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1 Scope

Chapel is a new parallel programming language that is under development at Cray Inc. in the context of the
DARPA High Productivity Computing Systems initiative.

This document specifies the Chapel language. It is a work in progress and is not definitive. In particular, it is
not a standard.
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2 Notation

Special notations are used in this specification to denote Chapel code and to denote Chapel syntax.

Chapel code is represented with a fixed-width font where keywords are bold and comments are italicized.

Example.

for i in D do // iterate over domain D
writeln(i); // output indices in D

Chapel syntax is represented with standard syntax notation in which productions define the syntax of the
language. A production is defined in terms of non-terminal (italicized) and terminal (non-italicized) symbols.
The complete syntax defines all of the non-terminal symbols in terms of one another and terminal symbols.

A definition of a non-terminal symbol is a multi-line construct. The first line shows the name of the non-
terminal that is being defined followed by a colon. The next lines before an empty line define the alternative
productions to define the non-terminal.

Example. The production

bool-literal:
true
false

defines bool-literal to be either the symbol true or false.

In the event that a single line of a definition needs to break across multiple lines of text, more indentation is
used to indicate that it is a continuation of the same alternative production.

As a short-hand for cases where there are many alternatives that define one symbol, the first line of the
definition of the non-terminal may be followed by “one of” to indicate that the single line in the production
defines alternatives for each symbol.

Example. The production

unary-operator: one of
+ -˜ !

is equivalent to

unary-operator:
+
-
˜
!

As a short-hand to indicate an optional symbol in the definition of a production, the subscript “opt” is suffixed
to the symbol.
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Example. The production

formal:
formal-tag identifier formal-typeopt default-expressionopt

is equivalent to

formal:
formal-tag identifier formal-type default-expression
formal-tag identifier formal-type
formal-tag identifier default-expression
formal-tag identifier
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3 Organization

This specification is organized as follows:

• Section 1, Scope, describes the scope of this specification.

• Section 2, Notation, introduces the notation that is used throughout this specification.

• Section 3, Organization, describes the contents of each of the sections within this specification.

• Section 4, Acknowledgments, offers a note of thanks to people and projects.

• Section 5, Language Overview, describes Chapel at a high level.

• Section 6, Lexical Structure, describes the lexical components of Chapel.

• Section 7, Types, describes the types in Chapel and defines the primitive and enumerated types.

• Section 8, Variables, describes variables and constants in Chapel.

• Section 9, Conversions, describes the legal implicit and explicit conversions allowed between values of
different types. Chapel does not allow for user-defined conversions.

• Section 10, Expressions, describes the serial expressions in Chapel.

• Section 11, Statements, describes the serial statements in Chapel.

• Section 12, Modules, describes modules, Chapel’s abstraction to allow for name space management.

• Section 13, Functions, describes functions and function resolution in Chapel.

• Section 14, Classes, describes reference classes in Chapel.

• Section 15, Records, describes records or value classes in Chapel.

• Section 16, Unions, describes unions in Chapel.

• Section 17, Tuples, describes tuples in Chapel.

• Section 18, Ranges, describes ranges in Chapel.

• Section 19, Domains and Arrays, describes domains and arrays in Chapel. Chapel arrays are more
general than arrays in many other languages. Domains are index sets, an abstraction that is typically
not distinguished from arrays.

• Section 20, Iterators, describes iterator functions and promotion.

• Section 21, Generics, describes Chapel’s support for generic functions and types.

• Section 22, Parallelism and Synchronization, describes parallel expressions and statements in Chapel
as well as synchronization constructs and atomic sections.

• Section 23, Locality and Distribution, describes constructs for managing locality and distributing data
in Chapel.

• Section 24, Reductions and Scans, describes the built-in reductions and scans as well as structural
interfaces to support user-defined reductions and scans.
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• Section 25, Input and Output, describes support for input and output in Chapel, including file input and
output..

• Section 26, Standard Modules, describes the standard modules that are provided with the Chapel lan-
guage.
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5 Language Overview

Chapel is a new programming language under development at Cray Inc. as part of the DARPA High Produc-
tivity Computing Systems (HPCS) program to improve the productivity of parallel programmers.

This section provides a brief overview of the Chapel language by discussing first the guiding principles behind
the design of the language and second how to get started with Chapel.

5.1 Guiding Principles

The following four principles guided the design of Chapel:

1. General parallel programming

2. Locality-aware programming

3. Object-oriented programming

4. Generic programming

The first two principles were motivated by a desire to support general, performance-oriented parallel program-
ming through high-level abstractions. The second two principles were motivated by a desire to narrow the
gulf between high-performance parallel programming languages and mainstream programming and scripting
languages.

5.1.1 General Parallel Programming

First and foremost, Chapel is designed to support general parallel programming through the use of high-level
language abstractions. Chapel supports a global-view programming model that raises the level of abstraction
of expressing both data and control flow when compared to parallel programming models currently used in
production. A global-view programming model is best defined in terms of global-view data structures and a
global view of control.

Global-view data structures are arrays and other data aggregates whose sizes and indices are expressed glob-
ally even though their implementations may distribute them across the locales of a parallel system. A locale
is an abstraction of a unit of uniform memory access on a target architecture. That is, within a locale, all
threads exhibit similar access times to any specific memory address. For example, a locale in a commodity
cluster could be defined to be a single core of a processor, a multicore processor or an SMP node of multiple
processors.

Such a global view of data contrasts with most parallel languages which tend to require users to partition
distributed data aggregates into per-processor chunks either manually or using language abstractions. As
a simple example, consider creating a 0-based vector with n elements distributed between p locales. A
language like Chapel that supports global-view data structures allows the user to declare the array to contain
n elements and to refer to the array using the indices 0 . . . n − 1. In contrast, most traditional approaches
require the user to declare the array as p chunks of n/p elements each and to specify and manage inter-
processor communication and synchronization explicitly (and the details can be messy if p does not divide
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n evenly). Moreover, the chunks are typically accessed using local indices on each processor (e.g., 0..n/p),
requiring the user to explicitly translate between logical indices and those used by the implementation.

A global view of control means that a user’s program commences execution with a single logical thread of
control and then introduces additional parallelism through the use of certain language concepts. All paral-
lelism in Chapel is implemented via multithreading, though these threads are created via high-level language
concepts and managed by the compiler and runtime, rather than through explicit fork/join-style program-
ming. An impact of this approach is that Chapel can express parallelism that is more general than the Single
Program, Multiple Data (SPMD) model that today’s most common parallel programming approaches use as
the basis for their programming and execution models. Chapel’s general support for parallelism does not
preclude users from coding in an SPMD style if they wish.

Supporting general parallel programming also means targeting a broad range of parallel architectures. Chapel
is designed to target a wide spectrum of HPC hardware including clusters of commodity processors and
SMPs; vector, multithreading, and multicore processors; custom vendor architectures; distributed-memory,
shared-memory, and shared address space architectures; and networks of any topology. Our portability goal
is to have any legal Chapel program run correctly on all of these architectures, and for Chapel programs that
express parallelism in an architecturally-neutral way to perform reasonably on all of them. Naturally, Chapel
programmers can tune their codes to more closely match a particular machine’s characteristics, though doing
so may cause the program to be a poorer match for other architectures.

5.1.2 Locality-Aware Programming

A second principle in Chapel is to allow the user to optionally and incrementally specify where data and com-
putation should be placed on the physical machine. Such control over program locality is essential to achieve
scalable performance on large machine sizes. Such control contrasts with shared-memory programming
models which present the user with a flat memory model. It also contrasts with SPMD-based programming
models in which such details are explicitly specified by the programmer on a process-by-process basis via
the multiple cooperating program instances.

5.1.3 Object-Oriented Programming

A third principle in Chapel is support for object-oriented programming. Object-oriented programming has
been instrumental in raising productivity in the mainstream programming community due to its encapsulation
of related data and functions into a single software component, its support for specialization and reuse, and
its use as a clean mechanism for defining and implementing interfaces. Chapel supports objects in order to
make these benefits available in a parallel language setting, and to provide a familiar paradigm for members
of the mainstream programming community. Chapel supports traditional reference-based classes as well as
value classes that are assigned and passed by value.

Chapel does not require the programmer to use an object-oriented style in their code, so that traditional
Fortran and C programmers in the HPC community need not adopt a new programming paradigm in order
to use Chapel effectively. Many of Chapel’s standard library capabilities are implemented using objects, so
such programmers may need to utilize a method-invocation style of syntax to use these capabilities. However,
using such libraries does not necessitate broader adoption of object-oriented methodologies.
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5.1.4 Generic Programming

Chapel’s fourth principle is support for generic programming and polymorphism. These features allow code
to be written in a style that is generic across types, making it applicable to variables of multiple types, sizes,
and precisions. The goal of these features is to support exploratory programming as in popular interpreted
and scripting languages, and to support code reuse by allowing algorithms to be expressed without explicitly
replicating them for each possible type. This flexibility at the source level is implemented by having the
compiler create versions of the code for each required type signature rather than by relying on dynamic
typing which would result in unacceptable runtime overheads for the HPC community.

5.2 Getting Started

A Chapel version of the standard “hello, world” computation is as follows:

writeln("hello, world");

This complete Chapel program contains a single line of code that makes a call to the standard writeln

function.

In general, Chapel programs define code using one or more named modules, each of which supports top-level
initialization code that is invoked the first time the module is used. Programs also define a single entry point
via a function named main. To facilitate exploratory programming, Chapel allows programmers to define
modules using files rather than an explicit module declaration and to omit the program entry point when the
program only has a single user module.

Chapel code is stored in files with the extension .chpl. Assuming the “hello, world” program is stored
in a file called hello.chpl, it would define a single user module, hello, whose name is taken from the
filename. Since the file defines a module, the top-level code in the file defines the module’s initialization
code. And since the program is composed of the single hello module, the main function is omitted. Thus,
when the program is executed, the single hello module will be initialized by executing its top-level code
thus invoking the call to the writeln function. Modules are described in more detail in §12.

To compile and run the “hello world” program, execute the following commands at the system prompt:

> chpl hello.chpl
> ./a.out

The following output will be printed to the console:

hello, world
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6 Lexical Structure

This section describes the lexical components of Chapel programs.

6.1 Comments

Two forms of comments are supported. All text following the consecutive characters // and before the end
of the line is in a comment. All text following the consecutive characters /* and before the consecutive
characters */ is in a comment.

Comments, including the characters that delimit them, are ignored by the compiler. If the delimiters that start
the comments appear within a string literal, they do not start a comment but rather are part of the string literal.

6.2 White Space

White-space characters are spaces, tabs, and new-lines. Aside from delimiting comments and tokens, they
are ignored by the compiler.

6.3 Case Sensitivity

Chapel is a case sensitive language so identifiers that are identical except for the case of the characters are
considered different.

6.4 Tokens

Tokens include identifiers, keywords, literals, operators, and punctuation.

The productions in this section are lexical so the components are not delimited by white space.

6.4.1 Identifiers

An identifier in Chapel is a sequence of characters that must start with a letter, lower-case or upper-case, an
underscore, or a dollar sign, and can include lower-case letters, upper-case letters, digits, and the underscore.

identifier:
legal-first-identifier-char legal-identifier-charsopt

legal-first-identifier-char: one of
$ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m

n o p q r s t u v w x y z

legal-identifier-chars:
legal-identifier-char legal-identifier-charsopt



14 Chapel Language Specification

legal-identifier-char:
legal-first-identifier-char
digit

digit: one of
0 1 2 3 4 5 6 7 8 9

Rationale. The inclusion of the $ character is meant to assist programmers using sync and single
variables by presenting a style (a $ at the end of such variables) in order to help write properly
synchronized code. It is felt that making such variables “stand out” is useful since such variables
could result in deadlocks.

Example. The following are legal identifiers:

CX1, XT5, XMT, syncvar$, legalIdentifier, legal_identifier

6.4.2 Keywords

The following keywords are reserved:

atomic
begin
break
by
class
cobegin
coforall
compilerError
compilerWarning
config
const

continue
def
delete
distributed
do
domain
else
enum
for
forall
if

in
index
inout
label
let
local
module
new
nil
on
otherwise

out
param
record
reduce
return
scan
select
serial
single
sparse
subdomain

sync
then
type
union
use
var
when
where
while
yield

compilerWarning compilerWarning compilerWarning compilerWarning compilerWarning

6.4.3 Literals

Bool literals are designated by the following syntax:

bool-literal: one of
true false

Signed and unsigned integer literals are designated by the following syntax:

integer-literal:
digits
0 x hexadecimal-digits
0 b binary-digits

digits:
digit
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digit digits

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

binary-digits:
binary-digit
binary-digit binary-digits

binary-digit: one of
0 1

Suffixes, like those in C, are not necessary. The type of an integer literal is the first type of the following that
can hold the value of the digits: int, int(64), uint(64). Explicit conversions are necessary to change the
type of the literal to another integer size.

Real literals are designated by the following syntax:

real-literal:
digitsopt . digits exponent-partopt

digits exponent-part

exponent-part:
e signopt digits

sign: one of
+ -

The type of a real literal is real. Explicit conversions are necessary to change the type of the literal to
another real size.

Rationale. Note that real literals require that a digit follow the decimal point. This is necessary
to avoid an ambiguity in interpreting 2.e+2 that arises if a method called e is defined on integers.

Imaginary literals are designated by the following syntax:

imaginary-literal:
real-literal i
integer-literal i

There are no complex literals. Rather, a complex value can be specified by adding or subtracting an imaginary
literal with a real literal. Alternatively, a 2-tuple of integral or real expressions can be cast to a complex such
that the first component becomes the real part and the second component becomes the imaginary part.

Example. The following codes represent the same complex value:

2.0i, 0.0+2.0i, (0.0,2.0):complex.
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String literals are designated by the following syntax:

string-literal:
” quote-delimited-charactersopt ”
’ apostrophe-delimited-charactersopt ’

quote-delimited-characters:
character quote-delimited-charactersopt

’ quote-delimited-charactersopt

apostrophe-delimited-characters:
character apostrophe-delimited-charactersopt

” apostrophe-delimited-charactersopt

character:
any-character-except-newline-quote-and-apostrophe

6.4.4 Operators and Punctuation

The following special characters are interpreted by the syntax of the language specially:

symbols use
= += -= *= /= **= %= &= |= ˆ= &&= ||= <<= >>= assignment
<=> swap operator
.. ranges
... variable argument lists
&& || ! logical operators
& | ˆ ˜ << >> bitwise operators
== != <= >= < > relational operators
+ - * / % ** arithmetic operators
: types
; statement separator
, expression separator
. member access
? query types
" ’ string delimiters

6.4.5 Grouping Tokens

The following braces are part of the Chapel language:

braces use
( ) parenthesization, function calls, and tuples
[ ] domains, square tuples, forall expressions, and function calls
{ } type scopes and blocks
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7 Types

Chapel is a statically typed language with a rich set of types. These include a set of predefined primitive
types, enumerated types, classes, records, unions, tuples, ranges, domains, and arrays. This section defines
the primitive types, enumerated types, and type aliases. The syntax of a type is summarized by the following
syntax:

type-specifier:
primitive-type
enum-type
class-type
record-type
union-type
tuple-type
range-type
domain-type
array-type
sync-type
single-type
index-type

Classes are discussed in §14. Records are discussed in §15. Unions are discussed in §16. Tuples are discussed
in §17. Ranges are discussed in §18. Domains and arrays are discussed in §19. Sync and single types are
discussed in §22.1.2 and §22.1.3.

Programmers can define their own enumerated types, classes, records, unions, and type aliases in type decla-
ration statements summarized by the following syntax:

type-declaration-statement:
enum-declaration-statement
class-declaration-statement
record-declaration-statement
union-declaration-statement
type-alias-declaration-statement

7.1 Primitive Types

The primitive types include the following types: bool, int, uint, real, imag, complex, string, and
locale. These primitive types are defined in this section except for the locale type which is defined
in §23.1.1. The syntax of a primitive type is summarized by the following syntax:

primitive-type:
bool primitive-type-parameter-partopt

int primitive-type-parameter-partopt

uint primitive-type-parameter-partopt

real primitive-type-parameter-partopt

imag primitive-type-parameter-partopt

complex primitive-type-parameter-partopt

string
locale

primitive-type-parameter-part:
( integer-parameter-expression )
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7.1.1 The Bool Type

Chapel defines a logical data type designated by the symbol bool with the two predefined values true and
false. This default boolean type is stored using an implementation-dependent number of bits. A particular
number of bits can be specified using a parameter value following the bool keyword, such as bool(8) to
request an 8-bit boolean value. Legal sizes are 8, 16, 32, and 64 bits.

The relational operators return values of bool type and the logical operators operate on values of bool type.

Some statements require expressions of bool type and Chapel supports a special conversion of values to
bool type when used in this context (§9.1.6).

7.1.2 Signed and Unsigned Integral Types

The integral types can be parameterized by the number of bits used to represent them. The default signed
integral type, int, and the default unsigned integral type, uint, are 32 bits.

The integral types and their ranges are given in the following table:

Type Minimum Value Maximum Value
int(8) -128 127
uint(8) 0 255
int(16) -32768 32767
uint(16) 0 65535
int(32), int -2147483648 2147483647
uint(32), uint 0 4294967295
int(64) -9223372036854775808 9223372036854775807
uint(64) 0 18446744073709551615

The unary and binary operators that are pre-defined over the integral types operate with 32- and 64-bit pre-
cision. Using these operators on integral types represented with fewer bits results in a coercion according to
the rules defined in §9.1.

7.1.3 Real Types

Like the integral types, the real types can be parameterized by the number of bits used to represent them.
The default real type, real, is 64 bits. The real types that are supported are machine-dependent, but usually
include real(32) and real(64).

Arithmetic over real values follows the IEEE 754 standard.

Open issue. There is an expectation of future support for real(128) and/or real(80) depending
on a platform’s native support for those types
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7.1.4 Imaginary Types

The imaginary types can be parameterized by the number of bits used to represent them. The default imag-
inary type, imag, is 64 bits. The imaginary types that are supported are machine-dependent, but usually
include imag(32) and imag(64).

Open issue. There is an expectation of future support for imag(128) and/or imag(80) depending
on a platform’s native support for those types

Rationale. The imaginary type is included to avoid numeric instabilities and under-optimized
code stemming from always coercing real values to complex values with a zero imaginary part.

7.1.5 Complex Types

Like the integral and real types, the complex types can be parameterized by the number of bits used to
represent them. A complex number is composed of two real numbers so the number of bits used to represent a
complex is twice the number of bits used to represent the real numbers. The default complex type, complex,
is 128 bits; it consists of two 64-bit real numbers. The complex types that are supported are machine-
dependent, but usually include complex(64) and complex(128).

Open issue. There is an expectation of future support for complex(256) and/or complex(160)
depending on a platform’s native support for those types

The real and imaginary components can be accessed via the methods re and im. The type of these compo-
nents is real.

Example. Given a complex number c with the value 3.14+2.72i, the expressions c.re and
c.im refer to 3.14 and 2.72 respectively.

7.1.6 The String Type

Strings are a primitive type designated by the symbol string. Their length is unbounded.

7.2 Enumerated Types

Enumerated types are declared with the following syntax:
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enum-declaration-statement:
enum identifier { enum-constant-list } ;

enum-constant-list:
enum-constant
enum-constant , enum-constant-list

enum-constant:
identifier init-partopt

init-part:
= expression

The enumerated type can then be specified with its name as summarized by the following syntax:

enum-type:
identifier

An enumerated type defines a set of named constants that can be specified in a program as a member access
on the enumerated type. These are associated with parameters of integral type. Each enumerated type is a
distinct type. If the init-part is omitted, the enum-constant has an integral value one higher than the previous
enum-constant in the enum, with the first having the value 1.

Example. The code

enum color { red, white, blue } ;

defines an enumerated type with three constants. The function

def rhyme(c: color) {
select c {

when color.red do writeln("red rhymes with head");
when color.white do writeln("white rhymes with spite");
when color.blue do writeln("blue rhymes with spew");

}
}

outputs a rhyme for any given color. Note that enumerated constants must be prefixed by the
enumerated type and a dot.

7.3 Class Types

The class type defines a type that contains variables and constants, called fields, and functions, called meth-
ods. Classes are defined in §14. The class type can also contain type aliases and parameters. Such a class is
generic and is defined in §21.

7.4 Record Types

The record type is similar to a class type; the primary difference is that a record is a value rather than a
reference. The difference between classes and records is elaborated on in §15.
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7.5 Union Types

The union type defines a type that contains one of a set of variables. Like classes and records, unions may
also define methods. Unions are defined in §16.

7.6 Tuple Types

A tuple is a light-weight record that consists of one or more anonymous fields. If all the fields are of the same
type, the tuple is homogeneous. Tuples are defined in §17.

7.7 Range Types

A range defines an integral sequence of some integral type. Ranges are defined in §18.

7.8 Domain and Array Types

A domain defines a set of indices and an array defines a set of elements that are mapped by the indices in an
associated domain. Domains and arrays are defined in §19.

7.9 Type Aliases

Type aliases are declared with the following syntax:

type-alias-declaration-statement:
type type-alias-declaration-list ;

type-alias-declaration-list:
type-alias-declaration
type-alias-declaration , type-alias-declaration-list

type-alias-declaration:
identifier = type-specifier
identifier

A type alias is a symbol that aliases any type as specified in the type-part. A use of a type alias has the same
meaning as using the type specified by type-part directly.

The type-part is optional in the definition of a class or record. Such a type alias is called an unspecified type
alias. Classes and records that contain type aliases, specified or unspecified, are generic (§21.3.1).



22 Chapel Language Specification



Variables 23

8 Variables

A variable is a symbol that represents memory. Chapel is a statically-typed, type-safe language so every
variable has a type that is known at compile-time and the compiler enforces that values assigned to the
variable can be stored in that variable as specified by its type.

8.1 Variable Declarations

Variables are declared with the following syntax:

variable-declaration-statement:
configopt variable-kind variable-declaration-list ;

variable-kind: one of
param const var

variable-declaration-list:
variable-declaration
variable-declaration , variable-declaration-list

variable-declaration:
identifier-list type-partopt initialization-part
identifier-list type-part
special-array-declaration
array-alias-declaration

identifier-list:
identifier
identifier , identifier-list

type-part:
: type-specifier

initialization-part:
= expression

A variable-declaration-statement is used to define one or more variables. If the statement is a top-level module
statement, the variables are global; otherwise they are local. Global variables are discussed in §8.2. Local
variables are discussed in §8.3.

The optional keyword config specifies that the variables are configuration variables, described in Sec-
tion §8.5.

The variable-kind specifies whether the variables are parameters (param), constants (const), or regular vari-
ables (var). Parameters are compile-time constants whereas constants are runtime constants. Both levels of
constants are discussed in §8.4.

Multiple variables can be defined in the same variable-declaration-list. All variables defined in the same
identifier-list are defined to have the same type and initialization expression.
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The type-part of a variable declaration specifies the type of the variable. It is optional if the initialization-part
is specified. If the type-part is omitted, the type of the variable is inferred using local type inference described
in §8.1.2.

The initialization-part of a variable declaration specifies an initial expression to assign to the variable. If the
initialization-part is omitted, the variable is initialized to a default value described in §8.1.1.

The special-array-declaration and array-alias-declaration are defined in §19.

8.1.1 Default Initialization

If a variable declaration has no initialization expression, a variable is initialized to the default value of its
type. The default values are as follows:

Type Default Value
bool(*) false
int(*) 0
uint(*) 0
real(*) 0.0
imag(*) 0.0i
complex(*) 0.0 + 0.0i
string ""
enums first enum constant
classes nil
records default constructed record
ranges 1..0
arrays elements are default values
tuples components are default values

Open issue. Array initialization is potentially time-consuming. There is an expectation that
there will be a way to declare an array that is explicitly left uninitialized in order to address this
concern.

8.1.2 Local Type Inference

If the type is omitted from a variable declaration, the type of the variable is defined to be the type of the
initialization expression.

8.2 Global Variables

Variables declared in statements that are in a module but not in a function or block within that module are
global variables. Global variables can be accessed anywhere within that module after the declaration of that
variable. They can also be accessed in other modules that use that module.
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8.3 Local Variables

Local variables are variables that are not global. Local variables are declared within block statements. They
can only be accessed within the scope of that block statement (including all inner nested block statements
and functions).

A local variable only exists during the execution of code that lies within that block statement. This time is
called the lifetime of the variable. When execution has finished within that block statement, the local variable
and the storage it represents is removed. Variables of class type are the sole exception. Constructors of class
types create storage that is not associated with any scope. Such storage is managed automatically as discussed
in §14.10.

8.4 Constants

Constants are divided into two categories: parameters, specified with the keyword param, are compile-time
constants and constants, specified with the keyword const, are runtime constants.

8.4.1 Compile-Time Constants

A compile-time constant or parameter must have a single value that is known statically by the compiler.
Parameters are restricted to primitive and enumerated types.

Parameters can be assigned expressions that are parameter expressions. Parameter expressions are restricted
to the following constructs:

• Literals of primitive or enumerated type.

• Parenthesized parameter expressions.

• Casts of parameter expressions to primitive or enumerated types.

• Applications of the unary operators +, -, !, and ˜ on operands that are bool or integral parameter
expressions.

• Applications of the binary operators +, -, *, /, %, **, &&, ||, !, &, |, ˆ, ˜, <<, >>, ==, !=, <=, >=,
<, and > on operands that are bool or integral parameter expressions.

• Applications of the string concatenation operator +, string comparison operators ==, !=, <=, >=, <, >,
and the string length and ascii functions on parameter string expressions.

• The conditional expression where the condition is a parameter and the then- and else-expressions are
parameters.

• Call expressions of parameter functions. See §13.8.

There is an expectation that parameters will be expanded to more types and more operations.
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8.4.2 Runtime Constants

Constants do not have the restrictions that are associated with parameters. Constants can be any type. They
require an initialization expression and contain the value of that expression throughout their lifetime.

Variables of class type that are constants are constant references. The fields of the class can be modified, but
the variable always points to the object that it was initialized to reference.

8.5 Configuration Variables

If the keyword config precedes the keyword var, const, or param, the variable, constant, or parame-
ter is called a configuration variable, configuration constant, or configuration parameter respectively. Such
variables, constants, and parameters must be global.

The initialization of these variables can be set via implementation dependent means, such as command-line
switches or environment variables. The initialization expression in the program is ignored if the initialization
is alternatively set.

Configuration parameters are set during compilation time via compilation flags or other implementation de-
pendent means.

Example. A configuration parameter is set via a compiler flag. It may be used to control the
target that is being compiled. For example, the code

config param target: string = "XT3";

sets a string parameter target to "XT3". This can be checked to compile different code for this
target.
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9 Conversions

A conversion allows an expression of one type to be converted into another type. Conversions can be either
implicit (§9.1) or explicit (§9.2).

9.1 Implicit Conversions

Implicit conversions can occur during an assignment (from the expression on the right-hand side to the vari-
able on the left-hand side) or during a function call (from the actual expression to the formal argument). An
implicit conversion does not require a cast.

Implicit conversions are allowed between numeric types (§9.1.1), from enumerated types to numeric types (§9.1.2),
between class types (§9.1.3), and between record types (§9.1.4). A special set of implicit conversions are al-
lowed from compile-time constants of type int and int(64) to other smaller numeric types if the value is
in the range of the smaller numeric type (§9.1.5). Lastly, implicit conversions are supported from integral and
class types to bool in the context of a statement (§9.1.6).

9.1.1 Implicit Bool and Numeric Conversions

The implicit numeric conversions are as follows:

• From bool to bool(k), int(8), int(16), int(32), int(64), uint(8), uint(16), uint(32),
uint(64), or string for any legal value of k

• From bool(j) to bool, bool(k), int(8), int(16), int(32), int(64), uint(8), uint(16),
uint(32), uint(64), or string for any legal values of j and k

• From int(8) to int(16), int(32), int(64), real(64), complex(128), or string

• From int(16) to int(32), int(64), real(64), complex(128), or string

• From int(32) to int(64), real(64), complex(128), or string

• From int(64) to real(64), complex(128), or string

• From uint(8) to int(16), int(32), int(64), uint(16), uint(32), uint(64), real(64),
complex(128), or string

• From uint(16) to int(32), int(64), uint(32), uint(64), real(64), complex(128), or string

• From uint(32) to int(64), uint(64), real(64), complex(128), or string

• From uint(64) to real(64), complex(128), or string

• From real(32) to real(64), complex(64), complex(128), or string

• From real(64) to complex(128) or string

• From imag(32) to imag(64), complex(64), complex(128), or string

• From imag(64) to complex(128) or string
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• From complex(64) to complex(128) or string

• From complex(128) to string

The implicit numeric conversions do not result in any loss of information except for the conversions from
int(64) or uint(64) to real(64) or complex(128) and from any of the real, imag, or complex types
to string.

Rationale. In C#, implicit conversions from int(32) or int(64) to real(32) are supported
and allow for a loss of precision. Since the default real size is 64 and the default int size
is 32 in Chapel, we did not follow the lead of C# in this regard since it seemed unfortunate to
favor real(32) over real in the default case. That is, given the sqrt function defined over
real(32) and real, it is preferable to choose the version over real when calling with an actual
of type int rather than lose precision and half of the bits to call the real(32) version.

Additionally, we don’t allow implicit conversions from int(8) or int(16) to real(32) be-
cause to do so would result in an ambiguity when computing, e.g., int(8) + int(8).

9.1.2 Implicit Enumeration Conversions

An expression that is an enumerated type can be implicitly converted to any integral type as long as all of
the constants defined by the enumerated type are within range of the integral type. It can also be implicitly
converted to string where the string is the name of the enumerated constant.

9.1.3 Implicit Class Conversions

An expression of class type D can be implicitly converted to another class type C provided that D is a subclass
of C.

9.1.4 Implicit Record Conversions

An expression of record type D can be implicitly converted to another record type C provided that D is a
nominal subtype of C.

9.1.5 Implicit Compile-Time Constant Conversions

The following two implicit conversions of parameters are supported:

• A parameter of type int(32) can be implicitly converted to int(8), int(16), or any unsigned
integral type if the value of the parameter is within the range of the target type.

• A parameter of type int(64) can be implicitly converted to uint(64) if the value of the parameter
is nonnegative.
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9.1.6 Implicit Statement Bool Conversions

In the condition of an if-statement, while-loop, and do-while-loop, the following implicit conversions are
supported:

• An expression of integral type is taken to be true if it is non-zero and is otherwise false.

• An expression of a class type is taken to be true if is not nil and is otherwise false.

9.2 Explicit Conversions

Explicit conversions require a cast in the code. Casts are defined in §10.7. Explicit conversions are supported
between more types than implicit conversions, but explicit conversions are not supported between all types.

The explicit conversions are a superset of the implicit conversions.

9.2.1 Explicit Numeric Conversions

Explicit conversions are allowed from any numeric type, bool, or string to any other numeric type, bool, or
string. The definitions of how these explicit conversions work is forthcoming.

9.2.2 Explicit Enumeration Conversions

Explicit conversions are allowed from any enumerated types to any numeric type, bool, or string, and vice
versa.

9.2.3 Explicit Class Conversions

An expression of static class type C can be explicitly converted to a class type D provided that C is derived
from D or D is derived from C. In the event that D is derived from C, it is a runtime error if the the dynamic
class type of C is not derived from or equal to D.

9.2.4 Explicit Record Conversions

An expression of record type C can be explicitly converted to another record type D provided that C is derived
from D. There are no explicit record conversions that are not also implicit record conversions.
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10 Expressions

This section defines expressions in Chapel. Forall expressions are described in §22.3.2.

The syntax for an expression is given by:

expression:
literal-expression
variable-expression
enum-constant-expression
member-access-expression
call-expression
query-expression
cast-expression
lvalue-expression
parenthesized-expression
unary-expression
binary-expression
let-expression
if-expression
for-expression
parallel-expression
reduce-expression
scan-expression
module-access-expression
tuple-expression
tuple-destructuring-expression
locale-access-expression

The expressions that create and limit parallelism, parallel-expression, are discussed in §22. Reductions and
scans, reduce-expression and scan-expression, are defined in §24. Module access expressions, module-access-expression,
are defined in §12.3.1. Tuple expressions, tuple-expression, are defined in §17.1. Tuple destructuring expres-
sions, tuple-destructuring-expression, are defined in §13.13. Locale access expressions, locale-access-expression,
are defined in §23.1.5.

10.1 Literal Expressions

A literal value for any of the built-in types (§6.4.3) is a literal expression. Literal expressions are given by the
following syntax:

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string-literal
range-literal
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10.2 Variable Expressions

A use of a variable, constant, parameter, or formal argument, is itself an expression. The syntax of a variable
expression is given by:

variable-expression:
identifier

10.3 Enumeration Constant Expression

A use of an enumeration constant is itself an expression. Such a constant must be preceded by the enumeration
type name. The syntax of an enumeration constant expression is given by:

enum-constant-expression:
enum-type . identifier

Example. For an example of using enumeration constants, see §7.2.

10.4 Parenthesized Expressions

A parenthesized-expression is an expression that is delimited by parentheses as given by:

parenthesized-expression:
( expression )

Such an expression evaluates to the expression. The parentheses is ignored and has only syntactic effect.

10.5 Call Expressions

The syntax to call a function is given by:

call-expression:
expression ( named-expression-list )
expression [ named-expression-list ]
parenthesesless-function-identifier

named-expression-list:
named-expression
named-expression , named-expression-list

named-expression:
expression
identifier = expression

parenthesesless-function-identifier:
identifier
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A call-expression is resolved to a particular function according to the algorithm for function resolution de-
scribed in §13.10.

Functions can be called using either parentheses or brackets. The only difference in the call has to do with
promotion and is discussed in §20.4.2.

Functions that are defined without parentheses are called without parentheses as defined by scope resolution.
Functions without parentheses are discussed in §13.11.

A named-expression is an expression that may be optionally named. The optional identifier represents a named
actual argument described in §13.4.1.

10.5.1 Indexing Expressions

Indexing into arrays, tuples, and domains shares the same syntax of a call expression. Indexing, at its core, is
nothing more than a call to the indexing function defined on these types.

10.5.2 Member Access Expressions

Member access expressions are call expressions to members of classes, records, or unions. The syntax for a
member access is given by:

member-access-expression:
expression . identifier

The member access may be an access of a field or a function inside a class, record, or union.

10.6 The Query Expression

A query expression is used to query a type or value within a formal argument type expression. The syntax of
a query expression is given by:

query-expression:
? identifieropt

Querying is restricted to querying the type of a formal argument, the element type of an formal argument
that is an array, the domain of a formal argument that is an array, the size of a primitive type, or a type or
parameter field of a formal argument type.

The identifier can be omitted. This is useful for ensuring the genericity of a generic type that defines default
values for all of its generic fields when specifying a formal argument as discussed in §21.1.5.

Example. The following code defines a generic function where the type of the first parameter
is queried and stored in the type alias t and the domain of the second argument is queried and
stored in the variable D:
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def foo(x: ?t, y: [?D] t) {
for i in D do

y[i] = x;
}

This allows a generic specification of a function to assign a particular value to all elements of an
array. The value and the elements of the array are constrained to be the same type. This function
can be rewritten without query expression as follows:

def foo(x, y: [] x.type) {
for i in y.domain do

y[i] = x;
}

There is an expectation that query expressions will be allowed in more places in the future.

10.7 Casts

A cast is specified with the following syntax:

cast-expression:
expression : type-specifier

The expression is converted to the specified type. Except for the casts listed below, casts are restricted to
valid explicit conversions (§9.2).

The following cast has a special meaning and does not correspond to an explicit conversion:

• A cast from a 2-tuple to complex converts the 2-tuple into a complex where the first component
becomes the real part and the second component becomes the imaginary part. The size of the complex
is determined from the size of the components based on implicit conversions.

10.8 LValue Expressions

An lvalue is an expression that can be used on the left-hand side of an assignment statement or on either side
of a swap statement, that can be passed to a formal argument of a function that has out or inout intent, or
that can be returned by a variable function. Valid lvalue expressions include the following:

• Variable expressions.

• Member access expressions.

• Call expressions of variable functions.

• Indexing expressions.

LValue expressions are given by the following syntax:

lvalue-expression:
variable-expression
member-access-expression
call-expression

The syntax is less restrictive than the definition above. For example, not all call-expressions are lvalues.
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10.9 Operator Precedence and Associativity

The following table summarizes the precedence of operators and their associativity. Operators listed earlier
have higher precedence than those listed later.

operators associativity use
. () [] left member access, function call, index expression
: left cast
** right exponentiation
reduce scan left reduction and scan
! ˜ right logical and bitwise negation
* / % left multiplication, division, and modulus
unary + - right positive identity and negation
+ - left addition and subtraction
<< >> left shift left and shift right
<= >= < > left ordered comparison
== != left equality comparison
& left bitwise/logical and
ˆ left bitwise/logical xor
| left bitwise/logical or
&& left short-circuiting logical and
|| left short-circuiting logical or
.. left range construction
in left forall expression
by left striding ranges and domains
if...then...[else] left conditional expressions
forall...in left parallel iteration expressions
for...in left serial iteration expressions
, left comma separated expressions

Rationale. In general, our operator precedence is based on that of the C family of languages
including C++, Java, Perl, and C#. We comment on a few of the differences and unique factors
here.

We find that there is tension between the relative precedence of exponentiation, unary minus/plus,
and casts. The following three expressions show our intuition for how these expressions should
be parenthesized.

-2**4 wants -(2**4)

-2:uint wants (-2):uint

2:uint**4:uint wants (2:uint)**(4:uint)

Trying to support all three of these cases results in a circularity—exponentiation wants prece-
dence over unary minus, unary minus wants precedence over casts, and casts want precedence
over exponentiation. We chose to break the circularity by making unary minus have a lower
precedence. This means that for the second case above:

-2:uint requires (-2):uint
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We also chose to depart from the C family of languages by making unary plus/minus have lower
precedence than binary multiplication, division, and modulus as in Fortran. We have found very
few cases that distinguish between these cases. An interesting one is:

const minint = min(int(32));

...-minint/2...

Intuitively, this should result in a positive value, yet C’s precedence rules results in a negative
value due to asymmetry in modern integer representations. If we learn of cases that argue in
favor of the C approach, we would likely reverse this decision in order to more closely match C.

We were tempted to diverge from the C precedence rules for the binary bitwise operators to make
them bind less tightly than comparisons. This would allow us to interpret:

a | b == 0 as (a | b) == 0

However, given that no other popular modern language has made this change, we felt it unwise
to stray from the pack. The typical rationale for the C ordering is to allow these operators to be
used as non-short-circuiting logical operations.

One final area of note is the precedence of reductions. Two common cases tend to argue for
making reductions very low or very high in the precedence table:

max reduce A - min reduce A wants (max reduce A) - (min reduce A)

max reduce A * B wants max reduce (A * B)

The first statement would require reductions to have a higher precedence than the arithmetic
operators while the second would require them to be lower. We opted to make reductions have
high precedence due to the argument that they tend to resemble unary operators. Thus, to support
our intuition:

max reduce A * B requires max reduce (A * B)

This choice also has the (arguably positive) effect of making the unparenthesized version of this
statement result in an aggregate value if A and B are both aggregates—the reduction of A results
in a scalar which promotes when being multiplied by B, resulting in an aggregate. Our intuition
is that users who forget the parenthesis will learn of their error at compilation time because the
resulting expression is not a scalar as expected.

10.10 Operator Expressions

The application of operators to expressions is itself an expression. The syntax of a unary expression is given
by:

unary-expression:
unary-operator expression

unary-operator: one of
+ -˜ !

The syntax of a binary expression is given by:
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binary-expression:
expression binary-operator expression

binary-operator: one of
+ -∗ / % ∗∗ & | ˆ << >> && || == != <= >= < >

The operators are defined in subsequent sections.

10.11 Arithmetic Operators

This section describes the predefined arithmetic operators. These operators can be redefined over different
types using operator overloading (§13.9).

All integral arithmetic operators are implemented over integral types of size 32 and 64 bits only. For example,
adding two 8-bit integers is done by first converting them to 32-bit integers and then adding the 32-bit integers.
The result is a 32-bit integer.

10.11.1 Unary Plus Operators

The unary plus operators are predefined as follows:

def +(a: int(32)): int(32)
def +(a: int(64)): int(64)
def +(a: uint(32)): uint(32)
def +(a: uint(64)): uint(64)
def +(a: real(32)): real(32)
def +(a: real(64)): real(64)
def +(a: imag(32)): imag(32)
def +(a: imag(64)): imag(64)
def +(a: complex(32)): complex(32)
def +(a: complex(64)): complex(64)
def +(a: complex(128)): complex(128)

For each of these definitions, the result is the value of the operand.

10.11.2 Unary Minus Operators

The unary minus operators are predefined as follows:

def -(a: int(32)): int(32)
def -(a: int(64)): int(64)
def -(a: uint(64))
def -(a: real(32)): real(32)
def -(a: real(64)): real(64)
def -(a: imag(32)): imag(32)
def -(a: imag(64)): imag(64)
def -(a: complex(32)): complex(32)
def -(a: complex(64)): complex(64)
def -(a: complex(128)): complex(128)
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For each of these definitions that return a value, the result is the negation of the value of the operand. For
integral types, this corresponds to subtracting the value from zero. For real and imaginary types, this corre-
sponds to inverting the sign. For complex types, this corresponds to inverting the signs of both the real and
imaginary parts.

It is an error to try to negate a value of type uint(64). Note that negating a value of type uint(32) first
converts the type to int(64) using an implicit conversion.

10.11.3 Addition Operators

The addition operators are predefined as follows:

def +(a: int(32), b: int(32)): int(32)
def +(a: int(64), b: int(64)): int(64)
def +(a: uint(32), b: uint(32)): uint(32)
def +(a: uint(64), b: uint(64)): uint(64)
def +(a: uint(64), b: int(64))
def +(a: int(64), b: uint(64))

def +(a: real(32), b: real(32)): real(32)
def +(a: real(64), b: real(64)): real(64)

def +(a: imag(32), b: imag(32)): imag(32)
def +(a: imag(64), b: imag(64)): imag(64)

def +(a: complex(64), b: complex(64)): complex(64)
def +(a: complex(128), b: complex(128)): complex(128)

def +(a: real(32), b: imag(32)): complex(64)
def +(a: imag(32), b: real(32)): complex(64)
def +(a: real(64), b: imag(64)): complex(128)
def +(a: imag(64), b: real(64)): complex(128)

def +(a: real(32), b: complex(64)): complex(64)
def +(a: complex(64), b: real(32)): complex(64)
def +(a: real(64), b: complex(128)): complex(128)
def +(a: complex(128), b: real(64)): complex(128)

def +(a: imag(32), b: complex(64)): complex(64)
def +(a: complex(64), b: imag(32)): complex(64)
def +(a: imag(64), b: complex(128)): complex(128)
def +(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the sum of the two operands.

It is a compile-time error to add a value of type uint(64) and a value of type int(64).

Addition over a value of real type and a value of imaginary type produces a value of complex type. Addition
of values of complex type and either real or imaginary types also produces a value of complex type.

10.11.4 Subtraction Operators

The subtraction operators are predefined as follows:
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def -(a: int(32), b: int(32)): int(32)
def -(a: int(64), b: int(64)): int(64)
def -(a: uint(32), b: uint(32)): uint(32)
def -(a: uint(64), b: uint(64)): uint(64)
def -(a: uint(64), b: int(64))
def -(a: int(64), b: uint(64))

def -(a: real(32), b: real(32)): real(32)
def -(a: real(64), b: real(64)): real(64)

def -(a: imag(32), b: imag(32)): imag(32)
def -(a: imag(64), b: imag(64)): imag(64)

def -(a: complex(64), b: complex(64)): complex(64)
def -(a: complex(128), b: complex(128)): complex(128)

def -(a: real(32), b: imag(32)): complex(64)
def -(a: imag(32), b: real(32)): complex(64)
def -(a: real(64), b: imag(64)): complex(128)
def -(a: imag(64), b: real(64)): complex(128)

def -(a: real(32), b: complex(64)): complex(64)
def -(a: complex(64), b: real(32)): complex(64)
def -(a: real(64), b: complex(128)): complex(128)
def -(a: complex(128), b: real(64)): complex(128)

def -(a: imag(32), b: complex(64)): complex(64)
def -(a: complex(64), b: imag(32)): complex(64)
def -(a: imag(64), b: complex(128)): complex(128)
def -(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the value obtained by subtracting the second
operand from the first operand.

It is a compile-time error to subtract a value of type uint(64) from a value of type int(64), and vice versa.

Subtraction of a value of real type from a value of imaginary type, and vice versa, produces a value of complex
type. Subtraction of values of complex type from either real or imaginary types, and vice versa, also produces
a value of complex type.

10.11.5 Multiplication Operators

The multiplication operators are predefined as follows:

def *(a: int(32), b: int(32)): int(32)
def *(a: int(64), b: int(64)): int(64)
def *(a: uint(32), b: uint(32)): uint(32)
def *(a: uint(64), b: uint(64)): uint(64)
def *(a: uint(64), b: int(64))
def *(a: int(64), b: uint(64))

def *(a: real(32), b: real(32)): real(32)
def *(a: real(64), b: real(64)): real(64)

def *(a: imag(32), b: imag(32)): real(32)
def *(a: imag(64), b: imag(64)): real(64)

def *(a: complex(64), b: complex(64)): complex(64)
def *(a: complex(128), b: complex(128)): complex(128)
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def *(a: real(32), b: imag(32)): imag(32)
def *(a: imag(32), b: real(32)): imag(32)
def *(a: real(64), b: imag(64)): imag(64)
def *(a: imag(64), b: real(64)): imag(64)

def *(a: real(32), b: complex(64)): complex(64)
def *(a: complex(64), b: real(32)): complex(64)
def *(a: real(64), b: complex(128)): complex(128)
def *(a: complex(128), b: real(64)): complex(128)

def *(a: imag(32), b: complex(64)): complex(64)
def *(a: complex(64), b: imag(32)): complex(64)
def *(a: imag(64), b: complex(128)): complex(128)
def *(a: complex(128), b: imag(64)): complex(128)

For each of these definitions that return a value, the result is the product of the two operands.

It is a compile-time error to multiply a value of type uint(64) and a value of type int(64).

Multiplication of values of imaginary type produces a value of real type. Multiplication over a value of real
type and a value of imaginary type produces a value of imaginary type. Multiplication of values of complex
type and either real or imaginary types produces a value of complex type.

10.11.6 Division Operators

The division operators are predefined as follows:

def /(a: int(32), b: int(32)): int(32)
def /(a: int(64), b: int(64)): int(64)
def /(a: uint(32), b: uint(32)): uint(32)
def /(a: uint(64), b: uint(64)): uint(64)
def /(a: uint(64), b: int(64))
def /(a: int(64), b: uint(64))

def /(a: real(32), b: real(32)): real(32)
def /(a: real(64), b: real(64)): real(64)

def /(a: imag(32), b: imag(32)): real(32)
def /(a: imag(64), b: imag(64)): real(64)

def /(a: complex(64), b: complex(64)): complex(64)
def /(a: complex(128), b: complex(128)): complex(128)

def /(a: real(32), b: imag(32)): imag(32)
def /(a: imag(32), b: real(32)): imag(32)
def /(a: real(64), b: imag(64)): imag(64)
def /(a: imag(64), b: real(64)): imag(64)

def /(a: real(32), b: complex(64)): complex(64)
def /(a: complex(64), b: real(32)): complex(64)
def /(a: real(64), b: complex(128)): complex(128)
def /(a: complex(128), b: real(64)): complex(128)

def /(a: imag(32), b: complex(64)): complex(64)
def /(a: complex(64), b: imag(32)): complex(64)
def /(a: imag(64), b: complex(128)): complex(128)
def /(a: complex(128), b: imag(64)): complex(128)
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For each of these definitions that return a value, the result is the quotient of the two operands.

It is a compile-time error to divide a value of type uint(64) by a value of type int(64), and vice versa.

Division of values of imaginary type produces a value of real type. Division over a value of real type and a
value of imaginary type produces a value of imaginary type. Division of values of complex type and either
real or imaginary types produces a value of complex type.

10.11.7 Modulus Operators

The modulus operators are predefined as follows:

def %(a: int(32), b: int(32)): int(32)
def %(a: int(64), b: int(64)): int(64)
def %(a: uint(32), b: uint(32)): uint(32)
def %(a: uint(64), b: uint(64)): uint(64)
def %(a: uint(64), b: int(64))
def %(a: int(64), b: uint(64))

For each of these definitions that return a value, the result is the remainder when the first operand is divided
by the second operand.

It is a compile-time error to take the remainder of a value of type uint(64) and a value of type int(64),
and vice versa.

There is an expectation that the predefined modulus operators will be extended to handle real, imaginary, and
complex types in the future.

10.11.8 Exponentiation Operators

The exponentiation operators are predefined as follows:

def **(a: int(32), b: int(32)): int(32)
def **(a: int(64), b: int(64)): int(64)
def **(a: uint(32), b: uint(32)): uint(32)
def **(a: uint(64), b: uint(64)): uint(64)
def **(a: uint(64), b: int(64))
def **(a: int(64), b: uint(64))

def **(a: real(32), b: real(32)): real(32)
def **(a: real(64), b: real(64)): real(64)

For each of these definitions that return a value, the result is the value of the first operand raised to the power
of the second operand.

It is a compile-time error to take the exponent of a value of type uint(64) by a value of type int(64), and
vice versa.

There is an expectation that the predefined exponentiation operators will be extended to handle imaginary
and complex types in the future.



42 Chapel Language Specification

10.12 Bitwise Operators

This section describes the predefined bitwise operators. These operators can be redefined over different types
using operator overloading (§13.9).

10.12.1 Bitwise Complement Operators

The bitwise complement operators are predefined as follows:
def ˜(a: bool): bool
def ˜(a: int(32)): int(32)
def ˜(a: int(64)): int(64)
def ˜(a: uint(32)): uint(32)
def ˜(a: uint(64)): uint(64)

For each of these definitions, the result is the bitwise complement of the operand.

10.12.2 Bitwise And Operators

The bitwise and operators are predefined as follows:
def &(a: bool, b: bool): bool
def &(a: int(32), b: int(32)): int(32)
def &(a: int(64), b: int(64)): int(64)
def &(a: uint(32), b: uint(32)): uint(32)
def &(a: uint(64), b: uint(64)): uint(64)
def &(a: uint(64), b: int(64))
def &(a: int(64), b: uint(64))

For each of these definitions that return a value, the result is computed by applying the logical and operation
to the bits of the operands.

It is a compile-time error to apply the bitwise and operator to a value of type uint(64) and a value of type
int(64), and vice versa.

10.12.3 Bitwise Or Operators

The bitwise or operators are predefined as follows:
def |(a: bool, b: bool): bool
def |(a: int(32), b: int(32)): int(32)
def |(a: int(64), b: int(64)): int(64)
def |(a: uint(32), b: uint(32)): uint(32)
def |(a: uint(64), b: uint(64)): uint(64)
def |(a: uint(64), b: int(64))
def |(a: int(64), b: uint(64))

For each of these definitions that return a value, the result is computed by applying the logical or operation to
the bits of the operands.

It is a compile-time error to apply the bitwise or operator to a value of type uint(64) and a value of type
int(64), and vice versa.
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10.12.4 Bitwise Xor Operators

The bitwise xor operators are predefined as follows:

def ˆ(a: bool, b: bool): bool
def ˆ(a: int(32), b: int(32)): int(32)
def ˆ(a: int(64), b: int(64)): int(64)
def ˆ(a: uint(32), b: uint(32)): uint(32)
def ˆ(a: uint(64), b: uint(64)): uint(64)
def ˆ(a: uint(64), b: int(64))
def ˆ(a: int(64), b: uint(64))

For each of these definitions that return a value, the result is computed by applying the XOR operation to the
bits of the operands.

It is a compile-time error to apply the bitwise xor operator to a value of type uint(64) and a value of type
int(64), and vice versa.

10.13 Shift Operators

This section describes the predefined shift operators. These operators can be redefined over different types
using operator overloading (§13.9).

The shift operators are predefined as follows:

def <<(a: int(32), b): int(32)
def >>(a: int(32), b): int(32)
def <<(a: int(64), b): int(64)
def >>(a: int(64), b): int(64)
def <<(a: uint(32), b): uint(32)
def >>(a: uint(32), b): uint(32)
def <<(a: uint(64), b): uint(64)
def >>(a: uint(64), b): uint(64)

The type of the second actual argument must be any integral type.

The << operator shifts the bits of a left by the integer b. The new low-order bits are set to zero.

The >> operator shifts the bits of a right by the integer b. When a is negative, the new high-order bits are set
to one; otherwise the new high-order bits are set to zero.

The value of b must be non-negative.

10.14 Logical Operators

This section describes the predefined logical operators. These operators can be redefined over different types
using operator overloading (§13.9).
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10.14.1 The Logical Negation Operator

The logical negation operator is predefined as follows:
def !(a: bool): bool

The result is the logical negation of the operand.

10.14.2 The Logical And Operator

The logical and operator is predefined over bool type. It returns true if both operands evaluate to true;
otherwise it returns false. If the first operand evaluates to false, the second operand is not evaluated and the
result is false.

The logical and operator over expressions a and b given by
a && b

is evaluated as the expression
if isTrue(a) then isTrue(b) else false

The function isTrue is predefined over bool type as follows:
def isTrue(a:bool) return a;

Overloading the logical and operator over other types is accomplished by overloading the isTrue function
over other types.

10.14.3 The Logical Or Operator

The logical or operator is predefined over bool type. It returns true if either operand evaluate to true; otherwise
it returns false. If the first operand evaluates to true, the second operand is not evaluated and the result is true.

The logical or operator over expressions a and b given by
a || b

is evaluated as the expression
if isTrue(a) then true else isTrue(b)

The function isTrue is predefined over bool type as described in §10.14.2. Overloading the logical or
operator over other types is accomplished by overloading the isTrue function over other types.

10.15 Relational Operators

This section describes the predefined relational operators. These operators can be redefined over different
types using operator overloading (§13.9).
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10.15.1 Ordered Comparison Operators

The “less than” comparison operators are predefined over numeric types as follows:

def <(a: int(32), b: int(32)): bool
def <(a: int(64), b: int(64)): bool
def <(a: uint(32), b: uint(32)): bool
def <(a: uint(64), b: uint(64)): bool
def <(a: real(32), b: real(32)): bool
def <(a: real(64), b: real(64)): bool
def <(a: imag(32), b: imag(32)): bool
def <(a: imag(64), b: imag(64)): bool

The result of a < b is true if a is less than b; otherwise the result is false.

The “greater than” comparison operators are predefined over numeric types as follows:

def >(a: int(32), b: int(32)): bool
def >(a: int(64), b: int(64)): bool
def >(a: uint(32), b: uint(32)): bool
def >(a: uint(64), b: uint(64)): bool
def >(a: real(32), b: real(32)): bool
def >(a: real(64), b: real(64)): bool
def >(a: imag(32), b: imag(32)): bool
def >(a: imag(64), b: imag(64)): bool

The result of a > b is true if a is greater than b; otherwise the result is false.

The “less than or equal to” comparison operators are predefined over numeric types as follows:

def <=(a: int(32), b: int(32)): bool
def <=(a: int(64), b: int(64)): bool
def <=(a: uint(32), b: uint(32)): bool
def <=(a: uint(64), b: uint(64)): bool
def <=(a: real(32), b: real(32)): bool
def <=(a: real(64), b: real(64)): bool
def <=(a: imag(32), b: imag(32)): bool
def <=(a: imag(64), b: imag(64)): bool

The result of a <= b is true if a is less than or equal to b; otherwise the result is false.

The “greater than or equal to” comparison operators are predefined over numeric types as follows:

def >=(a: int(32), b: int(32)): bool
def >=(a: int(64), b: int(64)): bool
def >=(a: uint(32), b: uint(32)): bool
def >=(a: uint(64), b: uint(64)): bool
def >=(a: real(32), b: real(32)): bool
def >=(a: real(64), b: real(64)): bool
def >=(a: imag(32), b: imag(32)): bool
def >=(a: imag(64), b: imag(64)): bool

The result of a >= b is true if a is greater than or equal to b; otherwise the result is false.

The ordered comparison operators are predefined over strings as follows:

def <(a: string, b: string): bool
def >(a: string, b: string): bool
def <=(a: string, b: string): bool
def >=(a: string, b: string): bool
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Comparisons between strings are defined based on the ordering of the character set used to represent the
string, which is applied elementwise to the string’s characters in order.

10.15.2 Equality Comparison Operators

The equality comparison operators are predefined over bool and the numeric types as follows:

def ==(a: int(32), b: int(32)): bool
def ==(a: int(64), b: int(64)): bool
def ==(a: uint(32), b: uint(32)): bool
def ==(a: uint(64), b: uint(64)): bool
def ==(a: real(32), b: real(32)): bool
def ==(a: real(64), b: real(64)): bool
def ==(a: imag(32), b: imag(32)): bool
def ==(a: imag(64), b: imag(64)): bool
def ==(a: complex(64), b: complex(64)): bool
def ==(a: complex(128), b: complex(128)): bool

The result of a == b is true if a and b contain the same value; otherwise the result is false. The result of
a != b is equivalent to !(a == b).

The equality comparison operators are predefined over classes as follows:

def ==(a: object, b: object): bool
def !=(a: object, b: object): bool

The result of a == b is true if a and b reference the same storage location; otherwise the result is false. The
result of a != b is equivalent to !(a == b).

Default equality comparison operators are generated for records if the user does not define them. These
operators are described in §15.3.

The equality comparison operators are predefined over strings as follows:

def ==(a: string, b: string): bool
def !=(a: string, b: string): bool

The result of a == b is true if the sequence of characters in a matches exactly the sequence of characters in
b; otherwise the result is false. The result of a != b is equivalent to !(a == b).

10.16 Miscellaneous Operators

This section describes several miscellaneous operators. These operators can be redefined over different types
using operator overloading (§13.9).
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10.16.1 The String Concatenation Operator

The string concatenation operator is predefined as follows:

def +(a: string, b: string): string

The result is the concatenation of a followed by b.

Example. Since integers can be implicitly converted to strings, an integer can be appended to a
string using the string concatenation operator. The code

"result: "+i

where i is an integer appends the value of i to the string literal. If i is 3, then the resulting string
would be "result: 3".

10.16.2 The Arithmetic Domain By Operator

The operator by is predefined on arithmetic domains. It is described in §19.3.3.

10.16.3 The Range By Operator

The operator by is predefined on ranges. It is described in §18.5.1.

10.17 Let Expressions

A let expression allows variables to be declared at the expression level and used within that expression. The
syntax of a let expression is given by:

let-expression:
let variable-declaration-list in expression

The scope of the variables is the let-expression.

Example. Let expressions are useful for defining variables in the context of expression. In the
code

let x: real = a*b, y = x*x in 1/y

the value determined by a*b is computed and converted to type real if it is not already a real.
The square of the real is then stored in y and the result of the expression is the reciprocal of that
value.



48 Chapel Language Specification

10.18 Conditional Expressions

A conditional expression is given by the following syntax:

if-expression:
if expression then expression else expression
if expression then expression

The conditional expression is evaluated in two steps. First, the expression following the if keyword is eval-
uated. Then, if the expression evaluated to true, the expression following the then keyword is evaluated and
taken to be the value of this expression. Otherwise, the expression following the else keyword is evaluated
and taken to be the value of this expression. In both cases, the unselected expression is not evaluated.

The ‘else’ keyword can be omitted only when the conditional expression is immediately nested inside a forall
expression. Such an expression is used to filter predicates as described in §10.19.1 and §22.3.3.

10.19 For Expressions

A for expression is given by the following syntax:

for-expression:
for index-expression in iterator-expression do expression
for iterator-expression do expression

The for-expression evaluates a for-loop (§11.8) in the context of an expression and has the semantics of calling
an iterator (§20) that yields the evaluated expressions on each iteration.

10.19.1 Filtering Predicates in For Expressions

A conditional expression that is immediately enclosed in a for expression does not require an else-part. Such a
conditional expression filters the evaluated expressions and only returns an expression if the condition holds.
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11 Statements

Chapel is an imperative language with statements that may have side effects. Statements allow for the se-
quencing of program execution. They are as follows:

statement:
block-statement
expression-statement
assignment-statement
swap-statement
conditional-statement
select-statement
while-do-statement
do-while-statement
for-statement
label-statement
break-statement
continue-statement
param-for-statement
return-statement
yield-statement
module-declaration-statement
function-declaration-statement
method-declaration-statement
type-declaration-statement
variable-declaration-statement
remote-variable-declaration-statement
tuple-variable-declaration-statement
use-statement
type-select-statement
empty-statement
parallel-statement
on-statement
compiler-diagnostic-statement

The declaration statements are discussed in the sections that define what they declare. Module declaration
statements are defined in §12. Function declaration statements are defined in §13. Method declaration state-
ments are defined in §14.5. Type declaration statements are defined in §7. Variable declaration statements are
defined in §8. Remote variable declaration statements are defined in §23.2.2. Tuple variable declaration state-
ments are defined in §17.5.1. Return statements are defined in §13.2. Yield statements are defined in §20.2.
The parallel-statement consists of statements that create or limit parallelism. These statements are described
in §22. The on-statement is defined in §23.2.1. The compiler error statement is defined in §21.5.

11.1 Blocks

A block is a statement or a possibly empty list of statements that form their own scope. A block is given by

block-statement:
{ statementsopt }
{ }

statements:
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statement
statement statements

Variables defined within a block are local variables (§8.3).

The statements within a block are executed serially unless the block is in a cobegin statement (§22.2.1).

11.2 Expression Statements

The expression statement evaluates an expression solely for side effects. The syntax for an expression state-
ment is given by

expression-statement:
expression ;

11.3 Assignment Statements

An assignment statement assigns the value of an expression to another expression that can appear on the
left-hand side of the operator, for example, a variable. Assignment statements are given by

assignment-statement:
lvalue-expression assignment-operator expression

assignment-operator: one of
= += -= ∗= /= %= ∗∗= &= |= ˆ= &&= ||= <<= >>=

The expression on the right-hand side of the assignment operator is evaluated first; it can be any expression.
The expression on the left hand side must be a valid lvalue (§10.8). It is evaluated second and then assigned
the value.

The assignment operators that contain a binary operator as a prefix is a short-hand for applying the binary
operator to the left and right-hand side expressions and then assigning the value of that application to the al-
ready evaluated left-hand side. Thus, for example, x += y is equivalent to x = x + y where the expression
x is evaluated once.

In a compound assignment, a cast to the type on the left-hand side is inserted before the simple assignment if
the operator is a shift or both the right-hand side expression can be assigned to the left-hand side expression
and the type of the left-hand side is a primitive type.

Rationale. This cast is necessary to handle += where the type of the left-hand side is, for
example, int(8) because the + operator is defined on int(32), not int(8).

Values of one primitive or enumerated type can be assigned to another primitive or enumerated type if an
implicit coercion exists between those types (§9.1).

The validity and semantics of assigning between classes (§14.3), records (§15.2.3), unions (§16.3), tuples (§17.3),
ranges (§18.4), domains (§19.1.3), and arrays (§19.2.4) is discussed in these later sections.
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11.4 The Swap Statement

The swap statement indicates to swap the values in the expressions on either side of the swap operator. Since
both expressions are assigned to, each must be a valid lvalue expression (§10.8).

swap-statement:
lvalue-expression swap-operator lvalue-expression

swap-operator:
<=>

To implement the swap operation, the compiler uses temporary variables as necessary.

Example. The following swap statement

var a, b: real;

a <=> b;

is semantically equivalent to:

const t = b;
b = a;
a = t;

11.5 The Conditional Statement

The conditional statement allows execution to choose between two statements based on the evaluation of an
expression of bool type. The syntax for a conditional statement is given by

conditional-statement:
if expression then statement else-partopt

if expression block-statement else-partopt

else-part:
else statement

A conditional statement evaluates an expression of bool type. If the expression evaluates to true, the first
statement in the conditional statement is executed. If the expression evaluates to false and the optional else-
clause exists, the statement following the else keyword is executed.

If the expression is a parameter, the conditional statement is folded by the compiler. If the expression eval-
uates to true, the first statement replaces the conditional statement. If the expression evaluates to false, the
second statement, if it exists, replaces the conditional statement; if the second statement does not exist, the
conditional statement is removed.

If the statement that immediately follows the optional then keyword is a conditional statement and it is not
in a block, the else-clause is bound to the nearest preceding conditional statement without an else-clause.

Each statement embedded in the conditional-statement has its own scope whether or not an explicit block
surrounds it.
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11.6 The Select Statement

The select statement is a multi-way variant of the conditional statement. The syntax is given by:

select-statement:
select expression { when-statements }

when-statements:
when-statement
when-statement when-statements

when-statement:
when expression-list do statement
when expression-list block-statement
otherwise statement

expression-list:
expression
expression , expression-list

The expression that follows the keyword select, the select expression, is compared with the list of expres-
sions following the keyword when, the case expressions, using the equality operator ==. If the expressions
cannot be compared with the equality operator, a compile-time error is generated. The first case expression
that contains an expression where that comparison is true will be selected and control transferred to the asso-
ciated statement. If the comparison is always false, the statement associated with the keyword otherwise,
if it exists, will be selected and control transferred to it. There may be at most one otherwise statement and
its location within the select statement does not matter.

Each statement embedded in the when-statement has its own scope whether or not an explicit block surrounds
it.

11.7 The While and Do While Loops

There are two variants of the while loop in Chapel. The syntax of the while-do loop is given by:

while-do-statement:
while expression do statement
while expression block-statement

The syntax of the do-while loop is given by:

do-while-statement:
do statement while expression ;

In both variants, the expression evaluates to a value of type bool which determines when the loop terminates
and control continues with the statement following the loop.

The while-do loop is executed as follows:

1. The expression is evaluated.
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2. If the expression evaluates to false, the statement is not executed and control continues to the state-
ment following the loop.

3. If the expression evaluates to true, the statement is executed and control continues to step 1, evaluating
the expression again.

The do-while loop is executed as follows:

1. The statement is executed.

2. The expression is evaluated.

3. If the expression evaluates to false, control continues to the statement following the loop.

4. If the expression evaluates to true, control continues to step 1 and the the statement is executed again.

In this second form of the loop, note that the statement is executed unconditionally the first time.

11.8 The For Loop

The for loop iterates over ranges, domains, arrays, iterators, or any class that implements an iterator named
these. The syntax of the for loop is given by:

for-statement:
for loop-control-part loop-body-part

loop-control-part:
index-expression in iterator-expression
iterator-expression

loop-body-part:
do statement
block-statement

index-expression:
expression

iterator-expression:
expression

The index-expression can be an identifier or a tuple of identifiers. The identifiers are declared to be new
variables for the scope of this statement. A for loop can be defined without an index expression.

If the iterator-expression is a tuple delimited by parentheses, the components of the tuple must support itera-
tion, e.g., a tuple of arrays, and those components are iterated over using a zipper iteration defined in §11.8.1.
If the iterator-expression is a tuple delimited by brackets, the components of the tuple must support iteration
and these components are iterated over using a tensor product iteration defined in §11.8.2.



54 Chapel Language Specification

11.8.1 Zipper Iteration

When multiple iterators are iterated over in a zipper context, on each iteration, each expression is iterated over,
the values are returned by the iterators in a tuple and assigned to the index, and the statement is executed.

The shape of each iterator, the rank and the extents in each dimension, must be identical.

Example. The output of

for (i, j) in (1..3, 4..6) do
write(i, " ", j, " ");

is “1 4 2 5 3 6 ”.

11.8.2 Tensor Product Iteration

When multiple iterators are iterated over in a tensor product context, they are iterated over as if they were
nested in distinct for loops. There is no constraint on the iterators as there is in the zipper context.

Example. The output of

for (i, j) in [1..3, 4..6] do
write(i, " ", j, " ");

is “1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 5 3 6 ”. The statement is equivalent to

for i in 1..3 do
for j in 4..6 do

write(i, " ", j, " ");

11.8.3 Parameter For Loops

Parameter for loops are unrolled by the compiler so that the index variable is a parameter rather than a
variable. The syntax for a parameter for loop statement is given by:

param-iterator-expression:
range-literal
range-literal by integer-literal

param-for-statement:
for param identifier in param-iterator-expression do statement
for param identifier in param-iterator-expression block-statement

Parameter for loops are restricted to iteration over range literals with an optional by expression where the
bounds and stride must be parameters. The loop is then unrolled for each iteration.
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11.9 The Label, Break, and Continue Statements

The label-statement is used to apply a label to a specific loop which can then be the target of a break- or
continue-statement. If a break- or continue-statement has no label, the target is the lexically inner-most loop.

The syntax for label, break, and continue statements is given by:

label-statement:
label identifier statement

break-statement:
break identifieropt ;

continue-statement:
continue identifieropt ;

If a break-statement is encountered, control will be transferred to after the loop. If a continue-statement is
encountered, control will be transferred to the end of the loop, but still inside the loop. Break-statements
cannot be used in parallel loops. Neither break- nor continue-statements can be used in cobegin-, coforall-,
begin-, or end-statements.

11.10 The Use Statement

The use statement makes symbols in modules available without accessing them via the module name. The
syntax of the use statement is given by:

use-statement:
use module-name-list ;

module-name-list:
module-name
module-name , module-name-list

module-name:
identifier
module-name . module-name

The use statement makes symbols in each listed module’s scope available from the scope where the use
statement occurs.

Symbols injected by a use statement are at an outer scope from those defined directly in the scope where the
use statement occurs, but at a nearer scope than symbols defined in the scope containing the scope where the
use statement occurs.

If used modules themselves use other modules, symbols are scoped according the depth of use statements
followed to find them. It is an error for two variables, types, or modules to be defined at the same depth.

Open issue. There is an expectation that this statement will be extended to allow the programmer
to restrict which symbols are ’used’ as well as to rename symbols that are used.
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11.11 The Type Select Statement

A type select statement has two uses. It can be used to determine the type of a union, as discussed in §16.4. In
its more general form, it can be used to determine the types of one or more values using the same mechanisms
used to disambiguate function definitions. It syntax is given by:

type-select-statement:
type select expression-list { type-when-statements }

type-when-statements:
type-when-statement
type-when-statement type-when-statements

type-when-statement:
when type-list do statement
when type-list block-statement
otherwise statement

expression-list:
expression
expression , expression-list

type-list:
type-specifier
type-specifier , type-list

Call the expressions following the keyword select, the select expressions. The number of select expressions
must be equal to the number of types following each of the when keywords. Like the select statement, one
of the statements associated with a when will be executed. In this case, that statement is chosen by the
function resolution mechanism. The select expressions are the actual arguments, the types following the
when keywords are the types of the formal arguments for different anonymous functions. The function that
would be selected by function resolution determines the statement that is executed. If none of the functions
are chosen, the the statement associated with the keyword otherwise, if it exists, will be selected.

As with function resolution, this can result in an ambiguous situation. Unlike with function resolution, in the
event of an ambiguity, the first statement in the list of when statements is chosen.

11.12 The Empty Statement

An empty statement has no effect. The syntax of an empty statement is given by

empty-statement:
;
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12 Modules

Chapel supports modules to manage name spaces. Every symbol, including variables, functions, and types,
are associated with some module.

Module definitions are described in §12.1. A program consists of one or more modules. The execution of a
program and command-line arguments are described in §12.2. Module uses and explicit naming of symbols
is described in §12.3. Nested modules are described in §12.4. The relation between files and modules is
described in §12.5.

12.1 Module Definitions

A module is declared with the following syntax:

module-declaration-statement:
module identifier block-statement

A module’s name is specified after the module keyword. The block-statement opens the module’s scope.
Symbols defined in this block statement are defined in the module’s scope.

Module declaration statements may only be top-level statements in files or top-level statements in other
modules. A module that is declared in another module is called a nested module (§12.4).

12.2 Program Execution

Chapel programs start by executing the main function (§12.2.1). The main function takes no arguments but
command-line arguments can be passed to a program via a global array of strings called argv (§12.2.2).
Command-line flags can be passed to a program via configuration variables, as discussed in §8.5.

12.2.1 The main Function

The main function must be called main and must have zero arguments. It can be specified with or without
parentheses. There can be only one main function in all of the modules that make up a program. Every
main function starts by using the module that it is defined in, and thus executing the top-level code in that
module (§12.2.3).

The main function can be omitted if there is only a single module in the program other than the standard
modules, as discussed in §12.2.4.

12.2.2 Command-Line Arguments

A predefined array of strings called argv is used to capture arguments to the execution of a program. The
number of arguments passed to the program execution can be queried with the array numElements function
as in

argv.numElements
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12.2.3 Module Execution

Top-level code in a module is executed the first time that module is used via a use-statement.

12.2.4 Programs with a Single Module

To aid in exploratory programming, if a program is defined in a single module that uses only standard mod-
ules, the module need not define a main function. In this case, a default main function is created to execute
the module code.

Example. The code

writeln("Hello World!");

is a legal and complete Chapel program. The module declaration is taken to be the file as de-
scribed in §12.5.

12.3 Using Modules

Modules can be used by code outside of that module. This allows access to the symbols in the modules
without the need for explicit naming (§12.3.1). Using modules is accomplished via the use statement as
defined in §11.10.

12.3.1 Explicit Naming

All symbols can be named explicitly with the following syntax:

module-access-expression:
module-identifier-list . identifier

module-identifier-list:
module-identifier
module-identifier . module-identifier-list

module-identifier:
identifier

This allows two variables that have the same name to be distinguished based on the name of their module.
For functions, the visible functions are restricted to the specified module. For all symbols, the symbol must
be declared top-level to the specified module.

If code requires using symbols that have the same name from two different modules, explicit naming is needed
to disambiguate between the two symbols. Explicit naming can also be used instead of using a module.

For calls of generic functions, if this call becomes the point of instantiation, there is an implicit use of the
specified module at this call site.
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12.4 Nested Modules

A nested module is a module that is defined inside another module, the outer module. Nested modules
automatically have access to all of the symbols in the outer module. However, the outer module needs to
explicitly use a nested module to have access to its symbols.

Example. A nested module can be used without using the outer module by explicitly naming
the module in the use statement. The code

use libmsl.blas;

uses a module named blas that is nested inside a module named libmsl.

12.5 Implicit Modules

Multiple modules can be defined in the same file and do not need to bear any relation to the file in terms of
their names. As a convenience, a module declaration statement can be omitted if it is the sole module defined
in a file. In this case, the module takes its name from the file.
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13 Functions

This section defines functions. Methods and iterators are functions and most of this section applies to them
as well. They are defined separately in §20 and §14.5.

13.1 Function Definitions

Functions are declared with the following syntax:

function-declaration-statement:
def function-name argument-listopt var-param-clauseopt

return-typeopt where-clauseopt function-body

function-name:
identifier
operator-name

operator-name: one of
+ -∗ / % ∗∗ ! == <= >= < > << >> & | ˆ ˜

argument-list:
( formalsopt )

formals:
formal
formal , formals

formal:
formal-tag identifier formal-typeopt default-expressionopt

formal-tag identifier formal-typeopt variable-argument-expression

formal-type:
: type-specifier
: ? identifieropt

default-expression:
= expression

variable-argument-expression:
... expression
... ? identifieropt

formal-tag: one of
in out inout param type

var-param-clause:
var
const
param

return-type:
: type-specifier
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where-clause:
where expression

function-body:
block-statement
return-statement

Operator overloading is supported in Chapel on the operators listed above under operator name. Operator
and function overloading is discussed in §13.9.

The intents in, out, and inout are discussed in §13.5. The formal tags param and type make a function
generic and are discussed in §21. If the formal argument’s type is elided, generic, or prefixed with a question
mark, the function is also generic and is discussed in §21.

Default expressions allow for the omission of actual arguments at the call site, resulting in the implicit passing
of a default value. Default values are discussed in §13.4.2.

Functions do not require parentheses if they have no arguments. Such functions are described in §13.11.

Return types are optional and are discussed in §13.6.

Functions can take a variable number of arguments. Such functions are discussed in §13.13.

The optional var-param-clause defines a variable function, discussed in §13.7, or a parameter function, dis-
cussed in §13.8. By default, a function call cannot be treated as an lvalue and is constant. This may be
explicitly specified via the keyword const.

The optional where clause is only applicable if the function is generic. It is discussed in §21.4.

13.2 The Return Statement

The return statement can only appear in a function. It exits that function, returning control to the point at
which that function was called. It can optionally return a value. The syntax of the return statement is given
by

return-statement:
return expressionopt ;

Example. The following code defines a function that returns the sum of three integers:

def sum(i1: int, i2: int, i3: int)
return i1 + i2 + i3;

13.3 Function Calls

Functions are called in call expressions described in §10.5. The function that is called is resolved according
to the algorithm described in §13.10.
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13.4 Formal Arguments

Chapel supports an intuitive formal argument passing mechanism. An argument is passed by value unless it
is a class, array, or domain in which case it is passed by reference.

Intents (§13.5) result in potential assignments to temporary variables during a function call. For example,
passing an array by intent in, a temporary array will be created.

13.4.1 Named Arguments

A formal argument can be named at the call site to explicitly map an actual argument to a formal argument.

Example. In the code

def foo(x: int, y: int) { ... }

foo(x=2, y=3);
foo(y=3, x=2);

named argument passing is used to map the actual arguments to the formal arguments. The two
function calls are equivalent.

Named arguments are sometimes necessary to disambiguate calls or ignore arguments with default values.
For a function that has many arguments, it is sometimes good practice to name the arguments at the call-site
for compiler-checked documentation.

13.4.2 Default Values

Default values can be specified for a formal argument by appending the assignment operator and a default
expression the declaration of the formal argument. If the actual argument is omitted from the function call,
the default expression is evaluated when the function call is made and the evaluated result is passed to the
formal argument as if it were passed from the call site.

Example. In the code

def foo(x: int = 5, y: int = 7) { ... }

foo();
foo(7);
foo(y=5);

default values are specified for the formal arguments x and y. The three calls to foo are
equivalent to the following three calls where the actual arguments are explicit: foo(5, 7),
foo(7, 7), and foo(5, 5). Note that named arguments are necessary to pass actual argu-
ments to formal arguments but use default values for arguments that are specified earlier in the
formal argument list.
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13.5 Intents

Intents allow the actual arguments to be copied to a formal argument and also to be copied back.

13.5.1 The Blank Intent

If the intent is omitted, it is called a blank intent. In such a case, the value is copied in using the assignment
operator. Thus classes are passed by reference and records are passed by value. Arrays and domains are an
exception because assignment does not apply from the actual to the formal. Instead, arrays and domains are
passed by reference.

With the exception of arrays, any argument that has blank intent cannot be assigned within the function.

13.5.2 The In Intent

If in is specified as the intent, the actual argument is copied to the formal argument as usual, but it may also
be assigned to within the function. This assignment is not reflected back at the call site.

If an array is passed to a formal argument that has in intent, a copy of the array is made via assignment.
Changes to the elements within the array are thus not reflected back at the call site. Domains cannot be
passed to a function via the in intent.

13.5.3 The Out Intent

If out is specified as the intent, the actual argument is ignored when the call is made, but after the call, the
formal argument is assigned to the actual argument at the call site. The actual argument must be a valid
lvalue. The formal argument can be assigned to and read from within the function.

The formal argument cannot not be generic and is treated as a variable declaration. Domains cannot be passed
to a function via the out intent.

13.5.4 The Inout Intent

If inout is specified as the intent, the actual argument is both passed to the formal argument as if the in

intent applied and then copied back as if the out intent applied. The formal argument can be generic and
takes its type from the actual argument. Domains cannot be passed to a function via the inout intent. The
formal argument can be assigned to and read from within the function.

13.6 Return Types

A function can optionally return a value. If the function does not return a value, then no return type can be
specified. If the function does return a value, the return type is optional.
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13.6.1 Explicit Return Types

If a return type is specified, the values that the function returns via return statements must be assignable to a
value of the return type. For variable functions (§13.7), the return type must match the type returned in all of
the return statements exactly.

13.6.2 Implicit Return Types

If a return type is not specified, it will be inferred from the return statements. Given the types that are returned
by the different statements, if exactly one of those types can be a target, via implicit conversions, of every
other type, then that is the inferred return type. Otherwise, it is an error. For variable functions (§13.7), every
return statement must return the same exact type and it becomes the inferred type.

13.7 Variable Functions

A variable function is a function that can be assigned a value. Note that a variable function does not return a
reference. That is, the reference cannot be captured.

A variable function is specified by following the argument list with the var keyword. A variable function
must return an lvalue.

When a variable function is called on the left-hand side of an assignment statement or in the context of a call
to a formal argument by out or inout intent, the lvalue that is returned by the function is assigned a value.

Variable functions support an implicit argument setter of type bool that is a compile-time constant (and
can thus be folded). If the variable function is called in a context such that the returned lvalue is assigned a
value, the argument setter is true; otherwise it is false. This argument is useful for controlling different
behavior depending on the call site.

Example. The following code creates a function that can be interpreted as a simple two-element
array where the elements are actually global variables:

var x, y = 0;

def A(i: int) var {
if i < 0 || i > 1 then

halt("array access out of bounds");
if i == 0 then

return x;
else

return y;
}

This function can be assigned to in order to write to the “elements” of the array as in

A(0) = 1;
A(1) = 2;

It can be called as an expression to access the “elements” as in

writeln(A(0) + A(1));
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This code outputs the number 3.

The implicit setter argument can be used to ensure, for example, that the second element in
the pseudo-array is only assigned a value if the first argument is positive. To do this, the line

if setter && i == 1 && x <= 0 then
halt("cannot assign value to A(1) if A(0) <= 0");

13.8 Parameter Functions

A parameter function is a function that returns a parameter expression. It is specified by following the
function’s argument list by the keyword param. It is often, but not necessarily, generic.

It is a compile-time error if a parameter function does not return a parameter expression. The result of a
parameter function is computed during compilation and the result is inlined at the call site.

Example. In the code

def sumOfSquares(param a: int, param b: int) param
return a**2 + b**2;

var x: sumOfSquares(2, 3)*int;

the function sumOfSquares is a parameter function that takes two parameters as arguments.
Calls to this function can be used in places where a parameter expression is required. In this
example, the call is used in the declaration of a homogeneous and so is required to be a parameter.

.

Parameter functions may not contain control flow that is not resolved at compile-time. This includes loops
other than the parameter for loop §11.8.3 and conditionals with a conditional expressions that is not a param-
eter.

13.9 Function Overloading

Functions that have the same name but different argument lists are called overloaded functions. Function
calls to overloaded functions are resolved according to the algorithm in §13.10.

Operator overloading is achieved by defining a function with a name specified by that operator. The operators
that may be overloaded are listed in the following table:

arity operators
unary + - ! ˜
binary + - * / % ** ! == <= >= < > << >> & | ˆ

The arity and precedence of the operator must be maintained when it is overloaded. Operator resolution
follows the same algorithm as function resolution.
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13.10 Function Resolution

Given a function call, the function that the call resolves to is determined according to the following algorithm:

• Identify the set of visible functions. A visible function is any function with the same name that satisfies
the criteria in §13.10.1.

• From the set of visible functions, determine the set of candidate functions. A function is a candidate if
the function is a valid application of the function call’s actual arguments as determined in §13.10.2. A
compiler error occurs if there are no candidate functions.

• From the set of candidate functions, the most specific function is determined. The most specific func-
tion is a candidate function that is more specific than every other candidate function. If there is no
function that is more specific than every other candidate function, the function call is ambiguous and a
compiler error occurs. The term more specific function is defined in §13.10.3.

.

13.10.1 Identifying Visible Functions

A function is a visible function to a function call if the name of the function is the same as the name of
the function call and the function is defined or used in a lexical outer scope. Function visibility in generic
functions is discussed in §21.2.

13.10.2 Determining Candidate Functions

A function is a candidate function if there is a valid mapping from the function call to the function and each
actual argument is mapped to a formal argument that is a legal argument mapping.

Valid Mapping A function call is mapped to a function according to the following steps:

• Each actual argument that is passed by name is matched to the formal argument with that name. If
there is no formal argument with that name, there is no valid mapping.

• The remaining actual arguments are mapped in order to the remaining formal arguments in order. If
there are more actual arguments then formal arguments, there is no valid mapping. If any formal
argument that is not mapped to by an actual argument does not have a default value, there is no valid
mapping.

• The valid mapping is the mapping of actual arguments to formal arguments plus default values to
formal arguments that are not mapped to by actual arguments.



68 Chapel Language Specification

Legal Argument Mapping An actual argument of type TA can be mapped to a formal argument of type
TF if any of the following conditions hold:

• TA and TF are the same type.

• There is an implicit coercion from TA to TF .

• TA is derived from TF .

• TA is scalar promotable to TF .

13.10.3 Determining More Specific Functions

Given two functions F1 and F2, F1 is determined to be more specific than F2 by the following steps:

• If at least one of the legal argument mappings to F1 is a more specific argument mapping than the
corresponding legal argument mapping to F2 and none of the legal argument mappings to F2 is a more
specific argument mapping than the corresponding legal argument mapping to F1, then F1 is more
specific.

• If F1 does not require promotion and F2 does require promotion, then F1 is more specific.

• If F1 shadows F2, then F1 is more specific.

• Otherwise, F1 is not more specific than F2.

Given an argument mapping, M1, from an actual argument, A, of type TA to a formal argument, F1, of type
TF1 and an argument mapping, M2, from the same actual argument to a formal argument, F2, of type TF2,
the more specific argument mapping is determined by the following steps:

• If TF1 and TF2 are the same type and F1 is an instantiated parameter, M1 is more specific.

• If TF1 and TF2 are the same type and F2 is an instantiated parameter, M2 is more specific.

• If M1 requires scalar promotion and M2 does not require scalar promotion, M2 is more specific.

• If M2 requires scalar promotion and M1 does not require scalar promotion, M1 is more specific.

• If F1 is generic over all types and F2 is not generic over all types, M2 is more specific.

• If F2 is generic over all types and F1 is not generic over all types, M1 is more specific.

• If TF1 and TF2 are the same type, neither mapping is more specific.

• If TA and TF1 are the same type, M1 is more specific.

• If TA and TF2 are the same type, M2 is more specific.

• If TF1 is derived from TF2, then M1 is more specific.

• If TF2 is derived from TF1, then M2 is more specific.

• If there is an implicit coercion from TF1 to TF2, then M1 is more specific.
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• If there is an implicit coercion from TF2 to TF1, then M2 is more specific.

• If TF1 is any int type and TF2 is any uint type, M1 is more specific.

• If TF2 is any int type and TF1 is any uint type, M2 is more specific.

• Otherwise neither mapping is more specific.

13.11 Functions without Parentheses

Functions do not require parentheses if they have empty argument lists. Functions declared without paren-
theses around empty argument lists must be called without parentheses.

Example. Given the definitions

def foo { }
def bar() { }

the function foo can be called by writing foo and the function bar can be called by writing
bar(). It is an error to apply parentheses to foo or omit them from bar.

13.12 Nested Functions

A function defined in another function is called a nested function. Nesting of functions may be done to
arbitrary degrees, i.e., a function can be nested in a nested function.

Nested functions are only visible to function calls within the scope in which they are defined.

13.12.1 Accessing Outer Variables

Nested functions may refer to variables defined in the function in which they are nested.

13.13 Variable Length Argument Lists

Functions can be defined to take a variable number of arguments where those arguments can have any intent
or can be types. A variable number of parameters is not supported. This allows the call site to pass a different
number of actual arguments.

If the variable argument expression is an identifier prepended by a question mark, the number of arguments
is variable. Alternatively, the variable expression can evaluate to an integer parameter value requiring the call
site to pass that number of arguments to the function.

In the function, the formal argument is a tuple of the actual arguments.

Example. The code
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def mywriteln(x ...?k) {
for param i in 1..k do

writeln(x(i));
}

defines a generic function called mywriteln that takes a variable number of arguments of any
type and then writes them out on separate lines. The parameter for-loop (§11.8.3) is unrolled by
the compiler so that i is a parameter, rather than a variable. This needs to be a parameter for-loop
because the expression x(i) will have a different type on each iteration. The type of x can be
specified in the formal argument list to ensure that the actuals all have the same type.

Example. Either or both the number of variable arguments and their types can be specified. For
example, a basic function to sum the values of three integers can be wrtten as

def sum(x: int...3) return x(1) + x(2) + x(3);

Specifying the type is useful if it is important that each argument have the same type. Specifying
the number is useful in, for example, defining a method on a class that is instantiated over a rank
parameter.

Example. The function

def tuple(x ...?) return x;

creates a generic function that returns tuples. When passed two or more actuals in a call, it
is equivalent to building a tuple so the expressions tuple(1, 2) and (1, 2) are equivalent.
When passed one actual, it builds a 1-tuple which is different than the evaluation of the paren-
thesized expression. Thus the expressions tuple(1) and (1) are not equivalent.

A tuple of variables arguments can be passed to a function that takes variable arguments by destructuring the
tuple in a tuple destructuring expression. The syntax of this expression is given by

tuple-destructuring-expression:
( ... expression )

In this expression, the tuple defined by expression is expanded in place to represent its components. This
allows for the forwarding of variable arguments as variable arguments.
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14 Classes

Classes are an abstraction of a data structure where the storage location is allocated independent of the scope
of the variable of class type. Each call to the constructor creates a new data object and returns a reference to
the object. Storage is reclaimed automatically as described in §14.10.

14.1 Class Types

The syntax of a class type is summarized as follows:

class-type:
identifier
identifier ( named-expression-list )

For non-generic classes, the class name is sufficient to specify the type. For generic classes, the generic fields
must be “passed” to the class name. This is similar to a constructor call except without the new keyword.

14.2 Class Declarations

A class is defined with the following syntax:

class-declaration-statement:
class identifier class-inherit-listopt {

class-statement-listopt }

class-inherit-list:
: class-type-list

class-type-list:
class-type
class-type , class-type-list

class-statement-list:
class-statement
class-statement class-statement-list

class-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

A class-declaration-statement defines a new type symbol specified by the identifier. Classes inherit data and
functionality from other classes if the inherit-type-list is specified. Inheritance is described in §14.8.

The body of a class declaration consists of a sequence of statements where each of the statements either
defines a variable (called a field), a function (called a method), or a type.

If a class contains a variable without a specified type or initialization expression, a type alias or a parameter,
the class is generic. Generic classes are described in §21.
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14.3 Class Assignment

Classes are assigned by reference. After an assignment from one variable of class type to another, the vari-
ables reference the same storage location.

14.4 Class Fields

Variables and constants declared within class declarations define fields within that class. (Parameters make a
class generic.) Fields define the storage associated with a class.

Example. The code

class Actor {
var name: string;
var age: uint;

}

defines a new class type called Actor that has two fields: the string field name and the unsigned
integer field age.

14.4.1 Class Field Accesses

The field in a class is accessed via a member access expression as described in §10.5.2. Fields in a class can
be modified via an assignment statement where the left-hand side of the assignment is a member access.

Example. Given a variable anActor of type Actor, defined above, the code

var s: string = anActor.name;
anActor.age = 27;

reads the field name and assigns the value to the variable s, and assigns the storage location in
the object anActor associated with the field age the value 27.

14.5 Class Methods

A method is a function or iterator that is bound to a class. A method is called by passing an instance of the
class to the method via a special syntax that is similar to a field access.
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14.5.1 Class Method Declarations

Methods are declared with the following syntax:

method-declaration-statement:
def type-binding function-name argument-listopt var-param-clauseopt

return-typeopt where-clauseopt function-name

type-binding:
identifier .

If a method is declared within the lexical scope of a class, record, or union, the type binding can be omitted
and is taken to be the innermost class, record, or union that the method is defined in.

14.5.2 Class Method Calls

A method is called by using the member access syntax as described in §10.5.2 where the accessed expression
is the name of the method.

Example. A method to output information about an instance of the Actor class can be defined
as follows:

def Actor.print() {
writeln("Actor ", name, " is ", age, " years old");

}

This method can be called on an instance of the Actor class, anActor, by writing anActor.print().

14.5.3 The this Reference

The instance of a class is passed to a method using special syntax. It does not appear in the argument list to
the method. The reference this is an alias to the instance of the class on which the method is called.

Example. Let class C, method foo, and function bar be defined as

class C {
def foo() {

bar(this);
}

}
def bar(c: C) { }

Then given an instance of C called c, the method call c.foo() results in a call to bar where the
argument is c.
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14.5.4 The this Method

A method declared with the name this allows a class to be “indexed” similarly to how an array is indexed.
Indexing into a class has the semantics of calling a method on the class named this. There is no other way
to call a method called this. The this method must be declared with parentheses even if the argument list
is empty.

Example. In the following code, the this method is used to create a class that acts like a simple
array that contains three integers indexed by 1, 2, and 3.

class ThreeArray {
var x1, x2, x3: int;
def this(i: int) var {

select i {
when 1 do return x1;
when 2 do return x2;
when 3 do return x3;

}
halt("ThreeArray index out of bounds: ", i);

}
}

14.5.5 The these Method

A method declared with the name these allows a class to be “iterated over” similarly to how a domain or
array is iterated over. Using a class in the context of a loop where an iterator-expression is expected has the
semantics of calling a method on the class named these.

Example. In the following code, the these method is used to create a class that acts like a
simple array that can be iterated over and contains three integers.

class ThreeArray {
var x1, x2, x3: int;
def these() var {

yield x1;
yield x2;
yield x3;

}
}

14.6 Class Constructors

A class constructor is defined by declaring a method with the same name as the class. The constructor is
used to create instances of the class and must be called by preceding a call to it with the new keyword. When
the constructor is called, memory is allocated to store a class instance. Formals for every generic field must
be specified in the constructor unless that generic field has a default specified in the field declaration. When
instantiated, the generic fields are matched up by name.
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14.6.1 The Default Constructor

A default constructor is automatically created for every class in the Chapel program that does not define any
constructors. This constructor is defined such that it has one argument for every field in the class. Each of the
non-generic fields has a default value. Actual values for each generic field must be passed to a constructor
call if no default is specified.

Example. Given the class

class C {
def x: int;
def y: real = 3.14;
def z: string = "Hello, World!";

}

then instances of the class can be created by calling the default constructor as follows:

• The call new C() is equivalent to C(0,3.14,"Hello, World”)!.

• The call new C(2) is equivalent to C(2,3.14,"Hello, World”)!.

• The call new C(z="") is equivalent to C(0,3.14,"").

• The call new C(0,0.0,"") is equivalent to C(0,0.0,"").

14.7 Variable Getter Methods

All field accesses are resolved via getters that are variable methods (§13.7) defined in the class with the same
name as the field. The default getter is defined to simply return the field if the user does not define their own.

Example. In the code

class C {
var setCount: int;
var x: int;
def x var {

if setter then
setCount += 1;

return x;
}

}

an explicit variable getter method is defined for field x. It returns the field x and increments
another field that records the number of times x was assigned a value.

14.8 Inheritance

A “derived” class can inherit from one or more other classes by specifying those classes, the base classes,
following the name of the derived class in the declaration of the derived class. When inheriting from multiple
base classes, only one of the base classes may contain fields. The other classes can only define methods.
Note that a class can still be derived from a class that contains fields which is itself derived from a class that
contains fields.
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14.8.1 The object Class

All classes are derived from the object class either directly, or through the classes they are derived from. A
variable of type object can hold a reference to an object of any class type.

14.8.2 Accessing Base Class Fields

A derived class contains data associated with the fields in its base classes. The fields can be accessed in the
same way that they are accessed in their base class unless the getter or setter method is overridden in the
derived class, as discussed in §14.8.5.

14.8.3 Derived Class Constructors

Derived class constructors automatically call the default constructor of the base class. There is an expectation
that a more standard way of chaining constructor calls will be supported.

14.8.4 Shadowing Base Class Fields

A field in the derived class can be declared with the same name as a field in the base class. Such a field
shadows the field in the base class in that it is always referenced when it is accessed in the context of the
derived class. There is an expectation that there will be a way to reference the field in the base class but this
is not defined at this time.

14.8.5 Overriding Base Class Methods

If a method in a derived class is declared with the identical signature as a method in a base class, then it is
said to override the base class’s method. Such a method is a candidate for dynamic dispatch in the event that
a variable that has the base class type references a variable that has the derived class type.

The identical signature requires that the names, types, and order of the formal arguments be identical. The
return type of the overriding method must be the same as the return type of the base class’s method, or must
be a subclass of the base class method’s return type.

Methods without parentheses are not candidates for dynamic dispatch.

Rationale. Methods without parentheses are primarily used for field accessors of which a default
is created if none is specified. The field accessor should not dynamically dispatch in general since
that would make it impossible to access a base field within a base method should that field be
shadowed by a subclass.
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14.8.6 Inheriting from Multiple Classes

A class can be derived from multiple base classes provided that only one of the base classes contains fields
either directly or from base classes that it is derived from. The methods defined by the other base classes can
be overridden.

14.9 Nested Classes

A class defined within another class is a nested class.

Nested classes can refer to fields and methods in the outer class implicitly or explicitly with an outer refer-
ence.

14.10 Automatic Memory Management

Memory associated with class instances is reclaimed automatically when there is no way for the current
program to reference this memory. The programmer does not need to free the memory associated with class
instances.
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15 Records

A record is a data structure that is like a class but has value semantics. The key differences between records
and classes are described in this section.

15.1 Record Declarations

A record is defined with the following syntax:

record-declaration-statement:
record identifier record-inherit-listopt {

record-statement-list }

record-inherit-list:
: record-type-list

record-type-list:
record-type
record-type , record-type-list

record-statement-list:
record-statement
record-statement record-statement-list

record-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

The only difference between record and class declarations is that the record keyword replaces the class

keyword.

The record type is specified as a class type is and is summarized by the following syntax:

record-type:
identifier
identifier ( named-expression-list )

15.2 Class and Record Differences

The main differences between records and classes are that records are value classes. They do not need to be
reclaimed since the data is recovered when the variable goes out of scope. Records do not support dynamic
dispatch and are assigned by value.

Note that even though records do not allocate storage, the new keyword is still required to construct an
instance.

Rationale. The new keyword disambiguates types from values given the close relationship
between constructors and type specifiers for classes and records.
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15.2.1 Records as Value Classes

A record is not a reference to a storage location that contains the data in the record but is more like a variable
of a primitive type. A record directly contains the data associated with the fields in the record.

15.2.2 Record Inheritance

When a record is derived from a base record, it contains the data in the base record. The difference between
record inheritance and class inheritance is that there is no dynamic dispatch. The record type of a variable is
the exact type of that variable.

15.2.3 Record Assignment

In record assignment, the fields of the record on the left-hand side of the assignment are assigned the values
in the fields of the record on the right-hand side of the assignment. When a base record is assigned a derived
record, just the fields that exist in the base record are assigned. Record assignment is generic in that the
right-hand side expression can be of any type as long as the type contains the same fields (by name) as the
record on the left-hand side.

15.3 Default Comparison Operators on Records

Default functions to overload == and != are defined for records if there is none defined for the record in the
Chapel program. The default implementation of == applies == to each field of the two argument records and
reduces the result with the && operator. The default implementation of != applies != to each field of the two
argument records and reduces the result with the || operator.
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16 Unions

Unions have the semantics of records, however, only one field in the union can contain data at any particular
point in the program’s execution. Unions are safe so that an access to a field that does not contain data is a
runtime error. When a union is constructed, it is in an unset state so that no field contains data.

16.1 Union Types

The syntax of a union type is summarized as follows:

union-type:
identifier

The union type is specified by the name of the union type. This simplification from class and record types is
possible because generic unions are not supported.

16.2 Union Declarations

A union is defined with the following syntax:

union-declaration-statement:
union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

16.2.1 Union Fields

Union fields are accessed in the same way that record fields are accessed. It is a runtime error to access a
field that is not currently set.

Union fields should not be specified with initialization expressions.

16.3 Union Assignment

Union assignment is by value. The field set by the union on the right-hand side of the assignment is assigned
to the union on the left-hand side of the assignment and this same field is marked as set.
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16.4 The Type Select Statement and Unions

The type-select statement can be applied to unions to access the fields in a safe way by determining the type
of the union.
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17 Tuples

A tuple is an ordered set of components that allows for the specification of a light-weight record with anony-
mous fields.

17.1 Tuple Expressions

A tuple expression is a comma-separated list of at least two expressions that is enclosed in parentheses. The
number of expressions is the size of the tuple and the types of the expressions determine the component types
of the tuple. A single expression in parentheses is a parenthesized-expression discussed in §10.4. A 1-tuple
expression can be created by defining a function that takes a variable number of arguments as described
in §13.13.

The syntax of a tuple expression is given by:

tuple-expression:
( expression , expression-list )

expression-list:
expression
expression , expression-list

Example. The statement
var x = (1, 2);

defines a variable x that is a 2-tuple containing the values 1 and 2.

17.2 Tuple Type Definitions

A tuple type is a comma-separated list of at least two types. The number of types in the list defines the size
of the tuple, which is part of the tuple’s type. The syntax of a tuple type is given by:

tuple-type:
( type-specifier , type-list )
homogeneous-tuple-type

type-list:
type-specifier
type-specifier , type-list

Example. Given a tuple expression (1, 2), the type of the tuple value is (int, int), referred
to as a 2-tuple of integers.

The homogeneous-tuple-type specifies a tuple type where all of the type components are identical. This special
syntax is described in §17.6.

If one type is delimited by parentheses, the parentheses are ignored. Specifying a 1-tuple type can be accom-
plished using the syntax for homogeneous tuples in §17.6 by specifying 1 for the integral parameter.
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17.3 Tuple Assignment

In tuple assignment, the components of the tuple on the left-hand side of the assignment operator are each
assigned the components of the tuple on the right-hand side of the assignment. The assignments are simul-
taneous so that each component expression on the right-hand side is fully evaluated before being assigned to
the left-hand side.

17.4 Tuple Operators

The arithmetic (§10.11), bitwise (§10.12), shift (§10.13), and relational (§10.15) operators are also defined
over tuples.

With the exception of relational operators, operations applied to two tuples result in element-by-element
application of the operation.

Relational operators over tuples apply in an ”alphabetical” manner. Each component is compared to the
corresponding component or to the scalar value until the relation is found to be true or false.

Example. In the code:

var x = ("c", "h", "p", "l") > ("c", "h", "a", "t");

The value of x is true. After comparing "c" to "c", and "h" to "h", "p" is found to be greater
than "a", so the expression is true.

17.5 Tuple Destructuring

When a tuple expression appears on the left-hand side of an assignment statement, the expression on the
right-hand side is said to be destructured. The components of the tuple on the right-hand side are assigned
to each of the component expressions on the left-hand side. This assignment is simultaneous in that the
right-hand side is evaluated before the assignments are made.

Example. Given two variables of the same type, x and y, they can be swapped by the following
single assignment statement:

(x, y) = (y, x);

17.5.1 Variable Declarations in a Tuple

Variables can be defined in a tuple to facilitate capturing the values from a function that returns a tuple. The
extension to the syntax of variable declarations is as follows:
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tuple-variable-declaration-statement:
configopt variable-kind tuple-variable-declaration ;

tuple-variable-declaration:
( tuple-identifier-list ) type-partopt initialization-part
( tuple-identifier-list ) type-part

tuple-identifier-list:
tuple-identifier
tuple-identifier , tuple-identifier-list

tuple-identifier:
identifier
( tuple-identifier-list )

The identifiers defined within the tuple-identifier-list are declared to be new variables in the scope of the state-
ment. The type-part and/or initialization-part defines a tuple that is destructured when assigned to the new vari-
ables. The shape of the tuple-identifier-list must match the shape of any specified type-part or initialization-part.

17.5.2 Ignoring Values with Underscore

If an underscore appears as a component in a tuple expression in a destructuring context, the expression on
the right-hand side is ignored, though it is still evaluated.

17.6 Homogeneous Tuples

A homogeneous tuple is a special-case of a general tuple where the types of the components are identical.
Homogeneous tuples have fewer restrictions for how they can be indexed (§17.7).

17.6.1 Declaring Homogeneous Tuples

A homogeneous tuple type may be specified with the following syntax:

homogeneous-tuple-type:
integer-parameter-expression ∗ type-specifier

integer-parameter-expression:
expression

The homogeneous tuple type specification is syntactic sugar for the type explicitly replicated a number of
times equal to the integer-parameter-expression.

Example. The following types are equivalent:

3*int (int, int, int)
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17.7 Tuple Indexing

A tuple may be indexed into by an integer. Indexing a tuple is accomplished by treating the tuple as a function
and passing an integer to it as an argument.

The result of indexing a tuple by integer k is the value of the kth component. If the tuple is not homogeneous,
the tuple can only be indexed by an integer parameter. This ensures that the type of the indexing expression
is statically known.

17.8 Formal Arguments of Tuple Type

This section of the specification is forthcoming. In particular, it is expected that tuple arguments will allow
for implicit conversions on the components rather than treating the arguments as if they are records.

17.8.1 Formal Argument Declarations in a Tuple

Formal argument declarations can be grouped into a tuple similarly to variable declarations to facilitate pass-
ing the result of a function that returns a tuple directly to another function.
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18 Ranges

Chapel’s ranges represent a sequence of integral values. Ranges are either bounded or unbounded.

Bounded ranges are characterized by a low bound l, a high bound h, and a stride s. If the stride is positive,
the values described by the range are l, l + s, l + 2s, l + 3s, ... such that all of the values in the sequence are
less than h. If the stride is negative, the values described by the range are h, h−s, h−2s, h−3s, ... such that
all of the values in the sequence are greater than l. If l > h, the range is considered degenerate and represents
an empty sequence.

Unbounded ranges are those in which the low and/or high bounds are omitted. Unbounded ranges conceptu-
ally represent a countably infinite number of values.

18.1 Range Types

The type of a range in Chapel is characterized by three things: (1) the type of the values being represented,
(2) the boundedness of the range, and (3) whether or not the range is stridable.

The type of the range’s values is represented using a type parameter named eltType. This must be one of
Chapel’s int or uint types. The default value is int.

Open issue. It has been hypothesized that ranges of other types, such as floating point values,
might also be of interest to represent a range of legal tolerances, for example. If you believe such
support would be of interest to you, please let us know.

The boundedness of the range is represented using an enumerated parameter named boundedType of type
BoundedRangeType. Legal values are bounded, boundedLow, boundedHigh, and boundedNone. The
first value specifies a bounded range while the other three values specify a range in which the high bound is
omitted, the low bound is omitted, or both bounds are omitted, respectively. The default value is bounded.

The stridability of a range is represented by a boolean parameter named stridable. If this parameter is set to
true, the range can represent any stride. If set to false, the range’s stride is fixed to be the value 1. The default
value is false.

Rationale. The boundedType and stridable values of a range are used to optimize the generated
code for common cases of ranges, as well as to optimize the implementation of domains and
arrays defined using ranges.

The syntax of a range type is summarized as follows:

range-type:
range ( named-expression-list )

Example. As an example, the following declaration declares a variable r of range type that can
represent ranges of 64-bit integers, with both high and low bounds specified, and the ability to
have a stride other than 1.

var r: range(int(64), BoundedRangeType.bounded, stridable=true);

The default value for a range is 1..0.
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18.2 Literal Range Values

Range literals are specified as follows:

range-literal:
bounded-range-literal
unbounded-range-literal

18.2.1 Bounded Range Literals

A bounded range is specified by the syntax

bounded-range-literal:
expression .. expression

The first expression is taken to be the lower bound l and the second expression is taken to be the upper bound
h. The stride of the range is 1 and can be modified with the by operator as described in §18.5.1.

The element type of the range type is determined by the type of the low and high bound. It is either int,
uint, int(64), or uint(64). The type is determined by conceptually adding the low and high bounds
together. The boundedness of such a range is BoundedRangeType.bounded. The stridability of the range
is false.

18.2.2 Unbounded Range Literals

An unbounded range is specified by the syntax

unbounded-range-literal:
expression ..
.. expression
..

The first form results in a BoundedRangeType.boundedLow range, the second in a BoundedRangeType.boundedHigh
range, and the third in a BoundedRangeType.boundedNone range.

Unbounded ranges can be iterated over with zipper iteration and their shape conforms to the shape of the
other iterators they are being iterated over with.

Example. The code

for i in (1..5, 3..) do
write(i, "; ");

produces the output “(1, 3); (2, 4); (3, 5); (4, 6); (5, 7); ”.

It is an error to zip an unbounded range with a range that does not have a stride with the same sign.

Unbounded ranges can also be used to index into ranges, domains, arrays, and strings. In these cases, elided
bounds are inherited from the bounds of the expression being indexed.
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18.3 Range Methods

def range.low: eltType
def range.high: eltType
def range.stride: int

These routines respectively return the low bound, the high bound, and the stride of the range. The type
of the returned low and high bound is the element type of the range.

18.4 Range Assignment

Assigning one range to another results in its low, high, and stride values being copied from the source range
to the destination range.

In order for range assignment to be legal, the element type of the source range must be implicitly coercible to
the element type of the destination range. The two range types must have the same boundedness parameter.
It is legal to assign a non-stridable range to a stridable range, but illegal to assign a stridable range to a
non-stridable range unless the stridable range has a stride value of 1.

18.5 Range Operators

18.5.1 By Operator

The by operator can be applied to any range to create a strided range. Its syntax is as follows:

expression by expression

The by operator takes a range and an integer to yield a new range that is strided by the integer. Striding a
strided range results in a stride whose value is the product of the two strides.

Rationale. Why isn’t the high bound specified first if the stride is negative? The reason for
this choice is that the by operator is binary, not ternary. Given a range R initialized to 1..3, we
want R by -1 to contain the ordered sequence 3, 2, 1. But then R by -1 would be different
than 3..1 by -1 even though it should be identical by substituting the value in R into the
expression.

18.5.2 Count Operator

The # operator can be applied to a range that has a high bound, a low bound, or both. Its syntax is:

expression # expression
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The # operator takes a range and an integral count and creates a new range with count elements. The stride
of the resulting range is the same as that of the initial range. It is an error for the count to be negative. The
eltType of the resulting range is the same type that would be obtained by adding the integral count value to
the range’s eltType.

When applied to a BoundedRangeType.bounded range with a positive stride, the low bound count elements
are taken starting from the low bound. When the stride is negative, count elements are taken starting from the
high bound.

When applied to a BoundedRangeType.boundedLow range, the low bound is fixed and and the high bound
is set based on the count and the absolute value of the stride.

When applied to a BoundedRangeType.boundedHigh range, the high bound is fixed and the low bound is
set based on the count and the absolute value of the stride.

It is an error to apply the count operator to a BoundedRangeType.boundedNone range.

Example. The following declarations result in equivalent ranges.

var r = 2.. by -2 # 3;
var r2 = ..6 by -2 # 3;
var r3 = 0..6 by -2 # 3;

Each of these ranges represents the ordered set of three values: 6, 4, 2.

18.5.3 Arithmetic Operators

The following arithmetic operators are defined on ranges and integral types:

def +(r: range, s: integral): range
def +(s: integral, s: range): range
def -(r: range, s: integral): range

The + and - operators apply the scalar via the operator to the range’s low and high bounds, producing a
shifted version of the range. The element type of the resulting range is based on the element type of applying
the operator to the input range’s element type and the scalar type. The bounded and stridable parameters for
the result range are the same as for the input range.

Example. The following code creates a bounded, non-stridable range r which has an element
type of int representing the values 0, 1, 2, 3. It then uses the + operator to create a second range
r2 representing the values 1, 2, 3, 4. The r2 range is bounded, non-stridable, and represents
values of type int

var r = 0..3;
var r2 = r + 1;
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18.5.4 Range Slicing

Ranges can be sliced using other ranges to create new sub-ranges. Range slicing is defined by using the range
as a function in a call expression where the argument is another range. The resulting range represents the
intersection between the two ranges. If the slicing range is unbounded in one or both directions, it inherits its
missing bounds from the range being sliced.

Example. In the following example, r represents the integers from 1 to 10 inclusive. Ranges r2
and r3 are defined using range slices and represent the indices from 3 to 10 and the odd integers
between 1 and 10 respectively.

var r = 1..10;
var r2 = r[3..];
var r3 = r[1.. by 2];

18.6 Predefined Functions and Methods on Ranges

def range.eltType type

Returns the element type of the range.

def range.boundedType param : BoundedRangeType

Returns the boundedness of the range.

def range.stridable param: bool

Returns the stridable parameter of the range.

def range.member(i: eltType): bool

Returns whether or not i is in the range.

def range.member(other: range): bool

Returns whether or not every element in other is also in this.

def range.order(i: eltType): eltType

If i is a member of the range, returns an integer value giving the ordinal value of i within the range
using 0-based indexing. Otherwise, it returns (-1):eltType.

Example. The following calls show the order of index 4 in each of the given ranges:

(0..10).order(4) == 4
(1..10).order(4) == 3
(3..5).order(4) == 1
(0..10 by 2).order(4) == 2
(3..5 by 2).order(4) == -1
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19 Domains and Arrays

A domain describes a collection of names for data. These names are referred to as the indices of the domain.
All indices for a particular domain are values with some common type. Valid types for indices are primitive
types and class references or unions, tuples or records whose fields are valid types for indices. This excludes
ranges, domains, and arrays. Domains have a rank and a total order on their elements. An array is a map
from a domain’s indices to a collection of variables. Chapel supports a variety of kinds of domains and arrays
defined over those domains as well as a mechanism to allow application-specific implementations of arrays.

Arrays abstract mappings from sets of values to variables. This key use of data structures coupled with the
generic syntactic support for array usage increases software reusability. By separating the sets of values
into their own abstraction, i.e., domains, distributions can be associated with sets rather than variables. This
enables the orthogonality of data distributions. Distributions are discussed in §23.

19.1 Domains

Domains are first-class ordered sets of indices. There are five kinds of domains:

• Arithmetic domains are rectilinear sets of Cartesian indices that can have an arbitrary rank.

• Sparse domains are subdomains that support a notion of an implicit “zero element” for array elements
described by its base domain but not the domain itself.

• Associative domains are sets of indices where the type of the index is some type that is not an array,
domain, or range. Associative domains define dictionaries or associative arrays implemented via hash
tables.

• Enumerated domains are sets of constants defined by some enumerated type.

• Opaque domains are sets of anonymous indices. Opaque domains define graphs and unspecified sets.

19.1.1 Domain Types

Domain types vary based on the kind of the domain. The type of an arithmetic domain is parameterized by the
rank of the domain and the integral type of the indices. The type of a sparse domain is parameterized by the
type of the domain that defines its bounding index set. The type of an associative domain is parameterized
by the type of the index. The type of an opaque domain is unique. The type of an enumerated domain is
parameterized by the enumerated type.

The syntax of a domain type is summarized as follows:

domain-type:
arithmetic-domain-type
associative-domain-type
opaque-domain-type
enumerated-domain-type
sparse-domain-type
subdomain-type
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Example. In the code

var D: domain(2) = [1..n, 1..n];

D is defined as a two-dimensional arithmetic domain and is initialized to contain the set of indices
(i, j) for all i and j such that i ∈ 1, 2, . . . , n and j ∈ 1, 2, . . . , n.

19.1.2 Index Types

Each domain has a corresponding index type which is the type of the domain’s indices qualified by its status
as an index. Variables of this type can be declared using the following syntax:

index-type:
index ( domain-expression )

If the type of the indices of the domain is int, then the index type can be converted into this type.

A value with a type that is the same as the type of the indices in a domain but is not the index type can be
converted into the index type using a special “method” called index.

Example. In the code

var j = D.index(i);

the type of the variable j is the index type of domain D. The variable i, which must have the
same type as the underlying type of the indices of D, is verified to be in domain D before it is
assigned to j.

Values of index type are known to be valid and may have specialized representations to facilitate accessing
arrays defined for that domain. It may therefore be less expensive to access arrays using values of appropriate
index type rather than values of the more general type the domain is defined over.

19.1.3 Domain Assignment

Domain assignment is by value. If arrays are declared over a domain, domain assignment impacts these arrays
as discussed in §19.8, but the arrays remain associated with the same domain regardless of the assignment.

19.1.4 Formal Arguments of Domain Type

Domains are passed to functions by reference. Formal arguments that receive domains are aliases of the actual
arguments. It is a compile-time error to pass a domain to a formal argument that has a non-blank intent.

19.1.5 Iteration over Domains

All domains support iteration via forall and for loops over the indices in the set that the domain defines. The
type of the indices returned by iterating over a domain is the index type of the domain.
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19.1.6 Domain Promotion of Scalar Functions

Domain promotion of a scalar function is defined over the domain type and the type of the indices of the
domain (not the index type).

Example. Given an array A with element type int declared over a one-dimensional domain
D with integral type int, then the array can be assigned the values given by the indices in the
domain by writing

A = D;

19.2 Arrays

Arrays associate variables or elements with the sets of indices in a domain. Arrays must be declared over
domains and have a specified element type.

19.2.1 Array Types

The type of an array is parameterized by the type of the domain that it is declared over and the element type
of the array. Array types are given by the following syntax:

array-type:
[ domain-expression ] type-specifier

domain-expression:
expression

The domain-expression must specify a domain that the array can be declared over. This can be a domain literal.
If it is a domain literal, the square brackets around the domain literal can be omitted.

Example. In the code

var A: [D] real;

A is declared to be an array over domain D with elements of type real.

An array’s element type can be referred to using the member symbol eltType.

Example. In the following example, x is declared to be of type real since that is the element
type of array A.

var A: [D] real;
var x: A.eltType;
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19.2.2 Array Indexing

Arrays can be indexed by indices in the domain they are declared over. The indexing results in an access of
the element that is mapped by this index.

Example. If A is an array with element type real declared over a one-dimensional arithmetic
domain [1..n], then the first element in A can be accessed via the expression A(1) and set to
zero via the assignment A(1) = 0.0.

Indexing into an array with a domain is call array slicing and is discussed in the next section.

Arithmetic arrays also support indexing over the components of their indices for multidimensional arithmetic
domains (where the indices are tuples), as described in §19.3.5.

19.2.3 Array Slicing

An array can be indexed by a domain that has the same type as the domain which the array was declared over.
Indexing in this manner has the effect of array slicing. The result is a new array declared over the indexing
domain where the elements in the array alias the elements in the array being indexed.

Example. Given the definitions

var OuterD: domain(2) = [0..n+1, 0..n+1];
var InnerD: domain(2) = [1..n, 1..n];
var A, B: [OuterD] real;

the assignment given by

A(InnerD) = B(InnerD);

assigns the elements in the interior of B to the elements in the interior of A.

Arithmetic arrays also support slicing by indexing into them with ranges or tuples of ranges as described
in §19.3.6.

19.2.4 Array Assignment

Array assignment is by value. Arrays can be assigned arrays, ranges, domains, iterators, or tuples. If A is
an lvalue of array type and B is an expression of either array, range, or domain type, or an iterator, then the
assignment

A = B;

is equivalent to

forall (i,e) in (A.domain,B) do
A(i) = e;
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If the zipper iteration is illegal, then the assignment is illegal. Notice that the assignment is implemented with
the semantics of a forall loop.

Arrays can be assigned tuples of values of their element type if the tuple contains the same number of elements
as the array. For multidimensional arrays, the tuple must be a nested tuple such that the nesting depth is equal
to the rank of the array and the shape of this nested tuple must match the shape of the array. The values are
assigned element-wise.

Arrays can also be assigned single values of their element type. In this case, each element in the array is
assigned this value. If e is an expression of the element type of the array or a type that can be implicitly
converted to the element type of the array, then the assignment

A = e;

is equivalent to

forall i in A.domain do
A(i) = e;

19.2.5 Formal Arguments of Array Type

Arrays are passed to functions by reference. Formal arguments that receive arrays are aliases of the actual
arguments. The ordinary rule that disallows assignment to formal arguments of blank intent does not apply
to arrays.

When a formal argument has array type, the element type of the array can be omitted and/or the domain of
the array can be queried or omitted. In such cases, the argument is generic and is discussed in §21.1.6.

If a non-queried domain is specified in the array type of a formal argument, the domain must match the
domain of the actual argument. This is verified at runtime. There is an exception if the domain is an arithmetic
domain; it is described in §19.3.7.

19.2.6 Iteration over Arrays

All arrays support iteration via forall and for loops over the elements mapped to by the indices in the array’s
domain.

19.2.7 Array Promotion of Scalar Functions

Array promotion of a scalar function is defined over the array type and the element type of the array. The
domain of the returned array, if an array is captured by the promotion, is the domain of the array that promoted
the function. In the event of zipper promotion over multiple arrays, the promoted function returns an array
with a domain that is equal to the domain of the first argument to the function that enables promotion. If the
first argument is an iterator or a range, the result is a one-based one-dimensional array.

Example. Whole array operations is a special case of array promotion of scalar functions. In the
code
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A = B + C;

if A, B, and C are arrays, this code assigns each element in A the element-wise sum of the elements
in B and C.

19.2.8 Array Initialization

By default, the elements in an array are initialized to the default values associated with the element type of
the array. There is an expectation that this default initialization can be overridden for performance reasons by
explicitly marking the array type or variable.

The initialization expression in the declaration of an array can be based on the indices in the domain using
special array declaration syntax that replaces both the type and initialization specifications of the declaration:

special-array-declaration:
identifier-list indexed-array-type-part initialization-part

indexed-array-type-part:
: array-type-forall-expression type-specifier

array-type-forall-expression:
[ identifier in domain-expression ]

initialization-part:
= expression

In this code, the array-type-forall-expression is syntactic sugar for surrounding the initialization-part with this
basic forall-expression.

Given a domain expression D, an element type t, an expression e that is of type t or that can be implicitly
converted to type t, then the declaration of array A given by

var A: [i in D] t = e;

is equivalent to

var A: [D] t = [i in D] e;

The scope of the forall expression is as in the rewritten part so the expression e can include references to
index i.

19.2.9 Array Aliases

Array slices alias the data in arrays rather than copying it. Such array aliases can be captured and optionally
reindexed with the array alias operator =>. The syntax for capturing an alias to an array requires a new
variable declaration:
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array-alias-declaration:
identifier reindexing-expressionopt => array-expression ;

reindexing-expression:
[ domain-expression ]

array-expression:
expression

The identifier is an alias to the array specified in the array-expression.

The optional reindexing-expression allows the domain of the array alias to be reindexed. The shape of the
domain in the reindexing-expression must match the shape of the domain of the array-expression. Indexing via
the alias is governed by the new indices.

Example. In the code
var A: [1..5, 1..5] int;
var AA: [0..2, 0..2] => A[2..4, 2..4];

an array alias AA is created to alias the interior of array A given by the slice A[2..4, 2..4]. The
reindexing expression changes the indices defined by the domain of the alias to be zero-based in
both dimensions. Thus AA(1,1) is equivalent to A(3,3).

19.3 Arithmetic Domains and Arrays

An arithmetic domain is a rectilinear set of Cartesian indices. Arithmetic domains are specified as a tuple of
ranges enclosed in square brackets.

19.3.1 Arithmetic Domain Literals

An arithmetic domain literal is a square tuple of ranges.

Example. The expression [1..5, 1..5] defines a 5 × 5 arithmetic domain with the indices
(1, 1), (1, 2), . . . , (5, 5).

19.3.2 Arithmetic Domain Types

The type of an arithmetic domain is determined by three components: (1) the rank of the arithmetic domain
(the number of ranges that define it); (2) an underlying integral type called the dimensional index type which
must be identical to each of the integral element types of the ranges that define the arithmetic domain; (3) a
boolean value indicating whether any of the ranges that define the domain are stridable or not. By default,
the dimensional index type of an arithmetic domain is int and the stridability value is set to false.

The arithmetic domain type is specified by the syntax of a function call to the keyword domain that takes
at least an argument called rank that is a parameter of type int and optionally an integral type named
dim_type and a boolean value named stridable. Its syntax is summarized as follows:



100 Chapel Language Specification

arithmetic-domain-type:
domain ( named-expression-list )

Example. The expression [1..5, 1..5] defines an arithmetic domain with type domain(2, int, false).

19.3.3 Strided Arithmetic Domains

If the ranges that define an arithmetic domain are strided, then the arithmetic domain is said to be strided and
the stridable parameter must be set to true. For domains with inferred type, if the initializing expression uses
stridable ranges, the domain will be inferred to have a stridable parameter of true.

The by operator can be applied to any arithmetic domain to create a strided arithmetic domain. It is predefined
over an arithmetic domain and an integer or a tuple of integers. In the integer case, the ranges in each
dimension are strided by the integer. In the tuple of integers case, the size of the tuple must match the rank
of the domain; the integers stride each dimension of the domain. If the ranges are already strided, the strides
applied by the by operator are multiplied to the strides of the ranges.

19.3.4 Arithmetic Domain Slicing

Arithmetic domains support slicing by indexing into them specifying a range per dimension. Square brackets
should be used for multidimensional domains, while either square brackets or parenthesis can be used for 1D
domains.

For multi-dimensional arithmetic domains, slicing with a rank change is supported by substituting integral
values within a dimension’s range for an actual range. The resulting domain will have a rank less than the
arithmetic domain’s rank and equal to the number of ranges that are passed in to take the slice.

The result is a subdomain of the domain being sliced, as described in §19.9, as defined by the intersection of
the two domains. Partially unbounded or completely unbounded ranges may be used to specify that the slice
should extend to the domain’s lower and/or upper bound.

Example. The following code declares a 2D arithmetic domain D, and then a number of sub-
domains of D by slicing into D using bounded and unbounded ranges. The InnerD domain
describes the inner indices of D, Col2OfD describes the 2nd column of D, and AllButLastRow

describes all of D except for the last row.

const D: domain(2) = [1..n, 1..n],
InnerD = D[2..n-1, 2..n-1],
Col2OfD = D[.., 2..2],
AllButLastRow = D[..n-1, ..];
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19.3.5 Arithmetic Array Indexing

In addition to being indexed by indices defined by their arithmetic domains, arithmetic arrays can be indexed
directly by values of the dimensional index type where the number of values is equal to the rank of the array.
This has the semantics of first moving the values into a tuple and then indexing into the array. The index
represented by the tuple must be an element of the array’s domain or an out-of-bounds error will occur.

Example. Given the definition
var ij = (i,j);

the indexing expressions A(ij) and A(i,j) are equivalent.

19.3.6 Arithmetic Array Slicing

An arithmetic array can be sliced by any arithmetic domain that is a subdomain of the array’s defining domain.
If the subdomain relationship is not met, an out-of-bounds error will occur. The result is a subarray whose
indices are those of the slicing domain and whose elements are an alias of the original array’s. If the indices
in the slicing

Arithmetic arrays also support slicing by ranges directly. If each dimension is indexed by a range, this is
equivalent to slicing the array by the arithmetic domain defined by those ranges.

For multi-dimensional arithmetic arrays, slicing with a rank change is supported by substituting integral
values within a dimension’s range for an actual range. The resulting array will have a rank less than the
arithmetic array’s rank and equal to the number of ranges that are passed in to take the slice.

Example. Given an array
var A: [1..n, 1..n] int;

the slice A[1..n, 1] is a one-dimensional array whose elements are the first column of A.

Array slices may also be expressed using partially unbounded or completely unbounded ranges. This is
equivalent to slicing the array’s defining domain by the specified ranges to create a subdomain as described
in §19.3.4 and then using that subdomain to slice the array.

19.3.7 Formal Arguments of Arithmetic Array Type

Formal arguments of arithmetic array type allow an arithmetic domain to be specified that does not match the
arithmetic domain of the actual arithmetic array that is passed to the formal argument. In this case, the shape
(size in each dimension and rank) of the domain of the actual array must match the shape of the domain of
the formal array. The indices are translated in the formal array, which is a reference to the actual array.

Example. In the code
def foo(X: [1..5] int) { ... }
var A: [1..10 by 2] int;
foo(A);

the array A is strided and its elements can be indexed by the odd integers between one and nine.
In the function foo, the array X references array A and the same elements can be indexed by the
integers between one and five.
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19.4 Sparse Domains and Arrays

Sparse domains are used in Chapel to describe irregular index subsets and to define sparse arrays. Sparse
arrays are typically used to represent data aggregates in which a value occurs so frequently that it would be
wasteful to store it explicitly for each occurrence. This value is commonly described as the “zero value”,
though we refer to it as the implicitly replicated value or IRV since it may be a value other than zero.

19.4.1 Sparse Domain Types

A sparse domain type is specified by the syntax

sparse-domain-type:
sparse subdomain ( domain-expression )

This syntax specifies that the domain is a sparse subset of the indices in the domain specified by the domain-expression,
sometimes called the base domain or parent domain.

Example. The following code declares a 2D dense domain D, followed by a 2D sparse subdo-
main of D named SpsD. Since SpsD is uninitialized, it will initially describe the empty set of
indices from D.

const D: domain(2) = [1..n, 1..n];
var SpsD: sparse subdomain(D);

19.4.2 Sparse Domain Assignment

Sparse domains can be assigned aggregates of indices from their parent domain. Common methods for
expressing such aggregates are to use a tuple of indices, a forall expression that enumerates indices, or an
iterator that generates indices.

Example. The following three assignments show ways of assigning indices to a sparse domain,
SpsD. The first assigns the domain two index values, (1,1) and (n,n). The second assigns the
domain all of the indices along the diagonal from (1,1). . .(n,n). The third invokes an iterator
that is written to yield indices read from a file named “inds.dat”. Each of these assignments
has the effect of replacing the previous index set with a completely new set of values.

SpsD = ((1,1), (n,n));
SpsD = [i in 1..n] (i,i);
SpsD = readIndicesFromFile("inds.dat");

Sparse domains can be emptied by using a method clear that clears out its index set.

Example. The following call will cause the sparse domain SpsD to describe an empty set of
indices as it was when initially declared.

SpsD.clear();

As with other domain types, reassigning a domain’s index set will cause arrays declared in terms of that
domain to store elements corresponding to the new indices of the domain. These elements will be initialized
to the array’s IRV by default.
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19.4.3 Modifying a Sparse Domain

Indices can be incrementally added to or removed from sparse domains. Sparse domains support a method
add that takes an index and adds it to the sparse domain’s index set. All arrays declared over this sparse
domain will now store an element corresponding to this index, initialized to be its IRV.

Sparse domains support a method remove that takes an index and removes this index from the sparse domain.
The values in the arrays indexed by the removed index are lost.

The operators += and -= have special semantics for sparse domains; they are interpreted as calls to the add
and remove methods respectively. The statement

D += i;

is equivalent to

D.add(i);

Similarly, the statement

D -= i;

is equivalent to

D.remove(i);

As with other methods and operators, the add, remove, +=, and -= operators can be invoked in a promoted
manner by specifying an aggregate of indices rather than a single index at a time.

19.4.4 Sparse Arrays

An array declared over a sparse domain can be indexed using all of the indices in the domain’s parent domain.
If it is read using an index that is not part of the sparse domain’s index set, the IRV value is returned.
Otherwise, the array’s unique value corresponding to the index is returned.

Sparse arrays can only be written at locations corresponding to indices in their domain’s index set. In general,
writing to other locations will result in a runtime error.

By default a sparse array’s IRV is defined as the default value for the array’s element type. The IRV can be
set to any value of the array’s element type by assigning to a pseudo-field named “IRV” in the array. It is an
error to assign a value to the IRV by assigning to an array element whose index is not described by the sparse
domain.

Example. The following code example declares a sparse array, SpsA using the sparse domain
SpsD (For this example, assume that n>1). Lines 2 assigns two indices to SpsD’s index set and
then lines 3–4 store the values 1.1 and 9.9 to the corresponding values of SpsA. The IRV of
SpsA will initially be 0.0 since its element type is real. However, the fifth line sets the IRV to
be the value 5.5, causing SpsA to represent the value 1.1 in its low corner, 9.9 in its high corner,
and 5.5 everywhere else. The final statement is an error since it attempts to assign to SpsA at an
index not described by its domain, SpsD.
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var SpsA: [SpsD] real;
SpsD = ((1,1), (n,n));
SpsA(1,1) = 1.1;
SpsA(n,n) = 9.9;
SpsA.IRV = 5.5;
SpsA(1,n) = 0.0; // ERROR!

19.5 Associative Domains and Arrays

An associative domain type can be defined over any scalar type and is given by the following syntax:

associative-domain-type:
domain ( scalar-type )

scalar-type:
type-specifier

A scalar type is any primitive type, tuple of scalar types, or class, record, or union where all of the fields have
scalar types. Enumerated types are scalar types but domains declared over enumerated types are described
in §19.7. Arrays declared over associative domains are dictionaries mapping from values to variables.

19.5.1 Changing the Indices in Associative Domains

As with sparse domains, indices can be added or removed to associative domains. Associative domains
support a method add that takes an index and adds this index to the associative domain. All arrays declared
over this associative domain can now access elements corresponding to this index.

Associative domains support a method remove that takes an index and removes this index from the associa-
tive domain. The values in the arrays indexed by the removed index are lost.

The operators += and -= have special semantics for associative domains; they are interpreted as calls to the
add and remove methods respectively. The statement

D += i;

is equivalent to
D.add(i);

Similarly, the statement
D -= i;

is equivalent to
D.remove(i);

Like sparse domains, associative domains can be emptied by using a method clear that clears out its index
set.

Example. The following call will cause the associative domain HashD to describe an empty set
of indices as it was when initially declared.

HashD.clear();
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19.5.2 Testing Membership in Associative Domains

An associative domain supports a member method that can test whether a particular value is part of the index
set. It returns true if the index is in the associative domain and otherwise returns false.

19.6 Opaque Domains and Arrays

An opaque domain is a form of associative domain where there is no algebra on the types of the indices. The
indices are, in essence, opaque. The opaque domain type is given by the following syntax:

opaque-domain-type:
domain ( opaque )

New index values for opaque domains are explicitly requested via a method called create. Indices can be
removed by a method called remove.

Opaque domains permit more efficient implementations than associative domains under the assumption that
creation of new domain index values is rare.

19.7 Enumerated Domains and Arrays

Enumerated domains are a special case of associative domains where the indices are the constants defined by
an enumerated type. The syntax of an enumerated domain type is summarized as follows:

enumerated-domain-type:
domain ( enum-type )

Enumerated domains do not support the add or remove methods. All of the constants defined by the enu-
merated type are indices into the enumerated domain.

An enumerated domain is specified identically to the associative domain type, except that the type is an
enumerated type rather than some other value type.

19.8 Association of Arrays to Domains

When an array is declared, it is linked during execution to the domain over which it was declared. This
linkage is constant and cannot be changed.

When indices are added or removed from a domain, the change impacts the arrays declared over this particular
domain. In the case of adding an index, an element is added to the array and initialized to the default value
associated with the element type. In the case of removing an index, the element in the array is removed.

When a domain is reassigned a new value, the array is also impacted. Values that could be indexed by both
the old domain and the new domain are preserved in the array. Values that could only be indexed by the old
domain are lost. Values that can only be indexed by the new domain have elements added to the new array
and initialized to the default value associated with their type.
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For performance reasons, there is an expectation that a method will be added to domains to allow non-
preserving assignment, i.e., all values in the arrays associated with the assigned domain will be lost.

An array’s domain can only be modified directly, via the domain’s name or an alias created by passing it to
a function via blank intent. In particular, the domain may not be modified via the array’s .domain method,
nor by using the domain query syntax on a function’s formal array argument (§21.1.6).

Rationale. When multiple arrays are declared using a single domain, modifying the domain
affects all of the arrays. Allowing an array’s domain to be queried and then modified suggests
that the change should only affect that array. By requiring the domain to be modified directly,
the user is encouraged to think in terms of the domain distinctly from a particular array.

In addition, this choice has the beneficial effect that arrays declared via an anonymous domain
have a constant domain. Constant domains are considered a common case and have potential
compilation benefits such as eliminating bounds checks. Therefore making this convenient syn-
tax support a common, optimizable case seems prudent.

19.9 Subdomains

A subdomain is a domain whose indices are a subset of those described by a base domain. A subdomain is
specified by the following syntax:

subdomain-type:
subdomain ( domain-expression )

The ordering of the indices in the subdomain is consistent with the ordering of the indices in the base domain.

Subdomains are verified during execution even as domains are reassigned. The indices in a subdomain are
known to be indices in a domain, allowing for fast bounds-checking.

19.10 Predefined Functions and Methods on Domains

There is an expectation that this list of predefined functions and methods will grow.

def Domain.numIndices: dim_type

Returns the number of indices in the domain.

def Domain.member(i: index(Domain)): bool

Returns whether or not index i is a member of the domain’s index set.

def Domain.order(i: index(Domain)): dim_type

If i is a member of the domain, returns the ordinal value of i using a total ordering of the domain’s
indices using 0-based indexing. Otherwise, it returns (-1):dim_type. For arithmetic domains, this
ordering will be based on a row-major ordering of the indices; for other domains, the ordering may be
implementation-dependent and unstable as elements are added and removed from the domain.
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19.10.1 Predefined Functions and Methods on Arithmetic Domains

We expect that this list of predefined functions and methods will grow.
def Domain.rank param

Returns the rank of the domain.

def Domain.dim(d: int): range

Returns the range of indices described by dimension d of the domain.

Example. In the code
for i in D.dim(1) do

for j in D.dim(2) do
writeln(A(i,j));

domain D is iterated over by two nested loops. The first dimension of D is iterated over in the
outer loop. The second dimension is iterated over in the inner loop.

def Domain.low: integral // for 1D domains
def Domain.low: index(Domain) // for multidimensional domains

Returns the low index of the domain as a scalar value for 1D domains and as an index value for a
multidimensional domain.

def Domain.high: integral // for 1D domains
def Domain.high: index(Domain) // for multidimensional domains

Returns the high index of the domain as a scalar value for 1D domains and as an index value for a
multidimensional domain.

def Domain.position(i: index(Domain)): rank*dim_type

Returns a tuple holding the order of index i in each range defining the domain.

19.11 Predefined Functions and Methods on Arrays

There is an expectation that this list of predefined functions and methods will grow.
def Array.eltType type

Returns the element type of the array.

def Array.rank param

Returns the rank of the array.

def Array.domain: this.domain

Returns the domain of the given array. This domain is constant, implying that the domain cannot be
resized by assigning to its domain field, only by modifying the domain directly.

def Array.numElements: this.domain.dim_type

Returns the number of elements in the array.

def reshape(A: Array, D: Domain): Array

Returns a copy of the array containing the same values but in the shape of the new domain. The number
of indices in the domain must equal the number of elements in the array. The elements of the array are
copied into the new array using the default iteration orders over both arrays.
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20 Iterators

An iterator is a function that conceptually returns multiple values rather than simply a single value.

Open issue. The parallel iterator story is under development. It is expected that the specification
will be expanded regarding parallel iterators soon.

20.1 Iterator Functions

The syntax of an iterator declaration is identical to that of a function declaration. A function is an iterator if
it includes yield statements. When a yield is encountered, the value is returned, but the iterator is not finished
evaluating when called within a loop. It will continue from the point after the yield and can yield or return
more values. When a return is encountered, the value is returned and the iterator finishes. An iterator also
completes after the last statement in the iterator function is executed.

20.2 The Yield Statement

The yield statements can only appear in iterators. The syntax of the yield statement is given by

yield-statement:
yield expression ;

20.3 Iterator Calls

Iterator functions can be called within for or forall loops, in which case they are executed in an interleaved
manner with the body of the loop, can be captured in new variable declarations or arrays, in which case they
evaluate to an array of values, or can be passed to a generic function argument.

20.3.1 Iterators in For and Forall Loops

When an iterator is accessed via a for or forall loop, the iterator is evaluated alongside the loop body in an
interleaved manner. For each iteration, the iterator yields a value and the body is executed.

20.3.2 Iterators as Arrays

If an iterator function is captured into a new variable declaration or assigned to an array, the iterator is
iterated over in total and the expression evaluates to a one-dimensional arithmetic array that contains the
values returned by the iterator on each iteration.

Example. Given an iterator
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def squares(n: int): int {
for i in 1..n do

yield i * i;
}

the expression squares(5) evaluates to the array 1, 4, 9, 16, 25.

20.3.3 Iterators and Generics

If an iterator call expression is passed to a function argument that is generic, the iterator is passed without
being evaluated and is treated as a closure within the generic function.

20.4 Scalar Promotion

A function requires scalar promotion if an iterator (or array, domain, or range) is passed to a formal argument
with a type that allows the yielded type of the iterator to dispatch to the formal argument. In the case of arrays,
the yielded type is the element type. In the case of domains and ranges, the yielded type is the index type.
The rules of when an overloaded function is promoted are discussed in §13.10. If a promoted function returns
a value, the promoted function becomes an iterator that is controlled by a loop over the iterator (or array,
domain, or range) that it is promoted by. If the function does not return a value, the function is controlled by
a loop over the iterator that it is promoted by, but the promotion does not become an iterator.

In addition to scalar promotion of functions, operators and casts are also promoted.

Example. Given an iterator

def oneToFive() {
for i in 1..5 do

yield i;
}

and a function

def square(x: int) return x**2;

then the call square(oneToFive()) results in the promotion of the square function over the
values returned by the oneToFive iterator. The result is an iterator that returns the values 1, 4,
9, 16, and 25. Instead of using the oneToFive iterator to promote the square function, the
range 1..5 could be used directly as in square(1..5). Also note that operator invocations are
treated as function calls in terms of promotion so (1..5)**2 is also equivalent.

20.4.1 Zipper Promotion

Consider a function f with formal arguments s1, s2, ... that are promoted and formal arguments a1, a2, ...
that are not promoted. The call

f(s1, s2, ..., a1, a2, ...)

is equivalent to
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[(e1, e2, ...) in (s1, s2, ...)] f(e1, e2, ..., a1, a2, ...)

The usual constraints of zipper iteration apply to zipper promotion so the promoted actuals must have the
same shape.

Example. Given a function defined as
def foo(i: int, j: int) {

write(i, " ", j, " ");
}

and a call to this function written
foo(1..3, 4..6);

then the output is “1 4 2 5 3 6 ”.

20.4.2 Tensor Product Promotion

If the function f were called by using square brackets instead of parentheses, the equivalent rewrite would be
[(e1, e2, ...) in [s1, s2, ...]] f(e1, e2, ..., a1, a2, ...)

There are no constraints on tensor product promotion.

Example. Given a function defined as
def foo(i: int, j: int) {

write(i, " ", j, " ");
}

and a call to this function written
foo[1..3, 4..6];

then the output is “1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 5 3 6 ”.

20.4.3 Promotion and Evaluation Order

The evaluation of an iterator is interleaved with the evaluation of the promoted expression or function. The
values produced by the iterator are not evaluated first. This means that the array semantics of array program-
ming languages are not maintained.

Example. If A is an array declared over the indices 1..5, then the following codes are not
equivalent:

A[2..4] = A[1..3] + A[3..5];

and
var T = A[1..3] + A[3..5];
A[2..4] = T;

This follows because, in the former code, some of the new values that are assigned to A may be
read to compute the sum depending on the amount of concurrency in the promotion.
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21 Generics

Chapel supports generic functions and types that are parameterizable over both types and parameters. The
generic functions and types look similar to non-generic functions and types already discussed.

21.1 Generic Functions

A function is generic if any of the following conditions hold:

• Some formal argument is specified with an intent of type or param.

• Some formal argument has no specified type and no default value.

• Some formal argument is specified with a queried type.

• The type of some formal argument is a generic type, e.g., List. Queries may be inlined in generic
types, e.g., List(?eltType).

• The type of some formal argument is an array type where either the element type is queried or omitted
or the domain is queried or omitted.

These conditions are discussed in the next sections.

21.1.1 Formal Type Arguments

If a formal argument is specified with intent type, then a type must be passed to the function at the call site.
A copy of the function is instantiated for each unique type that is passed to this function at a call site. The
formal argument has the semantics of a type alias.

Example. The following code defines a function that takes two types at the call site and returns
a 2-tuple where the types of the components of the tuple are defined by the two type arguments
and the values are specified by the types default values.

def build2Tuple(type t, type tt) {
var x1: t;
var x2: tt;
return (x1, x2);

}

This function is instantiated with “normal” function call syntax where the arguments are types:

var t2 = build2Tuple(int, string);
t2 = (1, "hello");
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21.1.2 Formal Parameter Arguments

If a formal argument is specified with intent param, then a parameter must be passed to the function at the
call site. A copy of the function is instantiated for each unique parameter that is passed to this function at a
call site. The formal argument is a parameter.

Example. The following code defines a function that takes an integer parameter p at the call site
as well as a regular actual argument of integer type x. The function returns a homogeneous tuple
of size p where each component in the tuple has the value of x.

def fillTuple(param p: int, x: int) {
var result: p*int;
for param i in 1..p do

result(i) = x;
return result;

}

The function call fillTuple(3, 3) returns a 3-tuple where each component contains the value
3.

21.1.3 Formal Arguments without Types

If the type of a formal argument is omitted, the type of the formal argument is taken to be the type of the
actual argument passed to the function at the call site. A copy of the function is instantiated for each unique
actual type.

Example. The example from the previous section can be extended to be generic on a parameter
as well as the actual argument that is passed to it by omitting the type of the formal argument
x. The following code defines a function that returns a homogeneous tuple of size p where each
component in the tuple is initialized to x:

def fillTuple(param p: int, x) {
var result: p*x.type;
for param i in 1..p do

result(i) = x;
return result;

}

In this function, the type of the tuple is taken to be the type of the actual argument. The call
fillTuple(3, 3.14) returns a 3-tuple of real values (3.14, 3.14, 3.14). The return
type is (real, real, real).

21.1.4 Formal Arguments with Queried Types

If the type of a formal argument is specified as a queried type, the type of the formal argument is taken to be
the type of the actual argument passed to the function at the call site. A copy of the function is instantiated
for each unique actual type. The queried type has the semantics of a type alias.

Example. The example from the previous section can be rewritten to use a queried type for
clarity:
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def fillTuple(param p: int, x: ?t) {
var result: p*t;
for param i in 1..p do

result(i) = x;
return result;

}

21.1.5 Formal Arguments of Generic Type

If the type of a formal argument is a generic type, the type of the formal argument is taken to be the type
of the actual argument passed to the function at the call site with the constraint that the type of the actual
argument is an instantiation of the generic type. A copy of the function is instantiated for each unique actual
type.

Example. The following code defines a function writeTop that takes an actual argument that
is a generic stack (see §21.6) and outputs the top element of the stack. The function is generic
on the type of its argument.

def writeTop(s: Stack) {
write(s.top.item);

}

Types and parameters may be queried from the top-level types of formal arguments as well. In the example
above, the formal argument’s type could also be specified as Stack(?type) in which case the symbol type
is equivalent to s.itemType.

Note that generic types which have default values for all of their generic fields, e.g. range, are not generic
when simply specified and require a query to mark the argument as generic. For simplicity, the identifier may
be omitted.

The generic types integral, numeric and enumerated are generic types that can only be instantiated
with, respectively, the signed and unsigned integral types, all of the numeric types, and enumerated types.

21.1.6 Formal Arguments of Generic Array Types

If the type of a formal argument is an array where either the domain or the element type is queried or omitted,
the type of the formal argument is taken to be the type of the actual argument passed to the function at the
call site. If the domain is omitted, the domain of the formal argument is taken to be the domain of the actual
argument.

A queried domain may not be modified via the name to which it is bound (see §19.8 for rationale).
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21.2 Function Visibility in Generic Functions

Function visibility in generic functions is altered depending on the instantiation. When resolving function
calls made within generic functions, the visible functions are taken from any call site at which the generic
function is instantiated for each particular instantiation. The specific call site chosen is arbitrary and it is
referred to as the point of instantiation.

For function calls that specify the module explicitly (§12.3.1), an implicit use of the specified module exists
at the call site.

Example. Consider the following code which defines a generic function bar:

module M1 {
record R {

var x: int;
def foo() { }

}
}

module M2 {
def bar(x) {

x.foo();
}

}

module M3 {
use M1, M2;
def main() {

var r: R;
bar(r);

}
}

In the function main, the variable r is declared to be of type R defined in module M1 and a
call is made to the generic function bar which is defined in module M2. This is the only place
where bar is called in this program and so it becomes the point of instantiation for bar when
the argument x is of type R. Therefore, the call to the foo method in bar is resolved by looking
for visible functions from within main and going through the use of module M1.

If the generic function is only called indirectly through dynamic dispatch, the point of instantiation is defined
as the point at which the derived type (the type of the implicit this argument) is defined or instantiated (if
the derived type is generic).

Rationale. Visible function lookup in Chapel’s generic functions is handled differently than in
C++’s template functions in that there is no split between dependent and independent types.

Also, dynamic dispatch and instantiation is handled differently. Chapel supports dynamic dis-
patch over methods that are generic in some of its formal arguments.

Note that the Chapel lookup mechanism is still under development and discussion. Comments
or questions are appreciated.
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21.3 Generic Types

A class or record is generic if any of the following conditions hold:

• The class contains a specified or unspecified type alias.

• The class contains a field that is a parameter.

• The class contains a field that has no type and no initialization expression.

21.3.1 Type Aliases in Generic Types

Type aliases defined in a class or a record can be unspecified type aliases; type aliases that are not bound to a
type. If a class or record contains an unspecified type alias, the aliased type must be specified whenever the
type is used.

A type alias defined in a class or record is accessed as if it were a field. Moreover, it becomes an argument
with intent type to the default constructor for that class or record. This makes the default constructor generic.
When the default constructor is instantiated, the type is instantiated where the type bound to the type alias is
set to be the type passed to the default constructor.

Example. The following code defines a class called Node that implements a linked list data
structure. It is generic over the type of the element contained in the linked list.

class Node {
type eltType;
var data: eltType;
var next: Node(eltType);

}

The call new Node(real, 3.14) creates a node in the linked list that contains the value 3.14.
The next field is set to nil. The type specifier Node is a generic type and cannot be used to define
a variable. The type specifier Node(real) denotes the type of the Node class instantiated over
real. Note that the type of the next field is specified as Node(eltType); the type of next is
the same type as the type of the object that it is a field of.

21.3.2 Parameters in Generic Types

Parameters defined in a class or record do not require an initialization expression. If they do not have an
initialization expression, the parameter must be specified whenever the type is used.

A parameter defined in a class or record is accessed as if it were a field. This access returns a parameter.
Parameters defined in classes or records become arguments with intent param to the default constructor for
that class or record. This makes the default constructor generic. When the default constructor is instantiated,
the type is instantiated where the parameter is bound to the parameter passed to the default constructor.

Example. The following code defines a class called IntegerTuple that is generic over an
integer parameter which defines the number of components in the class.
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class IntegerTuple {
param size: int;
var data: size*int;

}

The call new IntegerTuple(3) creates an instance of the IntegerTuple class that is instan-
tiated over parameter 3. The field data becomes a 3-tuple of integers. The type of this class
instance is IntegerTuple(3). The type specified by IntegerTuple is a generic type.

21.3.3 Fields without Types

If a field in a class or record has no specified type or initialization expression, the class or record is generic
over the type of that field. The field must be specified when the class or record is constructed or specified.
The field becomes an argument to the default constructor that has no specified type and no default value. This
makes the default constructor generic. When the default constructor is instantiated, the type is instantiated
where the type of the field becomes the type of the actual argument passed to the default constructor. When
specifying the type of the class or record, the type of this field should be “passed” to the specifier.

Example. The following code defines another class called Node that implements a linked list
data structure. It is generic over the type of the element contained in the linked list. This code
does not specify the element type directly in the class as a type alias but rather omits the type
from the data field.

class Node {
var data;
var next: Node(data) = nil;

}

A node with integer element type can be defined in the call to the constructor. The call new Node(1)

defines a node with the value 1. The code

var list = new Node(1);
list.next = new Node(2);

defines a two-element list with nodes containing the values 1 and 2. The type of each class could
be specified as Node(int).

21.3.4 Generic Methods

All methods bound to generic classes or records are generic over the implicit this argument and any other
argument that is generic.

21.4 Where Expressions

The instantiation of a generic function can be constrained by where clauses. A where clause is specified in the
definition of a function (§13.1). When a function is instantiated, the expression in the where clause must be
a parameter expression and must evaluate to either true or false. If it evaluates to false, the instantiation
is rejected and the function is not a possible candidate for function resolution. Otherwise, the function is
instantiated.
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Example. Given two overloaded function definitions

def foo(x) where x.type == int { . . . }
def foo(x) where x.type == real { . . . }

the call foo(3) resolves to the first definition because when the second function is instantiated the
where clause evaluates to false.

21.5 User-Defined Compiler Diagnostics

The special compiler diagnostic statements given by

compiler-diagnostic-statement:
compilerError ( expression-list ) ;
compilerWarning ( expression-list ) ;

expression-list:
expression
expression , expression-list

generate a compiler diagnostic of the indicated severity if the function containing the statement may be called
when the program is executed and the statement is not eliminated by parameter folding.

The compiler diagnostic is defined by the expression list which can contain string literals and types. The diag-
nostic points to the spot in the Chapel program from which the function containing the compiler-diagnostic-statement
is called. Compilation halts if a compilerError is encountered whereas it will continue after encountering
a compilerWarning.

Note that when a variable function is called in a context where the implicit setter argument is true or false,
both versions of the variable function are resolved by the compiler. Consequently, the setter argument
cannot be effectively used to guard a compiler diagnostic statements.

Example. The following code shows an example of using user-defined compiler diagnostics to
generate warnings and errors:

def foo(x, y) {
if (x.type != y.type) then

compilerError("foo() called with non-matching types: ",
x.type, " != ", y.type);

writeln("In 2-argument foo...");
}

def foo(x) {
compilerWarning("1-argument version of foo called");
writeln("In generic foo!");

}

The first routine generates a compiler error whenever the compiler encounters a call to it where
the two arguments have different types. It prints out an error message indicating the types of the
arguments. The second routine generates a compiler warning whenver the compiler encounters
a call to it.

Thus, if the program foo.chpl contained the following calls:
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1 foo(3.4);
2 foo("hi");
3 foo(1, 2);
4 foo(1.2, 3.4);
5 foo("hi", "bye");
6 foo(1, 2.3);
7 foo("hi", 2.3);

compiling the program would generate output like:

foo.chpl:1: warning: 1-argument version of foo called with type: real
foo.chpl:2: warning: 1-argument version of foo called with type: string
foo.chpl:6: error: foo() called with non-matching types: int != real

21.6 Example: A Generic Stack

class MyNode {
type itemType; // type of item
var item: itemType; // item in node
var next: MyNode(itemType); // reference to next node (same type)

}

record Stack {
type itemType; // type of items
var top: MyNode(itemType); // top node on stack linked list

def push(item: itemType) {
top = new MyNode(itemType, item, top);

}

def pop() {
if isEmpty then

halt("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

}

def isEmpty return top == nil;
}
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22 Parallelism and Synchronization

Chapel is an explicitly parallel programming language. The programmer introduces parallelism into a pro-
gram via parallel-statements and parallel-expressions:

parallel-statement:
forall-statement
cobegin-statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic-statement

parallel-expression:
forall-expression

In addition, some operations on arrays and domains, as well as invocations of promotion, are executed in
parallel. The term task is used to refer to a distinct context of execution that may be running concurrently.

This section is divided into five parts:

• §22.1 describes the begin-statement, an unstructured way to introduce concurrency into a program, and
synchronization variables, an unstructured mechanism for synchronizing a program.

• §22.2 describes the cobegin- and coforall-statement, structured ways to introduce concurrency into a
program, and the sync- and serial-statement, structured ways to control and suppress parallelism.

• §22.3 describes the forall-statement and -expression, constructs for explicit data parallelism.

• §22.4 describes the atomic-statement, a construct to support atomic transactions.

• §22.5 describes the memory consistency model.

22.1 Unstructured Task-Parallel Constructs

Chapel provides a simple construct, the begin-statement, to spawn tasks, thus introducing concurrency into a
program in an unstructured way. In addition, Chapel introduces two type qualifiers, sync and single, for
synchronization of tasks.

More structured ways to achieve concurrency are discussed in §22.2. These structured ways to introduce con-
currency may be easier to use in many common cases. They can be implemented using only the unstructured
constructs described in this section.
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22.1.1 The Begin Statement

The begin-statement spawns a task to execute a statement. The begin-statement is thus an unstructured way
to create a new task that is executed only for its side-effects. The syntax for the begin statement is given by

begin-statement:
begin statement

Control continues concurrently with the statement following the begin-statement.

Example. The code

begin writeln("output from spawned task");
writeln("output from main task");

executes two writeln statements that output the strings to the terminal, but the ordering is
purposely unspecified. There is no guarantee as to which statement will execute first. When
the begin-statement is executed, a new task is created that will execute the writeln statement
within it. However, execution will continue immediately with the next statement. In §22.1.2, this
same example will be synchronized so that the output from the spawned task always happens
second.

The following statements may not be lexically enclosed in begin-statements: break-statements, continue-
statements, yield-statements, and return-statements.

Open issue. It is undecided whether yield-statement should be allowed inside the following
parallel statements: cobegin, coforall, and forall. The design of parallel iterators is currently
ongoing. If simple iterators with yield-statements in parallel statements are allowed, there would
be an issue on how such iterators could be zippered. This issue is a high priority and there are a
number of ideas on the table.

22.1.2 Sync Variables

The use of and assignment to variables of sync type implicitly control the execution order of a task, making
them well-suited to producer-consumer data sharing.

A sync variable is logically either full or empty. When it is empty, tasks that attempt to read that variable are
suspended until the variable becomes full by the next assignment to it, which atomically changes the state to
full. When the variable is full, a read of that variable consumes the value and atomically transitions the state
to empty. If there is more than one task waiting on a sync variable, one is non-deterministically selected to
use the variable and resume execution. The other tasks continue to wait for the next assignment.

If a task attempts to assign to a sync variable that is full, the task is suspended and the assignment is delayed.
When the sync variable becomes empty, the task is resumed and the assignment proceeds, transitioning the
state back to full. If there are multiple tasks attempting such an assignment, one is non-deterministically
selected to proceed and the other assignments continue to wait until the sync variable is emptied again.

A sync variable is specified with a sync type given by the following syntax:
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sync-type:
sync type-specifier

Example. The code

var finishedMainOutput$: sync bool;
begin {

finishedMainOutput$;
writeln("output from spawned task");

}
writeln("output from main task");
finishedMainOutput$ = true;

modifies the example in §22.1.1. When the read of the sync variable is encountered in the
spawned task, the task waits until the sync variable is assigned in the main task.

Example. Sync variables are useful for tallying data from multiple tasks as well. A sync variable
of type int is read and then written during an update so the full-empty semantics make these
updates atomic when used in a stylized way. The code

var count$: sync int;
begin count$ += 1;
begin count$ += 1;
begin count$ += 1;

spawns three tasks to increment count$. If count$ was not a sync variable, this code would be
unsafe because between the points at which one task reads count$ and writes count$, another
task may increment it.

If the base type of a sync type is a class or a record, the sync semantics only apply to the class or record, not
to its individual fields or methods. A record or class type may have fields of sync type to get sync semantics
on individual field accesses.

If a formal argument is a sync type, the actual is passed by reference and the argument itself is a valid lvalue.
The unqualified type sync can also be used to specify a generic formal argument. In this case, the actual
must be a sync variable and it is passed by reference.

For generic formal arguments with unspecified types, an actual that is sync is “read” before being passed to
the function and the generic formal argument’s type is set to the base type of the actual.

22.1.3 Single Variables

A single (assignment) variable specializes sync variables by restricting the number of times it can be assigned
to no more than one during its lifetime. A use of a single variable before it is assigned causes the task’s
execution to suspend until the variable is assigned. Otherwise, the use proceeds as with normal variables and
the task continues. After a single assignment variable is assigned, all tasks with pending uses resume in an
unspecified order. A single variable is specified with a single type given by the following syntax:

single-type:
single type-specifier
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Example. In the code

class Tree {
var isLeaf: bool;
var left, right: Tree;
var value: int;

def sum() {
if (isLeaf) then

return value;

var x$: single int;
begin x$ = left.sum();
var y = right.sum();
return x$+y;

}
}

the single variable x$ is assigned by an asynchronous task created with the begin statement. The
task returning the sum waits on the reading of x$ until it has been assigned.

22.1.4 Predefined Single and Sync Methods

The following methods are defined for variables of sync and single type.

def (sync t).readFE(): t

Wait for full, leave empty, and return the value of the sync variable. This method blocks until the sync
variable is full. The state of the sync variable is set to empty when this method completes.

def (sync t).readFF(): t
def (single t).readFF(): t

Returns the value of the sync or single variable. This method blocks until the sync or single variable is
full. The state of the sync or single variable remains full when this method completes.

def (sync t).readXX(): t
def (single t).readXX(): t

Returns the value of the sync or single variable. This method is non-blocking and the state of the sync
or single variable is unchanged when this method completes.

def (sync t).writeEF(v: t)
def (single t).writeEF(v: t)

Assigns v to the value of the sync or single variable. This method blocks until the sync or single
variable is empty. The state of the sync or single variable is set to full when this method completes.

def (sync t).writeFF(v: t)

Assigns v to the value of the sync variable. This method blocks until the sync variable is full. The state
of the sync variable remains full when this method completes.

def (sync t).writeXF(v: t)
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Assigns v to the value of the sync variable. This method is non-blocking and the state of the sync
variable is set to full when this method completes.

def (sync t).reset()

Assigns the default value of type t to the value of the sync variable. This method is non-blocking and
the state of the sync variable is set to empty when this method completes.

def (sync t).isFull: bool
def (single t).isFull: bool

Returns true if the sync or single variable is full and false otherwise. This method is non-blocking
and the state of the sync or single variable is unchanged when this method completes.

Rationale. In general, these methods are provided such that other traditional synchronization
primitives, such as semaphores and mutexes, can be constructed.

In addition, the implicitly-invoked readFE and writeEF methods (which can arguably be cate-
gorized as unnecessary due to the implicit invocation) are provided to support programmers who
wish to make the semantics of these operations more explicit. It might be desirable to have a
compiler option that disables the implicit application of these methods.

Example. Given the following declarations

var x$: single int;
var y: int;

the code

x$ = 5;
y = x$;

is equivalent to

x$.writeEF(5);
y = x$.readFF();

22.2 Structured Task-Parallel Constructs

Chapel provides two constructs, the cobegin- and coforall-statements, to introduce concurrency in a more
structured way. These constructs spawn multiple tasks but do not continue until the tasks have completed. In
addition, Chapel provides two constructs, the sync- and serial-statements, to suppress parallelism and insert
synchronization. All four of these constructs can be implemented through judicious uses of the unstructured
task-parallel constructs described in the previous section.
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22.2.1 The Cobegin Statement

The cobegin statement is used to introduce concurrency within a block. The cobegin statement syntax is

cobegin-statement:
cobegin block-statement

Each statement within the block statement is executed concurrently and is considered a separate task. Control
continues when all of the tasks have finished.

The following statements may not be lexically enclosed in cobegin-statements: break-statements, continue-
statements, yield-statements, and return-statements.

Open issue. Whether to allow yield-statements in cobegin-statements is an open issue; see note
in §22.1.1.

Example. The cobegin-statement
cobegin {

stmt1();
stmt2();
stmt3();

}

is equivalent to the following code that uses only begin-statements and single variables to intro-
duce concurrency and synchronize:

var s1$, s2$, s3$: single bool;
begin { stmt1(); s1$ = true; }
begin { stmt2(); s2$ = true; }
begin { stmt3(); s3$ = true; }
s1$; s2$; s3$;

Each begin-statement is executed concurrently but control does not continue past the final line
above until each of the single variables is written, thereby ensuring that each of the functions has
finished.

22.2.2 The Coforall Loop

The coforall loop is a variant of the cobegin statement and a loop. The syntax for the coforall loop is given
by

coforall-statement:
coforall loop-control-part loop-body-part

The semantics of the coforall loop are identical to a cobegin statement where each iteration of the
coforall loop is equivalent to a separate statement in a cobegin block.

Control continues with the statement following the coforall loop only after all iterations have been com-
pletely evaluated.

The following statements may not be lexically enclosed in coforall-statements: break-statements, continue-
statements, yield-statements, and return-statements.
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Open issue. Whether to allow yield-statements in coforall-statements is an open issue; see note
in §22.1.1.

Example. The coforall-statement

coforall i in iterator() {
body();

}

is equivalent to the following code that uses only begin-statements and sync and single variables
to introduce concurrency and synchronize:

var runningCount$: sync int = 1;
var finished$: single bool;
for i in iterator() {

runningCount$ += 1;
begin {

body();
var tmp = runningCount$;
runningCount$ = tmp-1;
if tmp == 1 then finished$ = true;

}
}
var tmp = runningCount$;
runningCount$ = tmp-1;
if tmp == 1 then finished$ = true;
finished$;

Each call to body() executes concurrently because it is in a begin-statement. The sync variable
runningCount$ is used to keep track of the number of executing tasks plus one for the main
task. When this variable reaches zero, the single variable finished$ is used to signal that all of
the tasks have completed. Thus control does not continue past the last line until all of the tasks
have completed.

22.2.3 The Sync Statement

The sync statement acts as a join of all dynamically encountered begins from within a statement. The syntax
for the sync statement is given by

sync-statement:
sync statement

The following statements may not be lexically enclosed in sync-statements: break-statements, continue-
statements, yield-statements, and return-statements.

Example. The sync statement can be used to wait for many dynamically spawned tasks. Given
the Tree class defined in the example in §22.1.3 and an instance of this class called tree, the
code

def concurrentUpdate(tree: Tree) {
if requiresUpdate(tree) then

begin update(tree);
if !tree.isLeaf {

searchAndUpdate(tree.left);
searchAndUpdate(tree.right);
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}
}

sync searchAndUpdate(tree);

defines a function concurrentUpdate that recursively walks over a tree and spawns a new task
to update a node if the function requiresUpdate evaluates to true. (Both requiresUpdate

and update are omitted as irrelevant.) The call to searchAndUpdate is made within a sync

statement to ensure that each of the spawned update tasks finishes before execution continues.

Example. The sync statement

sync {
begin stmt1();
begin stmt2();

}

is similar to the following cobegin statement

cobegin {
stmt1();
stmt2();

}

except that if begin-statements are dynamically encountered when stmt1() or stmt2() are
executed, then the former code will wait for these begin-statements to complete whereas the
latter code will not.

22.2.4 The Serial Statement

The serial statement can be used to dynamically disable parallelism. The syntax is:

serial-statement:
serial expression do statement
serial expression block-statement

where the expression evaluates to a bool type. Independent of that value, the statement is evaluated. If the
expression is true, any dynamically encountered code that would result in new tasks is executed without
spawning any new tasks. In effect, execution is serialized.

Example. Given the Tree class defined in the example in §22.1.3 and an instance of this class
called tree, the code

def concurrentUpdate(tree: Tree, depth: int = 1) {
if requiresUpdate(tree) then

update(tree);
if !tree.isLeaf {

serial depth > 4 do cobegin {
concurrentSearch(tree.left, depth+1);
concurrentSearch(tree.right, depth+1);

}
}

}
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defines a function concurrentUpdate that recursively walks over a tree using cobegin-statements
to update the left and right subtrees in parallel. The serial statement inhibits concurrent execution
on the tree for nodes that are deeper than four levels in the tree. This constrains the number of
tasks that will be used for the update.

Example. The code
serial true {

begin stmt1();
cobegin {

stmt2();
stmt3();

}
coforall i in iterator() do stmt4();
forall i in iterator() do stmt5();

}

is equivalent to
stmt1();
{

stmt2();
stmt3();

}
for i in iterator() do stmt4();
for i in iterator() do stmt5();

because the expression evaluated to determine whether to serialize always evaluates to true.

22.3 Data-Parallel Constructs

Chapel provides two explicit data-parallel constructs: the forall-statement and the forall-expression. In addi-
tion, promotion over arrays, domains, ranges, and iterators results in data-parallel tasks.

22.3.1 The Forall Loop

The forall loop is a variant of the for loop that allows for the concurrent execution of the loop body. The for
loop is described in §11.8. The syntax for the forall loop is given by

forall-statement:
forall loop-control-part loop-body-part
[loop-control-part] statement

The second form of the loop is a syntactic convenience.

The forall loop evaluates the loop body once for each element in the iterator-expression. Each instance of
the forall loop’s statement may be executed concurrently with each other, but this is not guaranteed. The
definition of the iterator determines the actual concurrency based on the specification of the iterator of the
loop.

This differs from the semantics of the coforall loop, discussed in §22.2.2, where each iteration is guaran-
teed to run concurrently. The coforall loop thus has potentially higher overhead than a forall loop, but in
cases where concurrency is required for correctness, it is essential.
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Control continues with the statement following the forall loop only after each iteration has been completely
evaluated.

The following statements may not be lexically enclosed in forall-statements: break-statements, continue-
statements, yield-statements, and return-statements.

Open issue. Whether to allow yield-statements in forall-statements is an open issue; see note
in §22.1.1.

Example. In the code

forall i in 1..N do
a(i) = b(i);

the user has stated that the element-wise assignments can execute concurrently. This loop may
be performed serially, with maximum concurrency where each loop body iteration instance is
executed in a separate task, or somewhere in between. This loop can also be written as

[i in 1..N] a(i) = b(i);

22.3.2 The Forall Expression

A forall expression can be used to enable concurrent evaluation of sub-expressions. The sub-expressions are
evaluated once for each element in the iterator expression. The syntax of a forall expression is given by

forall-expression:
forall loop-control-part do expression
[loop-control-part] expression

Example. The code

writeln(+ reduce [i in 1..10] i**2);

applies a reduction to a forall-expression that evaluates the square of the indices in the range
1..10.

22.3.3 Filtering Predicates in Forall Expressions

An if expression that is immediately enclosed by a forall expression does not require an else part.

Example. The following expression returns every other element starting with the first:

[i in 1..s.length] if i % 2 == 1 then s(i)
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22.4 Atomic Statements

The atomic statement creates an atomic transaction of a statement. The statement is executed with transaction
semantics in that the statement executes entirely, the statement appears to have completed in a single order
and serially with respect to other atomic statements, and no variable assignment is visible until the statement
has completely executed.

Open issue. This definition of an atomic statement is sometimes called strong atomicity because
the semantics are atomic to the entire program. Weak atomicity is defined so that an atomic
statement is atomic only with respect to other atomic statements. Chapel semantics are still
under design.

The syntax for the atomic statement is given by:

atomic-statement:
atomic statement

Example. The following code illustrates one possible use of atomic statements:

var found = false;
atomic {

if head == obj {
found = true;
head = obj.next;

} else {
var last = head;
while last != null {

if last.next == obj {
found = true;
last.next = obj.next;
break;

}
last = last.next;

}
}

}

Inside the atomic statement is a sequential implementation of removing a particular object de-
noted by obj from a singly linked list. This is an operation that is well-defined, assuming only
one task is attempting it at a time. The atomic statement ensures that, for example, the value of
head does not change after it is first in the first comparison and subsequently read to initialize
last. The variables eventually owned by this task are found, head, obj, and the various next
fields on examined objects.

The effect of an atomic statement is dynamic.

Example. If there is a method associated with a list that removes an object, that method may not
be parallel safe, but could be invoked safely inside an atomic statement:

atomic found = head.remove(obj);
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22.5 Memory Consistency Model

Open issue. This section is largely forthcoming.

We have been greatly helped in the design of Chapel’s memory consistency model by discussions in and
readings for a seminar at the University of Washington run by Dan Grossman and Luis Ceze as well as
the following paper: Jeremy Mason, William Pugh, and Sarita V. Adve. The Java memory model. In
Proceedings of the 32nd Symposium on Principles of Programming Languages. 2005.

The Chapel memory consistency model is defined for programs that are data-race-free. Programs that are
data-race-free are sequentially consistent. Otherwise, the program is incorrect and no guarantees are made.
In this design choice, Chapel differs from Java because the set of dynamic security concerns is different.

Writing and reading sync and single variables as well as executing atomic-statements are the only ways in
Chapel to correctly synchronize a program. It is an error to write to the same memory location or read from
and write to the same memory location in two different tasks without any intervening synchronization.

Example. This has the direct consequence that one task cannot spin-wait on a variable while
another task writes to that variable. The behavior of the following code is undefined:

var x: int;
cobegin {

while x != 1 do ; // spin wait
x = 1;

}

While codes are more efficient in most cases if one avoids spin-waiting altogether, this code
could be rewritten with defined behavior as follows:

var x$: sync int;
cobegin {

while x$.readXX() != 1 do ; // spin wait
x$.writeXF(1);

}

In this code, the first statement in the cobegin-statement executes a loop until the variable is set
to one. The second statement in the cobegin-statement sets the variable to one. Neither of these
statements block.
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23 Locality and Distribution

Chapel provides high-level abstractions that allow programmers to exploit locality by defining the affinity
of data and tasks. This is accomplished by associating both data objects and tasks with abstract locales. To
provide a higher-level mechanism, Chapel allows a mapping from domain indices to locales to be specified.
This mapping is called a distribution and it guides the placement of elements within arrays and the placement
of tasks over domains.

Throughout this section, the term local refers to data that is associated with the locale that a task is running
on and remote refers to data that is not. We assume that there is some execution overhead associated with
accessing data that may be remote compared to data known to be local.

23.1 Locales

A locale is a portion of the target parallel architecture that has processing and storage capabilities. Chapel
implementations should typically define locales for a target architecture such that tasks running within a locale
have roughly uniform access to values stored in the locale’s local memory and longer latencies for accessing
the memories of other locales. As an example, a cluster of multicore nodes or SMPs would typically define
each node to be a locale. In contrast a pure shared memory machine would be defined as a single locale.

23.1.1 The Locale Type

The identifier locale is a primitive type that abstracts a locale as described above. Both data and tasks
can be associated with a value of locale type. The only operators defined over locales are the equality and
inequality comparison operators.

23.1.2 Locale Methods

The locale type supports the following methods:

def locale.id: int;

Returns a unique integer for each locale, from 0 to the number of locales less one.

def locale.numCores: int;

Returns the number of processor cores available on a given locale.

use Memory;
def locale.physicalMemory(unit: MemUnits=MemUnits.Bytes, type retType=int(64)): retType;

Returns the amount of physical memory available on a given locale in terms of the specified memory
units (Bytes, KB, MB, or GB) using a value of the specified return type.
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23.1.3 Predefined Locales Array

Chapel provides a predefined environment that stores information about the locales used during program
execution. This execution environment contains definitions for the array of locales on which the program is
executing (Locales), a domain for that array (LocaleSpace), and the number of locales (numLocales).

config const numLocales: int;
const LocaleSpace: domain(1) = [0..numLocales-1];
const Locales: [LocaleSpace] locale;

When a Chapel program starts, a single task executes main on Locales(0).

Note that the Locales array is typically defined such that distinct elements refer to distinct resources on the
target parallel architecture. In particular, the Locales array itself should not be used in an oversubscribed
manner in which a single processor resource is represented by multiple locale values (except during develop-
ment). Oversubscription should instead be handled by creating an aggregate of locale values and referring to
it in place of the Locales array.

Rationale. This design choice encourages clarity in the program’s source text and enables more
opportunities for optimization.

For development purposes, oversubscription is still very useful and this should be supported by
Chapel implementations to allow development on smaller machines.

Example. The code

const MyLocales: [loc in 0..numLocales*4] locale = Locales(loc%numLocales);
on MyLocales(i) ...

defines a new array MyLocales that is four times the size of the Locales array. Each locale is
added to the MyLocales array four times in a round-robin fashion.

23.1.4 The here Locale

A predefined constant locale here can be used anywhere in a Chapel program. It refers to the locale that the
current task is running on.

Example. The code

on Locales(1) {
writeln(here.id);

}

results in the output 1 because the writeln statement is executed on locale 1.

The identifier here is not a keyword and can be overridden.
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23.1.5 Querying the Locale of an Expression

The locale associated with an expression (where the expression is stored) is queried using the following
syntax:

locale-access-expression:
expression . locale

When the expression is a class, the access returns the locale on which the class object exists rather than the
reference to the class. If the expression is a value, it is considered local. The implementation may warn about
this behavior. If the expression is a locale, it is returned directly.

Example. Given a class C and a record R, the code

on Locales(1) {
var x: int;
var c: C;
var r: R;
on Locales(2) {

on Locales(3) {
c = new C();
r = new R();

}
writeln(x.locale);
writeln(c.locale);
writeln(r.locale);

}
}

results in the output

1
3
1

The variable x is declared and exists on Locales(0). The variable c is a class reference.
The reference exists on Locales(1) but the object itself exists on Locales(3). The locale
access returns the locale where the object exists. Lastly, the variable r is a record and has value
semantics. It exists on Locales(1) even though it is assigned a value on a remote locale.

23.2 Invoking Remote Tasks

When execution is proceeding on some locale, a task can be associated with a different locale in two ways:
via distributions as discussed in §23.3 or with an on-statement as discussed below.

23.2.1 The On Statement

The on statement controls on which locale tasks should be executed or data should be placed. The syntax of
the on statement is given by

on-statement:
on expression do statement
on expression block-statement
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The locale of the expression is automatically queried as described in §23.1.5. Execution of the statement
occurs on this specified locale and then continues after the on-statement.

The following statements may not be lexically enclosed in on-statements: yield-statements and return-
statements.

Open issue. It may be worthwhile to allow yields in on-statments such that when a loop iterates
over an iterator, on-statements inside the iterator control where the corresponding loop body is
executed. For example, an iterator over a distributed tree might include an iterator over the nodes
as defined in the following code:

class Tree {
var left, right: Tree;
def nodes {

on this do yield this;
if left then

for t in left.nodes do
yield t;

if right then
for t in right.nodes do

yield t;
}

}

Given this code and a binary tree of type Tree stored in variable tree, then we can use the
nodes iterator to iterate over the tree with the following code:

for t in tree.nodes {
// body executed on t as specified in nodes

}

Here, each instance of the body of the forall loop is executed on the locale where the corre-
sponding object t is located. This is specified in the nodes iterator where the on keyword is
used. In the case of zipper or tensor product iteration, the location of execution is taken from
the first iterator. This can be overridden by explicitly using on in the body of the loop or by
reordering the product of iteration.

23.2.2 Remote Variable Declarations

By default, when new variables and data objects are created, they are created in the locale where the task is
running. Variables can be defined within an on-statement to define them on a particular locale such that the
scope of the variables is outside the on-statement. This is accomplished using a similar syntax but omitting
the do keyword and braces. The syntax is given by:

remote-variable-declaration-statement:
on expression variable-declaration-statement

23.3 Distributions

Open issue. This section is largely forthcoming.

A mapping from domain index values to locales is called a distribution.
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23.3.1 Distributed Domains

A domain for which a distribution is specified is referred to as a distributed domain.

Iteration over a distributed domain implicitly executes the controlled task in the domain of the associated
locale. Similarly, when iterating over the elements of an array defined over a distributed domain, the con-
trolled tasks are determined by the distribution of the domain. If there are conflicting distributions in product
iterations, the locale of a task is taken to be the first component in the product.

Example. If D is a distributed domain, then in the code
forall d in D {

// body
}

the body of the loop is executed in the locale where the index d maps to by the distribution of D.

23.3.2 Distributed Arrays

Arrays defined over a distributed domain will have the element variables stored on the locale determined by
the distribution. Thus, if d is an index of distributed domain D and A is an array defined over that domain,
then A(d).locale is the locale to which d maps to according to D.

23.3.3 Undistributed Domains and Arrays

If a domain or an array does not have a distributed part, the domain or array is not distributed and exists only
on the locale on which it is defined.

23.4 Standard Distributions

Standard distributions include the following:

• The block distribution Block

• The cyclic distribution Cyclic

• The block-cyclic distribution BlockCyclic

• The cut distribution Cut

A design goal is that all standard distributions are defined with the same mechanisms that user-defined distri-
butions (§23.5) are defined with.

23.5 User-Defined Distributions

This section is forthcoming.
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24 Reductions and Scans

Chapel provides reduction and scan expressions that apply operators to aggregate expressions in stylized
ways. Reduction expressions collapse the aggregate’s values down to a summary value. Scan expressions
compute an aggregate of results where each result value stores the result of a reduction applied to all of the
elements in the aggregate up to that expression. Chapel provides a number of built-in reduction and scan
operators, and also supports a mechanism for the user to define additional reductions and scans. Chapel
reductions and scans result in efficient parallel implementations, and enjoy syntactic support to make them
easy to use.

24.1 Reduction Expressions

A reduction expression applies a reduction operator to an aggregate expression, collapsing the aggregate’s
dimensions down into a result value (typically a scalar or summary expression that is independent of the
input aggregate’s size). For example, a sum reduction computes the sum of all the elements in the input
aggregate expression.

The syntax for a reduction expression is given by:

reduce-expression:
reduce-scan-operator reduce expression
class-type reduce expression

reduce-scan-operator: one of
+ ∗ && || & | ˆ min max minloc maxloc

Chapel’s built-in reduction operators are defined by reduce-scan-operator above. In order, they are: sum, prod-
uct, logical-and, logical-or, bitwise-and, bitwise-or, bitwise-exclusive-or, minimum, maximum, minimum-
with-location, and maximum-with-location.

The expression on the right-hand side of the reduce keyword can be of any type that can be iterated over
and to which the reduction operator can be applied. For example, the bitwise-and operator can be applied to
arrays of boolean or integral types to compute the bitwise-and of all the values in the array.

The minimum-with-location and maximum-with-location reductions take a 2-tuple of arguments where the
first tuple element is the collection of values for which the minimum/maximum value is to be computed.
The second tuple element is a collection of indices with the same size and shape that provides names for the
locations of the values in the first argument. The reduction returns a tuple containing the minimum/maximum
value in the first position and the location of the value in the second position.

Example. The first line below computes the smallest element in an array A as well as its index,
storing the results in minA and minALoc, respectively. It then computes the largest element in a
forall expression making calls to a function foo(), storing the value and its number in maxVal

and maxValNum.
var (minA, minALoc) = minloc reduce (A, A.domain);
var (maxVal, maxValNum) = maxloc reduce ([i in 1..n] foo(i), 1..n);

User-defined reductions are specified by preceding the keyword reduce by the class type that implements
the reduction interface as described in §24.3.



140 Chapel Language Specification

24.2 Scan Expressions

A scan expression applies a scan operator to an aggregate expression, resulting in an aggregate expression of
the same size and shape. The output values represent the result of the operator applied to all elements up to
and including the corresponding element in the input.

The syntax for a scan expression is given by:

scan-expression:
reduce-scan-operator scan expression
class-type scan expression

The built-in scans are defined in reduce-scan-operator. These are identical to the built-in reductions and are
described in §24.1.

The expression on the right-hand side of the scan can be of any type that can be iterated over and to which
the operator can be applied.

User-defined scans are specified by preceding the keyword scan by the class type that implements the scan
interface as described in §24.3.

Example. Given an array

var A: [1..3] int = 1;

that is initialized such that each element contains one, then the code

writeln(+ scan A);

outputs the results of scanning the array with the sum operator. The output is

1 2 3

24.3 User-Defined Reductions and Scans

User-defined reductions and scans are supported via class definitions where the class implements a structural
interface. The definition of this structural interface is forthcoming. The following paper sketched out such an
interface:

S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder. Global-view abstractions for user-
defined reductions and scans. In Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2006.
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25 Input and Output

Chapel provides a built-in file class to handle input and output to files using functions and methods called
read, readln, write, and writeln.

25.1 The file type

The file class contains the following fields:

• The filename field is a string that contains the name of the file.

• The path field is a string that contains the path of the file.

• The mode field is a FileAccessMode enum value that indicates whether the file is being read or
written.

• The style field can be set to text or binary to specify that reading from or writing to the file should
be done with text or binary formats.

These fields can be modified any time that the file is closed.

The mode field supports the following FileAccessMode values:

• FileAccessMode.read The file can be read.

• FileAccessMode.write The file can be written.

The file type supports the following methods:

• The open() method opens the file for reading and/or writing.

• The close() method closes the file for reading and/or writing.

• The isOpen method returns true if the file is open for reading and/or writing, and otherwise returns
false.

• The flush() method flushes the file, finishing outstanding reading and writing.

Additionally, the file type supports the methods read, readln, write, and writeln for input and output as
discussed in §25.5 and §25.6.

25.2 Standard files stdout, stdin, and stderr

The files stdout, stdin, and stderr are predefined and map to standard output, standard input, and stan-
dard error as implemented in a platform dependent fashion.
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25.3 The write, writeln, read, and readln functions

The built-in function write can take an arbitrary number of arguments and writes each of the arguments out
in turn to stdout. The built-in function writeln has the same semantics as write but outputs an end-of-
line character after writing out the arguments. The built-in function read can take an arbitrary number of
arguments and reads each of the arguments in turn from stdin. The built-in function readln also takes an
arbitrary number of arguments, reading each argument from stdin. These arguments may be entered on a
single line or on multiple lines. After all arguments of the readln call are read, an end-of-line character
is expected to be read, ignoring any additional input between the last argument read and the end-of-line
character.

The read and readln functions are also defined to take an arbitrary number of types as arguments. In this
case, the semantics are the same except that the value returned is a tuple of the values that were read. If only
one type is read, the value is not returned in a tuple, but is returned directly.

These functions are wrappers for the methods on files described next.

Example. The writeln wrapper function allows for a simple implementation of the Hello-
World program:

writeln("Hello, World!");

25.4 User-Defined writeThis methods

To define the output for a given type, the user must define a method called writeThis on that type that takes
a single argument of Writer type. If such a method does not exist, a default method is created.

25.5 The write and writeln method on files

The file type supports methods write and writeln for output. These methods are defined to take an
arbitrary number of arguments. Each argument is written in turn by calling the writeThis method on that
argument. Default writeThis methods are bound to any type that the user does not explicitly create one for.

A lock is used to ensure that output is serialized across multiple tasks.

25.5.1 The write and writeln method on strings

The write and writeln methods can also be called on strings to write the output to a string instead of a file.
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25.5.2 Generalized write and writeln

The Writer class contains no arguments and serves as a base class to allow user-defined classes to be written
to. If a class is defined to be a subclass of Writer, it must override the writeIt method that takes a string
as an argument.

Example. The following code defines a subclass of Writer that overrides the writeIt method
to allow it to be written to. It also overrides the writeThis method to override the default way
that it is written.

class C: Writer {
var data: string;
def writeIt(s: string) {

data += s.substring(1);
}
def writeThis(x: Writer) {

x.write(data);
}

}

var c = new C();
c.write(41, 32, 23, 14);
writeln(c);

The C class filters the arguments sent to it, printing out only the first letter. The output to the
above is thus 4321.

25.6 The read and readln methods on files

The file type supports read and readln methods. The read method takes an arbitrary number of argu-
ments, reading in each argument from file. The readln method also takes an arbitrary number of arguments,
reading in each argument from a single line or multiple lines in the file and advancing the file pointer to the
next line after the last argument is read.

The file type also supports overloaded methods read and readln that take an arbitrary number of types as
arguments. These methods read values of the specified types from the file and return them in a tuple. If only
one type is read, the value is not returned in a tuple, but is returned directly.

Example. The following line of code reads a value of type int from stdin and uses it to
initialize variable x (causing x to have an inferred type of int):

var x = stdin.read(int);

25.7 Default read and write methods

Default write methods are created for all types for which a user write method is not defined. They have
the following semantics:

• arrays Outputs the elements of the array in row-major order where rows are separated by line-feeds
and blank lines are used to separate other dimensions.
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• domains Outputs the dimensions of the domain enclosed by [ and ].

• ranges Outputs the lower bound of the range followed by .. followed by the upper bound of the range.
If the stride of the range is not one, the output is additionally followed by the word by followed by the
stride of the range.

• tuples Outputs the components of the tuple in order delimited by ( and ), and separated by commas.

• classes Outputs the values within the fields of the class prefixed by the name of the field and the
character =. Each field is separated by a comma. The output is delimited by { and }.

• records Outputs the values within the fields of the class prefixed by the name of the field and the
character =. Each field is separated by a comma. The output is delimited by ( and ).

Default read methods are created for all types for which a user read method is not defined. The default
read methods are defined to read in the output of the default write method.
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26 Standard Modules

This section describes modules that are automatically used by every Chapel program as well as a set of
standard modules that can be used manually, provididing standard library support. The automatic modules
are as follows:

Math Math routines
Standard Basic routines
Types Routines related to primitive types

The standard modules include:

BitOps Bit manipulation routines
Norm routines for computing vector and matrix norms
Random Random number generation routines
Search Generic searching routines
Sort Generic sorting routines
Time Types and routines related to time

There is an expectation that each of these modules will be extended and that more standard modules will be
defined over time.

26.1 Automatic Modules

Automatic modules are used by a Chapel program automatically. There is currently no way to avoid their use
by a program though we anticipate adding such a capability in the future.

26.1.1 Math

The module Math defines routines for mathematical computations. This module is used by default; there is no
need to explicitly use this module. The Math module defines routines that are derived from and implemented
via the standard C routines defined in math.h.

def abs(i: int(?w)): int(w)
def abs(i: uint(?w)): uint(w)
def abs(x: real): real
def abs(x: real(32)): real(32)
def abs(x: complex): real

Returns the absolute value of the argument.

def acos(x: real): real
def acos(x: real(32)): real(32)

Returns the arc cosine of the argument. It is an error if x is less than −1 or greater than 1.

def acosh(x: real): real
def acosh(x: real(32)): real(32)
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Returns the inverse hyperbolic cosine of the argument. It is an error if x is less than 1.

def asin(x: real): real
def asin(x: real(32)): real(32)

Returns the arc sine of the argument. It is an error if x is less than −1 or greater than 1.

def asinh(x: real): real
def asinh(x: real(32)): real(32)

Returns the inverse hyperbolic sine of the argument.

def atan(x: real): real
def atan(x: real(32)): real(32)

Returns the arc tangent of the argument.

def atan2(y: real, x: real): real
def atan2(y: real(32), x: real(32)): real(32)

Returns the arc tangent of the two arguments. This is equivalent to the arc tangent of y / x except
that the signs of y and x are used to determine the quadrant of the result.

def atanh(x: real): real
def atanh(x: real(32)): real(32)

Returns the inverse hyperbolic tangent of the argument. It is an error if x is less than −1 or greater than
1.

def cbrt(x: real): real
def cbrt(x: real(32)): real(32)

Returns the cube root of the argument.

def ceil(x: real): real
def ceil(x: real(32)): real(32)

Returns the value of the argument rounded up to the nearest integer.

def conjg(a: complex(?w)): complex(w)

Returns the conjugate of a.

def cos(x: real): real
def cos(x: real(32)): real(32)

Returns the cosine of the argument.

def cosh(x: real): real
def cosh(x: real(32)): real(32)

Returns the hyperbolic cosine of the argument.

def erf(x: real): real
def erf(x: real(32)): real(32)
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Returns the error function of the argument defined as

2√
π

∫ x

0

e−t2dt

for the argument x.

def erfc(x: real): real
def erfc(x: real(32)): real(32)

Returns the complementary error function of the argument. This is equivalent to 1.0 - erf(x).

def exp(x: real): real
def exp(x: real(32)): real(32)

Returns the value of e raised to the power of the argument.

def exp2(x: real): real
def exp2(x: real(32)): real(32)

Returns the value of 2 raised to the power of the argument.

def expm1(x: real): real
def expm1(x: real(32)): real(32)

Returns one less than the value of e raised to the power of the argument.

def floor(x: real): real
def floor(x: real(32)): real(32)

Returns the value of the argument rounded down to the nearest integer.

def lgamma(x: real): real
def lgamma(x: real(32)): real(32)

Returns the natural logarithm of the absolute value of the gamma function of the argument.

def log(x: real): real
def log(x: real(32)): real(32)

Returns the natural logarithm of the argument. It is an error if the argument is less than or equal to
zero.

def log10(x: real): real
def log10(x: real(32)): real(32)

Returns the base 10 logarithm of the argument. It is an error if the argument is less than or equal to
zero.

def log1p(x: real): real
def log1p(x: real(32)): real(32)

Returns the natural logarithm of x+1. It is an error if x is less than or equal to −1.
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def log2(i: int(?w)): int(w)
def log2(i: uint(?w)): uint(w)
def log2(x: real): real
def log2(x: real(32)): real(32)

Returns the base 2 logarithm of the argument. It is an error if the argument is less than or equal to zero.

def nearbyint(x: real): real
def nearbyint(x: real(32)): real(32)

Returns the rounded integral value of the argument determined by the current rounding direction.

def rint(x: real): real
def rint(x: real(32)): real(32)

Returns the rounded integral value of the argument determined by the current rounding direction.

def round(x: real): real
def round(x: real(32)): real(32)

Returns the rounded integral value of the argument. Cases halfway between two integral values are
rounded towards zero.

def sin(x: real): real
def sin(x: real(32)): real(32)

Returns the sine of the argument.

def sinh(x: real): real
def sinh(x: real(32)): real(32)

Returns the hyperbolic sine of the argument.

def sqrt(x: real): real
def sqrt(x: real(32)): real(32)

Returns the square root of the argument. It is an error if the argument is less than zero.

def tan(x: real): real
def tan(x: real(32)): real(32)

Returns the tangent of the argument.

def tanh(x: real): real
def tanh(x: real(32)): real(32)

Returns the hyperbolic tangent of the argument.

def tgamma(x: real): real
def tgamma(x: real(32)): real(32)

Returns the gamma function of the argument defined as∫ ∞

0

tx−1e−tdt

for the argument x.

def trunc(x: real): real
def trunc(x: real(32)): real(32)

Returns the nearest integral value to the argument that is not larger than the argument in absolute value.
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26.1.2 Standard

def ascii(s: string): int
Returns the ASCII code number of the first letter in the argument s.

def assert(test: bool) {

Exits the program if test is false and prints to standard error the location in the Chapel code of the
call to assert. If test is true, no action is taken.

def assert(test: bool, args ...?numArgs) {

Exits the program if test is false and prints to standard error the location in the Chapel code of the
call to assert as well as the rest of the arguments to the call. If test is true, no action is taken.

def complex.re: real

Returns the real component of the complex number.

def complex.im: real

Returns the imaginary component of the complex number.

def complex.=re(f: real)

Sets the real component of the complex number to f.

def complex.=im(f: real)

Sets the imaginary component of the complex number to f.

def exit(status: int)

Exits the program with code status.

def halt() {

Exits the program and prints to standard error the location in the Chapel code of the call to halt as
well as the rest of the arguments to the call.

def halt(args ...?numArgs) {

Exits the program and prints to standard error the location in the Chapel code of the call to halt as
well as the rest of the arguments to the call.

def length(s: string): int

Returns the number of characters in the argument s.

def max(x, y...?k)

Returns the maximum of the arguments when compared using the “greater-than” operator. The return
type is inferred from the types of the arguments as allowed by implicit coercions.

def min(x, y...?k)

Returns the minimum of the arguments when compared using the “less-than” operator. The return type
is inferred from the types of the arguments as allowed by implicit coercions.

def string.substring(x): string

Returns a value of string type that is a substring of the base expression. If x is i, a value of type int,
then the result is the ith character. If x is a range, the result is the substring where the characters in the
substring are given by the values in the range.
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26.1.3 Types

def numBits(type t) param : int

Returns the number of bits used to store the values of type t. This is implemented for all numeric types
and bool.

def numBytes(type t) param : int

Returns the number of bytes used to store the values of type t. This is implemented for all numeric
types and bool.

def max(type t): t

Returns the maximum value that can be stored in type t. This is implemented for all numeric types.

def min(type t): t

Returns the minimum value that can be stored in type t. This is implemented for all numeric types.

26.2 Standard Modules

Standard modules can be used by a Chapel program via the use keyword.

26.2.1 BitOps

The module BitOps defines routines that manipulate the bits of values of integral types.

def bitPop(i: integral): int

Returns the number of bits set to one in the integral argument i.

def bitMatMultOr(i: uint(64), j: uint(64)): uint(64)

Returns the bitwise matrix multiplication of i and j where the values of uint(64) type are treated as
8× 8 bit matrices and the combinator function is bitwise or.

def bitRotLeft(i: integral, shift: integral): i.type

Returns the value of the integral argument i after rotating the bits to the left shift number of times.

def bitRotRight(i: integral, shift: integral): i.type

Returns the value of the integral argument i after rotating the bits to the right shift number of times.
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26.2.2 Norm

The module Norm supports the computation of standard vector and matrix norms on Chapel arrays. The
current interface is minimal and should be expected to grow and evolve over time.

enum normType {norm1, norm2, normInf, normFrob};

An enumerated type indicating the different types of norms supported by this module: 1-norm, 2-norm,
infinity norm and Frobenius norm, respectively.

def norm(x: [], p: normType) where x.rank == 1 || x.rank == 2

Compute the norm indicated by p on the 1D or 2D array x.

def norm(x: [])

Compute the default norm on array x. For a 1D array this is the 2-norm, for a 2D array, this is the
Frobenius norm.

26.2.3 Random

The module Random supports the generation of pseudo-random values and streams of values. The current
interface is minimal and should be expected to grow and evolve over time.

class RandomStream

Implements a pseudo-random stream of values. Our current implementation generates the values using
a linear congruential generator. In future versions of this module, the RandomStream class will offer a
wider variety of algorithms for generating pseudo-random values.

const RandomStream.seed: int(64)

The seed value for the random stream. If no seed is specified in the constructor, the millisecond value
of the current time is used. The seed value must be an odd integer. If an even integer is supplied, the
class constructor will increment it to obtain an odd integer.

def RandomStream.fillRandom(x:[?D] real)

Fill the argument array, x, with the next |D| values of the pseudo-random stream. Arrays of arbitrary
rank can be passed to this routine, causing the 1D stream of values to be mapped to the array elements
according to the array’s default iteration order. Once our implementation supports distributed arrays,
this routine is intended to fill the array’s values in parallel.

def RandomStream.fillRandom(x:[?D] complex)

Similar to the previous routine, but for use with arrays of complex values. The elements are filled
in the same order as above except that pairs of values from the stream are assigned to each element,
the first to the real component, the second to the imaginary. As this module matures, we will support
fillRandom for arrays of other element types as well.

def RandomStream.skipToNth(in n: integral)
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Skips ahead or back to the n-th value in the random stream. The value of n is assumed to be positive,
such that n == 1 represents the initial value in the stream.

def RandomStream.getNext(): real

Returns the next value in the random stream as a real.

def RandomStream.getNth(n: integral): real

Returns the n-th value in the random stream as a real. Equivalent to calling skipToNth(n) followed
by getNext().

SeedGenerator

A symbol that can be used to generate seed values for the RandomStream class.

SeedGenerator.clockMS

Generates a seed value using the milliseconds value from the current time. As this module matures,
SeedGenerator will support additional mechanisms for generating seed values.

def fillRandom(x:[], initseed: int(64))

A routine provided for convenience to support filling an array x with pseudo-random values without
explicitly constructing an instance of the RandomStream class, useful for filling a single array or
multiple arrays which require no coherence between them. The initseed parameter corresponds to
the seed member of the RandomStream class and will default to the milliseconds value of the current
time if no seed value is provided.

26.2.4 Search

The Search module is designed to support standard search routines. The current interface is minimal and
should be expected to grow and evolve over time.

def LinearSearch(Data: [?Dom], val): (bool, index(Dom))

Searches through the pre-sorted array Data looking for the value val using a sequential linear search.
Returns a tuple indicating (1) whether or not the value was found and (2) the location of the value if it
was found, or the location where the value should have been if it was not found.

def BinarySearch(Data: [?Dom], val, in lo = Dom.low, in hi = Dom.high);

Searches through the pre-sorted array Data looking for the value val using a sequential binary search.
If provided, only the indices lo through hi will be considered, otherwise the whole array will be
searched. Returns a tuple indicating (1) whether or not the value was found and (2) the location of the
value if it was found, or the location where the value should have been if it was not found.
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26.2.5 Sort

The Sort module is designed to support standard sorting routines. The current interface is minimal and
should be expected to grow and evolve over time.
def InsertionSort(Data: [?Dom]) where Dom.rank == 1;

Sorts the 1D array Data in-place using a sequential insertion sort algorithm.

def QuickSort(Data: [?Dom]) where Dom.rank == 1;

Sorts the 1D array Data in-place using a sequential implementation of the QuickSort algorithm.

26.2.6 Time

The module Time defines routines that query the system time and a record Timer that is useful for timing
portions of code.

record Timer

A timer is used to time portions of code. Its semantics are similar to a stopwatch.

enum TimeUnits { microseconds, milliseconds, seconds, minutes, hours };

The enumeration TimeUnits defines units of time. These units can be supplied to routines in this
module to specify the desired time units.

enum Day { sunday=0, monday, tuesday, wednesday, thursday, friday, saturday };

The enumeration Day defines the days of the week, with Sunday defined to be 0.

def getCurrentDate(): (int, int, int)

Returns the year, month, and day of the month as integers. The year is the year since 0. The month is
in the range 1 to 12. The day is in the range 1 to 31.

def getCurrentDayOfWeek(): Day

Returns the current day of the week.

def getCurrentTime(unit: TimeUnits = TimeUnits.seconds): real

Returns the elapsed time since midnight in the units specified.

def Timer.clear()

Clears the elapsed time stored in the Timer.

def Timer.elapsed(unit: TimeUnits = TimeUnits.seconds): real

Returns the cumulative elapsed time, in the units specified, between calls to start and stop. If the
timer is running, the elapsed time since the last call to start is added to the return value.

def Timer.start()

Start the timer. It is an error to start a timer that is already running.

def Timer.stop()

Stops the timer. It is an error to stop a timer that is not running.

def sleep(t: uint)

Delays a task for t seconds.
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A Collected Lexical and Syntax Productions

This appendix collects the syntax productions listed throughout the specification. There are no new syntax
productions in this appendix. The productions are listed both alphabetically and in depth-first order for
convenience.

A.1 Alphabetical Lexical Productions

apostrophe-delimited-characters:
character apostrophe-delimited-charactersopt

” apostrophe-delimited-charactersopt

binary-digit: one of
0 1

binary-digits:
binary-digit
binary-digit binary-digits

bool-literal: one of
true false

character:
any-character-except-newline-quote-and-apostrophe

digit: one of
0 1 2 3 4 5 6 7 8 9

digits:
digit
digit digits

exponent-part:
e signopt digits

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits

identifier:
legal-first-identifier-char legal-identifier-charsopt

imaginary-literal:
real-literal i
integer-literal i

integer-literal:
digits
0 x hexadecimal-digits
0 b binary-digits
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legal-first-identifier-char: one of
$ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m

n o p q r s t u v w x y z

legal-identifier-char:
legal-first-identifier-char
digit

legal-identifier-chars:
legal-identifier-char legal-identifier-charsopt

quote-delimited-characters:
character quote-delimited-charactersopt

’ quote-delimited-charactersopt

real-literal:
digitsopt . digits exponent-partopt

digits exponent-part

sign: one of
+ -

string-literal:
” quote-delimited-charactersopt ”
’ apostrophe-delimited-charactersopt ’

A.2 Alphabetical Syntax Productions

argument-list:
( formalsopt )

arithmetic-domain-type:
domain ( named-expression-list )

array-alias-declaration:
identifier reindexing-expressionopt => array-expression ;

array-expression:
expression

array-type-forall-expression:
[ identifier in domain-expression ]

array-type:
[ domain-expression ] type-specifier

assignment-operator: one of
= += -= ∗= /= %= ∗∗= &= |= ˆ= &&= ||= <<= >>=

assignment-statement:
lvalue-expression assignment-operator expression

associative-domain-type:
domain ( scalar-type )
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atomic-statement:
atomic statement

begin-statement:
begin statement

binary-expression:
expression binary-operator expression

binary-operator: one of
+ -∗ / % ∗∗ & | ˆ << >> && || == != <= >= < >

block-statement:
{ statementsopt }
{ }

bounded-range-literal:
expression .. expression

break-statement:
break identifieropt ;

call-expression:
expression ( named-expression-list )
expression [ named-expression-list ]
parenthesesless-function-identifier

cast-expression:
expression : type-specifier

class-declaration-statement:
class identifier class-inherit-listopt {

class-statement-listopt }

class-inherit-list:
: class-type-list

class-statement-list:
class-statement
class-statement class-statement-list

class-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

class-type-list:
class-type
class-type , class-type-list

class-type:
identifier
identifier ( named-expression-list )
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cobegin-statement:
cobegin block-statement

coforall-statement:
coforall loop-control-part loop-body-part

compiler-diagnostic-statement:
compilerError ( expression-list ) ;
compilerWarning ( expression-list ) ;

conditional-statement:
if expression then statement else-partopt

if expression block-statement else-partopt

continue-statement:
continue identifieropt ;

default-expression:
= expression

do-while-statement:
do statement while expression ;

domain-expression:
expression

domain-type:
arithmetic-domain-type
associative-domain-type
opaque-domain-type
enumerated-domain-type
sparse-domain-type
subdomain-type

else-part:
else statement

empty-statement:
;

enum-constant-expression:
enum-type . identifier

enum-constant-list:
enum-constant
enum-constant , enum-constant-list

enum-constant:
identifier init-partopt

enum-declaration-statement:
enum identifier { enum-constant-list } ;

enum-type:
identifier
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enumerated-domain-type:
domain ( enum-type )

expression # expression

expression by expression

expression-list:
expression
expression , expression-list

expression-statement:
expression ;

expression:
literal-expression
variable-expression
enum-constant-expression
member-access-expression
call-expression
query-expression
cast-expression
lvalue-expression
parenthesized-expression
unary-expression
binary-expression
let-expression
if-expression
for-expression
parallel-expression
reduce-expression
scan-expression
module-access-expression
tuple-expression
tuple-destructuring-expression
locale-access-expression

for-expression:
for index-expression in iterator-expression do expression
for iterator-expression do expression

for-statement:
for loop-control-part loop-body-part

forall-expression:
forall loop-control-part do expression
[loop-control-part] expression

forall-statement:
forall loop-control-part loop-body-part
[loop-control-part] statement

formal-tag: one of
in out inout param type
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formal-type:
: type-specifier
: ? identifieropt

formal:
formal-tag identifier formal-typeopt default-expressionopt

formal-tag identifier formal-typeopt variable-argument-expression

formals:
formal
formal , formals

function-body:
block-statement
return-statement

function-declaration-statement:
def function-name argument-listopt var-param-clauseopt

return-typeopt where-clauseopt function-body

function-name:
identifier
operator-name

homogeneous-tuple-type:
integer-parameter-expression ∗ type-specifier

identifier-list:
identifier
identifier , identifier-list

if-expression:
if expression then expression else expression
if expression then expression

index-expression:
expression

index-type:
index ( domain-expression )

indexed-array-type-part:
: array-type-forall-expression type-specifier

init-part:
= expression

initialization-part:
= expression

integer-parameter-expression:
expression

iterator-expression:
expression
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label-statement:
label identifier statement

let-expression:
let variable-declaration-list in expression

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string-literal
range-literal

locale-access-expression:
expression . locale

loop-body-part:
do statement
block-statement

loop-control-part:
index-expression in iterator-expression
iterator-expression

lvalue-expression:
variable-expression
member-access-expression
call-expression

member-access-expression:
expression . identifier

method-declaration-statement:
def type-binding function-name argument-listopt var-param-clauseopt

return-typeopt where-clauseopt function-name

module-access-expression:
module-identifier-list . identifier

module-declaration-statement:
module identifier block-statement

module-identifier-list:
module-identifier
module-identifier . module-identifier-list

module-identifier:
identifier

module-name-list:
module-name
module-name , module-name-list
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module-name:
identifier
module-name . module-name

named-expression-list:
named-expression
named-expression , named-expression-list

named-expression:
expression
identifier = expression

on-statement:
on expression do statement
on expression block-statement

opaque-domain-type:
domain ( opaque )

operator-name: one of
+ -∗ / % ∗∗ ! == <= >= < > << >> & | ˆ ˜

parallel-expression:
forall-expression

parallel-statement:
forall-statement
cobegin-statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic-statement

param-for-statement:
for param identifier in param-iterator-expression do statement
for param identifier in param-iterator-expression block-statement

param-iterator-expression:
range-literal
range-literal by integer-literal

parenthesesless-function-identifier:
identifier

parenthesized-expression:
( expression )

primitive-type-parameter-part:
( integer-parameter-expression )

primitive-type:
bool primitive-type-parameter-partopt

int primitive-type-parameter-partopt

uint primitive-type-parameter-partopt
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real primitive-type-parameter-partopt

imag primitive-type-parameter-partopt

complex primitive-type-parameter-partopt

string
locale

query-expression:
? identifieropt

range-literal:
bounded-range-literal
unbounded-range-literal

range-type:
range ( named-expression-list )

record-declaration-statement:
record identifier record-inherit-listopt {

record-statement-list }

record-inherit-list:
: record-type-list

record-statement-list:
record-statement
record-statement record-statement-list

record-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

record-type-list:
record-type
record-type , record-type-list

record-type:
identifier
identifier ( named-expression-list )

reduce-expression:
reduce-scan-operator reduce expression
class-type reduce expression

reduce-scan-operator: one of
+ ∗ && || & | ˆ min max minloc maxloc

reindexing-expression:
[ domain-expression ]

remote-variable-declaration-statement:
on expression variable-declaration-statement

return-statement:
return expressionopt ;
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return-type:
: type-specifier

scalar-type:
type-specifier

scan-expression:
reduce-scan-operator scan expression
class-type scan expression

select-statement:
select expression { when-statements }

serial-statement:
serial expression do statement
serial expression block-statement

single-type:
single type-specifier

sparse-domain-type:
sparse subdomain ( domain-expression )

special-array-declaration:
identifier-list indexed-array-type-part initialization-part

statement:
block-statement
expression-statement
assignment-statement
swap-statement
conditional-statement
select-statement
while-do-statement
do-while-statement
for-statement
label-statement
break-statement
continue-statement
param-for-statement
return-statement
yield-statement
module-declaration-statement
function-declaration-statement
method-declaration-statement
type-declaration-statement
variable-declaration-statement
remote-variable-declaration-statement
tuple-variable-declaration-statement
use-statement
type-select-statement
empty-statement
parallel-statement
on-statement
compiler-diagnostic-statement
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statements:
statement
statement statements

subdomain-type:
subdomain ( domain-expression )

swap-operator:
<=>

swap-statement:
lvalue-expression swap-operator lvalue-expression

sync-statement:
sync statement

sync-type:
sync type-specifier

tuple-destructuring-expression:
( ... expression )

tuple-expression:
( expression , expression-list )

tuple-identifier-list:
tuple-identifier
tuple-identifier , tuple-identifier-list

tuple-identifier:
identifier
( tuple-identifier-list )

tuple-type:
( type-specifier , type-list )
homogeneous-tuple-type

tuple-variable-declaration-statement:
configopt variable-kind tuple-variable-declaration ;

tuple-variable-declaration:
( tuple-identifier-list ) type-partopt initialization-part
( tuple-identifier-list ) type-part

type-alias-declaration-list:
type-alias-declaration
type-alias-declaration , type-alias-declaration-list

type-alias-declaration-statement:
type type-alias-declaration-list ;

type-alias-declaration:
identifier = type-specifier
identifier
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type-binding:
identifier .

type-declaration-statement:
enum-declaration-statement
class-declaration-statement
record-declaration-statement
union-declaration-statement
type-alias-declaration-statement

type-list:
type-specifier
type-specifier , type-list

type-part:
: type-specifier

type-select-statement:
type select expression-list { type-when-statements }

type-specifier:
primitive-type
enum-type
class-type
record-type
union-type
tuple-type
range-type
domain-type
array-type
sync-type
single-type
index-type

type-when-statement:
when type-list do statement
when type-list block-statement
otherwise statement

type-when-statements:
type-when-statement
type-when-statement type-when-statements

unary-expression:
unary-operator expression

unary-operator: one of
+ -˜ !

unbounded-range-literal:
expression ..
.. expression
..

union-declaration-statement:
union identifier { union-statement-list }
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union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

union-type:
identifier

use-statement:
use module-name-list ;

var-param-clause:
var
const
param

variable-argument-expression:
... expression
... ? identifieropt

variable-declaration-list:
variable-declaration
variable-declaration , variable-declaration-list

variable-declaration-statement:
configopt variable-kind variable-declaration-list ;

variable-declaration:
identifier-list type-partopt initialization-part
identifier-list type-part
special-array-declaration
array-alias-declaration

variable-expression:
identifier

variable-kind: one of
param const var

when-statement:
when expression-list do statement
when expression-list block-statement
otherwise statement

when-statements:
when-statement
when-statement when-statements

where-clause:
where expression
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while-do-statement:
while expression do statement
while expression block-statement

yield-statement:
yield expression ;

A.3 Depth-First Lexical Productions

bool-literal: one of
true false

identifier:
legal-first-identifier-char legal-identifier-charsopt

legal-first-identifier-char: one of
$ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m

n o p q r s t u v w x y z

legal-identifier-chars:
legal-identifier-char legal-identifier-charsopt

legal-identifier-char:
legal-first-identifier-char
digit

digit: one of
0 1 2 3 4 5 6 7 8 9

imaginary-literal:
real-literal i
integer-literal i

real-literal:
digitsopt . digits exponent-partopt

digits exponent-part

digits:
digit
digit digits

exponent-part:
e signopt digits

sign: one of
+ -

integer-literal:
digits
0 x hexadecimal-digits
0 b binary-digits

hexadecimal-digits:
hexadecimal-digit
hexadecimal-digit hexadecimal-digits
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hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

binary-digits:
binary-digit
binary-digit binary-digits

binary-digit: one of
0 1

string-literal:
” quote-delimited-charactersopt ”
’ apostrophe-delimited-charactersopt ’

quote-delimited-characters:
character quote-delimited-charactersopt

’ quote-delimited-charactersopt

character:
any-character-except-newline-quote-and-apostrophe

apostrophe-delimited-characters:
character apostrophe-delimited-charactersopt

” apostrophe-delimited-charactersopt

A.4 Depth-First Syntax Productions

module-declaration-statement:
module identifier block-statement

block-statement:
{ statementsopt }
{ }

statements:
statement
statement statements

statement:
block-statement
expression-statement
assignment-statement
swap-statement
conditional-statement
select-statement
while-do-statement
do-while-statement
for-statement
label-statement
break-statement
continue-statement
param-for-statement
return-statement
yield-statement
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module-declaration-statement
function-declaration-statement
method-declaration-statement
type-declaration-statement
variable-declaration-statement
remote-variable-declaration-statement
tuple-variable-declaration-statement
use-statement
type-select-statement
empty-statement
parallel-statement
on-statement
compiler-diagnostic-statement

expression-statement:
expression ;

expression:
literal-expression
variable-expression
enum-constant-expression
member-access-expression
call-expression
query-expression
cast-expression
lvalue-expression
parenthesized-expression
unary-expression
binary-expression
let-expression
if-expression
for-expression
parallel-expression
reduce-expression
scan-expression
module-access-expression
tuple-expression
tuple-destructuring-expression
locale-access-expression

literal-expression:
bool-literal
integer-literal
real-literal
imaginary-literal
string-literal
range-literal

range-literal:
bounded-range-literal
unbounded-range-literal

bounded-range-literal:
expression .. expression
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unbounded-range-literal:
expression ..
.. expression
..

variable-expression:
identifier

enum-constant-expression:
enum-type . identifier

enum-type:
identifier

member-access-expression:
expression . identifier

call-expression:
expression ( named-expression-list )
expression [ named-expression-list ]
parenthesesless-function-identifier

named-expression-list:
named-expression
named-expression , named-expression-list

named-expression:
expression
identifier = expression

parenthesesless-function-identifier:
identifier

query-expression:
? identifieropt

cast-expression:
expression : type-specifier

type-specifier:
primitive-type
enum-type
class-type
record-type
union-type
tuple-type
range-type
domain-type
array-type
sync-type
single-type
index-type
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primitive-type:
bool primitive-type-parameter-partopt

int primitive-type-parameter-partopt

uint primitive-type-parameter-partopt

real primitive-type-parameter-partopt

imag primitive-type-parameter-partopt

complex primitive-type-parameter-partopt

string
locale

primitive-type-parameter-part:
( integer-parameter-expression )

integer-parameter-expression:
expression

class-type:
identifier
identifier ( named-expression-list )

record-type:
identifier
identifier ( named-expression-list )

union-type:
identifier

tuple-type:
( type-specifier , type-list )
homogeneous-tuple-type

type-list:
type-specifier
type-specifier , type-list

homogeneous-tuple-type:
integer-parameter-expression ∗ type-specifier

range-type:
range ( named-expression-list )

domain-type:
arithmetic-domain-type
associative-domain-type
opaque-domain-type
enumerated-domain-type
sparse-domain-type
subdomain-type

arithmetic-domain-type:
domain ( named-expression-list )

associative-domain-type:
domain ( scalar-type )
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scalar-type:
type-specifier

opaque-domain-type:
domain ( opaque )

enumerated-domain-type:
domain ( enum-type )

sparse-domain-type:
sparse subdomain ( domain-expression )

domain-expression:
expression

subdomain-type:
subdomain ( domain-expression )

array-type:
[ domain-expression ] type-specifier

sync-type:
sync type-specifier

single-type:
single type-specifier

index-type:
index ( domain-expression )

lvalue-expression:
variable-expression
member-access-expression
call-expression

parenthesized-expression:
( expression )

unary-expression:
unary-operator expression

unary-operator: one of
+ -˜ !

binary-expression:
expression binary-operator expression

binary-operator: one of
+ -∗ / % ∗∗ & | ˆ << >> && || == != <= >= < >

let-expression:
let variable-declaration-list in expression

if-expression:
if expression then expression else expression
if expression then expression
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for-expression:
for index-expression in iterator-expression do expression
for iterator-expression do expression

parallel-expression:
forall-expression

forall-expression:
forall loop-control-part do expression
[loop-control-part] expression

loop-control-part:
index-expression in iterator-expression
iterator-expression

index-expression:
expression

iterator-expression:
expression

reduce-expression:
reduce-scan-operator reduce expression
class-type reduce expression

reduce-scan-operator: one of
+ ∗ && || & | ˆ min max minloc maxloc

scan-expression:
reduce-scan-operator scan expression
class-type scan expression

module-access-expression:
module-identifier-list . identifier

module-identifier-list:
module-identifier
module-identifier . module-identifier-list

module-identifier:
identifier

tuple-expression:
( expression , expression-list )

expression-list:
expression
expression , expression-list

tuple-destructuring-expression:
( ... expression )

locale-access-expression:
expression . locale
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assignment-statement:
lvalue-expression assignment-operator expression

assignment-operator: one of
= += -= ∗= /= %= ∗∗= &= |= ˆ= &&= ||= <<= >>=

swap-statement:
lvalue-expression swap-operator lvalue-expression

swap-operator:
<=>

conditional-statement:
if expression then statement else-partopt

if expression block-statement else-partopt

else-part:
else statement

select-statement:
select expression { when-statements }

when-statements:
when-statement
when-statement when-statements

when-statement:
when expression-list do statement
when expression-list block-statement
otherwise statement

while-do-statement:
while expression do statement
while expression block-statement

do-while-statement:
do statement while expression ;

for-statement:
for loop-control-part loop-body-part

loop-body-part:
do statement
block-statement

label-statement:
label identifier statement

break-statement:
break identifieropt ;

continue-statement:
continue identifieropt ;
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param-for-statement:
for param identifier in param-iterator-expression do statement
for param identifier in param-iterator-expression block-statement

param-iterator-expression:
range-literal
range-literal by integer-literal

return-statement:
return expressionopt ;

yield-statement:
yield expression ;

module-declaration-statement:
module identifier block-statement

function-declaration-statement:
def function-name argument-listopt var-param-clauseopt

return-typeopt where-clauseopt function-body

function-name:
identifier
operator-name

operator-name: one of
+ -∗ / % ∗∗ ! == <= >= < > << >> & | ˆ ˜

argument-list:
( formalsopt )

formals:
formal
formal , formals

formal:
formal-tag identifier formal-typeopt default-expressionopt

formal-tag identifier formal-typeopt variable-argument-expression

default-expression:
= expression

formal-tag: one of
in out inout param type

formal-type:
: type-specifier
: ? identifieropt

variable-argument-expression:
... expression
... ? identifieropt
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var-param-clause:
var
const
param

return-type:
: type-specifier

where-clause:
where expression

function-body:
block-statement
return-statement

method-declaration-statement:
def type-binding function-name argument-listopt var-param-clauseopt

return-typeopt where-clauseopt function-name

type-binding:
identifier .

type-declaration-statement:
enum-declaration-statement
class-declaration-statement
record-declaration-statement
union-declaration-statement
type-alias-declaration-statement

enum-declaration-statement:
enum identifier { enum-constant-list } ;

enum-constant-list:
enum-constant
enum-constant , enum-constant-list

enum-constant:
identifier init-partopt

init-part:
= expression

class-declaration-statement:
class identifier class-inherit-listopt {

class-statement-listopt }

class-inherit-list:
: class-type-list

class-type-list:
class-type
class-type , class-type-list

class-statement-list:
class-statement
class-statement class-statement-list
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class-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

record-declaration-statement:
record identifier record-inherit-listopt {

record-statement-list }

record-inherit-list:
: record-type-list

record-type-list:
record-type
record-type , record-type-list

record-statement-list:
record-statement
record-statement record-statement-list

record-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

union-declaration-statement:
union identifier { union-statement-list }

union-statement-list:
union-statement
union-statement union-statement-list

union-statement:
type-declaration-statement
function-declaration-statement
variable-declaration-statement

type-alias-declaration-statement:
type type-alias-declaration-list ;

type-alias-declaration-list:
type-alias-declaration
type-alias-declaration , type-alias-declaration-list

type-alias-declaration:
identifier = type-specifier
identifier

variable-declaration-statement:
configopt variable-kind variable-declaration-list ;

variable-kind: one of
param const var
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variable-declaration-list:
variable-declaration
variable-declaration , variable-declaration-list

variable-declaration:
identifier-list type-partopt initialization-part
identifier-list type-part
special-array-declaration
array-alias-declaration

initialization-part:
= expression

identifier-list:
identifier
identifier , identifier-list

type-part:
: type-specifier

special-array-declaration:
identifier-list indexed-array-type-part initialization-part

indexed-array-type-part:
: array-type-forall-expression type-specifier

array-type-forall-expression:
[ identifier in domain-expression ]

array-alias-declaration:
identifier reindexing-expressionopt => array-expression ;

reindexing-expression:
[ domain-expression ]

array-expression:
expression

remote-variable-declaration-statement:
on expression variable-declaration-statement

tuple-variable-declaration-statement:
configopt variable-kind tuple-variable-declaration ;

tuple-variable-declaration:
( tuple-identifier-list ) type-partopt initialization-part
( tuple-identifier-list ) type-part

tuple-identifier-list:
tuple-identifier
tuple-identifier , tuple-identifier-list

tuple-identifier:
identifier
( tuple-identifier-list )
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use-statement:
use module-name-list ;

module-name-list:
module-name
module-name , module-name-list

module-name:
identifier
module-name . module-name

type-select-statement:
type select expression-list { type-when-statements }

type-when-statements:
type-when-statement
type-when-statement type-when-statements

type-when-statement:
when type-list do statement
when type-list block-statement
otherwise statement

empty-statement:
;

parallel-statement:
forall-statement
cobegin-statement
coforall-statement
begin-statement
sync-statement
serial-statement
atomic-statement

forall-statement:
forall loop-control-part loop-body-part
[loop-control-part] statement

cobegin-statement:
cobegin block-statement

coforall-statement:
coforall loop-control-part loop-body-part

begin-statement:
begin statement

sync-statement:
sync statement

serial-statement:
serial expression do statement
serial expression block-statement
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atomic-statement:
atomic statement

on-statement:
on expression do statement
on expression block-statement

compiler-diagnostic-statement:
compilerError ( expression-list ) ;
compilerWarning ( expression-list ) ;
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Index
&, 42
&&, 44
&&=, 50
&=, 50
*, 39
* tuples, 85
**, 41
**=, 50
*=, 50
+, 38, 47
+ (unary), 37
+=, 50
-, 38
- (unary), 37
-=, 50
/, 40
/=, 50
<, 45
<<, 43
<<=, 50
<=, 45
=, 50
==, 46
=>, 98
>, 45
>=, 45
>>, 43
>>=, 50
?, 33
%, 41
%=, 50
˜, 42
ˆ, 43
ˆ=, 50
_, 85

argv, 57
arrays, 93, 95

arithmetic, 99
arithmetic, strided, 100
as formal arguments, 97, 101
assignment, 96
association to domains, 105
associative, 104
distributed, 137
enumerated, 105
indexing, 96
initialization, 98
opaque, 105

predefined functions, 107
promotion, 97
slice, 101
slicing, 96
sparse, 102
types, 95

assignment, 50
tuples, 84

atomic, 131
atomic transactions, 131
automatic memory management, 77
automatic modules, 145

Math, 145
Standard, 149

begin, 122
block, 49
bool, 18
break, 55
by, 47

case sensitivity, 13
casts, 34
class, 71
classes, 71

assignment, 72
constructors, 74
declarations, 71
fields, 72
generic, 117
getters, 75
indexing, 74
inheritance, 75
iterating, 74
methods, 72
nested, 77
setters, 75

cobegin, 126
coforall, 126
coforall loops, 126
command-line arguments, 57
comments, 13
compiler diagnostics

user-defined, 119
compiler errors

user-defined, 119
compiler warnings

user-defined, 119
compilerError, 119
compilerWarning, 119
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complex
casts from tuples, 34

complex, 19
conditional

expression, 48
statement, 51

conditional statement
dangling else, 51

config, 26
const, 26
constants

compile-time, 25
runtime, 26

continue, 55
conversions

bool, 27, 29
class, 28, 29
enumeration, 28, 29
explicit, 29
implicit, 27
numeric, 27, 29
parameter, 28
record, 28, 29

def, 61
default values, 63
distributions, 136
domains, 93

arithmetic, 99
arithmetic literals, 99
arithmetic, strided, 100
as formal arguments, 94
assignment, 94
association to arrays, 105
associative, 104
distributed, 137
enumerated, 105
index types, 94
opaque, 105
predefined functions, 106
promotion, 95
sparse, 102
subdomains, 106
types, 93

dynamic dispatch, 76

else, 48, 51
enumerated, 115
enumerated types, 19
execution environment, 134
exploratory programming, 58

expression
as a statement, 50

expression statement, 50

fields
without types, 118

file type, 141
methods, 141
standard files, 141

for, 48, 53, 54
for expressions

and conditional expressions, 48
for loops, 53

parameters, 54
forall, 129
forall expressions, 130

and conditional expressions, 130
forall loops, 129
formal arguments, 63

arithmetic arrays, 101
array types, 115
defaults, 63
domains, 94
generic types, 115
naming, 63
queried types, 114
tuples, 86
without types, 114

function calls, 32, 62
functions, 61

as lvalues, 65
as parameters, 66
candidates, 67
functions without parentheses, 69
generic, 113
most specific, 68
nested, 69
overloading, 66
syntax, 61
variable number of arguments, 69
visible, 67

generics
function visibility, 116
functions, 113
methods, 118
types, 117

here, 134
high, 89

identifiers, 13



Collected Lexical and Syntax Productions 185

if, 48, 51
imaginary, 19
in, 64
indexing, 33
inheritance, 75
inout, 64
int, 18
integral, 115
intents, 64

in, 64
inout, 64
out, 64
param, 114
type, 113

isFull, 125
iterators, 109

and arrays, 109
and generics, 110

keywords, 14

label, 55
let, 47
literals

primitive type, 14
local, 133
locale, 133, 135
Locales

methods, 133
Locales, 134
locales, 133
low, 89
lvalue, 34

main, 11, 57
member access, 33, 72
memory consistency model, 132
module, 57
modules, 11, 57

and files, 59
nested, 59
using, 55, 58

multiple inheritance, 77

named arguments, 63
numeric, 115
numLocales, 134

on, 135
operators

arithmetic, 37
associativity, 35

bitwise, 42
logical, 43
overloading, 66
precedence, 35
relational, 44

out, 64

param, 25, 54
parameters, 25

configuration, 26
in classes or records, 117

ranges, 87
arithmetic operators, 90
assignment, 89
bounded, 88
by operator, 89
count operator, 89
integral element type, 88
literals, 88
operators, 89
predefined functions, 91
slicing, 91
strided, 89
types, 87
unbounded, 88

read, 142
default methods, 143
on files, 143

read, 142
readFE, 124
readFF, 124
readln, 142
readXX, 124
real, 18
record, 79
records, 79

assignment, 80
differences with classes, 79
equality, 80
generic, 117
inequality, 80
inheritance, 80

remote, 133
reserved words, 14
reset, 125
return, 62

types, 64

scalar promotion
tensor product iteration, 111
zipper iteration, 110
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select, 52
serial, 128
single, 123
standard modules, 145

BitOps, 150
Norm, 151
Random, 151
Search, 152
Sort, 153
Time, 153

statement, 49
stride, 89
string, 19
subdomains, 106
swap

operator, 51
statement, 51

sync, 122, 127
sync types

formal arguments, 123
records and classes, 123

synchronization variables
built-in methods on, 124
single, 123
sync, 122

tensor product iterator, 54
then, 48, 51
these, 74
this, 73, 74
tuples, 83

assignment, 84
destructuring, 84
homogeneous, 85
indexing, 86
operators, 84
types, 83
variable declarations, 84

type aliases, 21
in classes or records, 117

type inference, 24
of return types, 65

type select statements, 56
types

primitive, 17

uint, 18
union, 81
unions, 81

assignment, 81
fields, 81

type select, 82
use, 55

variables
configuration, 26
declarations, 23
default initialization, 24
global, 24
local, 25

when, 52
where, 118
while, 52
while loops, 52
white space, 13
write, 142

default methods, 143
on files, 142
on strings, 142

write, 142
writeEF, 124
writeFF, 124
writeln, 142
Writer, 143
writeXF, 124

yield, 109

zipper iteration, 54
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