions, 133
instantiated type, [T40]
methods,
records, [137]
type constructor,
types,
where, IEI

here,l@

identifiers, [T4]
i£, 5257
imaginary,
implicit modules, [66]
in,
indexing, 36|
arithmetic arrays, [124]
arrays, [124]
inheritance, [07]
inout, @
int, m
integral, m
intents, [74]
blank, [74]
in, @
inout, |7_3|
out, IE
param,[134]
type, m
isFull,[152]
iteration
over arrays, [123]
iterators, [131]
and arrays, [132]
and generics, [132]
recursive, [132]

224

keywords, [T4]

label,[6]]
let, @
literals

primitive type, [I3]
local,
locale, @
Locales

methods, [T67]
Locales, I@
locales, [T67]
lvalue, 39

main, @

member access, 36} 02|

memory consistency model, [T57]
memory management, [98]
module, @

modules, [T1] [63]
and files, [63]

explicitly named, [67]
implicit, [66]
initialization, [68]
nested, [66]

standard, [T77]

using, [61] [67]

multiple inheritance, O8]

named arguments, [73|

new
classes, [94]

records, [T01]
new, @
nil
not provided for records,
nil, @
numeric, m

numLocales, @

objects, 9]

on,

opaque domains
default values, [T13]
literals, lack thereof, [T13]
types, [T13]
values, [TT3]

operators
arithmetic, 1]
associativity, 38|
bitwise, 6]

logical, 48]

Chapel Language Specification

overloading, [79]
precedence, [3§]
relational,
optional modules,
BitOps, [I82]
Norm, [T83]
Random, [T83]
Search, [T84]
Sort, [T83]
Time, [183]
out, @

param,[28]
parameters, 28]
configuration, [29]
in classes or records, [T39]

promotion, [T6]]
tensor product iteration, [T62]

zipper iteration, [162]

range-based slicing, [I19]

ranges, [103]

arithmetic operators, [10§]
assignment, [T07]
bounded,
by operator,
count operator, [I0§]
integral element type, [T06]
literals,
operators, [107]
predefined functions,[T09]
slicing, [T09]
strided, [T07]
types, [T03]
unbounded, [T06]
rank-change slicing, [TT9]
read, [146]
default methods, [T47]
on files,
read, @
readFE, ﬂlTI
readFF, m
readln, |'118|
readXX, @
real, IZTI
record, m
records, 99

assignment,
differences with classes, [99]
equality, [TOT]

generic, [137]

Collected Lexical and Syntax Productions

inequality, [TOT]
inheritance, [100]
instances, [T01]
new, [107]

reduction expressions, [I63]
reductions, [T63)

remote, [167]
reserved words, [T4]
reset,@
return,m

types, [78]

scan expressions, [[64]

scans,[163]

select, @

serial, @

setter, [77]

single, @

slicing, [TT§]
arrays, [126]
domains, [T19]
range-based, [TT9]

rank-change, [TT9]
sparse domains

default value, [T16]
initializations, [T16]
literals, lack thereof, [T16]
values, [T16]

standard modules,
automatic,
optional, [T82]

statement, [53)]

stderr, m

stdin,[143]

stdout, @

string,

subdomains, [[13)]
sparse,
types, [T16]

swap
operator,
statement, [37]

sync, [150} [154]

sync types
formal arguments, [I50]
records and classes, @

synchronization variables
built-in methods on, [[31]
single, ﬂlTI
sync,

tensor product iteration,

225

then, @ ISjI

these, %

this, %

tuple, @

tuples, [83)]
assignment, 83
destructuring, [83]
expanding in place, B8]
formal arguments grouped as, [§7]
homogeneous, 83
indexing, [89]
indices grouped as,
omitting components,
operators, [§9]
predefined functions,

types, [83]

values, [84]

variable declarations grouped as, [86]
type aliases, [24]

in classes or records, [138]
type inference, [26]

of return types, [7§]
type select statements,@
types

arithmetic domains, [[13]

associative domains, [T13]

dataparallel, 24]

domains, root, [T13]

generic,

locality, 23]

opaque domains, [TT3]

primitive,

structured, 23]

subdomains, [T16]

uint,

union,lm

unions, [T03]
assignment, [T03|
fields, [T03)]
type select, @

use, [6]]

user-defined constructors,

variables
configuration, 29]
declarations,
default initialization, 26]

global, 28]
in classes or records,[139]

local,

226

when,@
where,lml

implicit, [133]
while,[38]
while loops, [58]
white space, [T3]
whole array assignment, [T6]]
write, [146]

default methods, [T47]

on files, [T46]

on strings, [T46]
write,m
writekF,[152]
writeFF,@
writeln,m
Writer,m
writexr,[152]

yield,[I3]]
zipper iteration,

Chapel Language Specification

	Title
	Table of Contents
	Scope
	Notation
	Organization
	Acknowledgments
	Language Overview
	Guiding Principles
	General Parallel Programming
	Locality-Aware Programming
	Object-Oriented Programming
	Generic Programming

	Getting Started

	Lexical Structure
	Comments
	White Space
	Case Sensitivity
	Tokens
	Identifiers
	Keywords
	Literals
	Operators and Punctuation
	Grouping Tokens

	Types
	Primitive Types
	The Bool Type
	Signed and Unsigned Integral Types
	Real Types
	Imaginary Types
	Complex Types
	The String Type

	Enumerated Types
	Locality Types
	Structured Types
	Class Types
	Record Types
	Union Types
	Tuple Types

	Data Parallel Types
	Range Types
	Domain, Array, and Index Types

	Type Aliases

	Variables
	Variable Declarations
	Default Initialization
	Local Type Inference
	Multiple Variable Declarations

	Global Variables
	Local Variables
	Constants
	Compile-Time Constants
	Runtime Constants

	Configuration Variables

	Conversions
	Implicit Conversions
	Implicit Bool and Numeric Conversions
	Implicit Enumeration Conversions
	Implicit Class Conversions
	Implicit Record Conversions
	Implicit Compile-Time Constant Conversions
	Implicit Statement Bool Conversions

	Explicit Conversions
	Explicit Numeric Conversions
	Explicit Enumeration Conversions
	Explicit Class Conversions
	Explicit Record Conversions

	Expressions
	Literal Expressions
	Variable Expressions
	Enumeration Constant Expression
	Parenthesized Expressions
	Call Expressions
	Indexing Expressions
	Member Access Expressions
	The Query Expression
	Casts
	LValue Expressions
	Precedence and Associativity
	Operator Expressions
	Arithmetic Operators
	Unary Plus Operators
	Unary Minus Operators
	Addition Operators
	Subtraction Operators
	Multiplication Operators
	Division Operators
	Modulus Operators
	Exponentiation Operators

	Bitwise Operators
	Bitwise Complement Operators
	Bitwise And Operators
	Bitwise Or Operators
	Bitwise Xor Operators

	Shift Operators
	Logical Operators
	The Logical Negation Operator
	The Logical And Operator
	The Logical Or Operator

	Relational Operators
	Ordered Comparison Operators
	Equality Comparison Operators

	Miscellaneous Operators
	The String Concatenation Operator
	The By Operator
	The Range Count Operator

	Let Expressions
	Conditional Expressions
	For Expressions
	Filtering Predicates in For Expressions

	Statements
	Blocks
	Expression Statements
	Assignment Statements
	The Swap Statement
	The Conditional Statement
	The Select Statement
	The While and Do While Loops
	The For Loop
	Zipper Iteration
	Tensor Product Iteration
	Parameter For Loops

	The Label, Break, and Continue Statements
	The Use Statement
	The Type Select Statement
	The Empty Statement

	Modules
	Module Definitions
	Files and Implicit Modules
	Nested Modules
	Using Modules
	Explicit Naming
	Module Initialization

	Program Execution
	The main Function
	Module Initialization Order

	Functions
	Function Calls
	Function Definitions
	Functions without Parentheses
	Formal Arguments
	Named Arguments
	Default Values

	Intents
	The Blank Intent
	The In Intent
	The Out Intent
	The Inout Intent

	Variable Length Argument Lists
	Variable Functions
	Parameter Functions
	Type Functions
	The Return Statement
	Return Types
	Explicit Return Types
	Implicit Return Types

	Function Overloading
	Nested Functions
	Function Resolution
	Determining Visible Functions
	Determining Candidate Functions
	Determining More Specific Functions

	Tuples
	Tuple Types
	Tuple Values
	Tuple Assignment
	Tuple Destructuring
	Splitting a Tuple with Assignment
	Splitting a Tuple into Multiple Variables
	Splitting a Tuple into Mutiple Indices
	Splitting a Tuple into Multiple Formal Arguments
	Splitting a Tuple via Tuple Expansion

	Tuple Indexing
	Tuple Operators
	Unary Operators
	Binary Operators
	Relational Operators

	Predefined Functions and Methods on Tuples

	Classes
	Class Types
	Class Declarations
	Class Assignment
	Class Fields
	Class Field Accesses

	Class Methods
	Class Method Declarations
	Class Method Calls
	The this Reference
	The this Method
	The these Method

	Class Constructors
	User-Defined Constructors
	The Default Constructor

	Variable Getter Methods
	Inheritance
	The object Class
	Accessing Base Class Fields
	Derived Class Constructors
	Shadowing Base Class Fields
	Overriding Base Class Methods
	Inheriting from Multiple Classes

	Nested Classes
	The [language=chapel,basicstyle=,keywordstyle=]!nil! Value
	Dynamic Memory Management

	Records
	Differences between Classes and Records
	References vs. Values
	Storage Allocation
	Record Inheritance
	No Dynamic Dispatch
	No [language=chapel,basicstyle=,keywordstyle=]!nil! Value
	Record Assignment

	Record Declarations
	Record Construction
	Default Comparison Operators on Records

	Unions
	Union Types
	Union Declarations
	Union Fields

	Union Assignment
	The Type Select Statement and Unions

	Ranges
	Range Types
	Literal Range Values
	Bounded Range Literals
	Unbounded Range Literals

	Range Assignment
	Range Operators
	By Operator
	Count Operator
	Arithmetic Operators
	Range Slicing

	Predefined Functions and Methods on Ranges

	Domains
	Domain Taxonomy
	Root Domains and Subdomains
	Regular and Irregular Domain Types

	Domain Characteristics
	Domain Types
	Domain Values
	Domain Identity
	Runtime Representation of Domain Values

	Root Domain Types
	Arithmetic Domain Types
	Associative Domain Types
	Opaque Domain Types

	Root Domain Values
	Arithmetic Domain Values
	Associative Domain Values
	Opaque Domain Values

	Subdomains
	Subdomain Types

	Sparse Subdomains
	Sparse Domain Types
	Sparse Domain Values

	Index Types
	Domain Assignment
	Domain Index Set Manipulation
	Querying Index Set Membership
	Clearing a Domain's Index Set
	Adding and Removing Domain Indices

	Iteration over Domains
	Slicing
	Domain-based Slicing
	Range-based Slicing
	Rank-Change Slicing

	Domain Arguments to Functions
	Formal Arguments of Domain Type
	Domain Promotion of Scalar Functions

	Domain Operators
	By Operator

	Predefined Functions and Methods on Domains
	Predefined Functions and Methods on Arithmetic Domains

	Arrays
	Array Types
	Array Values
	Runtime Representation of Array Values

	Array Indexing
	Arithmetic Array Indexing

	Iteration over Arrays
	Array Assignment
	Array Slicing
	Arithmetic Array Slicing

	Array Arguments to Functions
	Formal Arguments of Arithmetic Array Type
	Array Promotion of Scalar Functions
	Array Aliases

	Sparse Arrays
	Association of Arrays to Domains
	Predefined Functions and Methods on Arrays

	Iterators
	Iterator Functions
	The Yield Statement
	Iterator Calls
	Iterators in For and Forall Loops
	Iterators as Arrays
	Iterators and Generics
	Recursive Iterators

	Parallel Iterators

	Generics
	Generic Functions
	Formal Type Arguments
	Formal Parameter Arguments
	Formal Arguments without Types
	Formal Arguments with Queried Types
	Formal Arguments of Generic Type
	Formal Arguments of Generic Array Types

	Function Visibility in Generic Functions
	Generic Types
	Type Aliases in Generic Types
	Parameters in Generic Types
	Fields without Types
	The Type Constructor
	Generic Methods
	The Default Constructor
	User-Defined Constructors

	Where Expressions
	User-Defined Compiler Diagnostics
	Example: A Generic Stack

	Input and Output
	The file type
	Standard files stdout, stdin, and stderr
	The write, writeln, read, and readln functions
	User-Defined writeThis methods
	The write and writeln method on files
	The write and writeln method on strings
	Generalized write and writeln

	The read and readln methods on files
	Default read and write methods

	Task Parallelism and Synchronization
	Unstructured Task-Parallel Constructs
	The Begin Statement
	Sync Variables
	Single Variables
	Predefined Single and Sync Methods

	Structured Task-Parallel Constructs
	The Cobegin Statement
	The Coforall Loop
	The Sync Statement
	The Serial Statement

	Atomic Statements
	Memory Consistency Model

	Data Parallelism
	The Forall Statement
	Syntax
	Execution and Serializability
	Parallelism
	Zipper Iteration
	Tensor Product Iteration

	The Forall Expression
	Syntax
	Execution, Serializability, and Parallelism
	Filtering Predicates in Forall Expressions

	Whole Array Assignment
	Promotion
	Zipper Promotion
	Tensor Product Promotion

	Reductions and Scans
	Reduction Expressions
	Scan Expressions

	Data Parallelism and Evaluation Order
	Knobs for Default Data Parallelism

	Locales
	Locales
	Locale Types
	Locale Methods
	The Predefined Locales Array
	The here Locale
	Querying the Locale of an Expression

	The On Statement
	Remote Variable Declarations

	Domain Maps
	Domain Map Types
	Domain Map Values
	Mapped Domains and Arrays
	Default Mapped Domains and Arrays

	User-Defined Reductions and Scans
	User-Defined Domain Maps
	Standard Modules
	Automatic Modules
	Math
	Base
	Types

	Optional Modules
	BitOps
	Norm
	Random
	Search
	Sort
	Time

	Standard Distributions
	The Standard Block Distribution
	The Standard Cyclic Distribution

	Standard Layouts
	Collected Lexical and Syntax Productions
	Alphabetical Lexical Productions
	Alphabetical Syntax Productions
	Depth-First Lexical Productions
	Depth-First Syntax Productions

	Index

