
Chapel Language Specification 0.702

Cray Inc
411 First Ave S, Suite 600

Seattle, WA 98104

Chapel Language Specification i

Contents

1 Scope 1

2 Notation 3

3 Organization 5

4 Acknowledgments 7

5 Language Overview 9
5.1 Motivating Principles 9
5.2 Getting Started 10
5.3 Example Chapel Programs 11

5.3.1 Jacobi Method .. . 11
5.3.2 Matrix and Vector Norms 16
5.3.3 Simple Producer-Consumer Program 20
5.3.4 Generic Stack Implementations 22

6 Lexical Structure 27
6.1 Comments 27
6.2 White Space 27
6.3 Case Sensitivity 27
6.4 Tokens 27

6.4.1 Identifiers 27
6.4.2 Keywords .. 28
6.4.3 Literals .. . 28
6.4.4 Operators and Punctuation 28
6.4.5 Grouping Tokens 28

6.5 User-Defined Compiler Errors 29

7 Types 31
7.1 Primitive Types 31

7.1.1 The Bool Type .. 31
7.1.2 Signed and Unsigned Integral Types 31
7.1.3 Real Types .. 32
7.1.4 Complex Types .. . 32
7.1.5 Imaginary Types 32
7.1.6 The String Type 33
7.1.7 Primitive Type Literals 33

7.2 Enumerated Types 34
7.3 Class Types 35
7.4 Record Types 35
7.5 Union Types 35
7.6 Tuple Types 35
7.7 Sequence Types 35
7.8 Domain and Array Types 35
7.9 Type Aliases 35

ii Chapel Language Specification

8 Variables 37
8.1 Variable Declarations 37

8.1.1 Default Initialization 38
8.1.2 Local Type Inference 38

8.2 Global Variables 38
8.3 Local Variables 38
8.4 Constants 39

8.4.1 Compile-Time Constants 39
8.4.2 Runtime Constants 39

8.5 Configuration Variables 40

9 Conversions 41
9.1 Implicit Conversions 41

9.1.1 Implicit Numeric Conversions 41
9.1.2 Implicit Enumeration Conversions 41
9.1.3 Implicit Class Conversions 42
9.1.4 Implicit Record Conversions 42
9.1.5 Implicit Compile-Time Constant Conversions 42
9.1.6 Implicit Statement Bool Conversions 42

9.2 Explicit Conversions 42
9.2.1 Explicit Numeric Conversions 42
9.2.2 Explicit Enumeration Conversions 42
9.2.3 Explicit Class Conversions 43
9.2.4 Explicit Record Conversions 43

10 Expressions 45
10.1 Literal Expressions 45
10.2 Variable Expressions 45
10.3 Call Expressions 45

10.3.1 Indexing Expressions 46
10.3.2 Member Access Expressions 46

10.4 The Query Expression 46
10.5 Casts 47
10.6 LValue Expressions 47
10.7 Operator Precedence and Associativity 48
10.8 Operator Expressions 48
10.9 Arithmetic Operators 49

10.9.1 Unary Plus Operators 49
10.9.2 Unary Minus Operators 49
10.9.3 Addition Operators 50
10.9.4 Subtraction Operators 50
10.9.5 Multiplication Operators 51
10.9.6 Division Operators 52
10.9.7 Modulus Operators 53
10.9.8 Exponentiation Operators 54

10.10 Bitwise Operators 54
10.10.1 Bitwise Complement Operators 54
10.10.2 Bitwise And Operators 54
10.10.3 Bitwise Or Operators 55
10.10.4 Bitwise Xor Operators 55

10.11 Shift Operators 55

Chapel Language Specification iii

10.12 Logical Operators 56
10.12.1 The Logical Negation Operator 56
10.12.2 The Logical And Operator 56
10.12.3 The Logical Or Operator 57

10.13 Relational Operators 57
10.13.1 Ordered Comparison Operators 57
10.13.2 Equality Comparison Operators 58

10.14 Miscellaneous Operators 59
10.14.1 The String Concatenation Operator 59
10.14.2 The Sequence Concatenation Operator 59
10.14.3 The Arithmetic Domain By Operator 59
10.14.4 The Arithmetic Sequence By Operator 59

10.15 Let Expressions 60
10.16 Conditional Expressions 60

11 Statements 61
11.1 Blocks 61
11.2 Block Level Statements 62
11.3 Expression Statements 62
11.4 Assignment Statements 62
11.5 The Conditional Statement 63
11.6 The Select Statement 63
11.7 The While and Do While Loops 64
11.8 The For Loop 65

11.8.1 Zipper Iteration 65
11.8.2 Tensor Product Iteration 65
11.8.3 Parameter For Loops 66

11.9 The Use Statement 66
11.10 The Type Select Statement 66
11.11 The Empty Statement 67

12 Modules 69
12.1 Module Definitions 69
12.2 Program Execution 69

12.2.1 ThemainFunction . 69
12.2.2 Command-Line Arguments 70
12.2.3 Module Execution 70
12.2.4 Programs with a Single Module 70

12.3 Using Modules 70
12.3.1 Explicit Naming 70

12.4 Nested Modules 71
12.5 Implicit Modules 71

13 Functions 73
13.1 Function Definitions 73
13.2 The Return Statement 74
13.3 Function Calls 74
13.4 Formal Arguments 74

13.4.1 Named Arguments 75
13.4.2 Default Values 75

13.5 Intents 75

iv Chapel Language Specification

13.5.1 The Blank Intent 75
13.5.2 The In Intent 76
13.5.3 The Out Intent 76
13.5.4 The Inout Intent 76

13.6 Variable Functions 76
13.6.1 Explicit Setter Functions 77

13.7 Function Overloading 77
13.8 Function Resolution 78

13.8.1 Identifying Visible Functions 78
13.8.2 Determining Candidate Functions 78
13.8.3 Determining More Specific Functions 79

13.9 Nested Functions 80
13.9.1 Accessing Outer Variables 80

13.10 Variable Length Argument Lists 80

14 Classes 83
14.1 Class Declarations 83
14.2 Class Assignment 83
14.3 Class Fields 83

14.3.1 Class Field Accesses 84
14.4 Class Methods 84

14.4.1 Class Method Declarations 84
14.4.2 Class Method Calls 84
14.4.3 ThethisReference . 85
14.4.4 Class Methods without Parentheses 85
14.4.5 ThethisMethod . 85

14.5 Class Constructors 86
14.5.1 The Default Constructor 86

14.6 Getters and Setters 86
14.7 Inheritance 87

14.7.1 Accessing Base Class Fields 87
14.7.2 Derived Class Constructors 87
14.7.3 Shadowing Base Class Fields 87
14.7.4 Overriding Base Class Methods 87
14.7.5 Inheriting from Multiple Classes 88

14.8 Class Promotion of Scalar Functions 88
14.9 Nested Classes 88
14.10 Automatic Memory Management 88

15 Records 89
15.1 Record Declarations 89
15.2 Class and Record Differences 89

15.2.1 Records as Value Classes 89
15.2.2 Record Inheritance 89
15.2.3 Record Assignment 90

15.3 Default Comparison Operators on Records 90

Chapel Language Specification v

16 Unions 91
16.1 Union Declarations 91

16.1.1 Union Fields 91
16.2 Union Assignment 91
16.3 The Type Select Statement and Unions 91

17 Tuples 93
17.1 Tuple Expressions 93
17.2 Tuple Type Definitions 93
17.3 Tuple Assignment 93
17.4 Tuple Destructuring 94

17.4.1 Variable Declarations in a Tuple 94
17.4.2 Ignoring Values with Underscore 94

17.5 Homogeneous Tuples 94
17.5.1 Declaring Homogeneous Tuples 95

17.6 Tuple Indexing 95
17.7 Formal Arguments of Tuple Type 95

17.7.1 Formal Argument Declarations in a Tuple 95

18 Sequences 97
18.1 Sequence Literals 97
18.2 Sequence Type Definitions 97
18.3 Sequence Rank 97
18.4 Sequence Assignment 97
18.5 Iteration over Sequences 98
18.6 Sequence Concatenation 98
18.7 Sequence Indexing 98

18.7.1 Sequence Indexing by Integers 98
18.7.2 Sequence Indexing by Tuples 99

18.8 Sequence Promotion of Scalar Functions 99
18.8.1 Zipper Promotion 99
18.8.2 Tensor Product Promotion 100

18.9 Sequence Operators 100
18.10 Sequences in Logical Contexts 100

18.10.1 Sequences in Select Statements 101
18.11 Filtering Predicates 101
18.12 Methods and Functions on Sequences 101

18.12.1 ThelengthMethod . 101
18.12.2 ThereverseMethod . 101
18.12.3 ThespreadFunction . 102
18.12.4 ThetransposeFunction . 102
18.12.5 ThereshapeFunction . 102

18.13 Arithmetic Sequences 103
18.13.1 Strided Arithmetic Sequences 103
18.13.2 Querying the Bounds and Stride of an Arithmetic Sequence 103
18.13.3 Indefinite Sequences 103

18.14 Conversions Between Sequences and Tuples 104

vi Chapel Language Specification

19 Domains and Arrays 105
19.1 Domains 105

19.1.1 Domain Types .. . 105
19.1.2 Index Types 106
19.1.3 Domain Assignment 106
19.1.4 Formal Arguments of Domain Type 106
19.1.5 Iteration over Domains 106
19.1.6 Domain Promotion of Scalar Functions 107

19.2 Arrays 107
19.2.1 Array Types 107
19.2.2 Array Indexing 108
19.2.3 Array Slicing 108
19.2.4 Array Assignment 108
19.2.5 Formal Arguments of Array Type 109
19.2.6 Iteration over Arrays 109
19.2.7 Array Promotion of Scalar Functions 109
19.2.8 Array Initialization 110

19.3 Arithmetic Domains and Arrays 110
19.3.1 Arithmetic Domain Literals 110
19.3.2 Arithmetic Domain Types 111
19.3.3 Strided Arithmetic Domains 111
19.3.4 Arithmetic Domain Indexing 111
19.3.5 Arithmetic Array Indexing 112
19.3.6 Arithmetic Array Slicing 112
19.3.7 Formal Arguments of Arithmetic Array Type 112

19.4 Sparse Domains and Arrays 112
19.4.1 Changing the Indices in Sparse Domains 113

19.5 Indefinite Domains and Arrays 113
19.5.1 Changing the Indices in Indefinite Domains 114
19.5.2 Testing Membership in Indefinite Domains 114

19.6 Opaque Domains and Arrays 114
19.7 Enumerated Domains and Arrays 115
19.8 Association of Arrays to Domains 115
19.9 Subdomains 115
19.10 Predefined Functions and Methods on Domains 116
19.11 Predefined Functions and Methods on Arrays 116

20 Iterators 117
20.1 Iterator Functions 117
20.2 The Yield Statement 117
20.3 Iterator Calls 117

20.3.1 Iterators in For and Forall Loops 117
20.3.2 Iterators as Sequences 117

20.4 The Structural Iterator Interface 118

21 Generics 119
21.1 Generic Functions 119

21.1.1 Formal Type Arguments 119
21.1.2 Formal Parameter Arguments 120
21.1.3 Formal Arguments without Types 120
21.1.4 Formal Arguments with Queried Types 120

Chapel Language Specification vii

21.1.5 Formal Arguments of Generic Type 121
21.1.6 Formal Arguments of Generic Array Types 121

21.2 Function Visibility in Generic Functions 121
21.3 Generic Types 121

21.3.1 Type Aliases in Generic Types 122
21.3.2 Parameters in Generic Types 122
21.3.3 Fields without Types 123
21.3.4 Fields of Generic Types 123
21.3.5 Generic Methods 123
21.3.6 Theelt typeType . 123

21.4 Where Expressions 124
21.5 Example: A Generic Stack 124

22 Parallelism and Synchronization 125
22.1 The Forall Loop 125

22.1.1 Alternative Forall Loop Syntax 125
22.1.2 The Ordered Forall Loop 126

22.2 The Forall Expression 126
22.3 The Cobegin Statement 127
22.4 The Begin Statement 127
22.5 The Ordered Expression 127
22.6 The Serial Statement 128
22.7 Synchronization Variables 128

22.7.1 Single Variables 129
22.7.2 Sync Variables 130
22.7.3 Additional Synchronization Variable Functions 130
22.7.4 Synchronization Variables of Record and Class Types. 131

22.8 Memory Consistency Model 131
22.9 Atomic Statement 131

23 Locality and Distribution 133
23.1 Locales 133

23.1.1 The Locale Type 133
23.1.2 Predefined Locales Array 133
23.1.3 Querying the Locale of a Variable 134

23.2 Specifying Locales for Computation 134
23.2.1 On .134
23.2.2 On and Iterators 135

23.3 Distributions 135
23.3.1 Distributed Domains 135
23.3.2 Distributed Arrays 136
23.3.3 Undistributed Domains and Arrays 136

23.4 Standard Distributions 136
23.5 User-Defined Distributions 136

24 Reductions and Scans 137
24.1 Reduction Expressions 137
24.2 Scan Expressions 137
24.3 User-Defined Reductions and Scans 138

viii Chapel Language Specification

25 Input and Output 139
25.1 Thefile type . 139
25.2 Standard filesstdout, stdin, andstderr . 140
25.3 Thewrite, writeln, andreadfunctions . 140
25.4 Thewrite andwriteln method on files . 140
25.5 Thereadmethod on files . 140
25.6 User-Definedreadandwrite methods . 140
25.7 Defaultreadandwrite methods . 141

26 Standard Modules 143
26.1 BitOps 143
26.2 Math 143
26.3 Random 147
26.4 Standard 148
26.5 Time 149
26.6 Types 149

Scope 1

1 Scope

Chapel is a new parallel programming language that is under development at Cray Inc. in the context of
the DARPA High Productivity Language Systems initiative and the DARPA High Productivity Computing
Systems initiative. This document specifies the Chapel language.

This document is a work in progress and is not definitive. In particular, it is not a standard.

2 Chapel Language Specification

Notation 3

2 Notation

Special notations are used in this specification to denote Chapel code and to denote Chapel syntax.

Chapel code is represented with a fixed-width font where keywords are bold and comments are italicised.

Example.

for i in D do // iterate over domain D
writeln(i); // output indices in D

Chapel syntax is represented with standard syntax notationin which productions define the syntax of the
language. A production is defined in terms of non-terminal (italicized) and terminal (non-italicized) symbols.
The complete syntax defines all of the non-terminal symbols in terms of one another and terminal symbols.

A definition of a non-terminal symbol is a multi-line construct. The first line shows the name of the non-
terminal that is being defined followed by a colon. The next lines before an empty line define the alternative
productions to define the non-terminal.

Example. The production

boo l- l i t e r a l :
true
false

definesboo l- l i t e r a l to be either the symboltrue or false .

In the event that a single line of a definition needs to break across multiple lines of text, more indentation is
used to indicate that it is a continuation of the same alternative production.

As a short-hand for cases where there are many alternatives that define one symbol, the first line of the
definition of the non-terminal may be followed by “one of” to indicate that the single line in the production
defines alternatives for each symbol.

Example. The production

unary- o p e r a t o r: one o f
+ - ˜ !

is equivalent to

unary- o p e r a t o r:
+
-
˜
!

As a short-hand to indicate an optional symbol in the definition of a production, the subscript “opt” is suffixed
to the symbol.

Example. The production

4 Chapel Language Specification

f o rma l :
f o rma l- t ag i d e n t i f i e r fo rma l- t y p eopt d e f a u l t- e x p r e s s i o nopt

is equivalent to

f o rma l :
f o rma l- t ag i d e n t i f i e r fo rma l- t y p e d e f a u l t- e x p r e s s i o n
fo rma l- t ag i d e n t i f i e r fo rma l- t y p e
fo rma l- t ag i d e n t i f i e r d e f a u l t- e x p r e s s i o n
fo rma l- t ag i d e n t i f i e r

Organization 5

3 Organization

This specification is organized as follows:

• Section 1, Scope, describes the scope of this specification.

• Section 2, Notation, introduces the notation that is used throughout this specification.

• Section 3, Organization, describes the contents of each of the sections within this specification.

• Section 4, Acknowledgments, offers a note of thanks to people and projects.

• Section 5, Language Overview, describes Chapel at a high level.

• Section 6, Lexical Strucutre, describes the lexical components of Chapel.

• Section 7, Types, describes the types in Chapel and defines the primitive and enumerated types.

• Section 8, Variables, describes variables and constants inChapel.

• Section 9, Conversions, describes the legal implicit and explict conversions allowed between values of
different types. Chapel does not allow for user-defined conversions.

• Section 10, Expressions, describes the serial expressionsin Chapel.

• Section 11, Statements, describes the serial statements inChapel.

• Section 12, Modules, describes modules, Chapel’s abstraction to allow for name space management.

• Section 13, Functions, describes functions and function resolution in Chapel.

• Section 14, Classes, describes reference classes in Chapel.

• Section 15, Records, describes records or value classes in Chapel.

• Section 16, Unions, describes unions in Chapel.

• Section 17, Tuples, describes tuples in Chapel.

• Section 18, Sequences, describes sequences in Chapel.

• Section 19, Domains and Arrays, describes domains and arrays in Chapel. Chapel arrays are more
general than arrays in many other languages. Domains are index sets, an abstraction that is typically
not distinguished from arrays.

• Section 20, Iterators, describes iterator functions and a class iterator interface in Chapel.

• Section 21, Generics, describes Chapel’s support for generic functions and types.

• Section 22, Parallelism and Synchronization, describes parallel expressions and statements in Chapel
as well as synchronization constructs and atomic sections.

• Section 23, Locality and Distribution, describes constructs for managing locality and distributing data
in Chapel.

• Section 24, Reductions and Scans, describes the built-in reductions and scans as well as structural
interfaces to support user-defined reductions and scans.

6 Chapel Language Specification

• Section 25, Input and Output, describes support for input and output in Chapel, including file input and
output..

• Section 26, Standard Modules, describes the standard modules that are provided with the Chapel lan-
guage.

Acknowledgments 7

4 Acknowledgments

We would like to recognize the following people for their efforts and impact on the Chapel language and its
implementation—David Callahan, Hans Zima, John Plevyak, Shannon Hoffswell, Roxana Diaconescu, Mark
James, Mackale Joyner, and Robert Bocchino.

Chapel is a derivative of a number of parallel and distributed languages and takes ideas directly from them.
These include the MTA extensions of C, HPF, and ZPL.

Chapel also takes many serial programming ideas from many other programming languages, especially C#,
C++, Java, Fortran, and Ada.

The preparation of this specification was made easier and thefinal result greatly improved because of the good
work that went in to the creation of other language standardsand specifications, in particular the specifications
of C# and C.

8 Chapel Language Specification

Language Overview 9

5 Language Overview

5.1 Motivating Principles

Chapel is a new programming language being developed by CrayInc. as part of DARPA’s High Productivity
Computing Systems (HPCS) program to improve the productivity of programming parallel systems. There
are four main motivating principles for the design of the Chapel language.

General Parallel Programming Chapel’s first motivating principle is to support general parallel program-
ming through the use of high-level language abstractions for expressing parallelism. Chapel supports a
global-view programming modelthat raises the level of abstraction for the expression of both data and control
flow as compared to parallel programming models currently used in production.

Global-view data structuresare arrays and other data aggregates whose sizes and indicesare expressed glob-
ally in spite of the fact that their implementations may distribute them across the memories of multiple nodes
or locales.1 This contrasts with most parallel languages used in practice, which tend to require users to par-
tition distributed data aggregates into per-processor chunks, either manually or using language abstractions.
As a simple example, to create a 0-based vector withn elements distributed betweenp locales, a language
like Chapel that supports global-view data structures allows the user to declare the array to containn ele-
ments and to refer to the array using the indices0 . . . n − 1. In contrast, most traditional approaches require
the user to declare the array asp chunks ofn/p elements each and to specify and manage inter-processor
communication and synchronization explicitly (and the details can be messy ifp does not dividen evenly).
Moreover, the chunks are typically accessed using local indices on each processor (e.g., 0..n/p), requiring
the user to explicitly translate between logical indices and those used by the implementation.

A global view of controlmeans that a user’s program commences execution with a single logical thread of
control and then introduces additional parallelism through the use of certain language concepts. All paral-
lelism in Chapel is implemented via multithreading, thoughthese threads are created via high-level language
concepts and managed by the compiler and runtime, rather than through explicit fork/join-style program-
ming. An impact of this approach is that Chapel can express parallelism that is more general than the Single
Program, Multiple Data (SPMD) model that today’s most common parallel programming approaches use as
the basis for their programming and execution models. Chapel’s general support for parallelism does not
preclude users from coding in an SPMD style if they wish.

Supporting general parallel programming also means targeting a broad range of parallel architectures. Chapel
is designed to target a wide spectrum of HPC hardware including clusters of commodity processors and
SMPs; vector, multithreading, and multicore processors; custom vendor architectures; distributed-memory,
shared-memory, and shared address space architectures; and networks of any topology. Our portability goal
is to have any legal Chapel program run correctly on all of these architectures, and for Chapel programs that
express parallelism in an architecturally-neutral way to perform reasonably on all of them. Naturally, Chapel
programmers can tune their codes to more closely match a particular machine’s characteristics, though doing
so may cause the program to be a poorer match for other architectures.

1A locale in Chapel is a unit of the target architecture that supports computation and data storage. Locales are defined for an
architecture such that a locale’s threads will all have similar access times to any specific memory address. For commodity clusters, each
of their (single-core) processors, multicore processors,or SMP nodes would be considered a locale.

10 Chapel Language Specification

Control of Locality A second principle in Chapel is to allow the user to optionally and incrementally
specify where data and computation should be placed on the physical machine. We consider this control over
program locality to be essential for achieving scalable performance on large machine sizes. Such control
contrasts with shared-memory programming models which present the user with a flat memory model. It
also contrasts with SPMD-based programming models in whichsuch details are explicitly specified by the
programmer on a process-by-process basis via the multiple cooperating program instances.

Object-Oriented Programming (OOP) A third principle in Chapel is support for object-oriented pro-
gramming. OOP has been instrumental in raising productivity in the mainstream programming community
due to its encapsulation of related data and functions into asingle software component, its support for spe-
cialization and reuse, and its use as a clean mechanism for defining and implementing interfaces. Chapel
supports objects in order to make these benefits available ina parallel language setting, and to provide a
familiar paradigm for members of the mainstream programming community. Chapel supports traditional
reference-based classes as well as value classes that are assigned and passed by value.

Chapel does not require the programmer to use an object-oriented style in their code, so that traditional
Fortran and C programmers in the HPC community need not adopta new programming paradigm in order
to use Chapel effectively. Many of Chapel’s standard library capabilities are implemented using objects, so
such programmers may need to utilize a method-invocation style of syntax to use these capabilities. However,
using such libraries does not necessitate broader adoptionof OOP methodologies.

Generic Programming Chapel’s fourth principle is support for generic programming and polymorphism.
These features allow code to be written in a style that is generic across types, making it applicable to variables
of multiple types, sizes, and precisions. The goal of these features is to support exploratory programming
as in popular interpreted and scripting languages, and to support code reuse by allowing algorithms to be
expressed without explicitly replicating them for each possible type. This flexibility at the source level is
implemented by having the compiler create versions of the code for each required type signature rather than
by relying on dynamic typing which would result in unacceptable runtime overheads for the HPC community.

Chapel’s first two principles are designed to provide support for general, performance-oriented parallel pro-
gramming through high-level abstractions. The second two principles are supported to help narrow the gulf
that exists between parallel programming languages and mainstream programming and scripting languages.

5.2 Getting Started

A Chapel version of the standard “hello world” computation is given here:

writeln("Hello, world!");

This program contains a single line of code that makes a call to the standardwriteln subroutine, passing it
a string literal argument,"Hello, world!" . This call causes the string to be printed to the console when
the program is executed.

In general, Chapel programs define code using one or more named modules, each of which supports top-level
initialization code that is invoked the first time the moduleis used. Programs also define a single entry point
via a subroutine namedmain . To facilitate exploratory programming, Chapel allows programmers to define
modules using files rather than an explicit module declaration, and to omit the program entry point when the
program only has a single user module. This example takes advantage of both these features.

Language Overview 11

Chapel code is stored in files with the extension.chpl . Assuming this program is stored in a file called
hello.chpl , it would define a single user module,hello , whose name is taken from the filename. Since
the file defines a module, the top-level code in the file defines the module’s initialization code. And since the
program is composed of the singlehello module, it need not define an entry point. Thus, when the program
is executed, the singlehello module will be initialized by executing its top-level code,invoking the call to
writeln() , and printing out the message.

To compile and run this program, execute the following commands at the system prompt:

> chpl -o hello hello.chpl
> ./hello

The following output will be printed to the console:

> Hello, world!

5.3 Example Chapel Programs

To introduce the Chapel language, four short example codes are presented and discussed. Each example
highlights certain Chapel features, showing how they are used in the context of a program. These examples
do not cover all of Chapel’s features. They are intended to introduce the user to many of the basic serial
features that are currently supported in the compiler and todemonstrate how to program with these features.
As more features are supported in the Chapel compiler, more examples will be added to this section.

All examples in this section are included with the release ofthe Chapel compiler.

5.3.1 Jacobi Method

Description The following example Chapel program solves a system of finite difference equations for the
Laplace equation using the Jacobi method. The program uses two-dimensional arrays,X andXNew, to store
and calculate the approximate solution. At each iteration,the next approximation for the solution at each grid
point, XNew(i,j) is calculated by computing the average of the four neighboring grid points,X(i-1,j) ,
X(i,j-1) , X(i+1,j) , andX(i,j+1) . After all entries inXNeware computed,X is assignedXNewand
convergence is tested. If convergence has not been reached,the next approximation is calculated, and so on
until the convergence test is met.

Chapel Features This program demonstrates howarrays are declared and used. In Chapel, arrays are
declared usingdomains. Domains are sets of indices which may be distributed acrossmultiple processors
indicating how data and parallel work should be divided among the processors. An array is a mapping from
the domain to a collection of variables. An array is thus defined using a domain, distributing the entries of
the array according to the domain’s distribution. Domains may also be used to define arrayslicesand as
iterators. There are five kinds of domains in the Chapel language:arithmetic, sparse, indefinite, opaqueand
enumerated. This example program uses arithmetic domains and arrays.

12 Chapel Language Specification

Code Listing The Chapel code for this example follows.

1 config var n = 5, // size of nxn grid
2 epsilon = 0.00001, // convergence tolerance
3 verbose = false; // control for amount of output

5 def main() {
6 const ProblemSpace = [1..n, 1..n], // domain for interior points
7 BigDomain = [0..n+1, 0..n+1]; // domain with boundary points

9 var X, XNew: [BigDomain] real = 0.0; // X holds approximate solution
10 // XNew is work array

12 X[n+1, 1..n] = 1.0;

14 if (verbose) {
15 writeln("Initial configuration:");
16 writeln(X, "\n");
17 }

19 var iteration = 0, // iteration counter
20 delta: real; // covergence measure

22 do {
23 forall (i,j) in ProblemSpace do
24 XNew(i,j) = (X(i-1,j) + X(i+1,j) + X(i,j-1) + X(i,j+1)) / 4.0 ;

26 delta = max reduce abs(XNew[ProblemSpace] - X[ProblemSpace]);
27 X[ProblemSpace] = XNew[ProblemSpace];

29 iteration += 1;

31 if (verbose) {
32 writeln("iteration: ", iteration);
33 writeln(X);
34 writeln("delta: ", delta, "\n");
35 }
36 } while (delta > epsilon);

38 writeln("Jacobi computation complete.");
39 writeln("Delta is ", delta, " (< epsilon = ", epsilon, ")");
40 writeln("# of iterations: ", iteration);
41 }

Execution and Output Compiling and running this program gives the following output:

> ./a.out
Jacobi computation complete.
Delta is 9.92124e-06 (< epsilon = 1e-05)
of iterations: 60

It is possible to run a different sized problem, to use a different convergence tolerance, or enable more output
without recompiling this program. There are three variables defined in lines 1 - 3,n, epsilon andverbose ,
which areconfiguration variablesand can be set at the time of program execution through command line
switches. Executing the following command line sequence,

> ./a.out --verbose=true --n=2 --epsilon=0.01

Language Overview 13

results in overriding the default values forverbose , n andepsilon , producing the following output.

Initial configuration:
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0

iteration: 1
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.25 0.25 0.0
0.0 1.0 1.0 0.0
delta: 0.25

iteration: 2
0.0 0.0 0.0 0.0
0.0 0.0625 0.0625 0.0
0.0 0.3125 0.3125 0.0
0.0 1.0 1.0 0.0
delta: 0.0625

iteration: 3
0.0 0.0 0.0 0.0
0.0 0.09375 0.09375 0.0
0.0 0.34375 0.34375 0.0
0.0 1.0 1.0 0.0
delta: 0.03125

iteration: 4
0.0 0.0 0.0 0.0
0.0 0.109375 0.109375 0.0
0.0 0.359375 0.359375 0.0
0.0 1.0 1.0 0.0
delta: 0.015625

iteration: 5
0.0 0.0 0.0 0.0
0.0 0.117188 0.117188 0.0
0.0 0.367188 0.367188 0.0
0.0 1.0 1.0 0.0
delta: 0.0078125

Jacobi computation complete.
Delta is 0.0078125 (< epsilon = 0.01)
of iterations: 5

Implementation Details This example program begins with the declaration of the three configuration vari-
ables. Note that these variables do not contain a type in their declaration:

config var n = 5,
epsilon = 0.00001,
verbose = false;

14 Chapel Language Specification

Instead the types of these variables are inferred from theirinitial values:n is an integer,epsilon is a real
type, andverbose is a boolean type. In Chapel, if a variable declaration contains an initialization expression,
it is optional to include a type specification. More details about variable declarations are given in§8.1.

After the configuration variables are declared, themain function is defined. The first two lines ofmain define
two arithmetic domains:

def main() {
const ProblemSpace = [1..n, 1..n],

BigDomain = [0..n+1, 0..n+1];

Both domains are declared to beconst , indicating that the values for the domains remain constantduring the
execution of the program. They are defined using arithmetic sequences, and are, thus, arithmetic domains.
Because the domains are initialized in their declaration, it is not necessary to specify that they are of domain
type. In this case,: domain(2) was omitted from both domain declarations.BigDomain is essentially the
ProblemSpace domain with additional boundary rows and columns. By defining ProblemSpace to be the
interior points of the larger grid,BigDomain , the Jacobi computation can be cleanly specified in one line,
line 24, for just the interior points, eliminating the need to write special case computations for the boundary
points.

After the domains are declared, the arrays are declared using BigDomain , and the last row ofX is set to one.

var X, XNew: [BigDomain] real = 0.0;

X[n+1, 1..n] = 1.0;

Because they are defined usingBigDomain , the arraysX andXNeware of sizen+2 × n+2 . They are declared
to be of typereal and all elements of the arrays are initialized to zero. When an array is assigned a scalar
value, as in the initialization to zero, each element of the array is assigned the scalar value. In the following
line, the notationn+1, 1..n indicates asliceof the arrayX is to be assigned the value one. Each entry in
this slice, which is the last row ofX, is set to one.

Lines 14 - 17 print the initial configuration of the problem, if verbose is set to true.

if (verbose) {
writeln("Initial configuration:");
writeln(X, "\n");

}

The writeln function outputs strings and values of variables that are passed as arguments, followed by a
line return. When an array is passed as an argument, it is output is row-major order with linefeeds after each
row. Including the character string,"\n" inserts an additional line return.

Lines 19 - 20 contain the remaining variable declarations:

var iteration = 0,
delta: real;

The variabledelta must be specified to be of typereal since it does not have an initialization expression.

The computational loop in lines 22 - 36 performs the Jacobi method. This loop is executed untildelta is
less than or equal toepsilon . Each iteration of thedo while loop computes the next approximate solution
using aforall loop.

Language Overview 15

do{
forall (i,j) in ProblemSpace do

XNew(i,j) = (X(i-1,j) + X(i+1,j) + X(i,j-1) + X(i,j+1)) / 4.0 ;

This loop uses theProblemSpace domain as aniterator. Iterators for loops provide a value or a set of
values to be used in each iteration of the loop. In this case, each iteration is indexed by atupleof indices
(i,j) , which avoids the use of a nest of two loops, one loop for the index i and one loop for the index
j . The compiler determines how this loop is made parallel, according to the default distribution for the
ProblemSpace domain. Note that theProblemSpace domain is the set of interior points ofX’s domain.
All of the references toX in this loop are defined, and do not go out of bounds.

After the next approximate solution is computed and stored in XNew, the change betweenXNewandX, for just
the interior points, is calculated and stored indelta :

delta = max reduce abs(XNew[ProblemSpace] - X[ProblemSpace]);

The built-in reduction, max reduce computes the maximum value of the expression that follows it. In
this case the expression is the computed array of absolute values of the difference between theXNewand
X arrays. IfXNewandX are distributed, then this reduction is computed in parallel accordingly. The use of
ProblemSpace with these two arrays indicates that the slice of the arrays corresponding to the interior points
are to be used in this calculation.

Next,X is updated with the new approximate solution and the iteration number is advanced.

X[ProblemSpace] = XNew[ProblemSpace];

iteration += 1;

The domainProblemSpace is used in the assignment ofXNewto X, updating only the slice ofX correspond-
ing to the interior points of the array.

The remaining part of the loop optionally provides output about the iteration.

if (verbose) {
writeln("iteration: ", iteration);
writeln(X);
writeln("delta: ", delta, "\n");

}
} while (delta > epsilon);

If verbose is set to true, then information about the current approximate solution anddelta is output.
Then,delta is compared to the convergence tolerance,epsilon . If delta is not small enough, then the
do while loop continues. Otherwise, the loop exits.

The program ends with three lines of output.

writeln("Jacobi computation complete.");
writeln("Delta is ", delta, " (< epsilon = ", epsilon, ")");
writeln("# of iterations: ", iteration);

}

Information about the convergence is given, printing the values forepsilon and the iteration counter.

16 Chapel Language Specification

5.3.2 Matrix and Vector Norms

Description The following example contains a moduleNorm which providesnorm functions that compute
either a vector or matrix norm, depending on the rank of the array that is passed as the argument. There are
four norm type options: 1-norm, 2-norm, infinity norm and Frobenius norm. For vectors, all four options
are implemented in this module. For matrices, all options but the 2-norm are provided. The module uses a
variable of enumerated typenormType to indicate the choice of norm.

Chapel Features This example demonstrates the definition and use of modules,generic functions and
function overloading . When theNorm module is used, the user may callnorm(x) or norm(x,normType)

wherex is any array andnormType is theenumerated typeas defined in theNorm module. Thenorm function
is overloadedwith four separate function definitions fornorm , based on the the rank of the input array, or
the number of formal arguments used in thenorm function call. Each of these four function definitions is a
genericfunction, not specifying the type of the array argumentx . Generic functions allow for code reuse and
readability.

Program Listing The following program gives the definition of theNorm module followed by a module
which testsNorm, demonstrating different calls to thenorm function.

1 module Norm{
2 enum normType {norm1, norm2, normInf, normFrob};

4 def norm(x: [], p: normType) where x.rank == 1 {
5 // vector norm routine
6 select (p) {
7 when norm1 do return + reduce abs(x);
8 when norm2 do return sqrt(+ reduce (abs(x) * abs(x)));
9 when normInf do return max reduce abs(x);

10 when normFrob do return sqrt(+ reduce (abs(x) * abs(x)));
11 otherwise halt("Unexpected norm type");
12 }
13 }

15 def norm(x: [?D], p: normType) where x.rank == 2 {
16 // matrix norm routine
17 select (p) {
18 when norm1 do
19 return max reduce [j in D(2)] (+ reduce abs(x[D(1), j]));

21 when norm2 do
22 halt("Haven’t implemented 2-norm for 2D arrays yet");

24 when normInf do
25 return max reduce [i in D(1)] (+ reduce abs(x[i, D(2)]));

27 when normFrob do return sqrt(+ reduce (abs(x) * abs(x)));

29 otherwise halt("Unexpected norm type");
30 }
31 }

33 def norm(x: [], p: normType) where x.rank > 2 {
34 compilerError("Norms not implemented for array ranks > 2D");
35 }

37 def norm(x: []) {
38 // default norm routine

Language Overview 17

39 select (x.rank) {
40 when 1 do return norm(x, norm2);
41 when 2 do return norm(x, normFrob);
42 otherwise compilerError("Norms not implemented for array ranks > 2D");
43 }
44 }
45 }

47 module TestNorm {
48 use Norm;

50 def testNorm(arr: []) {
51 // test all possible norms of arr
52 var testType = if (arr.rank == 1) then "vector" else "matrix";
53 writeln("Test of ", testType, " norms. Array = ");
54 writeln(arr);
55 writeln("1-norm = ", norm(arr, norm1));
56 if (arr.rank == 1) then
57 writeln("2-norm = " , norm(arr, norm2));
58 writeln("infinity norm = ", norm(arr, normInf));
59 writeln("frobenius norm = ", norm(arr, normFrob));
60 writeln("default norm = ", norm(arr));
61 writeln();
62 }

64 def main() {
65 // test vector norms:
66 const D1 = [1..4];
67 var a:[D1] real;
68 a = 2.0;
69 testNorm(a);

71 // test matrix norms:
72 const D2 = [1..2,1..2];
73 var b:[D2] real;
74 b = 2.0;
75 testNorm(b);
76 }
77 }

Execution and Output After the definition of theNorm module, aTestNorm module is defined in lines 47
- 77, giving an example of how thenorm functions can be used in a program.

On line 48 , use Norm , indicates that theNorm module is to be used when resolving functions in the
TestNorm module. A testNorm function is defined, takingarr as an argument. Based onarr.rank ,
all of the valid norm options are tested, along with the generic norm(arr) function call. ThistestNorm

function is called to test two arrays,a andb. The arraya is a one-dimensional array, as defined by the do-
mainD1. The arrayb is a two-dimensional array, as defined by the domainD2. Each array has a total of four
elements, and each is initialized to 2.0.

The output of this program is given below. The first set of norms is computed fora which is a vector and the
second set is computed forb which is a matrix. Even though the vector and matrix in this example contain
the same number of elements with the same values, some of the computed norms are different between the
vector and the matrix. Thus, different implementations of the norm functions are used to compute the norms,
depending on the whether the input is a vector or matrix.

Test of vector norms. Array =

18 Chapel Language Specification

2.0 2.0 2.0 2.0
1-norm = 8.0
2-norm = 4.0
infinity norm = 2.0
frobenius norm = 4.0
default norm = 4.0

Test of matrix norms. Array =
2.0 2.0
2.0 2.0
1-norm = 4.0
infinity norm = 4.0
frobenius norm = 4.0
default norm = 4.0

Implementation Details TheNorm module begins with definingnormType to be an enumerated type with
constant valuesnorm1 , norm2 , normInf , normFrob . For three of the fournorm function definitions (see
lines 4, 15, 33), one of the formal arguments is ofnormType , indicating which type of norm is to be com-
puted. Ifnorm is called without thenormType argument, then the default norm for vectors is the 2-norm (see
line 40) and the default norm for matrices is the Frobenius norm (see line 41).

The firstnorm function is defined for vectors. This definition begins with line 4:

def norm(x: [], p: normType) where x.rank == 1 {

The function definition contains awhere x.rank == 1 clause, indicating that this version ofnorm is to be
used when the input arrayx has just one dimension, and is thus, a vector. The arguments for this version
of norm arex of generic array type andp of normType . Since all norm types for the vector case can be
computed with whole array operations, there is no need to specify a domain type forx . It is good practice to
specifyx as an array type by using: [] since thenorm function is only defined for arrays. The compiler
can detect errors if other, non-array types are passed as arguments tonorm .

The body of the vector version of thenorm function is aselect statement onp in lines 6 - 12.

select (p) {
when norm1 do return + reduce abs(x);
when norm2 do return sqrt(+ reduce (abs(x) * abs(x)));
when normInf do return max reduce abs(x);
when normFrob do return sqrt(+ reduce (abs(x) * abs(x)));
otherwise halt("Unexpected norm type");

}

For the first four cases of the select statement, whenp is norm1 , norm2 , normInf or normFrob a reduction
operator is used along withabs(x) to compute the value that is returned. Theabs function is promoted
over thex array, computing the absolute values of each entry ofx . The 1-norm of a vector is the sum of the
absolute values of the entries ofx , computed with the sum reduction expression,+ reduce abs(x) . The
2-norm of a vector is the sum of the squares of the absolute values of the entries ofx , computed with the sum
reduction expression,+ reduce (abs(x) * abs(x)) . The infinity norm of a vector is the maximum entry of
x in absolute value, which can be computed with the maximum reduction expressionmax reduce abs(x) .
The Frobenius norm of a vector is the same computation as the 2-norm of a vector.

The last case of the select statement, the otherwise clause,results in the program halting, outputting the string
that is passed to thehalt function indicating thatp has an unexpected value.

The secondnorm function is defined for matrices. This definition begins withline 15:

Language Overview 19

def norm(x: [?D], p: normType) where x.rank == 2 {

This version of the function will be used whenx is a matrix, that is therank of the arrayx is 2. The
arguments for this version ofnorm arex of generic array type andp of normType . For this matrix version,
the domain ofx is needed to express the norm computations. So, the domain type isqueriedand set toDwith
the expression[?D] .

The body of the matrix version ofnorm is a select statement onp in lines 17 - 30. Thenorm1 case, the
1-norm of a matrix, is the maximum absolute column sum of the matrix.

when norm1 do
return max reduce [j in D(2)] (+ reduce abs(x[D(1), j]));

The return expression is the maximum reduction of aforall loop, which computes a sum reduction for each
iteration. It usesD(1) andD(2) , which are the first and second dimension, respectively, of the domainD.
The shorthand version of aforall loop is used,[j in D(2)] , indicating that for allj in D(2) , the sum
of the absolute values across the rows,+ reduce abs(x[D(1), j]) , is computed. Then, the maximum
value of thesej absolute column sums is computed withmax reduce .

Thenorm2 case, the 2-norm of a matrix, is not implemented. Since the 2-norm of a matrixA is the square root
of the maximum eigenvalue of the matrixAT A (or AHA in the case whereA is complex), this norm has not
been included in this simple example code. This case will halt with a message indicating this unimplemented
status.

ThenormInf case, the infinity norm of a matrix, is the maximum absolute row sum.

when normInf do
return max reduce [i in D(1)] (+ reduce abs(x[i, D(2)]));

For all i in D(1) , the sum of the absolute values across columns,+ reduce abs(x[i, D(2)]) is com-
puted. Then the maximum value of thesei absolute row sums is computed withmax reduce .

The normFrob case which is the Frobenius norm of a matrix, is the same computation as the 2-norm of a
vector.

when normFrob do return sqrt(+ reduce (abs(x) * abs(x)));

The Frobenius norm is the square root of the sum of the squaresof absolute values of all entries in the matrix.

The final case of the select statement, theotherwise clause, halts with a message that the norm type is
unexpected.

The third version of thenorm function with argumentsx andp, given in lines 33 - 35 is for the case where
x.rank > 2 . The module was designed to only compute norms of vectors andmatrices. Calling thenorm

function with three-dimensional or higher arrays should give an error at compile time. In this case, an
appropriate compiler error is given using thecompilerError function.

compilerError("Norms not implemented for array ranks > 2D");

For more information about user-defined compiler errors, see§6.5.

The final version of thenorm function is given in lines 37 - 44.

20 Chapel Language Specification

def norm(x: []) {
select (x.rank) {
when 1 do return norm(x, norm2);
when 2 do return norm(x, normFrob);
otherwise compilerError("Norms not implemented for array ranks > 2D");

}
}

This version has one formal argument,x , allowing the user to omit the norm type. It calls the othernorm

functions with default values fornormType . For vectors, the default norm is defined to be the 2-norm. For
matrices, the default norm is defined to be the Frobenius norm. This version ofnorm is a select statement on
x.rank . Depending on the rank ofx , thenorm function is called with the appropriate default norm type ora
compiler error is given.

5.3.3 Simple Producer-Consumer Program

Description The following example demonstrates a simple producer and consumer program. Theproducer
computationsets the value of a sync variable and theconsumer computationprints the value of the same
variable.

Chapel Features The program contains abegin statement to implement two concurrent computations,
and async variable to coordinate between the two. Sync variables haveextra state associated with them
to indicate whether they are logicallyfull or empty. A sync variable is intended to be accessed by multiple
concurrent computations, each of which may change the contents and state of the variable. A sync variable
can be read when its state is full. Attempts to read an empty sync variable from one computation will suspend
execution until another computation changes its state to full. Once a sync variable is able to be read, its state
is atomically set to empty. Conversely, a sync variable can be written only when its state is empty. Attempts
to write to a full sync variable will suspend until its state is empty. Once the variable is written to, the state is
atomically set to full. In addition, there are functions that read and write sync variables which override this
default behavior. More information about sync variables and their functions is in§22.7.2 and§22.7.3.

Program Listing The Chapel code for this example is given below.

1 use Time;

3 config var numIterations: int = 5,
4 sleepTime: uint = 2;

6 var s: sync int;

8 begin { // create consumer computation
9 for c in 1..numIterations do

10 writeln("consumer got ", s);
11 }

13 // producer computation
14 for p in 1..numIterations {
15 sleep(sleepTime);
16 s = p;
17 }

Language Overview 21

Execution and Output When this program executes, a consumer computation is created with thebegin

statement. However, the consumer computation cannot reads before it has been written to. So, execution
begins with the producer computation which assigns the value1 to s after calling thesleep function2. Once
s has the value1, the consumer computation can read it and print it. Execution switches back and forth
between the producer and consumer computation fornumIterations .

Running the program with the default values fornumIterations results in:

consumer got 1
consumer got 2
consumer got 3
consumer got 4
consumer got 5

Each line is printed after a delay ofsleepTime seconds.

Since the variablesnumIterations andsleepTime areconfiguration variables, they can be reset at exe-
cution time. For example, to change the number of iterationsto 10 and to change the number of seconds to
sleep to 5, the following execution command may be used:

> a.out --numIterations=10 --sleepTime=5

Implementation Details The program uses thesleep function in line 15, which is provided in the standard
Chapel module,Time . So, the first line,use Time , is needed to include theTime module when resolving
function calls in this program.

Lines 3 - 4 give the declarations and initial default values for the two variables,numIterations and
sleepTime . Theconfig keyword in front of these two variable declarations indicates that these are con-
figuration variables. Configuration variables can be set to override their default values at program execution
time, through the use of command line switches.

In line 4, the variables is declared to be async variable of typeint . Sinces is not initialized, its state is
empty at the beginning of the program’s execution. The variables will be used to synchronize the exchange
of data between the producer and consumer computations.

The remainder of the code defines the consumer and producer computations. The new computation that is
created with thebegin statement will be referred to as the consumer computation. The continuing compu-
tation will be referred to as the producer computation. Execution control switches between the producer and
consumer computations as the state of the sync variables changes when it is read and written to.

Thebegin statement in line 8 creates a new computation to execute thefor loop in lines 9 - 10.

begin {
for c in 1..numIterations do

writeln("consumer got ", s);
}

2The call to thesleep function is used to mimic some amount of computational time.It is not necessary to use a sleep function
when synchronizing between concurrent computations.

22 Chapel Language Specification

This loop is indexed byc, which iterates over the arithmetic sequence1..numIterations . The variablec
is a new variable defined for the scope of the loop. Its type is inferred to be integer from the integer arithmetic
sequence that follows. During each iteration of thefor loop, thewriteln function is called which outputs
the string literal"consumer got " and the value of the sync variables , followed by a line break. In order
to print the value stored ins , the sync variable is read only when its state is full. Onces is successfully
read, its state will be set to empty. The next iteration follows, and the consumer computation will suspend
execution until the state ofs is made full again. Since the consumer computation only reads s , it will be the
producer computation that changes the states ofs to full.

The producer computation executes thefor loop in lines 14 - 17.

for p in 1..numIterations {
sleep(sleepTime);
s = p;

}

This loop is indexed byp which iterates over the same arithmetic sequence as the consumer computation.
Like the indexc , p is inferred to be an integer. During each iteration of thisfor loop, thesleep function
is called with the argumentsleepTime . Thissleep function is provided in theTime standard module, and
it causes the producer computation tosleepTime seconds. After returning from thesleep function, the
producer computation assignss to be the iteration numberp. Becauses is a sync variable, this assigment
is executed only when the state ofs is empty. Onces is written, its state is changed to full and the next
iteration of the producer loop follows. Since the producer computation only writess , it will be the consumer
computation that changes the state ofs to empty allowing the next iteration to write its iteration number tos .

The program terminates afternumIterations of both the consumer and producer loops.

5.3.4 Generic Stack Implementations

Description Two implementations of a generic stack type,Stack , are given below. The first definesStack

to be a linked list ofMyNodeobjects. In the second implementation,Stack is an array. Both implementations
of Stack define the methods,push , pop andisEmpty? .

Chapel Features These examples demonstrateclassesandrecords. Chapel classes and records are both
structured data types containing fields and methods. Classes are reference types while records are value types.
The examples also use theunspecified type aliasitemType as the generic type for the items in the stack and
define generic stack methods. To use either version, a type for itemType must be specified whenStack is
instantiated. More information about type aliases can be found in§21.3.1. The array implementation of the
generic stack demonstrates the association of arrays to domains . In this example, the array’s size is doubled
by reassigning its domain to one that is twice in size.

Sample Stack A simple example of how this generic stack can be used:

var stack1: Stack(string);
stack1.push("one");
stack1.push("two");
stack1.push("three");
writeln(stack1.pop());
writeln(stack1.pop());
writeln(stack1.pop());

Language Overview 23

In this simple example, the variablestack1 is declared to be a stack of string type. By specifyingstring
as an input, the default constructor forStack will initialize the type alias for the generic stack to be a string.
The strings,"one" , "two" and "three" are pushed onstack1 , and then three items are popped off of
stack1 , in the reverse order from how they were put on the stack. The output of this example is:

three
two
one

Linked List Implementation This implementation of a generic stack defines aclass, MyNodeand arecord,
Stack . In the following code, the reference pointers ofMyNode objects are used to point to the top of the
stack and to point between items in the stack, thus implementing the stack as a linked list.

1 class MyNode {
2 type itemType;
3 var item: itemType;
4 var next: MyNode(itemType);
5 }

7 record Stack {
8 type itemType;
9 var top: MyNode(itemType);

11 def push(item: itemType) {
12 top = MyNode(itemType, item, top);
13 }

15 def pop() {
16 if isEmpty? then
17 halt("attempt to pop an item off an empty stack");
18 var oldTop = top;
19 top = top.next;
20 return oldTop.item;
21 }

23 def isEmpty? return top == nil;
24 }

Linked List Implementation Details The code begins with a definition of theMyNodeclass in lines 1 - 5.

class MyNode {
type itemType;
var item: itemType;
var next: MyNode(itemType);

Objects of typeMyNodeare used to store the generic items in the stack as a linked list. There are three fields
in MyNode: itemType , item andnext . MyNode objects are instantiated withinStack to have the same
itemType as theStack . The item field holds the data andnext is a pointer to the nextMyNode object in
the linked list.

TheStack record contains two fields:

record Stack {
type itemType;
var top: MyNode(itemType);

24 Chapel Language Specification

WhenStack is instantiated, a type is specified for the type alias,itemType . The top field is a pointer to
the top of the stack, which is aMyNode object ofitemType . When the stack is first instantiated,top is set
to nil. To add and remove items from the stack, thepush andpop methods are used.

The push method is given in lines 11 - 13. This method adds an item to thetop of the stack by resetting
top to point to a newMyNodeobject. This new top object stores the added item and sets itsnext field to the
previoustop object of the stack.

def push(item: itemType) {
top = MyNode(itemType, item, top);

}

The default constructor forMyNode is called to create a new object withitemType and top fields of the
Stack instance on whichpop is called, and the formal argumentitem of thepop function call. To reference
fields of an instance of a structured type,this is used. In this case,this.top and this.itemType are
implicit in the uses oftop anditemType .

Thepop method is given in lines 15 - 21.

def pop() {
if isEmpty? then

halt("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

}

This method returns the item at the top of the stack and resetstop to point to the next object in the stack. First,
a call to theStack methodisEmpty? is made to determine if the stack is empty. If it is, the program halts
with a message indicating that an attempt was made to pop an item off of an empty stack. Otherwise,top

is reset, and the appropriate item is returned. In this method, this.isEmpty? andthis.top are implicit
whenisEmpty? andtop are used. The memory of theoldTop object is freed, through automatic garbage
collection.

The isEmpty? method, which is used to check if the stack is empty in thepop method, is defined to be:

def isEmpty? return top == nil;

Array Implementation The following implementation of a generic stack uses the array, data , to store
the generic items in the stack, and the counter,numItems , to track the number of items in the stack and to
indicate the index of the top item of the stack. The number of items in the stack and the size ofdata are
checked when a new item is pushed on the stack. If necessary, the size ofdata is doubled. This example
demonstrates how the size of an array is increased by increasing its domain.

1 record Stack {
2 type itemType;
3 var numItems: int = 0;
4 var data: [1..2] itemType;

6 def push(item: itemType) {
7 var height = data.numElements;
8 if numItems == height then
9 data. domain = [1..height * 2];

10 data(numItems+1) = item;
11 numItems += 1;
12 }

Language Overview 25

14 def pop() {
15 if isEmpty? then
16 halt("attempt to pop an item off an empty stack");
17 numItems -= 1;
18 return data(numItems+1);
19 }

21 def isEmpty? return numItems == 0;
22 }

Array Implementation Details There are three fields defined for thisStack record,itemType , an inte-
ger variable,numItems and an arraydata of itemType . When first instantiated, the stack is empty and
numItems is initialized to zero. Thedata array is declared with an anonymous one-dimensional domain,
[1..2] .

The same three methods,push , pop , and isEmpty? are defined for this array implementation. Like the
linked list implementation, there are no explicit references tothis when accessing fields and methods.

In push , lines 6 - 12,item is stored in thedata(numItems+1) and thenumItems counter is incremented.

def push(item: itemType) {
var height = data.numElements;
if numItems == height then

data. domain = [1..height * 2];
data(numItems+1) = item;
numItems += 1;

}

Before item can be added to the stack, the size ofdata must be checked to determine if the array’s size
needs to be increased to accomodate another item being addedto the stack. The methodnumElements is
predefined for arrays, returning the total number of elements in an array. The variableheight is set to the
total number of elements indata , which is the size of the current array allocated to store items in the stack.
If the number of items in the stack,numItems equalsheight , then more storage indata is needed. To
increase the size of an array, the size of its domain is increased. By resetingdata ’s domain to a domain of
twice the size, the arraydata itself is now doubled in size, and more items can be pushed onto the stack.

In pop , the top item in the stack, as indicated by thenumItem counter, is returned, if the stack is not empty.

def pop() {
if isEmpty? then

halt("attempt to pop an item off an empty stack");
numItems -= 1;
return data(numItems+1);

}

The pop method first checks to see if the stack is empty. If it is, the program halts indicating that there
was an attempt to pop an item off of an empty stack. Otherwise,thenumItems counter is decremented and
data(numItems+1) is returned as the popped item.

The isEmpty? method checks to see if the stack is empty, that is ifnumItems equals zero.

def isEmpty? return numItems == 0;

26 Chapel Language Specification

Lexical Structure 27

6 Lexical Structure

This section describes the lexical components of Chapel programs.

6.1 Comments

Two forms of comments are supported. All text following the consecutive characters// and before the end
of the line is in a comment. All text following the consecutive characters/ * and before the consecutive
characters* / is in a comment.

Comments, including the characters that delimit them, are ignored by the compiler. If the delimiters that start
the comments appear within a string literal, they do not start a comment but rather are part of the string literal.

6.2 White Space

White-space characters are spaces, tabs, and new-lines. Aside from delimiting comments and tokens, they
are ignored by the compiler.

6.3 Case Sensitivity

Chapel is a case sensitive language so identifiers that are identical except of the case of the characters are still
different.

6.4 Tokens

Tokens include identifiers, keywords, literals, operators, and punctuation.

6.4.1 Identifiers

An identifier in Chapel is a sequence of characters that must start with a letter, lower-case or upper-case, or
an underscore, and can include lower-case letters, upper-case letters, digits, the underscore, and the question
mark.

Example. The following are legal identifiers:

x, x1e, xt3, isLegalChapelIdentifier?, legal_chapel_ide ntifier

28 Chapel Language Specification

6.4.2 Keywords

The following keywords are reserved:

atomic begin bool break by
class cobegin complex config const
continue def distributed do domain
else enum false for forall
goto if imag in int
inout iterator let locale module
nil of on ordered otherwise
out param pragma real record
reduce return scan select seq
serial single sync then true
type uint union use var
when where while yield

6.4.3 Literals

Literal values for primitive types are described in 7.1.7.

6.4.4 Operators and Punctuation

The following special characters are interpreted by the syntax of the language specially:

symbols use
= += -= * = /= ** = %= &= |= ˆ= &&= ||= #= <<= >>= assignment
.. arithmetic sequences
... variable argument lists
&& || ! logical operators
& | ˆ ˜ << >> bitwise operators
== != <= >= < > relational operators
+ - * / % ** arithmetic operators
sequence concatenation operator
: types
; statement separator
, expression separator
. member access
? query types
" ’ string delimiters

6.4.5 Grouping Tokens

The following braces are part of the Chapel language:

Lexical Structure 29

braces use
() parenthesization, function calls, and tuples
[] domains, square tuples, forall expressions, and function calls
(/ /) sequence literals
{ } type scopes and blocks

6.5 User-Defined Compiler Errors

The special compiler error statement given by

comp i le r- e r r o r - s t a t e m e n t:
compilerError (s t r i n g- l i t e r a l) ;

invokes a compiler error if the function that the statement is located within may be called when the program
is executed and the statement is not eliminated by parameterfolding.

The compiler error is defined to be the string literal and it points to the spot in the Chapel program where the
function containing thecomp i le r- e r r o r - s t a t e m e n tis called from.

30 Chapel Language Specification

Types 31

7 Types

Chapel is a statically typed language with a rich set of types. These include a set of predefined primitive types,
enumerated types, classes, records, unions, tuples, sequences, domains, and arrays. This section defines the
primitive types, enumerated types, and type aliases.

Programmers can define their own enumerated types, classes,records, unions, and type aliases in type decla-
ration statements summarized by the following syntax:

t y p e- d e c l a r a t i o n- s t a t e m e n t:
enum- d e c l a r a t i o n- s t a t e m e n t
c l a s s- d e c l a r a t i o n- s t a t e m e n t
reco rd- d e c l a r a t i o n- s t a t e m e n t
un ion- d e c l a r a t i o n- s t a t e m e n t
t y p e- a l i a s- d e c l a r a t i o n- s t a t e m e n t

Classes are discussed in§14. Records are discussed in§15. Unions are discussed in§16. Tuples are discussed
in §17. Sequences are discussed in§18. Domains and arrays are discussed in§19.

7.1 Primitive Types

The primitive types include the following types:bool , int , uint , real , complex , imag , string , and
locale . These primitive types are defined in this section except forthe locale type which is defined
in §23.1.1.

7.1.1 The Bool Type

Chapel defines a logical data type designated by the symbolbool with the two predefined valuestrue and
false .

The relational operators return values ofbool type and the logical operators operate on values ofbool type.

Some statements require expressions ofbool type and Chapel supports a special conversion of values to
bool type when used in this context (§9.1.6). For example, an integer can be used as the condition in a
conditional statement. It is converted tofalse if it is zero, and otherwise, it is converted totrue .

7.1.2 Signed and Unsigned Integral Types

The integral types can be parameterized by the number of bitsused to represent them. The default signed
integral type,int , and the default unsigned integral type,uint , are 32 bits.

The integral types and their ranges are given in the following table:

32 Chapel Language Specification

Type Minimum Value Maximum Value
int(8) -128 127
uint(8) 0 255
int(16) -32768 32767
uint(16) 0 65535
int(32) , int -2147483648 2147483647
uint(32) , uint 0 4294967295
int(64) -9223372036854775808 9223372036854775807
uint(64) 0 18446744073709551615

The unary and binary operators that are pre-defined over the integral types operate with 32- and 64-bit pre-
cision. Using these operators on integral types represented with fewer bits results in a coercion according to
the rules defined in§9.1.

7.1.3 Real Types

Like the integral types, the real types can be parameterizedby the number of bits used to represent them.
The default real type,real , is 64 bits. The real types that are supported are machine-dependent, but usually
includereal(32) andreal(64) , and sometimes includereal(128) .

Arithmetic over real values follows the IEEE 754 standard.

7.1.4 Complex Types

Like the integral and real types, the complex types can be parameterized by the number of bits used to
represent them. A complex number is composed of two real numbers so the number of bits used to represent a
complex is twice the number of bits used to represent the realnumbers. The default complex type,complex ,
is 128 bits; it consists of two 64-bit real numbers. The complex types that are supported are machine-
dependent, but usually includecomplex(64) andcomplex(128) , and sometimes includecomplex(256) .

The real and imaginary components can be accessed via the methodsre andim . The type of these compo-
nents is real.

Example. Given a complex number3.14+2.72i , the expressionsc.re andc.im refer to3.14

and2.72 respectively.

7.1.5 Imaginary Types

The imaginary types can be parameterized by the number of bits used to represent them. The default imag-
inary type, imag , is 64 bits. The imaginary types that are supported are machine-dependent, but usually
includeimag(32) andimag(64) , and sometimes includeimag(128) .

Rationale. The imaginary type is included to avoid numeric instabilities and under-optimized
code stemming from always coercing real values to complex values with a zero imaginary part.

Types 33

7.1.6 The String Type

Strings are a primitive type designated by the symbolstring . Their length is unbounded.

Characters in a string can be accessed via thesubstring method on strings. This method takes an integeri
and returns theith character in the string.

Example. The first character of a strings can be selected by the method calls.substring(1) .

7.1.7 Primitive Type Literals

Bool literals are designated by the following syntax:

boo l- l i t e r a l : one o f
true false

Signed and unsigned integer literals are designated by the following syntax:

i n t e g e r- l i t e r a l :
d i g i t s
0 ’ x ’ hexadec ima l- d i g i t s
0 ’ b ’ b ina ry- d i g i t s

d i g i t s :
d i g i t
d i g i t d i g i t s

d i g i t : one o f
0 1 2 3 4 5 6 7 8 9

hexadec ima l- d i g i t s :
hexadec ima l- d i g i t
hexadec ima l- d i g i t hexadec ima l- d i g i t s

hexadec ima l- d i g i t s : one o f
0 1 2 3 4 5 6 7 8 9A B C D E F a b c d e f

b ina r y- d i g i t s :
b ina ry- d i g i t
b ina r y- d i g i t b ina r y- d i g i t s

b ina r y- d i g i t s : one o f
0 1

Suffixes, like those in C, are not necessary. The type of an integer literal is the first type of the following that
can hold the value of the digits:int , int(64) , uint(64) . Explicit conversions are necessary to change the
type of the literal to another integer size.

Real literals are designated by the following syntax:

r e a l - l i t e r a l :
d i g i t sopt . d i g i t d i g i t sopt exponen t- p a r topt

exponen t- p a r t :
‘e’ s i g nopt d i g i t s

s i g n : one o f
+ -

34 Chapel Language Specification

The type of a real literal isreal . Explicit conversions are necessary to change the type of the literal to
another real size.

Note that real literals require that a digit follow the decimal point. This is necessary to avoid an ambiguity in
interpreting2.e+2 that arises if a method callede is defined on integers.

Imaginary literals are designated by the following syntax:

imag ina ry- l i t e r a l :
r e a l - l i t e r a l i
i n t e g e r- l i t e r a l i

A complex number is specified by adding or subtracting an imaginary literal with a real literal. Alternatively,
a 2-tuple literal of expressions of integer or real type can be cast to a complex. These expressions can be
literals, but do not need to be. To create a complex literal orparameter, they must be literals or parameters.

Example. The following codes represent the same complex literal:

2.0i , 0.0+2.0i , (0.0,2.0):complex .

String literals are designated by the following syntax:

s t r i n g- l i t e r a l :
” c h a r a c t e r s ”
’ c h a r a c t e r s ’

c h a r a c t e r s:
c h a r a c t e r
c h a r a c t e r c h a r a c t e r s

c h a r a c t e r :
any- c h a r a c t e r

Implementation note. Strings are currently restricted to ASCII characters. In afuture version of
Chapel, strings will be defined over alphabets to allow for more exotic characters.

7.2 Enumerated Types

Enumerated types are declared with the following syntax:

enum- d e c l a r a t i o n- s t a t e m e n t:
enum i d e n t i f i e r { enum- c o n s t a n t- l i s t } ;

enum- c o n s t a n t- l i s t
enum- c o n s t a n t
enum- c o n s t a n t , enum- c o n s t a n t- l i s t

enum- c o n s t a n t:
i d e n t i f i e r i n i t - p a r topt

i n i t - p a r t :
= e x p r e s s i o n

An enumerated type defines a set of named constants. These areassociated with parameters of integral type.
Each enumerated type is a distinct type.

Types 35

7.3 Class Types

The class type defines a type that contains variables and constants, called fields, and functions, called meth-
ods. Classes are defined in§14. The class type can also contain type aliases and parameters. Such a class is
generic and is defined in§21.

7.4 Record Types

The record type is similar to a class type; the primary difference is that a record is a value rather than a
reference. The difference between classes and records is elaborated on in§15.

7.5 Union Types

The union type defines a type that contains one of a set of variables. Like classes and records, unions may
also define methods. Unions are defined in§16.

7.6 Tuple Types

A tuple is a light-weight record that consists of one or more anonymous fields. If all the fields are of the same
type, the tuple is homogeneous. Tuples are defines in§17.

7.7 Sequence Types

A sequence defines an ordered set of values of some type. Sequences are defined in§18.

7.8 Domain and Array Types

Domains are index sets. Arrays are types that contain a set ofzero or more elements all of the same type. The
elements are referenced via indices that are in the domain that the array is declared over. Domains and arrays
are defined in§19.

7.9 Type Aliases

Type aliases are declared with the following syntax:

t y p e- a l i a s- d e c l a r a t i o n- s t a t e m e n t:
type t y p e- a l i a s- d e c l a r a t i o n ;

t y p e- a l i a s- d e c l a r a t i o n :
i d e n t i f i e r t y p e- p a r topt

i d e n t i f i e r t y p e- p a r topt , t y p e- a l i a s- d e c l a r a t i o n

t y p e- p a r t :
= t y p e

36 Chapel Language Specification

A type alias is a symbol that aliases any type as specified in the t y p e- p a r t. A use of a type alias has the same
meaning as using the type specified byt y p e- p a r t directly.

The t y p e- p a r t is optional in the definition of a class or record. Such a type alias is called an unspecified type
alias. Classes and records that contain type aliases, specified or unspecified, are generic (§21.3.1).

Variables 37

8 Variables

A variable is a symbol that represents memory. Chapel is a statically-typed, type-safe language so every
variable has a type that is known at compile-time and the compiler enforces that values assigned to the
variable can be stored in that variable as specified by its type.

8.1 Variable Declarations

Variables are declared with the following syntax:

v a r i a b l e- d e c l a r a t i o n- s t a t e m e n t:
config opt v a r i a b l e- k ind v a r i a b l e- d e c l a r a t i o n ;

v a r i a b l e- k ind : one o f
param const var

v a r i a b l e- d e c l a r a t i o n- l i s t :
v a r i a b l e- d e c l a r a t i o n
v a r i a b l e- d e c l a r a t i o n , v a r i a b l e- d e c l a r a t i o n- l i s t

v a r i a b l e- d e c l a r a t i o n :
i d e n t i f i e r- l i s t t y p e- p a r topt i n i t i a l i z a t i o n - p a r t
i d e n t i f i e r- l i s t t y p e- p a r t

i d e n t i f i e r - l i s t :
i d e n t i f i e r
i d e n t i f i e r , i d e n t i f i e r - l i s t

t y p e- p a r t :
: t y p e
: s y n c h r o n i z a t i o n- t y p e t y p e

i n i t i a l i z a t i o n - p a r t :
= e x p r e s s i o n

A v a r i a b l e- d e c l a r a t i o n- s t a t e m e n tis used to define one or more variables. If the statement is a top-level
module statement, the variables are global; otherwise theyare local. Global variables are discussed in§8.2.
Local variables are discussed in§8.3.

The optional keywordconfig specifies that the variables are configuration variables, described in Sec-
tion §8.5.

The v a r i a b l e- k ind specifies whether the variables are parameters (param), constants (const), or regular
variables (var). Parameters are compile-time constants whereas constants are runtime constants. Both levels
of constants are discussed in§8.4.

Multiple variables can be defined in the same variable declaration list. All variables defined in the same
i d e n t i f i e r - l i s t are defined to have the same type and initialization expression.

The t y p e- p a r t of a variable declaration specifies the type of the variable.It is optional if the i n i t i a l i z a t i o n - p a r t

is specified. If thet y p e- p a r t is omitted, the type of the variable is inferred using local type inference de-
scribed in§8.1.2.

The i n i t i a l i z a t i o n - p a r t of a variable declaration specifies an initial expression toassign to the variable.
If the i n i t i a l i z a t i o n - p a r t is omitted, the variable is initialized to a default value described in§8.1.1.

38 Chapel Language Specification

8.1.1 Default Initialization

If a variable declaration has no initialization expression, a variable is initialized to the default value of its
type. The default values are as follows:

Type Default Value
bool false
int(*) 0
uint(*) 0
real(*) 0.0
imag(*) 0.0i
complex(*) 0.0 + 0.0i
string ""
enums first enum constant
classes nil
records default constructed record
sequences empty sequence
arrays elements are default values
tuples components are default values

8.1.2 Local Type Inference

If the type is omitted from a variable declaration, the type of the variable becomes the type of the initialization
expression.

8.2 Global Variables

Variables declared in statements that are in a module but notin a function or block within that module are
global variables. Global variables can be accessed anywhere within that module after the declaration of that
variable. They can also be accessed in other modules that usethat module.

8.3 Local Variables

Local variables are variables that are not global. Local variables are declared within block statements. They
can only be accessed within the scope of that block statement(including all inner nested block statements
and functions).

A local variable only exists during the execution of code that lies within that block statement. This time is
called the lifetime of the variable. When execution has finished within that block statement, the local variable
and the storage it represents is removed. Variables of classtype are the sole exception. Constructors of class
types create storage that is not associated with any scope. Such storage is managed automatically as discussed
in §14.10.

Variables 39

8.4 Constants

Constants are divided into two categories: parameters, specified with the keywordparam , are compile-time
constants and constants, specified with the keywordconst , are runtime constants.

8.4.1 Compile-Time Constants

A compile-time constant or parameter must have a single value that is known statically by the compiler.
Parameters are restricted to primitive and enumerated types.

Parameters can be assigned expressions that are parameter expressions. Parameter expressions are restricted
to the following constructs:

• Literals of primitive type.

• Parenthesized parameter expressions.

• Casts of parameter expressions to primitive or enumerated types.

• Applications of the unary operators+, - , ! , and˜ on operands that are bool or integral parameter
expressions.

• Applications of the binary operators+, - , * , / , %, ** , &&, || , ! , &, | , ˆ , ˜ , <<, >>, ==, != , <=, >=,
<, and> on operands that are bool or integral parameter expressions.

• The conditional expression where the condition is a parameter and the then- and else-expressions are
parameters.

There is an expectation that parameters will be expanded to more types and more operations, and that func-
tions that return parameters will be introduced, in the future.

8.4.2 Runtime Constants

Constants, as opposed to parameters, do not have the restrictions that are associated with parameters. Con-
stants can be any type. They require an initialization expression and contain the value of that expression
throughout their lifetime.

Variables of class type that are constants are constant references. The fields of the class can be modified, but
the variable always points to the object that it was initialized to reference.

40 Chapel Language Specification

8.5 Configuration Variables

If the keywordconfig precedes the keywordvar , const , or param , the variable, constant, or parame-
ter is called a configuration variable, configuration constant, or configuration parameter respectively. Such
variables, constants, and parameters must be global.

The initialization of these variables can be set via implementation dependent means, such as command-line
switches or environment variables. The initialization expression in the program is ignored if the initialization
is alternatively set.

Configuration parameters are set during compilation time via compilation flags or other implementation de-
pendent means.

Example. A configuration parameter is set via a compiler flag. It may beused to control the
target that is being compiled. For example, the code

config param target: string = "XT3";

sets a string parametertarget to "XT3" . This can be checked to compile different code for this
target.

Conversions 41

9 Conversions

A conversion allows an expression of one type to be convertedinto another type. Conversions can be either
implicit or explicit.

Implicit conversions can occur during an assignment (from the expression on the right-hand side to the vari-
able on the left-hand side) or during a function call (from the actual expression to the formal argument). An
implicit conversion does not require a cast.

Explicit conversions require a cast in the code. Casts are defined in§10.5. Explicit conversions are supported
between more types than implicit conversions, but explicitconversions are not supported between all types.

9.1 Implicit Conversions

Implicit conversions are allowed between numeric types (§9.1.1), from enumerated types to numeric types (§9.1.2),
between class types (§9.1.3), and between record types (§9.1.4). A special set of implicit conversions are al-
lowed from compile-time constants of typeint andint(64) to other smaller numeric types if the value is
in the range of the smaller numeric type (§9.1.5). Lastly, implicit conversions are supported from integeral
and class types to bool in the context of a statement (§9.1.6).

9.1.1 Implicit Numeric Conversions

Let i, j, andk range over the constants8, 16, 32, and64 when parameterizingint anduint and over the
constants32, 64, and128 when parameterizingreal , imag , andcomplex . The implicit numeric conversions
are as follows:

• Frombool to int(j) , uint(j) , or string

• From int(i) to int(j) , real(k) , complex(k) , or string wherej > i

• Fromuint(i) to int(j) , uint(j) , real(k) , complex(k) , or string wherej > i

• Fromreal(i) to real(j) , complex(k) , or string wherej > i andk ≥ 2i

• From imag(i) to imag(j) , complex(k) , or string wherej > i andk ≥ 2i

• Fromcomplex(i) to complex(j) , or string wherej > i

The implicit numeric conversions do not result in any loss ofinformation except for the conversions from
any of theint anduint types to any of thereal andcomplex types and from any of thereal , imag , and
complex types tostring where there is a loss of precision.

9.1.2 Implicit Enumeration Conversions

An expression that is an enumerated type can be implicitly converted to any integral type as long as all of
the constants defined by the enumerated type are within rangeof the integral type. It can also be implicitly
converted tostring where the string is the name of the enumerated constant.

42 Chapel Language Specification

9.1.3 Implicit Class Conversions

An expression of class typeC can be implicitly converted to another class typeD provided thatC is derived
from D.

9.1.4 Implicit Record Conversions

An expression of record typeCcan be implicitly converted to another record typeDprovided thatC is derived
from D.

9.1.5 Implicit Compile-Time Constant Conversions

The following two implicit conversions of parameters are supported:

• A parameter of typeint(32) can be implicitly converted toint(8) , int(16) , or any unsigned
integral type if the value of the parameter is within the range of the target type.

• A parameter of typeint(64) can be implicitly converted touint(64) if the value of the parameter
is nonnegative.

9.1.6 Implicit Statement Bool Conversions

In the condition of an if-statement, while-loop, and do-while-loop, the following implicit conversions are
supported:

• An expression of integral type is taken to be true if it is non-zero and is otherwise false.

• An expression of a class type is taken to be true if is not nil and is otherwise false.

9.2 Explicit Conversions

The explicit conversions are a superset of the implicit conversions.

9.2.1 Explicit Numeric Conversions

Explicit conversions are allowed from any numeric type to any other numeric type, bool, or string, and vice
versa.

9.2.2 Explicit Enumeration Conversions

Explicit conversions are allowed from any enumerated typesto any numeric type, bool, or string, and vice
versa.

Conversions 43

9.2.3 Explicit Class Conversions

An expression of class typeC can be explicitly converted to another class typeD provided thatC is derived
from D or D is derived fromC. In the event thatD is derived fromC, the runtime type ofD must be aC.

9.2.4 Explicit Record Conversions

An expression of record typeCcan be explicitly converted to another record typeDprovided thatC is derived
from D. There are no explicit record conversions that are not also implicit record conversions.

44 Chapel Language Specification

Expressions 45

10 Expressions

This section defines expressions in Chapel. Forall expressions are described in§22.2.

The syntax for an expression is given by:

e x p r e s s i o n:
l i t e r a l - e x p r e s s i o n
v a r i a b l e- e x p r e s s i o n
member- access- e x p r e s s i o n
c a l l - e x p r e s s i o n
query- e x p r e s s i o n
c a s t- e x p r e s s i o n
l v a l u e- e x p r e s s i o n
unary- e x p r e s s i o n
b ina ry- e x p r e s s i o n
l e t - e x p r e s s i o n
i f - e x p r e s s i o n
f o r a l l - e x p r e s s i o n

10.1 Literal Expressions

A literal value for any of the built-in types is a literal expression. These are defined where the type is defined.
The list of literal values is given by the following syntax:

l i t e r a l - e x p r e s s i o n:
boo l- l i t e r a l
i n t e g e r- l i t e r a l
r e a l - l i t e r a l
imag ina ry- l i t e r a l
s t r i n g- l i t e r a l
sequence- l i t e r a l
domain- l i t e r a l

10.2 Variable Expressions

A use of a variable is itself an expression. The syntax of a variable expression is given by:

v a r i a b l e- e x p r e s s i o n:
i d e n t i f i e r

10.3 Call Expressions

The syntax to call a function is given by:

c a l l - e x p r e s s i o n:
e x p r e s s i o n (named- e x p r e s s i o n- l i s t)

named- e x p r e s s i o n- l i s t :
named- e x p r e s s i o n
named- e x p r e s s i o n , named- e x p r e s s i o n- l i s t

named- e x p r e s s i o n:
e x p r e s s i o n
i d e n t i f i e r = e x p r e s s i o n

46 Chapel Language Specification

A c a l l - e x p r e s s i o n is resolved to a particular function according to the algorithm for function resolution
described in§13.8.

A named- e x p r e s s i o nis an expression that may be optionally named. The optionali d e n t i f i e r represents a
named actual argument described in§13.4.1.

10.3.1 Indexing Expressions

Indexing into arrays, sequences, tuples, and domains shares the same syntax of a call expression. Indexing,
at its core, is nothing more than a call to the indexing function defined on these types.

10.3.2 Member Access Expressions

Member access expressions are call expressions to members of classes, records, or unions. The syntax for a
member access is given by:

member- access- e x p r e s s i o n:
e x p r e s s i o n . i d e n t i f i e r

The member access may be an access of a field or a function inside a class, record, or union.

10.4 The Query Expression

A query expression is used to query a type or value within a formal argument type expression. The syntax of
a query expression is given by:

query- e x p r e s s i o n:
? i d e n t i f i e r

Querying is restricted to querying the type of a formal argument, the element type of an formal argument that
is an array, the domain of a formal argument that is an array, or the size of a primitive type.

Example. The following code defines a generic function where the typeof the first parameter
is queried and stored in the type aliast and the domain of the second argument is queried and
stored in the variableD:

def foo(x: ?t, y: [?D] t) {
for i in D do

y[i] = x;
}

The type aliast is used to specify the element type of arrayy . Arrays passed to this function
must have element typey . The body of the function iterates over the domain ofy captured in
variableD and assigns the value of argumentx to each element in arrayy .

There is an expectation that query expressions will be allowed in more places in the future.

Expressions 47

10.5 Casts

A cast is specified with the following syntax:

c a s t- e x p r e s s i o n:
e x p r e s s i o n : t y p e

The expression is converted to the specified type. Except forthe casts listed below, casts are restricted to
valid explicit conversions (§9.2).

The following casts have special meanings and do not correspond to an explicit conversion:

• A cast to the keywordseq converts a tuple to a sequence as described in§18.14.

• A cast to a parameter expression of integral type converts a sequence to a tuple as described in§18.14.

• A cast from a 2-tuple tocomplex converts the 2-tuple into a complex where the first component
becomes the real part and the second component becomes the imaginary part. The size of the complex
is determined from the size of the components based on implicit conversions.

• A cast from any primitive type to a string literal that is a C-style format string creates a formatted string
based on that format.

10.6 LValue Expressions

An lvalue is an expression that can be used on the left-hand side of an assignment statement, passed to a
formal argument of a function that hasout or inout intent, or returned by a variable function. Valid lvalue
expressions include the following:

• Variable expressions.

• Member access expressions.

• Call expressions that are either setters or variable functions.

• Indexing expressions.

• Let expressions where the inner expression is an lvalue expression.

• Conditional expressions where the then- and else-expressions are lvalue expressions.

LValue expressions are given by the following syntax:

l v a l u e- e x p r e s s i o n:
v a r i a b l e- e x p r e s s i o n
member- access- e x p r e s s i o n
c a l l - e x p r e s s i o n
l e t - e x p r e s s i o n
c o n d i t i o n a l- e x p r e s s i o n.

The syntax is more relaxed than the definition above. For example, not all c a l l - e x p r e s s i o ns are lvalues.

48 Chapel Language Specification

10.7 Operator Precedence and Associativity

The following table summarizes the precedence of operatorsand their associativity. Operators listed earlier
have higher precedence than those listed later.

operators associativity use
. left member access
() [] left function call, index expression
: left cast
** right exponentiation
unary+ - ˜ right sign and bitwise negation
* / % left multiply, divide, and modulus
+ - left plus and minus
& left bitwise and
ˆ left bitwise xor
<< >> left shift left and shift right
| left bitwise or
<= >= < > left ordered comparison
== != left equality comparison
! right logical negation
&& left logical and
|| left logical or
left sequence concatenation
.. left arithmetic sequences
in left forall expressions
by left striding sequences
if left conditional expressions
reduce scan left reductions and scans
, left comma separated expressions

10.8 Operator Expressions

The application of operators to expressions is itself an expression. The syntax of a unary expression is given
by:

unary- e x p r e s s i o n:
unary- o p e r a t o r e x p r e s s i o n

unary- o p e r a t o r: one o f
+ - ˜ !

The syntax of a binary expression is given by:

b ina ry- e x p r e s s i o n:
e x p r e s s i o n b ina ry- o p e r a t o r e x p r e s s i o n

b ina ry- o p e r a t o r: one o f
+ - ∗ / % ∗∗ & | ˆ << >> && | | == != <= >= < > #

The operators are defined in subsequent sections.

Expressions 49

10.9 Arithmetic Operators

This section describes the predefined arithmetic operators. These operators can be redefined over different
types using operator overloading (§13.7).

All arithmetic operators are implemented over integral types of size 32 and 64 bits only. For example, adding
two 8-bit integers is done by first converting them to 32-bit integers and then adding the 32-bit integers. The
result is a 32-bit integer.

10.9.1 Unary Plus Operators

The unary plus operators are predefined as follows:

def +(a: int(32)): int(32)
def +(a: int(64)): int(64)
def +(a: uint(32)): uint(32)
def +(a: uint(64)): uint(64)
def +(a: real(32)): real(32)
def +(a: real(64)): real(64)
def +(a: real(128)): real(128)
def +(a: imag(32)): imag(32)
def +(a: imag(64)): imag(64)
def +(a: imag(128)): imag(128)
def +(a: complex(32)): complex(32)
def +(a: complex(64)): complex(64)
def +(a: complex(128)): complex(128)

For each of these definitions, the result is the value of the operand.

10.9.2 Unary Minus Operators

The unary minus operators are predefined as follows:

def -(a: int(32)): int(32)
def -(a: int(64)): int(64)
def -(a: uint(64))
def -(a: real(32)): real(32)
def -(a: real(64)): real(64)
def -(a: real(128)): real(128)
def -(a: imag(32)): imag(32)
def -(a: imag(64)): imag(64)
def -(a: imag(128)): imag(128)
def -(a: complex(32)): complex(32)
def -(a: complex(64)): complex(64)
def -(a: complex(128)): complex(128)

For each of these definitions that return a value, the result is the negation of the value of the operand. For
integral types, this corresponds to subtracting the value from zero. For real and imaginary types, this corre-
sponds to inverting the sign. For complex types, this corresponds to inverting the signs of both the real and
imaginary parts.

It is an error to try to negate a value of typeuint(64) . Note that negating a value of typeuint(32) first
converts the type toint(64) using an implicit conversion.

50 Chapel Language Specification

10.9.3 Addition Operators

The addition operators are predefined as follows:

def +(a: int(32), b: int(32)): int(32)
def +(a: int(64), b: int(64)): int(64)
def +(a: uint(32), b: uint(32)): uint(32)
def +(a: uint(64), b: uint(64)): uint(64)
def +(a: uint(64), b: int(64))
def +(a: int(64), b: uint(64))

def +(a: real(32), b: real(32)): real(32)
def +(a: real(64), b: real(64)): real(64)
def +(a: real(128), b: real(128)): real(128)

def +(a: imag(32), b: imag(32)): imag(32)
def +(a: imag(64), b: imag(64)): imag(64)
def +(a: imag(128), b: imag(128)): imag(128)

def +(a: complex(64), b: complex(64)): complex(64)
def +(a: complex(128), b: complex(128)): complex(128)
def +(a: complex(256), b: complex(256)): complex(256)

def +(a: real(32), b: imag(32)): complex(64)
def +(a: imag(32), b: real(32)): complex(64)
def +(a: real(64), b: imag(64)): complex(128)
def +(a: imag(64), b: real(64)): complex(128)
def +(a: real(128), b: imag(128)): complex(256)
def +(a: imag(128), b: real(128)): complex(256)

def +(a: real(32), b: complex(64)): complex(64)
def +(a: complex(64), b: real(32)): complex(64)
def +(a: real(64), b: complex(128)): complex(128)
def +(a: complex(128), b: real(64)): complex(128)
def +(a: real(128), b: complex(256)): complex(256)
def +(a: complex(256), b: real(128)): complex(256)

def +(a: imag(32), b: complex(64)): complex(64)
def +(a: complex(64), b: imag(32)): complex(64)
def +(a: imag(64), b: complex(128)): complex(128)
def +(a: complex(128), b: imag(64)): complex(128)
def +(a: imag(128), b: complex(256)): complex(256)
def +(a: complex(256), b: imag(128)): complex(256)

For each of these definitions that return a value, the result is the sum of the two operands.

It is a compile-time error to add a value of typeuint(64) and a value of typeint(64) .

Addition over a value of real type and a value of imaginary type produces a value of complex type. Addition
of values of complex type and either real or imaginary types also produces a value of complex type.

10.9.4 Subtraction Operators

The subtraction operators are predefined as follows:

def -(a: int(32), b: int(32)): int(32)
def -(a: int(64), b: int(64)): int(64)
def -(a: uint(32), b: uint(32)): uint(32)
def -(a: uint(64), b: uint(64)): uint(64)

Expressions 51

def -(a: uint(64), b: int(64))
def -(a: int(64), b: uint(64))

def -(a: real(32), b: real(32)): real(32)
def -(a: real(64), b: real(64)): real(64)
def -(a: real(128), b: real(128)): real(128)

def -(a: imag(32), b: imag(32)): imag(32)
def -(a: imag(64), b: imag(64)): imag(64)
def -(a: imag(128), b: imag(128)): imag(128)

def -(a: complex(64), b: complex(64)): complex(64)
def -(a: complex(128), b: complex(128)): complex(128)
def -(a: complex(256), b: complex(256)): complex(256)

def -(a: real(32), b: imag(32)): complex(64)
def -(a: imag(32), b: real(32)): complex(64)
def -(a: real(64), b: imag(64)): complex(128)
def -(a: imag(64), b: real(64)): complex(128)
def -(a: real(128), b: imag(128)): complex(256)
def -(a: imag(128), b: real(128)): complex(256)

def -(a: real(32), b: complex(64)): complex(64)
def -(a: complex(64), b: real(32)): complex(64)
def -(a: real(64), b: complex(128)): complex(128)
def -(a: complex(128), b: real(64)): complex(128)
def -(a: real(128), b: complex(256)): complex(256)
def -(a: complex(256), b: real(128)): complex(256)

def -(a: imag(32), b: complex(64)): complex(64)
def -(a: complex(64), b: imag(32)): complex(64)
def -(a: imag(64), b: complex(128)): complex(128)
def -(a: complex(128), b: imag(64)): complex(128)
def -(a: imag(128), b: complex(256)): complex(256)
def -(a: complex(256), b: imag(128)): complex(256)

For each of these definitions that return a value, the result is the value obtained by subtracting the second
operand from the first operand.

It is a compile-time error to subtract a value of typeuint(64) from a value of typeint(64) , and vice versa.

Subtraction of a value of real type from a value of imaginary type, and vice versa, produces a value of complex
type. Subtraction of values of complex type from either realor imaginary types, and vice versa, also produces
a value of complex type.

10.9.5 Multiplication Operators

The multiplication operators are predefined as follows:

def * (a: int(32), b: int(32)): int(32)
def * (a: int(64), b: int(64)): int(64)
def * (a: uint(32), b: uint(32)): uint(32)
def * (a: uint(64), b: uint(64)): uint(64)
def * (a: uint(64), b: int(64))
def * (a: int(64), b: uint(64))

def * (a: real(32), b: real(32)): real(32)
def * (a: real(64), b: real(64)): real(64)
def * (a: real(128), b: real(128)): real(128)

52 Chapel Language Specification

def * (a: imag(32), b: imag(32)): real(32)
def * (a: imag(64), b: imag(64)): real(64)
def * (a: imag(128), b: imag(128)): real(128)

def * (a: complex(64), b: complex(64)): complex(64)
def * (a: complex(128), b: complex(128)): complex(128)
def * (a: complex(256), b: complex(256)): complex(256)

def * (a: real(32), b: imag(32)): imag(32)
def * (a: imag(32), b: real(32)): imag(32)
def * (a: real(64), b: imag(64)): imag(64)
def * (a: imag(64), b: real(64)): imag(64)
def * (a: real(128), b: imag(128)): imag(128)
def * (a: imag(128), b: real(128)): imag(128)

def * (a: real(32), b: complex(64)): complex(64)
def * (a: complex(64), b: real(32)): complex(64)
def * (a: real(64), b: complex(128)): complex(128)
def * (a: complex(128), b: real(64)): complex(128)
def * (a: real(128), b: complex(256)): complex(256)
def * (a: complex(256), b: real(128)): complex(256)

def * (a: imag(32), b: complex(64)): complex(64)
def * (a: complex(64), b: imag(32)): complex(64)
def * (a: imag(64), b: complex(128)): complex(128)
def * (a: complex(128), b: imag(64)): complex(128)
def * (a: imag(128), b: complex(256)): complex(256)
def * (a: complex(256), b: imag(128)): complex(256)

For each of these definitions that return a value, the result is the product of the two operands.

It is a compile-time error to multiply a value of typeuint(64) and a value of typeint(64) .

Multiplication of values of imaginary type produces a valueof real type. Multiplication over a value of real
type and a value of imaginary type produces a value of imaginary type. Multiplication of values of complex
type and either real or imaginary types produces a value of complex type.

10.9.6 Division Operators

The division operators are predefined as follows:

def /(a: int(32), b: int(32)): int(32)
def /(a: int(64), b: int(64)): int(64)
def /(a: uint(32), b: uint(32)): uint(32)
def /(a: uint(64), b: uint(64)): uint(64)
def /(a: uint(64), b: int(64))
def /(a: int(64), b: uint(64))

def /(a: real(32), b: real(32)): real(32)
def /(a: real(64), b: real(64)): real(64)
def /(a: real(128), b: real(128)): real(128)

def /(a: imag(32), b: imag(32)): real(32)
def /(a: imag(64), b: imag(64)): real(64)
def /(a: imag(128), b: imag(128)): real(128)

def /(a: complex(64), b: complex(64)): complex(64)
def /(a: complex(128), b: complex(128)): complex(128)

Expressions 53

def /(a: complex(256), b: complex(256)): complex(256)

def /(a: real(32), b: imag(32)): imag(32)
def /(a: imag(32), b: real(32)): imag(32)
def /(a: real(64), b: imag(64)): imag(64)
def /(a: imag(64), b: real(64)): imag(64)
def /(a: real(128), b: imag(128)): imag(128)
def /(a: imag(128), b: real(128)): imag(128)

def /(a: real(32), b: complex(64)): complex(64)
def /(a: complex(64), b: real(32)): complex(64)
def /(a: real(64), b: complex(128)): complex(128)
def /(a: complex(128), b: real(64)): complex(128)
def /(a: real(128), b: complex(256)): complex(256)
def /(a: complex(256), b: real(128)): complex(256)

def /(a: imag(32), b: complex(64)): complex(64)
def /(a: complex(64), b: imag(32)): complex(64)
def /(a: imag(64), b: complex(128)): complex(128)
def /(a: complex(128), b: imag(64)): complex(128)
def /(a: imag(128), b: complex(256)): complex(256)
def /(a: complex(256), b: imag(128)): complex(256)

For each of these definitions that return a value, the result is the quotient of the two operands.

It is a compile-time error to divide a value of typeuint(64) by a value of typeint(64) , and vice versa.

Division of values of imaginary type produces a value of realtype. Division over a value of real type and a
value of imaginary type produces a value of imaginary type. Division of values of complex type and either
real or imaginary types produces a value of complex type.

10.9.7 Modulus Operators

The modulus operators are predefined as follows:

def %(a: int(32), b: int(32)): int(32)
def %(a: int(64), b: int(64)): int(64)
def %(a: uint(32), b: uint(32)): uint(32)
def %(a: uint(64), b: uint(64)): uint(64)
def %(a: uint(64), b: int(64))
def %(a: int(64), b: uint(64))

For each of these definitions that return a value, the result is the remainder when the first operand is divided
by the second operand.

It is a compile-time error to take the remainder of a value of typeuint(64) and a value of typeint(64) ,
and vice versa.

There is an expectation that the predefined modulus operators will be extended to handle real, imaginary, and
complex types in the future.

54 Chapel Language Specification

10.9.8 Exponentiation Operators

The exponentiation operators are predefined as follows:

def ** (a: int(32), b: int(32)): int(32)
def ** (a: int(64), b: int(64)): int(64)
def ** (a: uint(32), b: uint(32)): uint(32)
def ** (a: uint(64), b: uint(64)): uint(64)
def ** (a: uint(64), b: int(64))
def ** (a: int(64), b: uint(64))

def ** (a: real(32), b: real(32)): real(32)
def ** (a: real(64), b: real(64)): real(64)
def ** (a: real(128), b: real(128)): real(128)

For each of these definitions that return a value, the result is the value of the first operand raised to the power
of the second operand.

It is a compile-time error to take the exponent of a value of typeuint(64) by a value of typeint(64) , and
vice versa.

There is an expectation that the predefined exponentiation operators will be extended to handle imaginary
and complex types in the future.

10.10 Bitwise Operators

This section describes the predefined bitwise operators. These operators can be redefined over different types
using operator overloading (§13.7.

10.10.1 Bitwise Complement Operators

The bitwise complement operators are predefined as follows:

def ˜(a: bool): bool
def ˜(a: int(32)): int(32)
def ˜(a: int(64)): int(64)
def ˜(a: uint(32)): uint(32)
def ˜(a: uint(64)): uint(64)

For each of these definitions, the result is the bitwise complement of the operand.

10.10.2 Bitwise And Operators

The bitwise and operators are predefined as follows:

def &(a: bool, b: bool): bool
def &(a: int(32), b: int(32)): int(32)
def &(a: int(64), b: int(64)): int(64)
def &(a: uint(32), b: uint(32)): uint(32)
def &(a: uint(64), b: uint(64)): uint(64)
def &(a: uint(64), b: int(64))
def &(a: int(64), b: uint(64))

Expressions 55

For each of these definitions that return a value, the result is computed by applying the logical and operation
to the bits of the operands.

It is a compile-time error to apply the bitwise and operator to a value of typeuint(64) and a value of type
int(64) , and vice versa.

10.10.3 Bitwise Or Operators

The bitwise or operators are predefined as follows:

def |(a: bool, b: bool): bool
def |(a: int(32), b: int(32)): int(32)
def |(a: int(64), b: int(64)): int(64)
def |(a: uint(32), b: uint(32)): uint(32)
def |(a: uint(64), b: uint(64)): uint(64)
def |(a: uint(64), b: int(64))
def |(a: int(64), b: uint(64))

For each of these definitions that return a value, the result is computed by applying the logical or operation to
the bits of the operands.

It is a compile-time error to apply the bitwise or operator toa value of typeuint(64) and a value of type
int(64) , and vice versa.

10.10.4 Bitwise Xor Operators

The bitwise xor operators are predefined as follows:

def ˆ(a: bool, b: bool): bool
def ˆ(a: int(32), b: int(32)): int(32)
def ˆ(a: int(64), b: int(64)): int(64)
def ˆ(a: uint(32), b: uint(32)): uint(32)
def ˆ(a: uint(64), b: uint(64)): uint(64)
def ˆ(a: uint(64), b: int(64))
def ˆ(a: int(64), b: uint(64))

For each of these definitions that return a value, the result is computed by applying the XOR operation to the
bits of the operands.

It is a compile-time error to apply the bitwise xor operator to a value of typeuint(64) and a value of type
int(64) , and vice versa.

10.11 Shift Operators

This section describes the predefined shift operators. These operators can be redefined over different types
using operator overloading (§13.7.

The shift operators are predefined as follows:

56 Chapel Language Specification

def <<(a: int(32), b): int(32)
def >>(a: int(32), b): int(32)
def <<(a: int(64), b): int(64)
def >>(a: int(64), b): int(64)
def <<(a: uint(32), b): uint(32)
def >>(a: uint(32), b): uint(32)
def <<(a: uint(64), b): uint(64)
def >>(a: uint(64), b): uint(64)

The type of the second actual argument must be any integral type.

The<< operator shifts the bits ofa left by the integerb. The new low-order bits are set to zero.

The>> operator shifts the bits ofa right by the integerb. Whena is negative, the new high-order bits are set
to one; otherwise the new high-order bits are set to zero.

The value ofb must be non-negative.

10.12 Logical Operators

This section describes the predefined logical operators. These operators can be redefined over different types
using operator overloading (§13.7).

10.12.1 The Logical Negation Operator

The logical negation operator is predefined as follows:

def !(a: bool): bool

The result is the logical negation of the operand.

10.12.2 The Logical And Operator

The logical and operator is predefined over bool type. It returns true if both operands evaluate to true;
otherwise it returns false. If the first operand evaluates tofalse, the second operand is not evaluated and the
result is false.

The logical and operator over expressionsa andb given by

a && b

is evaluated as the expression

if a. false? then false else b. true?

The methodsfalse? andtrue? are predefined over bool type as follows:

def bool. true? return this;
def bool. false? return !this;

Overloading the logical and operator over other types is accomplished by overloading thefalse? andtrue?

methods over other types.

Expressions 57

10.12.3 The Logical Or Operator

The logical or operator is predefined over bool type. It returns true if either operand evaluate to true; otherwise
it returns false. If the first operand evaluates to true, the second operand is not evaluated and the result is true.

The logical or operator over expressionsa andb given by

a && b

is evaluated as the expression

if a. true? then true else b. true?

The methodsfalse? and true? are predefined over bool type as described in§10.12.2. Overloading the
logical or operator over other types is accomplished by overloading thefalse? and true? methods over
other types.

10.13 Relational Operators

This section describes the predefined relational operators. These operators can be redefined over different
types using operator overloading (§13.7.

10.13.1 Ordered Comparison Operators

The “less than” comparison operators are predefined as follows:

def <(a: int(32), b: int(32)): bool
def <(a: int(64), b: int(64)): bool
def <(a: uint(32), b: uint(32)): bool
def <(a: uint(64), b: uint(64)): bool
def <(a: real(32), b: real(32)): bool
def <(a: real(64), b: real(64)): bool
def <(a: real(128), b: real(128)): bool
def <(a: imag(32), b: imag(32)): bool
def <(a: imag(64), b: imag(64)): bool
def <(a: imag(128), b: imag(128)): bool

The result ofa < b is true if a is less thanb; otherwise the result is false.

The “greater than” comparison operators are predefined as follows:

def >(a: int(32), b: int(32)): bool
def >(a: int(64), b: int(64)): bool
def >(a: uint(32), b: uint(32)): bool
def >(a: uint(64), b: uint(64)): bool
def >(a: real(32), b: real(32)): bool
def >(a: real(64), b: real(64)): bool
def >(a: real(128), b: real(128)): bool
def >(a: imag(32), b: imag(32)): bool
def >(a: imag(64), b: imag(64)): bool
def >(a: imag(128), b: imag(128)): bool

58 Chapel Language Specification

The result ofa > b is true if a is greater thanb; otherwise the result is false.

The “less than or equal to” comparison operators are predefined as follows:

def <=(a: int(32), b: int(32)): bool
def <=(a: int(64), b: int(64)): bool
def <=(a: uint(32), b: uint(32)): bool
def <=(a: uint(64), b: uint(64)): bool
def <=(a: real(32), b: real(32)): bool
def <=(a: real(64), b: real(64)): bool
def <=(a: real(128), b: real(128)): bool
def <=(a: imag(32), b: imag(32)): bool
def <=(a: imag(64), b: imag(64)): bool
def <=(a: imag(128), b: imag(128)): bool

The result ofa <= b is true if a is less than or equal tob; otherwise the result is false.

The “greater than or equal to” comparison operators are predefined as follows:

def >=(a: int(32), b: int(32)): bool
def >=(a: int(64), b: int(64)): bool
def >=(a: uint(32), b: uint(32)): bool
def >=(a: uint(64), b: uint(64)): bool
def >=(a: real(32), b: real(32)): bool
def >=(a: real(64), b: real(64)): bool
def >=(a: real(128), b: real(128)): bool
def >=(a: imag(32), b: imag(32)): bool
def >=(a: imag(64), b: imag(64)): bool
def >=(a: imag(128), b: imag(128)): bool

The result ofa >= b is true if a is greater than or equal tob; otherwise the result is false.

10.13.2 Equality Comparison Operators

The equality comparison operators are predefined over bool and the numeric types as follows:

def ==(a: int(32), b: int(32)): bool
def ==(a: int(64), b: int(64)): bool
def ==(a: uint(32), b: uint(32)): bool
def ==(a: uint(64), b: uint(64)): bool
def ==(a: real(32), b: real(32)): bool
def ==(a: real(64), b: real(64)): bool
def ==(a: real(128), b: real(128)): bool
def ==(a: imag(32), b: imag(32)): bool
def ==(a: imag(64), b: imag(64)): bool
def ==(a: imag(128), b: imag(128)): bool
def ==(a: complex(64), b: complex(64)): bool
def ==(a: complex(128), b: complex(128)): bool
def ==(a: complex(256), b: complex(256)): bool

The result ofa == b is true if a andb contain the same value; otherwise the result is false. The result of
a != b is equivalent to!(a == b) .

The equality comparison operators are predefined over classes as follows:

def ==(a: object, b: object): bool
def !=(a: object, b: object): bool

Expressions 59

The result ofa == b is true if a andb reference the same storage location; otherwise the result is false. The
result ofa != b is equivalent to!(a == b) .

Default equality comparison operators are generated for records if the user does not define them. These
operators are described in§15.3.

The equality comparison operators are predefined over strings as follows:

def ==(a: string, b: string): bool
def !=(a: string, b: string): bool

The result ofa == b is true if the sequence of characters ina matches exactly the sequence of characters in
b; otherwise the result is false. The result ofa != b is equivalent to!(a == b) .

10.14 Miscellaneous Operators

This section describes several miscellaneous operators. These operators can be redefined over different types
using operator overloading (§13.7.

10.14.1 The String Concatenation Operator

The string concatenation operator is predefined as follows:

def +(a: string, b: string): string

The result is the concatenation ofa followed byb.

Example. Since integers can be implicitly converted to strings, an integer can be appended to a
string using the string concatenation operator. The code

"result: "+i

wherei is an integer appends the value ofi to the string literal. Ifi is 3, then the resulting string
would be"result: 3" .

10.14.2 The Sequence Concatenation Operator

The operator# is predefined on sequences and their element types. It is described in§18.6.

10.14.3 The Arithmetic Domain By Operator

The operatorby is predefined on arithmetic domains. It is described in§19.3.3.

10.14.4 The Arithmetic Sequence By Operator

The operatorby is predefined on arithmetic sequences. It is described in§18.13.1.

60 Chapel Language Specification

10.15 Let Expressions

A let expression allows variables to be declared at the expression level and used within that expression. The
syntax of a let expression is given by:

l e t - e x p r e s s i o n:
let v a r i a b l e- d e c l a r a t i o n- l i s t in e x p r e s s i o n

The scope of the variables is the let-expression.

Example. Let expressions are useful for defining variables in the context of expression. In the
code

let x: real = a* b, y = x * x in 1/y

the value determined bya* b is computed and converted to type real if it is not already a real.
The square of the real is then stored iny and the result of the expression is the reciprocal of that
value.

10.16 Conditional Expressions

A conditional expression is given by the following syntax:

c o n d i t i o n a l- e x p r e s s i o n:
if e x p r e s s i o n then e x p r e s s i o n else e x p r e s s i o n
if e x p r e s s i o n then e x p r e s s i o n

The conditional expression is evaluated in two steps. First, the expression following theif keyword is eval-
uated. Then, if the expression evaluated to true, the expression following thethen keyword is evaluated and
taken to be the value of this expression. Otherwise, the expression following theelse keyword is evaluated
and taken to be the value of this expression. In both cases, the unselected expression is not evaluated.

The ‘else’ keyword can be omitted only when the conditional expression is immediately nested inside a forall
expression. Such an expression is used to filter predicates as described in§18.11.

Statements 61

11 Statements

Chapel is an imperative language with statements that may have side effects. Statements allow for the se-
quencing of program execution. They are as follows:

s t a t e m e n t:
b lock- s t a t e m e n t
e x p r e s s i o n- s t a t e m e n t
c o n d i t i o n a l- s t a t e m e n t
s e l e c t- s t a t e m e n t
wh i le- do- s t a t e m e n t
do- wh i le- s t a t e m e n t
f o r - s t a t e m e n t
param- f o r - s t a t e m e n t
r e t u r n- s t a t e m e n t
y i e l d- s t a t e m e n t
module- d e c l a r a t i o n- s t a t e m e n t
f u n c t i o n- d e c l a r a t i o n- s t a t e m e n t
t y p e- d e c l a r a t i o n- s t a t e m e n t
v a r i a b l e- d e c l a r a t i o n- s t a t e m e n t
use- s t a t e m e n t
t y p e- s e l e c t- s t a t e m e n t
empty- s t a t e m e n t
cobeg in- s t a t e m e n t
beg in- s t a t e m e n t
s e r i a l- s t a t e m e n t
a tomic- s t a t e m e n t
on- s t a t e m e n t

The declaration statements are discussed in the sections that define what they declare. Module declaration
statements are defined in§12. Function declaration statements are defined in§13. Type declaration statements
are defined in§7. Variable declaration statements are defined in§8. Return statements are defined in§13.2.
Yield statements are defined in§20.2.

Thecobeg in- s t a t e m e n tis defined in§22.3. Thebeg in- s t a t e m e n tis defined in§22.4. Thes e r i a l- s t a t e m e n t

is defined in§22.6. Theatomic- s t a t e m e n tis defined in§22.9. Theon- s t a t e m e n tis defined in§23.2.1.

11.1 Blocks

A block is a statement or a possibly empty list of statements that form their own scope. A block is given by

b lock- s t a t e m e n t:
{ s t a t e m e n t sopt }
{ }

s t a t e m e n t s:
s t a t e m e n t
s t a t e m e n t s t a t e m e n t s

Variables defined within a block are local variables (§8.3).

The statements within a block are executed serially unless the block is in a cobegin statement (§22.3).

62 Chapel Language Specification

11.2 Block Level Statements

A block level statement is a category of statement that is sometimes called for by the language syntax. A
block level statement is given by

b lock- l e v e l- s t a t e m e n t:
b lock- s t a t e m e n t
c o n d i t i o n a l- s t a t e m e n t
s e l e c t- s t a t e m e n t
wh i le- do- s t a t e m e n t
f o r - s t a t e m e n t
param- f o r - s t a t e m e n t
r e t u r n- s t a t e m e n t
y i e l d- s t a t e m e n t
t y p e- s e l e c t- s t a t e m e n t
empty- s t a t e m e n t
cobeg in- s t a t e m e n t
beg in- s t a t e m e n t
s e r i a l- s t a t e m e n t
a tomic- s t a t e m e n t
on- s t a t e m e n t

Block level statements are part of the language to avoid the excessive and unnecessary use of curly brackets.
For example, function bodies are not required to be blocks, but must be block level statements.

11.3 Expression Statements

The expression statement evaluates an expression solely for side effects. The syntax for an expression state-
ment is given by

e x p r e s s i o n- s t a t e m e n t:
e x p r e s s i o n ;

11.4 Assignment Statements

An assignment statement assigns the value of an expression to another expression that can appear on the
left-hand side of the operator, for example, a variable. Assignment statements are given by

ass ignmen t- s t a t e m e n t:
l v a l u e- e x p r e s s i o n ass ignmen t- o p e r a t o r e x p r e s s i o n

ass ignmen t- o p e r a t o r: one o f
= += - = ∗= /= %= ∗∗= &= |= ˆ= &&= | |= #= <<= >>=

The expression on the right-hand side of the assignment operator is evaluated first; it can be any expression.
The expression on the left hand side must be a valid lvalue (§10.6). It is evaluated second and then assigned
the value.

The assignment operators that contain a binary operator as aprefix is a short-hand for applying the binary
operator to the left and right-hand side expressions and then assigning the value of that application to the al-
ready evaluated left-hand side. Thus, for example,x += y is equivalent tox = x + y where the expression
x is evaluated once.

Statements 63

Values of one primitive or enumerated type can be assigned toanother primitive or enumerated type if an
implicit coercion exists between those types (§9.1).

The validity and semantics of assigning between classes (§14.2), records (§15.2.3), unions (§16.2), tuples (§17.3),
sequences (§18.4), domains (§19.1.3), and arrays (§19.2.4) is discussed in these later sections.

11.5 The Conditional Statement

The conditional statement allows execution to choose between two statements based on the evaluation of an
expression ofbool type. The syntax for a conditional statement is given by

c o n d i t i o n a l- s t a t e m e n t:
if e x p r e s s i o n then s t a t e m e n t e l s e- p a r topt

if e x p r e s s i o n b lock- l e v e l- s t a t e m e n t e l s e- p a r topt

e l s e- p a r t :
else s t a t e m e n t

A conditional statement evaluates an expression of bool type. If the expression evaluates to true, the first
statement in the conditional statement is executed. If the expression evaluates to false and the optional else-
clause exists, the statement following theelse keyword is executed.

If the expression is a parameter, the conditional statementis folded by the compiler. If the expression eval-
uates to true, the first statement replaces the conditional statement. If the expression evaluates to false, the
second statement, if it exists, replaces the conditional statement; if the second statement does not exist, the
conditional statement is removed.

If the statement that immediately follows the optionalthen keyword is a conditional statement and it is not
in a block, the else-clause is bound to the nearest precedingconditional statement without an else-clause.

Each statement embedded in theconditional-statementhas its own scope whether or not an explicit block
surrounds it.

11.6 The Select Statement

The select statement is a multi-way variant of the conditional statement. The syntax is given by:

s e l e c t- s t a t e m e n t:
select e x p r e s s i o n { when- s t a t e m e n t s}

when- s t a t e m e n t s:
when- s t a t e m e n t
when- s t a t e m e n t when- s t a t e m e n t s

when- s t a t e m e n t:
when e x p r e s s i o n- l i s t do s t a t e m e n t
when e x p r e s s i o n- l i s t b lock- l e v e l- s t a t e m e n t
otherwise s t a t e m e n t

e x p r e s s i o n- l i s t :
e x p r e s s i o n
e x p r e s s i o n , e x p r e s s i o n- l i s t

64 Chapel Language Specification

The expression that follows the keywordselect , the select expression, is compared with the list of expres-
sions following the keywordwhen, the case expressions, using the equality operator==. If the expressions
cannot be compared with the equality operator, a compile-time error is generated. The first case expression
that contains an expression where that comparison istrue will be selected and control transferred to the asso-
ciated statement. If the comparison is alwaysfalse , the statement associated with the keywordotherwise ,
if it exists, will be selected and control transferred to it.There may be at most oneotherwise statement and
its location within the select statement does not matter.

Each statement embedded in thewhen-statementhas its own scope whether or not an explicit block surrounds
it.

11.7 The While and Do While Loops

There are two variants of the while loop in Chapel. The syntaxof the while-do loop is given by:

wh i le- do- s t a t e m e n t:
while e x p r e s s i o n do s t a t e m e n t
while e x p r e s s i o n b lock- l e v e l- s t a t e m e n t

The syntax of the do-while loop is given by:

do- wh i le- s t a t e m e n t:
do s t a t e m e n t while e x p r e s s i o n ;

In both variants, the expression evaluates to a value of typebool which determines when the loop terminates
and control continues with the statement following the loop.

The while-do loop is executed as follows:

1. The expression is evaluated.

2. If the expression evaluates tofalse , the statement is not executed and control continues to the state-
ment following the loop.

3. If the expression evaluates totrue , the statement is executed and control continues to step 1, evaluating
the expression again.

The do-while loop is executed as follows:

1. The statement is executed.

2. The expression is evaluated.

3. If the expression evaluates tofalse , control continues to the statement following the loop.

4. If the expression evaluates totrue , control continues to step 1 and the the statement is executed again.

In this second form of the loop, note that the statement is executed unconditionally the first time.

Statements 65

11.8 The For Loop

The for loop iterates over sequences, domains, arrays, iterators, or any class that implements the structural
iterator interface. The syntax of the for loop is given by:

f o r - s t a t e m e n t:
for i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n do s t a t e m e n t
for i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n b lock- l e v e l- s t a t e m e n t

index- e x p r e s s i o n:
e x p r e s s i o n

i t e r a t o r - e x p r e s s i o n:
e x p r e s s i o n

The index-expression can be an identifier or a tuple of identifiers. The identifiers are declared to be new
variables for the scope of this statement.

If the iterator-expression is a tuple, the components of thetuple must support iteration, e.g., a tuple of arrays,
and those components are iterated over using a zipper iteration defined in§11.8.1. If the iterator-expression is
a tuple delimited by square brackets, the components of the tuple must support iteration and these components
are iterated over using a tensor product iteration defined in§11.8.2.

11.8.1 Zipper Iteration

When multiple iterators are iterated over in a zipper context, on each iteration, each expression is iterated over,
the values are returned by the iterators in a tuple and assigned to the index, and the statement is executed.

The shape of each iterator, the rank and the extents in each dimension, must be identical.

Example. The output of

for (i, j) in (1..3, 4..6) do
write(i, " ", j, " ");

is “1 4 2 5 3 6 ”.

11.8.2 Tensor Product Iteration

When multiple iterators are iterated over in a tensor product context, they are iterated over as if they were
nested in distinct for loops. There is no constraint on the iterators as there is in the zipper context.

Example. The output of

for (i, j) in [1..3, 4..6] do
write(i, " ", j, " ");

is “1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 5 3 6 ”. The statement is equivalent to

for i in 1..3 do
for j in 4..6 do

write(i, " ", j, " ");

66 Chapel Language Specification

11.8.3 Parameter For Loops

Parameter for loops are unrolled by the compiler so that the index variable is a parameter rather than a
variable. The syntax for a parameter for loop statement is given by:

param- f o r - s t a t e m e n t:
for param i d e n t i f i e r in a r i t h m e t i c- sequencedo s t a t e m e n t
for param i d e n t i f i e r in a r i t h m e t i c- sequence b lock- l e v e l- s t a t e m e n t

Parameter for loops are restricted to iteration over arithmetic sequence literals the bounds of which must also
be parameters. The loop is then unrolled for each iteration.

11.9 The Use Statement

The use statement makes symbols in a module available without accessing them via the module name. The
syntax of the use statement is given by:

use- s t a t e m e n t:
use module- name ;

module- name:
i d e n t i f i e r
module- name . module- name

The use statement makes symbols in the module’s scope available in the scope where the use statement
occurs.

It is an error for a variable, type or module to be defined both by a use statement and by a declaration in the
same scope. Functions may be overloaded in this way.

11.10 The Type Select Statement

A type select statement has two uses. It can be used to determine the type of a union, as discussed in§16.3. In
its more general form, it can be used to determine the types ofone or more values using the same mechanisms
used to disambiguate function definitions. It syntax is given by:

t y p e- s e l e c t- s t a t e m e n t:
type select e x p r e s s i o n- l i s t { t y p e- when- s t a t e m e n t s}

t y p e- when- s t a t e m e n t s:
t y p e- when- s t a t e m e n t
t y p e- when- s t a t e m e n t t y p e- when- s t a t e m e n t s

t y p e- when- s t a t e m e n t:
when t y p e- l i s t do s t a t e m e n t
when t y p e- l i s t b lock- l e v e l- s t a t e m e n t
otherwise s t a t e m e n t

e x p r e s s i o n- l i s t :
e x p r e s s i o n
e x p r e s s i o n , e x p r e s s i o n- l i s t

t y p e- l i s t :
t y p e
t y p e , t y p e- l i s t

Statements 67

Call the expressions following the keywordselect , the select expressions. The number of select expressions
must be equal to the number of types following each of thewhen keywords. Like the select statement, one
of the statements associated with awhen will be executed. In this case, that statement is chosen by the
function resolution mechanism. The select expressions arethe actual arguments, the types following the
when keywords are the types of the formal arguments for differentanonymous functions. The function that
would be selected by function resolution determines the statement that is executed. If none of the functions
are chosen, the the statement associated with the keywordotherwise , if it exists, will be selected.

As with function resolution, this can result in an ambiguoussituation. Unlike with function resolution, in the
event of an ambiguity, the first statement in the list of when statements is chosen.

11.11 The Empty Statement

An empty statement has no effect. The syntax of an empty statement is given by

empty- s t a t e m e n t:
;

68 Chapel Language Specification

Modules 69

12 Modules

Chapel supports modules to manage name spaces. Every symbol, including variables, functions, and types,
are associated with some module.

Module definitions are described in§12.1. A program consists of one or more modules. The execution of a
program and command-line arguments are described in§12.2. Module uses and explicit naming of symbols
is described in§12.3. Nested modules are described in§12.4. The relation between files and modules is
described in§12.5.

12.1 Module Definitions

A module is declared with the following syntax:

module- d e c l a r a t i o n- s t a t e m e n t:
module i d e n t i f i e r b lock- s t a t e m e n t

A module’s name is specified after the module keyword. Theb lock- s t a t e m e n topens the module’s scope.
Symbols defined in this block statement are defined in the module’s scope.

Module declaration statements may only be top-level statements in files or top-level statements in other
modules. A module that is declared in another module is called a nested module (§12.4).

12.2 Program Execution

Chapel programs start by executing the main function (§12.2.1). The main function takes no arguments but
command-line arguments can be passed to a program via a global sequence of strings calledargv (§12.2.2).
Command-line flags can be passed to a program via configuration variables, as discussed in§8.5.

12.2.1 Themain Function

The main function must be calledmain and must have zero arguments. There can be only one main function
in all of the modules that make up a program. Every main function starts by using the module that it is defined
in, and thus executing the top-level code in that module (§12.2.3).

The main function can be omitted if there is only a single module in the program other than the standard
modules, as discussed in§12.2.4.

70 Chapel Language Specification

12.2.2 Command-Line Arguments

A predefined variable is used to capture arguments to the execution of a program. It has this declaration:
var argv: seq of string;

The number of arguments passed to the program execution can be queried with the sequencelength function
as in

argv.length

Implementation note. There is no support for the variableargv . Only configuration variables
allow arguments to be passed to the execution of a program.

12.2.3 Module Execution

Top-level code in a module is executed the first time that module is used via ause- s t a t e m e n t.

12.2.4 Programs with a Single Module

To aid in exploratory programming, if a program is defined in asingle module that uses only standard mod-
ules, the module need not define a main function. A default main function is created in this case. This main
function sole executable statement is to call the initialize function of that module.

Example. The code
writeln("Hello World!");

is a legal and complete Chapel program. The module declaration is taken to be the file as de-
scribed in§12.5.

12.3 Using Modules

Modules can be used by code outside of that module. This allows access to the symbols in the modules
without the need for explicit naming (§12.3.1). Using modules is accomplished via the use statement as
defined in§11.9.

12.3.1 Explicit Naming

All symbols can be named explicitly with the following syntax:
module- named- i d e n t i f i e r :

module- i d e n t i f i e r . i d e n t i f i e r

module- i d e n t i f i e r :
i d e n t i f i e r

This allows two variables that have the same name to be distinguished based on the name of their module. If
code requires using symbols from two different modules thathave the same name, explicit naming is needed
to disambiguate between the two symbols. Explicit naming can also be used instead of using a module.

Modules 71

12.4 Nested Modules

A nested module is a module that is defined inside another module, the outer module. Nested modules
automatically have access to all of the symbols in the outer module. However, the outer module needs to
explicitly use a nested module to have access to its symbols.

Example. A nested module can be used without using the outer module byexplictly naming the
module in the use statement. The code

use libmsl.blas;

uses a module namedblas that is nested inside a module namedlibmsl .

12.5 Implicit Modules

Multiple modules can be defined in the same file and do not need to bear any relation to the file in terms of
their names. As a convenience, a module declaration statement can be omitted if it is the sole module defined
in a file. In this case, the module takes its name from the file.

72 Chapel Language Specification

Functions 73

13 Functions

This section defines functions. Methods and iterators are functions and most of this section applies to them
as well. They are defined separately in§20 and§14.4.

13.1 Function Definitions

Functions are declared with the following syntax:

f u n c t i o n- d e c l a r a t i o n- s t a t e m e n t:
def f u n c t i o n- name argument- l i s t var- c l a u s eopt

r e t u r n- t y p eopt where- c l a u s eopt b lock- l e v e l- s t a t e m e n t

f u n c t i o n- name:
i d e n t i f i e r
= i d e n t i f i e r
o p e r a t o r- name

o p e r a t o r- name: one o f
+ - ∗ / % ∗∗ && | | ! == <= >= < > << >> & | ˆ ˜ #

argument- l i s t :
(f o rma lsopt)

f o rma ls :
f o rma l
fo rma l , f o rma ls

fo rma l :
f o rma l- t ag i d e n t i f i e r fo rma l- t y p eopt d e f a u l t- e x p r e s s i o nopt

f o rma l- t ag i d e n t i f i e r fo rma l- t y p eopt v a r i a b l e- argument- e x p r e s s i o n

fo rma l- t y p e :
: t y p e
: TQUESTION i d e n t i f i e r

d e f a u l t- e x p r e s s i o n:
= e x p r e s s i o n

v a r i a b l e- argument- e x p r e s s i o n:
. . . e x p r e s s i o n
. . . TQUESTION i d e n t i f i e r

fo rma l- t ag : one o f
in ou t i n o u t param t y p e

var- c l a u s e:
var

where- c l a u s e:
where e x p r e s s i o n

Operator overloading is supported in Chapel on the operators listed above under operator name. Operator
and function overloading is discussed in§13.7.

The intentsin , out , andinout are discussed in§13.5. The formal tagsparam andtype make a function
generic and are discussed in§21. If the formal argument’s type is elided, generic, or prefixed with a question
mark, the function is also generic and is discussed in§21.

74 Chapel Language Specification

Default expressions allow for the omission of actual arguments at the call site, resulting in the implicit passing
of a default value. Default values are discussed in§13.4.2.

Functions can take a variable number of arguments. Such functions are discussed in§13.10.

The optional var clause defines a variable function discussed in §13.6. A variable setter function can be de-
fined explicitly by prefixing the function’s name with the assignment operator. This type of variable function
is discussed in§13.6.1.

The optional where clause is only applicable if the functionis generic. It is discussed in§21.4.

13.2 The Return Statement

The return statement must appear in a function. It exits thatfunction, returning control to the point at which
that function was called. It can optionally return a value. The syntax of the return statement is given by

r e t u r n- s t a t e m e n t:
return e x p r e s s i o nopt ;

Example. The following code defines a function that returns the sum ofthree integers:

def sum(i1: int, i2: int, i3: int)
return i1 + i2 + i3;

13.3 Function Calls

Functions are called in call expressions described in§10.3. The function that is called is resolved according
to the algorithm described in§13.8.

13.4 Formal Arguments

Chapel supports an intuitive formal argument passing mechanism. An argument is passed by value unless it
is a class, array, or domain in which case it is passed by reference.

Intents (§13.5) result in potential assignments to temporary variables during a function call. For example,
passing an array by intentin , a temporary array will be created.

Functions 75

13.4.1 Named Arguments

A formal argument can be named at the call site to explicitly map an actual argument to a formal argument.

Example. In the code
def foo(x: int, y: int) { ... }

foo(x=2, y=3);
foo(y=3, x=2);

named argument passing is used to map the actual arguments tothe formal arguments. The two
function calls are equivalent.

Named arguments are sometimes necessary to disambiguate calls or ignore arguments with default values.
For a function that has many arguments, it is sometimes good practice to name the arguments at the callsite
for compiler-checked documentation.

13.4.2 Default Values

Default values can be specified for a formal argument by appending the assignment operator and a default
expression the declaration of the formal argument. If the actual argument is omitted from the function call,
the default expression is evaluated when the function call is made and the evaluated result is passed to the
formal argument as if it were passed from the call site.

Example. In the code
def foo(x: int = 5, y: int = 7) { ... }

foo();
foo(7);
foo(y=5);

default values are specified for the formal argumentsx and y . The three calls tofoo are
equivalent to the following three calls where the actual arguments are explicit:foo(5, 7) ,
foo(7, 7) , and foo(5, 5) . Note that named arguments are necessary to pass actual argu-
ments to formal arguments but use default values for arguments that are specified earlier in the
formal argument list.

13.5 Intents

Intents allow the actual arguments to be copied to a formal argument and also to be copied back.

13.5.1 The Blank Intent

If the intent is omitted, it is called a blank intent. In such acase, the value is copied in using the assignment
operator. Thus classes are passed by reference and records are passed by value. Arrays and domains are an
exception because assignment does not apply from the actualto the formal. Instead, arrays and domains are
passed by reference.

With the exception of arrays, any argument that has blank intent cannot be assigned within the function.

76 Chapel Language Specification

13.5.2 The In Intent

If in is specified as the intent, the actual argument is copied to the formal argument as usual, but it may also
be assigned to within the function. This assignment is not reflected back at the call site.

If an array is passed to a formal argument that hasin intent, a copy of the array is made via assignment.
Changes to the elements within the array are thus not reflected back at the call site. Domains cannot be
passed to a function via thein intent.

13.5.3 The Out Intent

If out is specified as the intent, the actual argument is ignored when the call is made, but after the call, the
formal argument is assigned to the actual argument at the call site. The actual argument must be a valid
lvalue. The formal argument can be assigned to and read from within the function.

The formal argument cannot not be generic and is treated as a variable declaration. Domains cannot be passed
to a function via theout intent.

13.5.4 The Inout Intent

If inout is specified as the intent, the actual argument is both passedto the formal argument as if thein
intent applied and then copied back as if theout intent applied. The formal argument can be generic and
takes its type from the actual argument. Domains cannot be passed to a function via theinout intent. The
formal argument can be assigned to and read from within the function.

13.6 Variable Functions

A variable function is a function that can be assigned a value. Note that a variable function does not return a
reference. That is, the reference cannot be captured.

A variable function is specified by following the argument list with thevar keyword. A variable function
must return an expression that can be assigned.

When a variable function is called on the left-hand side of anassignment statement, the expression that is
normally returned is instead assigned the result of the expression on the right-hand side of the assignment
statement. Note that the right-hand side expression is evaluated before the variable function is called. Other-
wise a variable function evaluates normally and returns theresult of the expression that it returns.

Example. The following code creates a function that can be interpreted as a simple two-element
array where the elements are actually global variables:

var x, y = 0;

def A(i: int) var {
if i < 0 || i > 1 then

halt("array access out of bounds");
return if i == 0 then x else y;

}

Functions 77

This function can be assigned to in order to write to the “elements” of the array as in

A(0) = 1;
A(1) = 2;

It can be called as an expression to access the “elements” as in

writeln(A(0) + A(1));

This code outputs the number3.

13.6.1 Explicit Setter Functions

Variable functions can be created by overloading a normal function with an explicit setter function. Alter-
natively, an explicit setter function can be defined withouta normal counterpart to create a function that can
only be assigned values.

An explicit setter function is defined by prepending the assignment operator to the function name. Setter
functions can only be called from the left-hand side of an assignment statement.

Setter functions require an extra formal argument (that must be the last argument). This argument is passed
the value on the right-hand side of the assignment statement.

Example. The following code defines a functionA and a setter functionA. These two definitions
of A are equivalent to the single definition in the previous section.

var x, y = 0;

def A(i: int) {
if i < 0 || i > 1 then

halt("array access out of bounds");
return if i == 0 then x else y;

}

def =A(i: int, value: int) {
if i < 0 || i > 1 then

halt("array access out of bounds");
(if i == 0 then x else y) = value;

}

This code has the extra constraint that the expression on theright-hand side of the assignment
statement needs to be able to be passed to an argument of typeint . For typeint , the constraints
between assignment and argument passing are the same, so these functions are equivalent to in
the previous section.

In the variable function, there is no type constraint on the expression other than any constraint
placed on it by the assignment statement. The equivalent setter function would be generic in
respect to the last argument.

13.7 Function Overloading

Functions that have the same name but different argument lists are called overloaded functions. Function
calls to overloaded functions are resolved according to thealgorithm in§13.8.

Operator overloading is achieved by defining a function witha name specified by that operator. The operators
that may be overloaded are listed in the following table:

78 Chapel Language Specification

arity operators
unary + - ! ˜
binary + - * / % ** && || ! == <= >= < > << >> & | ˆ #

The arity and precedence of the operator must be maintained when it is overloaded. Operator resolution
follows the same algorithm as function resolution.

13.8 Function Resolution

Given a function call, the function that the call resolves tois determined according to the following algorithm:

• Identify the set of visible functions. A visible function isany function with the same name that satisfies
the criteria in§13.8.1.

• From the set of visible functions, determine the set of candidate functions. A function is a candidate if
the function is a valid application of the function call’s actual arguments as determined in§13.8.2. A
compiler error occurs if there are no candidate functions.

• From the set of candidate functions, the most specific function is determined. The most specific func-
tion is a candidate function that is more specific than every other candidate function. If there is no
function that is more specific than every other candidate function, the function call is ambiguous and a
compiler error occurs. The termmore specific functionis defined in§13.8.3.

.

13.8.1 Identifying Visible Functions

A function is a visible function to a function call if the nameof the function is the same as the name of the
function call and the function is defined or used in a lexical outer scope.

Additionally, functions that have arguments of class type are considered globally visible and so are always
visible regardless of the location of their definition.

13.8.2 Determining Candidate Functions

A function is a candidate function if there is avalid mappingfrom the function call to the function and each
actual argument is mapped to a formal argument that is alegal argument mapping.

Functions 79

Valid Mapping A function call is mapped to a function according to the following steps:

• Each actual argument that is passed by name is matched to the formal argument with that name. If
there is no formal argument with that name, there is no valid mapping.

• The remaining actual arguments are mapped in order to the remaining formal arguments in order. If
there are more actual arguments then formal arguments, there is no valid mapping. If any formal
argument that is not mapped to by an actual argument does not have a default value, there is no valid
mapping.

• The valid mapping is the mapping of actual arguments to formal arguments plus default values to
formal arguments that are not mapped to by actual arguments.

Legal Argument Mapping An actual argument of typeTA can be mapped to a formal argument of type
TF if any of the following conditions hold:

• TA andTF are the same type.

• There is an implicit coercion fromTA to TF .

• TA is derived fromTF .

• TA is scalar promotable toTF .

13.8.3 Determining More Specific Functions

Given two functionsF1 andF2, F1 is determined to be more specific thanF2 by the following steps:

• If at least one of the legal argument mappings toF1 is a more specific argument mappingthan the
corresponding legal argument mapping toF2 and none of the legal argument mappings toF2 is a more
specific argument mapping than the corresponding legal argument mapping toF1, thenF1 is more
specific.

• If F1 shadowsF2, thenF1 is more specific.

• Otherwise,F1 is not more specific thanF2.

Given an argument mapping,M1, from an actual argument,A, of typeTA to a formal argument,F1, of type
TF1 and an argument mapping,M2, from the same actual argument to a formal argument,F2, of typeTF2,
the more specific argument mapping is determined by the following steps:

• If TF1 andTF2 are the same type andF1 is an instantiated parameter,M1 is more specific.

• If TF1 andTF2 are the same type andF2 is an instantiated parameter,M2 is more specific.

• If M1 requires scalar promotion andM2 does not require scalar promotion,M2 is more specific.

• If M2 requires scalar promotion andM1 does not require scalar promotion,M1 is more specific.

• If F1 is generic over all types andF2 is not generic over all types,M2 is more specific.

80 Chapel Language Specification

• If F2 is generic over all types andF1 is not generic over all types,M1 is more specific.

• If TF1 andTF2 are the same type, neither mapping is more specific.

• If TA andTF1 are the same type,M1 is more specific.

• If TA andTF2 are the same type,M2 is more specific.

• If TF1 is derived fromTF2, thenM1 is more specific.

• If TF2 is derived fromTF1, thenM2 is more specific.

• If there is an implicit coercion fromTF1 to TF2, thenM1 is more specific.

• If there is an implicit coercion fromTF2 to TF1, thenM2 is more specific.

• If TF1 is anyint type andTF2 is anyuint type,M1 is more specific.

• If TF2 is anyint type andTF1 is anyuint type,M2 is more specific.

• Otherwise neither mapping is more specific.

13.9 Nested Functions

A function defined in another function is called a nested function. Nesting of functions may be done to
arbitrary degrees, i.e., a function can be nested in a nestedfunction.

Nested functions are only visible to function calls within the scope in which they are defined. An exception
is to a function that has an argument that is a class type. Suchfunctions are globally visible.

13.9.1 Accessing Outer Variables

Nested functions may refer to variables defined in the function in which they are nested. If the function has
class arguments, and is thus globally visible, it is a compiler error to refer to a variable in the outer function.

Rationale. It may be too strict to make this a compiler error. Are there advantages to making
this a runtime error?

13.10 Variable Length Argument Lists

Functions can be defined to take a variable number of arguments. This allows the call site to pass a different
number of actual arguments.

If the variable argument expression is an identifier prepended by a question mark, the number of arguments
is variable. Alternatively, the variable expression can evaluate to an integer parameter value requiring the call
site to pass that number of arguments to the function.

In the function, the formal argument is a tuple of the actual arguments.

Functions 81

Example. The code

def mywriteln(x: int ...?k) {
for param i in 1..k do

writeln(x(i));
}

defines a function calledmywriteln that takes a variable number of arguments and then writes
them out on separate lines. The parameter for-loop (§11.8.3) is unrolled by the compiler so thati

is a parameter, rather than a variable. This function can be made generic (§21) to take arguments
of different types by eliding the type.

A tuple of variables arguments can be passed to a function that takes variable arguments by destructuring the
tuple in a tuple destructuring expression. The syntax of this expression is given by

t u p l e- d e s t r u c t u r i n g- e x p r e s s i o n:
(. . . e x p r e s s i o n)

In this expression, the tuple defined bye x p r e s s i o nis expanded in place to represent its components. This
allows for the forwarding of variable arguments as variablearguments.

82 Chapel Language Specification

Classes 83

14 Classes

Classes are an abstraction of a data structure where the storage location is allocated independent of the scope
of the variable of class type. Each call to the constructor creates a new data object and returns a reference to
the object. Storage is reclaimed automatically as described in §14.10.

14.1 Class Declarations

A class is defined with the following syntax:

c l a s s- d e c l a r a t i o n- s t a t e m e n t:
class i d e n t i f i e r c l a s s- i n h e r i t - t y p e- l i s t opt {

c l a s s- s t a t e m e n t- l i s t }

c l a s s- i n h e r i t - e x p r e s s i o n- l i s t :
c l a s s- t y p e
c l a s s- t y p e , i n h e r i t - e x p r e s s i o n- l i s t

c l a s s- s t a t e m e n t- l i s t :
c l a s s- s t a t e m e n t
c l a s s- s t a t e m e n t c l a s s- s t a t e m e n t- l i s t

c l a s s- s t a t e m e n t:
t y p e- d e c l a r a t i o n- s t a t e m e n t
f u n c t i o n- d e c l a r a t i o n- s t a t e m e n t
v a r i a b l e- d e c l a r a t i o n- s t a t e m e n t

A c l a s s- d e c l a r a t i o n- s t a t e m e n tdefines a new type symbol specified by the identifier. Classes inherit data
and functionality from other classes if thei n h e r i t - t y p e- l i s t is specified. Inheritance is described in§14.7.

The body of a class declaration consists of a sequence of statements where each of the statements either
defines a variable (called a field), a function (called a method), or a type.

If a class contains a type alias or a parameter, the class is generic. Generic classes are described in§21.

14.2 Class Assignment

Classes are assigned by reference. After an assignment fromone variable of class type to another, the vari-
ables reference the same storage location.

14.3 Class Fields

Variables and constants declared within class declarations define fields within that class. (Parameters make a
class generic.) Fields define the storage associated with a class.

Example. The code

84 Chapel Language Specification

class Actor {
var name: string;
var age: uint;

}

defines a new class type calledActor that has two fields: the string fieldname and the unsigned
integer fieldage .

14.3.1 Class Field Accesses

The field in a class is accessed via a member access expressionas described in§10.3.2. Fields in a class can
be modified via an assignment statement where the left-hand side of the assignment is a member access.

Example. Given a variableanActor of typeActor , defined above, the code

var s: string = anActor.name;
anActor.age = 27;

reads the fieldname and assigns the value to the variables , and assigns the storage location in
the objectanActor associated with the fieldage the value27.

14.4 Class Methods

A method is a function that is bound to a class. A method is called by passing an instance of the class to the
method via a special syntax that is similar to a field access.

14.4.1 Class Method Declarations

Methods are declared with the following syntax:

method- d e c l a r a t i o n- s t a t e m e n t:
def t y p e- b ind ing f u n c t i o n- name argument- l i s t opt var- c l a u s eopt

r e t u r n- t y p eopt where- c l a u s eopt b lock- l e v e l- s t a t e m e n t

t y p e- b ind ing :
i d e n t i f i e r .

If a method is declared within the lexical scope of a class, record, or union, the type binding can be omitted
and is taken to be the innermost class, record, or union that the method is defined in.

14.4.2 Class Method Calls

A method is called by using the member access syntax as described in§10.3.2 where the accessed expression
is the name of the method.

Example. A method to output information about an instance of theActor class can be defined
as follows:

Classes 85

def Actor.print() {
writeln("Actor ", name, " is ", age, " years old");

}

This method can be called on an instance of theActor class,anActor , by writinganActor.print() .

14.4.3 Thethis Reference

The instance of a class is passed to a method using special syntax. It does not appear in the argument list to
the method. The referencethis is an alias to the instance of the class on which the method is called.

Example. Let classC, methodfoo , and functionbar be defined as

class C {
def foo() {

bar(this);
}

}
def bar(c: C) { }

Then given an instance ofCcalledc, the method callc.foo() results in a call tobar where the
argument isc.

14.4.4 Class Methods without Parentheses

Methods do not require parentheses if they have empty argument lists. Methods declared without parentheses
around empty argument lists must be called without parentheses.

Example. Given the definitions

class C {
def foo { }
def bar() { }

}

and an instance ofC calledc , then the methodfoo can be called by writingc.foo and the
methodbar can be called by writingc.bar() . It is an error to apply parentheses tofoo or omit
them frombar .

14.4.5 Thethis Method

A method declared with the namethis allows a class to be “indexed” similarly to how a tuple, sequence, or
array is indexed. Indexing into a class has the semantics of calling a method on the class namedthis . There
is no other way to call a method calledthis . The this method must be declared with parentheses even if
the argument list is empty.

Example. In the following code, thethis method is used to create a class that acts like a simple
array that contains three integers indexed by 1, 2, and 3.

86 Chapel Language Specification

class ThreeArray {
var x1, x2, x3: int;
def this(i: int) var {
select i {

when 1 do return x1;
when 2 do return x2;
when 3 do return x3;

}
halt("ThreeArray index out of bounds: ", i);

}
}

14.5 Class Constructors

A class constructor is defined by declaring a method with the same name as the class. The constructor is used
to create instances of the class. When the constructor is called, memory is allocated to store a class instance.

14.5.1 The Default Constructor

A default constructor is automatically created for every class in the Chapel program. This constructor is
defined such that it has one argument for every field in the class. Each of the arguments has a default value.

The default constructor is very useful but its generality interms of having one argument for each field all of
which have default values makes it slightly difficult for theuser to create their own constructor. It is expected
that in many simple cases, the default constructor will be all that is necessary.

Example. Given the class

class C {
def x: int;
def y: real = 3.14;
def z: string = "Hello, World!";

}

then instances of the class can be created by calling the default constructor as follows:

• The callC() is equivalent toC(0,3.14,"Hello, World ”)!.

• The callC(2) is equivalent toC(2,3.14,"Hello, World ”)!.

• The callC(z="") is equivalent toC(0,3.14,"") .

• The callC(0,0.0,"") is equivalent toC(0,0.0,"") .

14.6 Getters and Setters

All field accesses are resolved via getter and setter methodsthat are defined in the class with the same name
as the field. A setter is defined as an explicit setter function(§13.6.1). Default getters and setters are defined
that simply access or set the field if the user does not define their own.

Example. In the code

Classes 87

class C {
var x: int;
def =x(value: int) {
if value < 0 then

halt("x assigned negative value");
x = value;

}
}

a setter is defined for fieldx that ensures thatx is never assigned a negative value.

14.7 Inheritance

A “derived” class can inherit from one or more other classes by specifying those classes, the base classes,
following the name of the derived class in the declaration ofthe derived class. When inheriting from multiple
base classes, only one of the base classes may contain fields.The other classes can only define methods.
Note that a class can still be derived from a class that contains fields which is itself derived from a class that
contains fields.

14.7.1 Accessing Base Class Fields

A derived class contains data associated with the fields in its base classes. The fields can be accessed in the
same way that they are accessed in their base class unless thegetter or setter method is overridden in the
derived class, as discussed in§14.7.4.

14.7.2 Derived Class Constructors

Derived class constructors automatically call the defaultconstructor of the base class. There is an expectation
that a more standard way of chaining constructor calls will be supported.

14.7.3 Shadowing Base Class Fields

A field in the derived class can be declared with the same name as a field in the base class. Such a field
shadows the field in the base class in that it is always referenced when it is accessed in the context of the
derived class. There is an expectation that there will be a way to reference the field in the base class but this
is not defined at this time.

14.7.4 Overriding Base Class Methods

If a method in a derived class is declared with the identical signature as a method in a base class, then it is
said to override the base class’s method. Such a method is a candidate for dynamic dispatch in the event that
a variable that has the base class type references a variablethat has the derived class type.

The identical signature requires that the names, types, andorder of the formal arguments be identical.

88 Chapel Language Specification

14.7.5 Inheriting from Multiple Classes

Implementation note. Multiple inheritance is not yet supported.

A class can be derived from multiple base classes provided that only one of the base classes contains fields
either directly or from base classes that it is derived from.The methods defined by the other base classes can
be overridden.

14.8 Class Promotion of Scalar Functions

A class can be defined to promote scalar functions by defining an iterator in the class namedthis and
specifying a return type. The return type indicates the typethat the class promotes. The body of thethis

iterator is ignored. The class must also implement the iterator interface as described in§20.4.

There is an expectation that class promotion will be implemented in a different way in the future.

14.9 Nested Classes

Implementation note. Nested classes are not yet supported.

A class defined within another class is a nested class.

14.10 Automatic Memory Management

Implementation note. Memory allocated to store class objects is not yet reclaimed.

Memory associated with class instances is reclaimed automatically when there is no way for the current
program to reference this memory. The programmer does not need to free the memory associated with class
instances.

Records 89

15 Records

A record is a data structure that is like a class but has value semantics. The key differences between records
and classes are described in this section.

15.1 Record Declarations

A record is defined with the following syntax:

r eco rd- d e c l a r a t i o n- s t a t e m e n t:
record i d e n t i f i e r i n h e r i t- t y p e- l i s t opt {

r eco rd- s t a t e m e n t- l i s t }

r eco rd- i n h e r i t - e x p r e s s i o n- l i s t :
r eco rd- t y p e
reco rd- t y p e , i n h e r i t - e x p r e s s i o n- l i s t

r eco rd- s t a t e m e n t- l i s t :
r eco rd- s t a t e m e n t
reco rd- s t a t e m e n t reco rd- s t a t e m e n t- l i s t

r eco rd- s t a t e m e n t:
t y p e- d e c l a r a t i o n- s t a t e m e n t
f u n c t i o n- d e c l a r a t i o n- s t a t e m e n t
v a r i a b l e- d e c l a r a t i o n- s t a t e m e n t

The only difference between record and class declarations is that therecord keyword replaces theclass

keyword.

15.2 Class and Record Differences

The main differences between records and classes are that records are value classes. They do not need to be
reclaimed since the data is recovered when the variable goesout of scope, do not support dynamic dispatch,
and are assigned by value.

15.2.1 Records as Value Classes

A record is not a reference to a storage location that contains the data in the record but is more like a variable
of a primitive type. A record directly contains the data associated with the fields in the record.

15.2.2 Record Inheritance

When a record is derived from a base record, it contains the data in the base record. The difference between
record inheritance and class inheritance is that there is nodynamic dispatch. The record type of a variable is
the exact type of that variable.

90 Chapel Language Specification

15.2.3 Record Assignment

In record assignment, the fields of the record on the left-hand side of the assignment are assigned the values
in the fields of the record on the righ-hand side of the assignment. When a base record is assigned a derived
record, just the fields that exist in the base record are assigned.

15.3 Default Comparison Operators on Records

Default functions to overload== and!= are defined for records if there is none defined for the record in the
Chapel program. The default implementation of== applies== to each field of the two argument records and
reduces the result with the&& operator. The default implementation of!= applies!= to each field of the two
argument records and reduces the result with the|| operator.

Unions 91

16 Unions

Unions have the semantics of records, however, only one fieldin the union can contain data at any particular
point in the program’s execution. Unions are safe so that an access to a field that does not contain data is a
runtime error. When a union is constructed, it is in an unset state so that no field contains data.

16.1 Union Declarations

A union is defined with the following syntax:

un ion- d e c l a r a t i o n- s t a t e m e n t:
union i d e n t i f i e r { un ion- s t a t e m e n t- l i s t }

un ion- s t a t e m e n t- l i s t :
un ion- s t a t e m e n t
un ion- s t a t e m e n t un ion- s t a t e m e n t- l i s t

un ion- s t a t e m e n t:
t y p e- d e c l a r a t i o n- s t a t e m e n t
f u n c t i o n- d e c l a r a t i o n- s t a t e m e n t
v a r i a b l e- d e c l a r a t i o n- s t a t e m e n t

16.1.1 Union Fields

Union fields are accessed in the same way that record fields areaccessed. It is a runtime error to access a
field that is not currently set.

Union fields should not be specified with initialization expressions.

16.2 Union Assignment

Union assignment is by value. The field set by the union on the right-hand side of the assignment is assigned
to the union on the left-hand side of the assignment and this same field is marked as set.

16.3 The Type Select Statement and Unions

The type-select statement can be applied to unions to accessthe fields in a safe way by determining the type
of the union.

Implementation note. The type-select statement is not yet implemented on unions.

92 Chapel Language Specification

Tuples 93

17 Tuples

A tuple is an ordered set of components that allows for the specification of a light-weight record with anony-
mous fields.

17.1 Tuple Expressions

A tuple expression is a comma-separated list of expressionsthat is enclosed in parentheses. The number of
expressions is the size of the tuple and the types of the expressions determine the component types of the
tuple.

The syntax of a tuple expression is given by:

t u p l e- e x p r e s s i o n:
(e x p r e s s i o n- l i s t)

e x p r e s s i o n- l i s t :
e x p r e s s i o n
e x p r e s s i o n , e x p r e s s i o n- l i s t

Example. The statement

var x = (1, 2);

defines a variablex that is a 2-tuple containing the values1 and2.

17.2 Tuple Type Definitions

A tuple type is a comma-separated list of types. The number oftypes in the list defines the size of the tuple,
which is part of the tuple’s type. The syntax of a tuple type isgiven by:

t u p l e- t y p e :
(t y p e- l i s t)

t y p e- l i s t :
t y p e
t y p e , t y p e- l i s t

Example. Given a tuple expression(1, 2) , the type of the tuple value is(int, int) , referred
to as a 2-tuple of integers.

17.3 Tuple Assignment

In tuple assignment, the compoonents of the tuple on the left-hand side of the assignment operator are each
assigned the components of the tuple on the right-hand side of the assignment. The assignments are simul-
taneous so that each component expression on the right-handside is fully evaluated before being assigned to
the left-hand side.

94 Chapel Language Specification

17.4 Tuple Destructuring

When a tuple expression appears on the left-hand side of an assignment statement, the expression on the
right-hand side is said to bedestructured. The components of the tuple on the right-hand side are assigned
to each of the component expressions on the left-hand side. This assignment is simultaneous in that the
right-hand side is evaluated before the assignments are made.

Example. Given two variables of the same type, x and y, they can be swapped by the following
single assignment statement:

(x, y) = (y, x);

17.4.1 Variable Declarations in a Tuple

Variables can be defined in a tuple to facilitate capturing the values from a function that returns a tuple. The
extension to the syntax of variable declarations is as follows:

t u p l e- v a r i a b l e- d e c l a r a t i o n- s t a t e m e n t:
config opt v a r i a b l e- k ind t u p l e- v a r i a b l e- d e c l a r a t i o n ;

t u p l e- v a r i a b l e- d e c l a r a t i o n :
(i d e n t i f i e r - l i s t) t y p e- p a r topt i n i t i a l i z a t i o n - p a r t
(i d e n t i f i e r - l i s t) t y p e- p a r t

The identifiers defined within thei d e n t i f i e r - l i s t are declared to be new variables in the scope of the
statement. Thet y p e- p a r t and/or i n i t i a l i z a t i o n - p a r t defines a tuple that is destructured when assigned
to the new variables.

17.4.2 Ignoring Values with Underscore

If an underscore appears as a component in a tuple expressionin a destructuring context, the expression on
the right-hand side is ignored, though it is still evaluated.

Implementation note. Underscores are currently not treated specially. The onlyway to ignore
values when destructuring a tuple is to put them into variables that are never read.

17.5 Homogeneous Tuples

A homogeneous tuple is a special-case of a general tuple where the types of the components are identical.
Homogeneous tuples have less restrictions for how they can be indexed (§17.6).

Tuples 95

17.5.1 Declaring Homogeneous Tuples

A homogeneous tuple type may be specified with the following syntax if it appears as a top-level type in a
variable declaration, formal argument declaration, return type specification, or type alias declaration:

homogeneous- t u p l e- t y p e :
i n t e g e r- parameter- e x p r e s s i o n ∗ t y p e

i n t e g e r- parameter- e x p r e s s i o n:
e x p r e s s i o n

The homogeneous tuple type specification is syntactic sugarfor the type explicitly replicated a number of
times equal to thei n t e g e r- parameter- e x p r e s s i o n.

Example. The following types are equivalent:

3* int (int, int, int)

17.6 Tuple Indexing

A tuple may be indexed into by an integer. Indexing a tuple is given by the following syntax:

t u p l e- i n d e x i n g- e x p r e s s i o n:
e x p r e s s i o n (i n t e g e r- e x p r e s s i o n)

The result of indexing a tuple by integerk is the value of thekth component. If the tuple is not homogeneous,
the tuple can only be indexed by an integer parameter. This ensures that the type of the indexing expression
is known at compile-time.

17.7 Formal Arguments of Tuple Type

Implementation note. Formal arguments of tuple type are treated as if they were records.
Conversions are not applied to the components.

17.7.1 Formal Argument Declarations in a Tuple

Implementation note. Formal arguments cannot be grouped together in a tuple.

96 Chapel Language Specification

Sequences 97

18 Sequences

A sequence is an ordered set of elements of the same type.

18.1 Sequence Literals

Literal sequences are delimited by the braces(/ and /) . The expressions enclosed in these braces are
elements of the sequence. These expressions do not need to beliterals themselves.

Example. The following code defines a sequence of integers:

(/1, 1, 2, 3, 5, 8, 13, 21/)

18.2 Sequence Type Definitions

A sequence type can be specified with an explicit element typeusing the following syntax:

sequence- t y p e :
seq of t y p e
seq (t y p e)
seq (elt type = t y p e)

The element type of a sequence can be referred to by its nameelt_type . If s is a sequence, then the type
s.elt_type refers to the type of its elements.

18.3 Sequence Rank

The rank of a sequence is determined as follows:

• If the element type of the sequence is not a sequence, then therank of the sequence is 1.

• If the element type of the sequence is a sequence of rankk, then the rank of the sequence isk + 1.

Example. The rank of the sequence specified by the type

seq of seq of int

is two.

18.4 Sequence Assignment

Sequence assignment is by value.

98 Chapel Language Specification

18.5 Iteration over Sequences

Sequences can be iterated over within the context of a for or forall loop. The type of the index is the element
type of the sequence.

Example. In the code

var ss: seq of string = (/"one", "two", "three"/);
for s in ss do

writeln(s);

the sequence of stringsss is iterated over with indexs of type string. The output to this code is

one
two
three

18.6 Sequence Concatenation

The operator# is used to concatenate two sequences and to append or prependan element to a sequence. In
each case, the operands are unchanged and a new sequence is returned. When applied to two sequences, the
new sequence is the concatenation of the two sequences. Whenapplied to an element and a sequence, the
new sequence is a copy of the sequence with the element prepended to it. When applied to a sequence and an
element, the new sequence is a copy of the sequence with the element appended to it.

The concatenation, prepend, and append operations apply toexpressions of types according to the rules of
function resolution as specified by the following function prototypes:

def #(s1: seq, s2: seq) where s1. type == s2. type // concatenate
def #(e, s: seq) where e. type:s.elt_type // prepend
def #(s: seq, e) where e. type:s.elt_type // append

18.7 Sequence Indexing

Sequences can be indexed into by applying a function call to them. They can be indexed into by integers or
tuples of integers.

18.7.1 Sequence Indexing by Integers

If s is a sequence andi is an integer, then the expressions(i) is evaluated to return an element in the
sequence. A runtime error occurs ifi is zero or the absolute value ofi is greater than the length of the
sequence. Let the elements of the sequence be denoted ase1, e2, . . . , en wheren is the length of the sequence.
If i is positive, thens(i) is the valueei. If i is negative, thens(i) is the valueen−i+1.

Sequences 99

18.7.2 Sequence Indexing by Tuples

If s is a sequence andt is a tuple of integers of sizek, then the expressions(t) indexes into the sequence
s k times using the integers in the tuple. In this case,s must be a sequence whose rank is at least as great as
the size oft . If s has rank less than the size of the tuple, then the result is a sequence.

If the integers in tuplet are denoted asi1 , i2 , . . ., ik , then the expressions(t) is equivalent to the expres-
sions(i1)(i2) . . .(ik) .

A sequence can also be indexed by multiple integers. The integers are collected into a tuple and the sequence
is then indexed by the tuple.

18.8 Sequence Promotion of Scalar Functions

Sequence promotion of a scalar function is defined over the sequence and itsleaf element type. If the sequence
has rank one, then the leaf element type is the element type ofthe sequence. If the sequence has rank greater
than one, then the leaf element type is defined to be the first element type encountered by recursively indexing
into the sequence such that the element type is not a sequence.

If a variable of type equal to the leaf element type of the sequence can be passed to a function’s formal
argument according to the rules of function resolution in§13.8, then the sequence can be passed to this
function and the function is said to be sequence promoted. Ingeneral, it is said to be scalar promoted since
types other than sequences may result in the promotion.

18.8.1 Zipper Promotion

Consider a functionf with formal argumentss1 , s2 , ... that are sequence promoted and formal arguments
a1, a2, ... that are not promoted. The call

f(s1, s2, ..., a1, a2, ...)

is equivalent to

[(e1, e2, ...) in (s1, s2, ...)] f(e1, e2, ..., a1, a2, ...)

The usual constraints of zipper iteration apply to zipper promotion so the sequences must have the same
shape.

The result of the promotion is a sequence of the same rank but the leaf element type is the return type of the
function that is promoted.

Example. Given a function defined as

def foo(i: int, j: int) {
write(i, " ", j, " ");

}

and a call to this function written

foo((/1, 2, 3/), (/4, 5, 6/));

then the output is “1 4 2 5 3 6 ”.

100 Chapel Language Specification

18.8.2 Tensor Product Promotion

If the functionf were called by using square brackets instead of parentheses, the equivalent rewrite would be

[(e1, e2, ...) in [s1, s2, ...]] f(e1, e2, ..., a1, a2, ...)

There are no constraints on tensor product promotion.

The result of the promotion is a sequence of rank equal to the sum of the ranks of the promoted arguments.
The leaf element type of the sequence is the return type of thefunction that is promoted.

Example. Given a function defined as

def foo(i: int, j: int) {
write(i, " ", j, " ");

}

and a call to this function written

foo[(/1, 2, 3/), (/4, 5, 6/)];

then the output is “1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 5 3 6 ”.

18.9 Sequence Operators

Any operator that can be applied to the leaf element type of a sequence can be applied to the sequence
according to the rules of zipper promotion.

Example. Given two sequences of integers

var s1 = (/1, 2, 3, 4, 5/);
var s2 = (/5, 4, 3, 2, 1/);

the sequence that is returned by applying the equality operator to the sequences is a sequence of
bool values. The code

writeln(s1 == s2);

produces the output “false false true false false.”

18.10 Sequences in Logical Contexts

When a sequence expression is used as a top-level expressionin the condition of a while statement, a do-while
statement or an if statement, the sequence is promoted to a sequence of bool values following the implicit
statement bool conversion rule (§9.1.6) applied to the leaf element type of the sequence.

The sequence of bool values is then implicitly reduced usingthe&& operator to produce a single bool value.
Reductions are defined in§24.

Implementation note. Neither the implicit conversion nor the implicit reduction is currently
implemented.

Sequences 101

18.10.1 Sequences in Select Statements

When a sequence expression is used as a top-level expressionin the condition of a select statement, there are
two interpretations. If the condition in the when expression is itself a sequence, the equality operator is used
to compare the sequences and then an implicit&& reduction is applied to produce a single bool value. If the
condition in the when expression is a scalar, the equality operator is used to compare the sequences and then
an implicit || reduction is applied to produce a single bool value.

Implementation note. The implicit reduction is currently not implemented. Sequences cannot
be used in the condition of a select statement or in the when expression.

18.11 Filtering Predicates

An if expression that is immediately enclosed by a forall expression does not require an else part. The result
of the forall expression is a sequence of rank one.

Example. The following expression returns every other element in a sequence starting with the
first:

[i in 1..s.length] if i % 2 == 1 then s(i)

18.12 Methods and Functions on Sequences

18.12.1 ThelengthMethod

def seq.length

The length method requires no parentheses and returns the number of elements in a sequence.

18.12.2 ThereverseMethod

def seq.reverse(dim: int = 1)

The reverse method returns the elements of a sequence in reverse order. An optional second argument is an
int. If the value of this argument isd, then the rank of the first argument must be at leastd. Whend is one,
then the sequence is reversed. Whend is greater than one, the expressions.reverse(d) is equivalent to

[e in s] e.reverse(d-1)

Implementation note. Thedim argument is not implemented.

102 Chapel Language Specification

18.12.3 ThespreadFunction

def spread(s: seq, length: int, dim: int = 1)

The spread function takes a sequence of rankk and returns a new sequence of rankk +1. Whendim is equal
to 1, the result is a sequence where every element is equal tos. The length of this sequence is specified by
length . Whendim is greater than one, we generate the sequence:

[e in s] spread(e, length, dim-1)

Implementation note. The spread function is not implemented.

18.12.4 ThetransposeFunction

def transpose(s: seq, dims = (2,1))

The transpose function will reorder both the values and change the shape of the sequence. The optional
dims argument is a tuple that corresponds to a permutation of the values1..p wherep is less than or equal
to the rank of the input sequence. This list defines a permutation of the subscripts such that the following
relationship holds between the input and output sequences:

s′(i′1, . . . , i
′

k) = s(i1, . . . , ik)

where

ij =

{

i′
dims(j) if j ≤ p

i′j otherwise

There is a somewhat complex requirement in the shape of the input sequence so that this relation is well-
defined. In the simple case of a rank-2 input, we require that all elements of the sequence have the same
length. In the general case we require all sequences selected by aq-tuple to have the same length whenever
an index positionq is less thanp.

Implementation note. The transpose function is not implemented.

18.12.5 ThereshapeFunction

reshape(s: seq, shape, fill)

This reshape function returns a sequence whose leaves are the same as the first argument, in the same order
but whose shape matches that ofshape . Theshape argument might be a sequence or it might be a tuple of
ints. When it is a sequence, the output will conform to that sequence. When the shape is a tuple, then the
shape of the output conforms to the shape of the arithmetic index set that would be determined by1..shape .

If present, thefill argument specifies a value to be used to pad the sequence if thenumber of leaf values in
that sequence is too few to conform withshape . If the input sequence has too many values, it is truncated.

Implementation note. The reshape function is not implemented.

Sequences 103

18.13 Arithmetic Sequences

Arithmetic sequences contain an ordered set of values of integral type that can be specified with a low bound
l, a high boundh, and a strides. If the stride is negative, the values contained by the arithmetic sequence are
h, h−s, h−2s, h−3s, ... such that all of the values in the sequence are greater thanl. If the stride is positive,
the values contained by the arithmetic sequence arel, l + s, l + 2s, l + 3s, ... such that all of the values in the
sequence are less thanh.

An arithmetic sequence is specified by the syntax

a r i t h m e t i c- sequence- l i t e r a l :
e x p r e s s i o n . . e x p r e s s i o n

The first expression is taken to be the lower bound, the secondexpression is taken to be the upper bound. The
stride of the arithmetic sequence is 1 and can be modified withtheby operator.

The element type of the arithmetic sequence type is determined by the type of the low and high bound. It is
either int , uint , int(64) , or uint64 . The type is determined by conceptually adding the low and high
bounds together.

All operations supported over sequences are supported overarithmetic sequences. So arithmetic sequences
can, for example, sequence promote functions and be iterated over. The result of the sequence promotion is a
sequence but not an arithmetic sequence.

18.13.1 Strided Arithmetic Sequences

The by operator can be applied to any arithmetic sequence to createa strided arithmetic sequence. It is
predefined over an arithmetic sequence and an integer to yield a new arithmetic sequence that is strided by
the integer. Striding of strided sequences is accomplishedby multiplying the strides.

18.13.2 Querying the Bounds and Stride of an Arithmetic Sequence

def arithmetic sequence.low: elt_type
def arithmetic sequence.high: elt_type
def arithmetic sequence.stride: int

These routines respectively return the low bound, the high bound, and the stride of the arithmetic
sequence. The type of the returned low and high bound is the element type of the arithmetic sequence.

18.13.3 Indefinite Sequences

An indefinite arithmetic sequence is specified by the syntax

i n d e f i n i t e- a r i t h m e t i c- sequence- l i t e r a l :
e x p r e s s i o n . .
. . e x p r e s s i o n

Indefinite arithmetic sequences can be iterated over with zipper iteration and their shape conforms to the
shape of the sequences they are being iterated over.

104 Chapel Language Specification

Example. The code

for i in (1..5, 3..) do
write(i);

produces the output “(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)”.

It is an error to zip an indefinite arithmetic sequence with anarithmetic sequence that does not have the same
sign stride.

Indefinite arithmetic sequences can be used to index into arithmetic sequences, sequences, arrays, and strings.
In thesse cases, the elided bound conforms to the expressionbeing indexed.

Implementation note. Indexing by indefinite arithmetic sequences is not yet supported.

18.14 Conversions Between Sequences and Tuples

A value of homogenous tuple type can be converted to a sequence by applying a cast to the keywordseq .
The elements in the tuple become the elements in the sequenceand the sequence’s length is the size of the
tuple.

A value of sequence type can be converted to a homogeneous tuple type by applying a cast to a parameter of
type int. If the parameter has valuek then the tuple is of sizek and the firstk elements in the sequence are
the elements in the tuple.

Domains and Arrays 105

19 Domains and Arrays

A domainis a description of a collection of names for data. These names are referred to as theindicesof the
domain. All indices for a particular domain are values with some common type. Valid types for indices are
primitive types and class references or unions, tuples or records whose fields are valid types for indices. This
excludes sequences, domains, and arrays. Like sequences, domains have a rank and a total order on their
elements. Anarray is generically a function that maps from adomainto a collection of variables. Chapel
supports a variety of kinds of domains and arrays defined overthose domains as well as a mechanism to allow
application specific implementations of arrays.

Arrays abstract mappings from sets of values to variables. This key use of data structures coupled with the
generic syntactic support for array usage increases software reusability. By separating the sets of values into
their own abstraction, domains, distributions can be associated with sets rather than variables. This enables
the orthogonality of data distributions. Distributions are discussed in§23.

19.1 Domains

Domains are first-class ordered sets of indices. There are five kinds of domains:

• Arithmetic domains are rectilinear sets of Cartesian indices that can have an arbitrary rank.

• Sparse domains are subsets of indices in arithmetic domains.

• Indefinite domains are sets of indices where the type of the index is some type that is not an array,
domain, or sequence. Indefinite domains define dictionariesor associative arrays implemented via
hash tables.

• Opaque domains are sets of anonymous indices. Opaque domains define graphs and unspecified sets.

• Enumerated domains are sets of constants defined by some enumerated type.

19.1.1 Domain Types

Domain types vary based on the kind of the domain. The type of an arithmetic domain is parameterized by
the rank of the domain and the integral type of the indices. The type of a sparse domain is parameterized by
the type of the arithmetic domain that defines the superset ofits indices. The type of an indefinite domain is
parameterized by the type of the index. The type of an opaque domain is unique. The type of an enumerated
domain is parameterized by the enumerated type.

Example. In the code

var D: domain(2) = [1..n, 1..n];

D is defined as a two-dimensional arithmetic domain and is initialized to contain the set of indices
(i, j) for all i andj such thati ∈ 1, 2, . . . , n andj ∈ 1, 2, . . . , n.

106 Chapel Language Specification

19.1.2 Index Types

Each domain has a correspondingindextype which is the type of the domain’s indices qualified by itsstatus
as an index. Variables of this type can be declared using the following syntax:

i ndex- t y p e :
int (domain- e x p r e s s i o n)

If the type of the indices of the domain isint , then the index type can be converted into this type.

A value with a type that is the same as the type of the indices ina domain but is not the index type can be
converted into the index type using a special “method” called index .

Example. In the code

var j = D. index(i);

the type of the variablej is the index type of domainD. The variablei , which must have the
same type as the underlying type of the indices ofD, is verified to be in domainD before it is
assigned toj .

Values of index type are known to be valid and may have specialized representations to facilitate accessing
arrays defined for that domain. It may therefore be less expensive to access arrays using values of appropriate
index type rather than values of the more general type the domain is defined over.

Implementation note. In the current implementation, the index type is not distinguished from
the underlying type of the indices. The index method is not yet implemented.

19.1.3 Domain Assignment

Domain assignment is by value. If arrays are declared over a domain, domain assignment impacts these arrays
as discussed in§19.8, but the arrays remain associated with the same domain regardless of the assignment.

19.1.4 Formal Arguments of Domain Type

Domains are passed to functions by reference. Formal arguments that receive domains are aliases of the actual
arguments. It is a compile-time error to pass a domain to a formal argument that has a non-blank intent.

19.1.5 Iteration over Domains

All domains support iteration via forall and for loops over the indices in the set that the domain defines. The
type of the indices returned by iterating over a domain is theindex type of the domain.

Domains and Arrays 107

19.1.6 Domain Promotion of Scalar Functions

Domain promotion of a scalar function is defined over the domain type and the type of the indices of the
domain (not the index type). Domain promotion has the same semantics as sequence promotion where the
scalar type is the indices of the domain and the promotion type is the domain type.

Example. Given an arrayA with element typeint declared over a one-dimensional domain
D with integral typeint , then the array can be assigned the values given by the indices in the
domain by writing

A = D;

19.2 Arrays

Arrays associate variables or elements with the sets of indices in a domain. Arrays must be declared over
domains and have a specified element type.

19.2.1 Array Types

The type of an array is parameterized by the type of the domainthat it is declared over and the element type
of the array. Array types are given by the following syntax:

ar ray- t y p e :
[domain- e x p r e s s i o n] t y p e

domain- e x p r e s s i o n:
e x p r e s s i o n

The domain- e x p r e s s i o nmust specify a domain that the array can be declared over. This can be a domain
literal. If it is a domain literal, the square brackets around the domain literal can be omitted.

Example. In the code

var A: [D] real;

A is declared to be an array over domainD with elements of typereal .

Implementation note. Arrays of arrays are not currently supported.

108 Chapel Language Specification

19.2.2 Array Indexing

Arrays can be indexed by indices in the domain they are declared over. The indexing results in an access of
the element that is mapped by this index.

Example. If A is an array with element typereal declared over a one-dimensional arithmetic
domain[1..n] , then the first element inA can be accessed via the expressionA(1) and set to
zero via the assignmentA(1) = 0.0 .

Indexing into an array with a domain is call array slicing andis discussed in the next section.

Arithmetic arrays also support indexing over the components of their indices for multidimensional arithmetic
domains (where the indices are tuples), as described in§19.3.5.

19.2.3 Array Slicing

An array can be indexed by a domain that has the same type as thedomain which the array was declared over.
Indexing in this manner has the effect of array slicing. The result is a new array declared over the indexing
domain where the elements in the array alias the elements in the array being indexed.

Example. Given the definitions

var OuterD: domain(2) = [0..n+1, 0..n+1];
var InnerD: domain(2) = [1..n, 1..n];
var A, B: [OuterD] real;

the assignment given by

A(InnerD) = B(InnerD);

assigns the elements in the interior ofB to the elements in the interior ofA.

Arithmetic arrays also support slicing by indexing into them with arithmetic sequences or tuples of arithmetic
sequences as described in§19.3.6.

19.2.4 Array Assignment

Array assignment is by value. Arrays can be assigned arrays,sequences, or domains. IfA is an lvalue of array
type andB is an expression of either array, sequence, or domain type, then the assignment

A = B;

is equivalent to

forall (i,e) in (A. domain,B) do
A(i) = e;

Domains and Arrays 109

If the zipper iteration is illegal, then the assignment is illegal. Notice that the assignment is implemented with
the semantics of aforall loop.

Arrays can also be assigned single values of their element type. In this case, each element in the array is
assigned this value. Ife is an expression of the element type of the array or a type thatcan be implicitly
converted to the element type of the array, then the assignment

A = e;

is equivalent to
forall i in A. domain do

A(i) = e;

19.2.5 Formal Arguments of Array Type

Arrays are passed to functions by reference. Formal arguments that receive arrays are aliases of the actual
arguments. The ordinary rule that disallows assignment to formal arguments of blank intent does not apply
to arrays.

When a formal argument has array type, the element type of thearray can be omitted and/or the domain of
the array can be queried or omitted. In such cases, the argument is generic and is discussed in§21.1.6.

If a non-queried domain is specified in the array type of a formal argument, the domain must match the
domain of the actual argument. This is verified at runtime. There is an exception if the domain is an arithmetic
domain; it is described in§19.3.7.

19.2.6 Iteration over Arrays

All arrays support iteration via forall and for loops over the elements mapped to by the indices in the array’s
domain.

19.2.7 Array Promotion of Scalar Functions

Array promotion of a scalar function is defined over the arraytype and the element type of the array. Array
promotion has the same semantics as sequence promotion where the scalar type is the element type of the
array and the promotion type is the array type. The only difference between sequence promotion and array
promotion is that if a function returns a value, the promotedfunction returns an array of those values rather
than a sequence of those values. The array is defined over the same domain as the array that was passed to the
function. In the event of zipper promotion over multiple arrays or both arrays and sequences, the promoted
function returns a value based on the first argument to the function that enables promotion.

Implementation note. In the current implementation, promotion always returns sequences.

Example. Whole array operations is a special case of array promotionof scalar functions. In the
code

A = B + C;

if A, B, andCare arrays, this code assigns each element inA the element-wise sum of the elements
in B andC.

110 Chapel Language Specification

19.2.8 Array Initialization

By default, the elements in an array are initialized to the default values associated with the element type of
the array. There is an expectation that this default initialization can be overridden for performance reasons by
explicitly marking the array type or variable.

The initialization expression in the declaration of an array can be based on the indices in the domain using
special array declaration syntax that replaces both the type and initialization specifications of the declaration:

s p e c i a l- ar ray- d e c l a r a t i o n :
i d e n t i f i e r- l i s t i ndexed- ar ray- t y p e- p a r t i n i t i a l i z a t i o n - p a r t

i ndexed- ar ray- t y p e- p a r t :
: ar ray- t y p e- f o r a l l - e x p r e s s i o n t y p e

a r ray- t y p e- f o r a l l - e x p r e s s i o n:
[i d e n t i f i e r in domain- e x p r e s s i o n]

i n i t i a l i z a t i o n - p a r t :
= e x p r e s s i o n

In this code, thear ray- t y p e- f o r a l l - e x p r e s s i o nis syntactic sugar for surrounding thei n i t i a l i z a t i o n - p a r t

with this basic forall-expression.

Given a domain expressionD, an element typet , an expressione that is of typet or that can be implicitly
converted to typet , then the declaration of arrayA given by

var A: [i in D] t = e;

is equivalent to

var A: [D] t = [i in D] e;

The scope of the forall expression is as in the rewritten partso the expressione can include references to
index i .

19.3 Arithmetic Domains and Arrays

An arithmetic domain is a rectilinear set of Cartesian indices. Arithmetic domains are specified as a tuple of
arithmetic sequences enclosed in square brackets.

19.3.1 Arithmetic Domain Literals

An arithmetic domain literal is specified by the following syntax:

a r i t h m e t i c- domain- l i t e r a l :
[a r i t h m e t i c- sequence- e x p r e s s i o n- l i s t]

a r i t h m e t i c- sequence- e x p r e s s i o n- l i s t :
a r i t h m e t i c- sequence- e x p r e s s i o n
a r i t h m e t i c- sequence- e x p r e s s i o n , a r i t h m e t i c- sequence- e x p r e s s i o n- l i s t

a r i t h m e t i c- sequence- e x p r e s s i o n:
e x p r e s s i o n

Domains and Arrays 111

Example. The expression[1..5, 1..5] defines a5 × 5 arithmetic domain with the indices
(1, 1), (1, 2), . . . , (5, 5).

19.3.2 Arithmetic Domain Types

The type of an arithmetic domain is determined from the rank of the arithmetic domain (the number of
arithmetic sequences that define it) and by an underlying integeral type called thedimensional index type
which must be identical to each of the integral element typesof the arithmetic sequences that define the
arithmetic domain. By default, the dimensional index type of an arithmetic domain isint .

The arithmetic domain type is specified by the syntax of a function call to the keyworddomain that takes
at least an argument calledrank that is a parameter of typeint and optionally an integral type named
dim_type .

Example. The expression[1..5, 1..5] defines an arithmetic domain with typedomain(2,int) .

19.3.3 Strided Arithmetic Domains

If the arithmetic sequences that define an arithmetic domainare strided, then the arithmetic domain is said to
be strided.

Theby operator can be applied to any arithmetic domain to create a strided arithmetic domain. It is predefined
over an arithmetic domain and an integer or a tuple of integers. In the integer case, the arithmetic sequences
in each dimension are strided by the integer. In the tuple of integers case, the size of the tuple must match the
rank of the domain; the integers stride each dimension of thedomain. If the arithmetic sequences are already
strided, the strides applied by theby operator are multiplied to the strides of the arithmetic sequneces.

19.3.4 Arithmetic Domain Indexing

Arithmetic domains support indexing by a value of typeint that is at least one and no more than the rank of
the array. Indexing into an arithmetic domain returns the arithmetic sequence associated with that dimension.

Example. In the code

for i in D(1) do
for j in D(2) do

writeln(A(i,j));

domainD is iterated over by two nested loops. The first dimension ofD is iterated over in the
outer loop. The second dimension is iterated over in the inner loop.

112 Chapel Language Specification

19.3.5 Arithmetic Array Indexing

In addition to being indexed by indices defined by their arithmetic domains, arithmetic arrays can be indexed
directly by values of the dimensional index type where the number of values is equal to the rank of the array.
This has the semantics of first moving the values into a tuple and then indexing into the array.

Example. Given the definition

var ij = (i,j);

the indexing expressionsA(ij) andA(i,j) are equivalent.

19.3.6 Arithmetic Array Slicing

In addition to slicing an arithmetic array by an arithmetic domain, arithmetic arrays also support slicing by
arithmetic sequences directly. If each dimension is indexed by an arithmetic sequence, this is equivalent to
slicing the domain by an arithmetic domain defined by those arithmetic sequences.

Implementation note. It is currently required that each dimension be indexed by an arithmetic
sequence. There is an expectation that indexing some dimensions directly by values of integral
type will result in an array slice of a different rank.

19.3.7 Formal Arguments of Arithmetic Array Type

Formal arguments of arithmetic array type allow an arithmetic domain to be specified that does not match the
arithmetic domain of the actual arithmetic array that is passed to the formal argument. In this case, the shape
(size in each dimension and rank) of the domain of the actual array must match the shape of the domain of
the formal array. The indices are translated in the formal array, which is a reference to the actual array.

Example. In the code

def foo(X: [1..5] int) { ... }
var A: [1..10 by 2] int;
foo(A);

the arrayA is strided and its elements can be indexed by the odd integersbetween one and nine.
In the functionfoo , the arrayX references arrayA and the same elements can be indexed by the
integers between one and five.

19.4 Sparse Domains and Arrays

Implementation note. Sparse domains are not yet implemented.

A sparse domain type is given by the syntax

Domains and Arrays 113

spa rse- domain- t y p e :
sparse domain (domain- e x p r e s s i o n)

domain- e x p r e s s i o n:
e x p r e s s i o n

A sparse domain is a domain that contains a subset of the indices in the domain specified by thedomain- e x p r e s s i o n,
sometimes called thebase domain.

Arrays declared over sparse domains can be indexed by all of the indices in the base domain. If the index is
not part of the sparse domain, the element returned is calledtheunrepresented element. It is an error to assign
a value to the unrepresented element by indexing into the array and assigning it a value. The unrepresented
element can be set to any value but by default contains the default value associated with the element type of
the array.

19.4.1 Changing the Indices in Sparse Domains

Indices can be added to or removed from sparse domains. Sparse domains support a methodadd that takes
an index and adds this index to the sparse domain. All arrays declared over this sparse domain can now be
assigned values corresponding to this index.

Sparse domains support a methodremove that takes an index and removes this index from the sparse domain.
The values in the arrays indexed by the removed index are lost.

The operators+= and-= have special semantics for sparse domains; they are interpreted as calls to theadd

andremove methods respectively. The statement

D += i;

is equivalent to

D.add(i);

Similarly, the statement

D -= i;

is equivalent to

D.remove(i);

19.5 Indefinite Domains and Arrays

An indefinite domain type can be defined over any scalar type and is given by the following syntax:

spa rse- domain- t y p e :
domain (s c a l a r- t y p e)

s c a l a r- t y p e :
t y p e

A scalar type is any primitive type, tuple of scalar types, orclass, record, or union where all of the fields have
scalar types. Enumerated types are scalar types but domainsdeclared over enumerated types are described
in §19.7. Arrays declared over indefinite domains are dictionaries mapping from values to variables.

114 Chapel Language Specification

19.5.1 Changing the Indices in Indefinite Domains

Like with sparse domains, indices can be added or removed to indefinite domains. Indefinite domains support
a methodadd that takes an index and adds this index to the indefinite domain. All arrays declared over this
indefinite domain can now access elements corresponding to this index.

Indefinite domains support a methodremove that takes an index and removes this index from the indefinite
domain. The values in the arrays indexed by the removed indexare lost.

The operators+= and-= have special semantics for indefinite domains; they are interpreted as calls to the
add andremove methods respectively. The statement

D += i;

is equivalent to

D.add(i);

Similarly, the statement

D -= i;

is equivalent to

D.remove(i);

19.5.2 Testing Membership in Indefinite Domains

An indefinite domain supports amember? method that can test whether a particular value is part of theindex
set. It returnstrue if the index is in the indefinite domain and otherwise returnsfalse .

19.6 Opaque Domains and Arrays

Implementation note. Opaque domains are not yet implemented.

An opaque domain is a form of indefinite domain where there is no algebra on the types of the indices. The
indices are, in essence, opaque. The opaque domain type is given by the following syntax:

opaque- domain:
opaque domain

New index values for opaque domains are explicitly requested via a method callednew. Indices can be
removed by a method calledremove .

Opaque domains permit more efficient implementations than indefinite domains under the assumption that
creation of new domain index values is rare.

Domains and Arrays 115

19.7 Enumerated Domains and Arrays

Implementation note. Enumerated domains are not yet implemented.

Enumerated domains are a special case of indefinite domains where the indices are the constants defined by
an enumerated type. Enumerated domains do not support theadd or remove methods. All of the constants
defined by the enumerated type are indices into the enumerated domain.

An enumerated domain is specified as an indefinite domain would be except the type is an enumerated type
rather than some other scalar type.

19.8 Association of Arrays to Domains

When an array is declared, it is linked during execution to the domain over which it was declared. This
linkage is constant and cannot be changed.

When indices are added or removed from a domain, the change impacts the arrays declared over this particular
domain. In the case of adding an index, an element is added to the array and initialized to the default value
associated with the element type. In the case of removing an index, the element in the array is removed.

When a domain is reassigned a new value, the array is also impacted. Values that could be indexed by both
the old domain and the new domain are preserved in the array. Values that could only be indexed by the old
domain are lost. Values that can only be indexed by the new domain have elements added to the new array
and initialized to the default value associated with their type.

For performance reasons, there is an expectation that a method will be added to domains to allow non-
preserving assignment,i.e., all values in the arrays associated with the assigned domain will be lost.

19.9 Subdomains

Implementation note. Subdomains are not yet implemented.

A subdomain is a domain whose indices are indices of abase domain. A subdomain is specified by the
following syntax:

subdomain- t y p e :
domain (domain- e x p r e s s i o n)

The ordering of the indices in the subdomain is consistent with the ordering of the indices in the base domain.

Subdomains are verified during execution even as domains arereassigned. The indices in a subdomain are
known to be indices in a domain, allowing for fast bounds-checking.

In the case of arithmetic domains, the subdomain literal maybe composed of indefinite arithmetic sequences.
In such cases, the omitted bounds of the indefinite arithmetic sequences are taken from the bounds of the base
domain.

116 Chapel Language Specification

19.10 Predefined Functions and Methods on Domains

There is an expectation that this list of predefined functions and methods will grow.

def Domain.numIndices: dim_type

Returns the number of indices in the domain.

19.11 Predefined Functions and Methods on Arrays

There is an expectation that this list of predefined functions and methods will grow.

def Array.numElements: this. domain.dim_type

Returns the number of elements in the array.

Iterators 117

20 Iterators

An iterator is a function that conceptually returns a sequence of values rather than simply a single value.
Classes can be viewed as iterators if they implement a structural iterator interface.

20.1 Iterator Functions

The syntax of a function declaration is identical to that of afunction declaration except that the keyworddef is
replaced with the keyworditerator . The body of the iterator may include yield statements alongside return
statements. When a yield is encountered, the value is returned, but the iterator is not finished evaluating. It
will continue from the point after the yield and can yield or return more values. When a return is encountered,
the value is returned and the iterator finishes. An iterator also completes after the last statement in the iterator
function is executed.

20.2 The Yield Statement

Yield statement can only appear in iterators. The syntax of the yield statement is given by

y i e l d- s t a t e m e n t:
yield e x p r e s s i o n ;

20.3 Iterator Calls

Iterator functions can be called within for or forall loops,in which case they are executed in an interleaved
manner with the body of the loop, or can be called in any expression context, in which case they evaluate to
a sequence of values.

20.3.1 Iterators in For and Forall Loops

When an iterator is accessed via a for or forall loop, the iterator is evaluated alongside the loop body in an
interleaved manner. For each iteration, the iterator yields a value and the body is executed.

20.3.2 Iterators as Sequences

If an iterator function is accessed outside of the context ofa for or forall loop iterator expression, then the
iterator is iterated over in total and the expression evaluates to a sequence that contains the values returned
by the iterator on each iteration.

Example. Given an iterator

iterator squares(n: int): int {
for i in 1..n do
yield i * i;

}

the expressionsquares(5) evaluates to the sequence(/1, 4, 9, 16, 25/) .

118 Chapel Language Specification

20.4 The Structural Iterator Interface

There is a structural interface that allows a class or recordto be treated as if it were an iterator. The iterator
interface is important for user-defined distributions.

Implementation note. This section describes the current structural iterator interface. This does
not yet support optimized iteration for rank greater than one. As such, this iterator interface is
incomplete.

The iterator interface defines iteration over a class or record by a cursor of some type, called the cursor type.
The values returned by the iterator are of a possibly different type, called the value type. A class or record
classType supports the iterator interface if it defines the following functions for cursor typecursorType

and value typevalueType :

def classType.getHeadCursor(): cursorType
def classType.getNextCursor(cursor: cursorType): cursorTy pe
def classType.getValue(cursor: cursorType): valueType;
def classType.isValidCursor?(cursor: cursorType): bool

Iteration over a class or recordC of typeclassType defined by

for i in C do
; // body of loop

is equivalent to the following loop:

var cursor = C.getHeadCursor();
while C.isValidCursor?(cursor) {

var i = C.getValue(cursor);
; // body of loop
cursor = C.getNextCursor(cursor);

}

Generics 119

21 Generics

Chapel supports generic functions and types that are parameterizable over both types and parameters. The
generic functions and types look similar to non-generic functions and types already discussed.

21.1 Generic Functions

A function is generic if any of the following conditions hold:

• Some formal argument is specified with an intent oftype or param .

• Some formal argument has no specified type and no default value.

• Some formal argument is specified with a queried type.

• The type of some formal argument is a generic type, e.g.,seq .

• The type of some formal argument is an array type where eitherthe element type is queried or omitted
or the domain is queried or omitted.

These conditions are discussed in the next sections.

21.1.1 Formal Type Arguments

If a formal argument is specified with intenttype , then a type must be passed to the function at the call site.
A copy of the function is instantiated for each unique type that is passed to this function at a call site. The
formal argument has the semantics of a type alias.

Example. The following code defines a function that takes two types atthe call site and returns
a 2-tuple of sequences where the element types of the two sequences are defined by the two type
arguments:

def buildTupleOfSeqs(type t, type tt)
return (seq(t), seq(tt));

This function is instantiated with “normal” function call syntax where the arguments are types:

var tupleOfSeqs = buildTupleOfSeqs(int, string);
tupleOfSeqs(1) #= 1;
tupleOfSeqs(2) #= "hello";

120 Chapel Language Specification

21.1.2 Formal Parameter Arguments

If a formal argument is specified with intentparam , then a parameter must be passed to the function at the
call site. A copy of the function is instantiated for each unique parameter that is passed to this function at a
call site. The formal argument is a parameter.

Example. The following code defines a function that takes an integer parameterp at the call site
as well as a regular actual argument of integer typex. The function returns a homogeneous tuple
of sizep where each component in the tuple has the value ofx .

def fillTuple(param p: int, x: int) {
var result: p * int;
for param i in 1..p do

result(i) = x;
return result;

}

The function callfillTuple(3, 3) returns a 3-tuple where each component contains the value
3.

21.1.3 Formal Arguments without Types

If the type of a formal argument is omitted, the type of the formal argument is taken to be the type of the
actual argument passed to the function at the call site. A copy of the function is instantiated for each unique
actual type.

Example. The example from the previous section can be extended to be generic on a parameter
as well as the actual argument that is passed to it by omittingthe type of the formal argument
x. The following code defines a function that returns a homogeneous tuple of sizep where each
component in the tuple is initialized tox :

def fillTuple(param p: int, x) {
var result: p * x. type;
for param i in 1..p do

result(i) = x;
return result;

}

In this function, the type of the tuple is taken to be the type of the actual argument. The call
fillTuple(3, 3.14) returns a 3-tuple of real values(3.14, 3.14, 3.14) . The return
type is(real, real, real) .

21.1.4 Formal Arguments with Queried Types

If the type of a formal argument is specified as a queried type,the type of the formal argument is taken to be
the type of the actual argument passed to the function at the call site. A copy of the function is instantiated
for each unique actual type. The queried type has the semantics of a type alias.

Example. The example from the previous section can be rewritten to use a queried type for
clarity:

Generics 121

def fillTuple(param p: int, x: ?t) {
var result: p * t;
for param i in 1..p do

result(i) = x;
return result;

}

21.1.5 Formal Arguments of Generic Type

If the type of a formal argument is a generic type, the type of the formal argument is taken to be the type
of the actual argument passed to the function at the call sitewith the constraint that the type of the actual
argument is an instantiation of the generic type. A copy of the function is instantiated for each unique actual
type.

Example. The following code defines a function that takes an actual argument that is a sequence
and outputs the elements in a sequence without any space between the elements. The function is
generic on the element type of the sequence.

def output(s: seq) {
for e in s do

write(e);
}

The generic typesintegral andnumeric are generic types that can only be instantiated with, respectively,
the signed and unsigned integeral types and all of the numeric types.

21.1.6 Formal Arguments of Generic Array Types

If the type of a formal argument is an array where either the domain or the element type is queried or omitted,
the type of the formal argument is taken to be the type of the actual argument passed to the function at the
call site. If the domain is omitted, the domain of the formal argument is taken to be the domain of the actual
argument.

21.2 Function Visibility in Generic Functions

Function visibility in generic functions is altered depending on the instantiation. When resolving function
calls made within visible functions, the visible functionsare taken from any call site at which the function is
instantiated for each particular instantiation.

21.3 Generic Types

A class or record is generic if any of the following conditions hold:

• The class contains a specified or unspecified type alias.

122 Chapel Language Specification

• The class contains a field that is a parameter.

• The class contains a field that has no type and no initialization expression.

• The class contains a field where the type of the field is generic.

21.3.1 Type Aliases in Generic Types

Type aliases defined in a class or a record can be unspecified type aliases; type aliases that are not bound to a
type. If a class or record contains an unspecified type alias,the aliased type must be specified whenever the
type is used.

A type alias defined in a class or record is accessed as if it were a field. Moreover, it becomes an argument
with intenttype to the default constructor for that class or record. This makes the default constructor generic.
When the default constructor is instantiated, the type is instantiated where the type bound to the type alias is
set to be the type passed to the default constructor.

Example. The following code defines a class calledNode that implements a linked list data
structure. It is generic over the type of the element contained in the linked list.

class Node {
type elt_type;
var data: elt_type;
var next: Node(elt_type);

}

The callNode(real, 3.14) creates a node in the linked list that contains the value3.14 . The
next field is set to nil. The type specifierNode is a generic type and cannot be used to define
a variable. The type specifierNode(real) denotes the type of theNode class instantiated over
real . Note that the type of thenext field is specified asNode(elt_type) ; the type ofnext is
the same type as the type of the object that it is a field of.

21.3.2 Parameters in Generic Types

Parameters defined in a class or record do not require an initialization expression. If they do not have an
initialization expression, the parameter must be specifiedwhenever the type is used.

A parameter defined in a class or record is accessed as if it were a field. This access returns a parameter.
Parameters defined in classes or records become arguments with intentparam to the default constructor for
that class or record. This makes the default constructor generic. When the default constructor is instantiated,
the type is instantiated where the parameter is bound to the parameter passed to the default constructor.

Example. The following code defines a class calledIntegerTuple that is generic over an
integer parameter which defines the number of components in the class.

class IntegerTuple {
param size: int;
var data: size * int;

}

The callIntegerTuple(3) creates an instance of theIntegerTuple class that is instantiated
over parameter3. The fielddata becomes a 3-tuple of integers. The type of this class instance
is IntegerTuple(3) . The type specified byIntegerTuple is a generic type.

Generics 123

21.3.3 Fields without Types

If a field in a class or record has no specified type or initialization expression, the class or record is generic
over the type of that field. The field must be specified when the class or record is constructed or specified.
The field becomes an argument to the default constructor thathas no specified type and no default value. This
makes the default constructor generic. When the default constructor is instantiated, the type is instantiated
where the type of the field becomes the type of the actual argument passed to the default constructor.

Example. The following code defines another class calledNode that implements a linked list
data structure. It is generic over the type of the element contained in the linked list. This code
does not specify the element type directly in the class as a type alias but rather leaves omits the
type from thedata field.

class Node {
var data;
var next: Node(data) = nil;

}

A node with integer element type can be defined in the call to the constructor. The callNode(1)

defines a node with the value1. The code

var list = Node(1);
list.next = Node(2);

defines a two-element list with nodes containing the values1 and2.

21.3.4 Fields of Generic Types

If a field in a class or record is specified to have a generic type, then the class or record is generic over the
type of this field and the type of the field is constrained to be an instantiation of the field’s specified generic
type.

21.3.5 Generic Methods

All methods bound to generic classes or records are generic over the implicitthis argument and any other
argument that is generic.

21.3.6 Theelt typeType

The common idiom of parameterizing a collection-oriented data type by a single element type has special
syntactic support given by

o f- t y p e :
t y p e of t y p e

This syntax is a short-hand for passing the second type by name elt_type as the only argument to the
first type. Given the definition ofNode in the example in§21.3.1, one can specify the typeNode(real) or
Node(elt_type=real) by writing Node of real .

124 Chapel Language Specification

21.4 Where Expressions

The instantiation of a generic function can be constrained by where clauses. A where clause is specified in the
definition of a function (§13.1). When a function is instantiated, the expression in the where clause must be
a parameter expression and must evaluate to eithertrue or false . If it evaluates tofalse , the instantiation
is rejected and the function is not a possible candidate for function resolution. Otherwise, the function is
instantiated.

Example. Given two overloaded function definitions

def foo(x) where x. type == int { . . . }
def foo(x) where x. type == real { . . . }

the call foo(3) resolves to the first definition because when the second function is instantiated the
where clause evaluates to false.

21.5 Example: A Generic Stack

class MyNode {
type itemType; // type of item
var item: itemType; // item in node
var next: MyNode(itemType); // reference to next node (same type)

}

record Stack {
type itemType; // type of items
var top: MyNode(itemType); // top node on stack linked list

def push(item: itemType) {
top = MyNode(itemType, item, top);

}

def pop() {
if isEmpty? then

halt("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

}

def isEmpty? return top == nil;
}

Parallelism and Synchronization 125

22 Parallelism and Synchronization

Chapel is an explicitly parallel programming language. Parallelism is introduced into a program by the user
with the following three constructs:forall , cobegin , andbegin . In addition, some operations on arrays,
domains, and sequences are executed in parallel. Synchronization is provided withsynchronization variables
andatomicstatements. To avoid any unintended implications, the terms computationandsub-computation
will be used to refer to distinct, concurrently executing portions of the program.

22.1 The Forall Loop

The forall loop is a variant of the for loop that allows for theconcurrent execution of the loop body. The for
loop is described in§11.8. The syntax for the forall loop is given by

f o r a l l - s t a t e m e n t:
forall i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n do s t a t e m e n t
forall i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n b lock- l e v e l- s t a t e m e n t

The forall loop evaluates the loop body once for each elementin the sequence returned by thei t e r a t o r - e x p r e s s i o n.
Each instance of the forall loop’s statement may be executedconcurrently with each other, but this is not guar-
anteed. The compiler and runtime determine the actual concurrency based on the specification of the iterator
of the loop. The keywordordered , described in§22.1.2, can be used to constrain the parallelism to give a
partial order on the sequence returned by an iterator.

Control continues with the statement following the forall loop only after each iteration has been completely
evaluated. Control transfers out of a loop body viabreak , continue , andreturn are not permitted. Control
can be transferred out of the loop via ayield statement.

Example. In the code

forall i in 1..N do
a(i) = b(i);

the user has stated that the element-wise assignments can execute concurrently. This loop may
be performed serially, with maximum concurrency where eachloop body iteration instance is
executed in a separate computation, or somewhere in between.

Implementation note. The forall loop is currently executed serially.

22.1.1 Alternative Forall Loop Syntax

The forall loop may be alternatively specified with a more concise syntax given by:

a l t e r n a t i v e- f o r a l l - s t a t e m e n t:
[i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n] s t a t e m e n t

The semantics are unchanged.

Example. The previousforall example can be alternatively written as:

[i in 1..N] a(i) = b(i);

126 Chapel Language Specification

22.1.2 The Ordered Forall Loop

By default a forall loop allows complete concurrent evaluation of the iterator expression and among the loop
instances. The keywordordered can be used to constrain the general parallelism among instances of the
loop to that expressed by an iterator. This allows an iterator to both define a sequence of values and to impose
a partial order on that sequence. If the iterator expressionis a sequence value, there is no effect. This has the
same semantics as with the ordered expression which is explained in§22.5. The syntax is:

ordered- f o r a l l - s t a t e m e n t:
ordered forall i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n do s t a t e m e n t
ordered forall i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n b lock- l e v e l- s t a t e m e n t

Example. In the code

ordered forall i in walk(root) do
work(i);

iterator walk(n: node) {
yield n;
forall c in 0..n.numOfChildren {

yield n.child[c];
}

}

there is a contraint on the parallel execution such that the functionwork is evaluated on a node
before any of its immediate children nodes. The work on sibling nodes can be executed concur-
rently.

Implementation note. The ordered forall loop is currently executed serially.

22.2 The Forall Expression

With syntax similar to the alternative forall loop statement, a forall expression can be used to enable concur-
rent evaluation of sub-expressions. The sub-expressions are evaluated once for each element in the iterator
expression. The syntax of a forall expression is given by

f o r a l l - e x p r e s s i o n:
[i ndex- e x p r e s s i o n in i t e r a t o r - e x p r e s s i o n] e x p r e s s i o n

The semantics of the forall expression are that a sequence ofthe expression is evaluated. However, for
efficiency, a sequence may not be generated if the semantics are the same.

Example.

[i in S] f(i);

The functionf is evaluated for each index inS and the result of this expression is a sequence
containing the evaluated expressions.

Implementation note. Forall expressions are evaluated serially.

Parallelism and Synchronization 127

22.3 The Cobegin Statement

The cobegin statement is used to create parallelism among statements within a block statement. Thecobegin

statement syntax is

cobeg in- s t a t e m e n t:
cobegin b lock- s t a t e m e n t

Each statement within the block statement is executed concurrently and is considered a separate computation.
Control continues after all of the statements within the block statement have been evaluated.

As with the forall loop, control transfers are not permittedeither into or out of the cobegin’s block statement.
Similarly, yield statements are allowed.

Variables declared in the cobegin statement aresingle variables, described in§22.7.1.

22.4 The Begin Statement

The begin statement spawns a computation to execute a statement. Control continues simultaneously with
the statement following the begin statement. The begin statement is an unstructured way to create a new
computation that is executed only for its side-effects. Thesyntax for the begin statement is given by

beg in- s t a t e m e n t:
begin s t a t e m e n t

The following statements cannot be contained in begin-statements: break-statements, continue-statements,
yield-statements, and return-statements.

22.5 The Ordered Expression

Implementation note. The ordered expression is not yet implemented.

Theordered keyword can be used as an unary operator to suppress parallelexecution among instances of
an expression that can involve side-effects to memory. Theordered keyword does not inhibit parallelism
within the sub-expression. The syntax is:

ordered- e x p r e s s i o n:
ordered e x p r e s s i o n

Example. In the code

ordered [i in S] f(i)

f is a function andS is a sequence. Each instance off(i) is executed once for each value inS

and in sequence order. Theordered constraint does not propagate to inhibit parallelism within
f .

128 Chapel Language Specification

22.6 The Serial Statement

Implementation note. The serial statement is not yet implemented.

Theserial statement can be used to dynamically control the degree of parallelism. The syntax is:

s e r i a l- s t a t e m e n t:
serial e x p r e s s i o n b lock- l e v e l- s t a t e m e n t

where the expression evaluates to a bool type. Independent of that value, the block-level statement is eval-
uated. If the expression is true, any dynamically encountered forall loop or cobegin statement is executed
serially within the current computation. Any dynamically encountered begin-statement is executed serially
with the current computation; no new computation is spawned. Control continues to the statement following
the begin-statement after the begin-statement finishes.

Example. In the code

ordered forall i in walk(root) do
work(i);

iterator walk(n: node) {
yield n;
serial n.depth > 4 forall c in 0..n.numOfChildren {

yield n.child[c];
}

}

the serial statement inhibits concurrent execution on the tree for nodes that are deeper than four
levels in the tree.

There is an expectation that functions that may be executed in a serial context are cloned to avoid the overhead
of testing and suppressing parallelism.

22.7 Synchronization Variables

Synchronization variablesare used to coordinate computations that share data. The useof and assignment to
these variables implicitly controls the execution order ofthe computation. There are two kinds of synchro-
nization variables,singleandsyncvariables. A single variable can only be assigned once during its lifetime.
A sync variable can be assigned multiple times during its lifetime.

The normal use of and assignment to a synchronization variable is well suited for producer-consumer data
sharing. Additional functions on synchronization variable are provided such that other traditional synchro-
nization primitives, such as semaphores and mutexes, can becontructed.

Parallelism and Synchronization 129

22.7.1 Single Variables

A single (assignment) variable can only be assigned once during its lifetime. A use of a single variable before
it is assigned causes the computation’s execution to be suspended until the variable is assigned. Otherwise,
the use proceeds as with normal variables and the computation continues. After a single assigment variable
is assigned, all computations with pending uses resume in anunspecified order. A single variable is specified
with a single type given by the following syntax:

s i n g l e- t y p e :
single t y p e

Example. In the code

class Tree {
var is_leaf : bool;
var left : Tree;
var right : Tree;
var value : int;

def sum() {
if (is_leaf) then

return value;

var x : single int;
begin x = left.sum();
var y = right.sum();
return x+y;

}
}

the single variablex is assigned by an asynchronous computation created with thebegin state-
ment. The computation returning the sum waits on the readingof x until it has been assigned.

While acobegin might be a more suitable formulation, this fragment createsan asynchronous
computation to compute the sum of the left sub-tree while themain computation continues with
the right sub-tree. The final reference to variable x will be delayed until the assignment to x
completes and that value will be used as a summand.

When a single variable has an initializer, the evaluation ofthat initializer is implicitly performed as an asyn-
chronous computation.

Example. The code

var x: single int = left.sum;

is equivalent to

var x: single int;
x = left.sum;

Any variable declaration within a cobegin statement is implicitly treated as a single variable for references in
other statements of the cobegin statement.

Example. In the code

130 Chapel Language Specification

def sum() {
if (is_leaf) then
return value;

var z;
cobegin {
var x = left.sum();
var y = right.sum();
z = x+y;

}
return z;

}

the computation with assignment toz waits for the other computations to assign tox andy before
it referencesx andy in order to assign toz . The variablesx andy are impliclty single.

22.7.2 Sync Variables

A sync variable generalizes the single assignment variableto permit multiple assignments to the variable. A
sync variable is logically eitherfull or empty. When it is empty, computations that attempt to read that variable
are suspended until the variable becomes full by the next assignment to it, which atomically changes the state
to full. When the variable is full, a read of that variable consumes the value and atomically transitions the
state to empty. If there is more than one computation waitingon a sync variable, one is non-deterministically
selected to use the variable and resume execution. The othercomputations continue to wait for the next
assignment.

If a computation attempts to assign to a sync variable that isfull, the computation is suspended and the as-
signment is delayed. When the sync variable becomes empty, the computation is resumed and the assignment
proceeds, transistioning the state back to full. If there are multiple computations attempting such an assign-
ment, one is non-deterministically selected to proceed andthe other assignments continue to wait until the
sync variable is emptied again.

A sync variable is specified with a sync type given by the following syntax:

sync- t y p e :
sync

22.7.3 Additional Synchronization Variable Functions

Synchronization variables support additional methods that can be used to bypass their semantics to provide
new ones. For sync variables, the following functions are defined:

writeFE(s, v) // wait for full, assign s=v, and leave empty
writeXF(s, v) // no wait, assign s=v, and leave full
writeXE(s, v) // no wait, assign s=v, and leave empty
readFF(s) // wait for full, leave full, and return s’s value
readXF(s) // no wait, leave full, and return s’s value
readXX(s) // no wait, leave F/E unchanged, and return s’s value

For single variabless only readFF is defined.

Parallelism and Synchronization 131

22.7.4 Synchronization Variables of Record and Class Types

A variable of record or class type can be a single or sync variable. The semantics of single and sync variables
are applied only to the variable and not to accesses of individual fields. A record or class type may have
sychronization variable fields to get synchronization semantics on individual field accesses.

22.8 Memory Consistency Model

This section is forthcoming.

22.9 Atomic Statement

Implementation note. Atomic statements are not yet implemented.

The atomic statement creates an atomic transaction of a statement. The statement is executed with transaction
semantics in that the statement executes entirely, the statement appears to have completed in a single order
and serially with respect to other atomic statements, and novariable assignment is visible until the statement
has completely executed.

This definition of an atomic statement is sometimes calledstrong atomicitybecause the semantics are atomic
to the entire program.Weak atomicityis defined so that an atomic statement is atomic only with respect to
other atomic statements. If the performance implications of strong atomicity are not tolerable, the semantics
of atomic transactions may be revisited, and could become weaker.

The syntax for the atomic statement is given by:

atomic- s t a t e m e n t:
atomic s t a t e m e n t

Example. The following code illustrates one possible use of atomic statements:

var found = false;
atomic {

if head == obj {
found = true;
head = obj.next;

} else {
var last = head;
while last != null {
if last.next == obj {

found = true;
last.next = object.next;
break;

}
last = last.next;

}
}

132 Chapel Language Specification

Inside the atomic statement is a sequential implementationof removing a particular object de-
noted byobj from a singly linked list. This is an operation that is well-defined, assuming only
one computation is attempting it at a time. The atomic statement ensures that, for example, the
value ofhead does not change after it is first in the first comparison and subsequently read to
initialize last . The variables eventually owned by this computation arefound , head , obj , and
the variousnext fields on examined objects.

The effect of an atomic statement is dynamic.

Example. If there is a method associated with a list that removes an object, that method may not
be parallel safe, but could be invoked safely inside an atomic statement:

atomic found = head.remove(obj);

Locality and Distribution 133

23 Locality and Distribution

Implementation note. Programs can currently only run on a single locale. The abstractions
described here are not yet implemented.

Chapel provides high-level abstractions that allow programmers to exploit locality by defining the affinity of
data and computation. This is accomplished by associating both data objects and computations with abstract
locales. To provide a higher-level mechanism, Chapel allows a mapping from domains to locales to be
specified. This mapping is called adistribution and it guides that placement of variables associated with
arrays and the placement of subcomputations defined over thedomain.

Throughout this section, the termlocal refers to data that is associated with the locale that a computation is
running on andremoterefers to data that is not. We assume that there is some execution overhead associated
with accessing data that may be remote compared to data knownto be local.

23.1 Locales

A locale abstracts a processor or node in a parallel computersystem, or the basic component in the computer
system where local memory can be accessed uniformly.

23.1.1 The Locale Type

The identifierlocale is a primitive type that abstracts a locale as described above. Both data and computa-
tions can be associated with a value of locale type. The only operators defined over locales are the equality
and inequality comparison operators.

23.1.2 Predefined Locales Array

A predefined configuration variable defines theexecution environmentfor a program. This environment is
defined by the following definitions:

config const numLocales: int;
const Locales: [1..numLocales] locale;
const Global: locale;

The environment consists of constants which are fixed when the program begins execution. The variable
Global holds a special value oflocale type that can be distinct from the values stored inLocales . This
value is used to denote an object or computation that has no defined affinity.

When a program starts, a single computation is executing. Itis running on the locale given byLocales(1) .

134 Chapel Language Specification

23.1.3 Querying the Locale of a Variable

Every variablev is associated with some locale which can be queried using thefollowing syntax:

l o c a l e- access:
e x p r e s s i o n . locale

When thee x p r e s s i o nis a class type, the locale is where the object is located rather than where thee x p r e s s i o n

may be located.

23.2 Specifying Locales for Computation

When execution is proceeding on some locale, a computation can be associated with a different locale in two
ways: via distributions as discussed in§23.3 or with anon- s t a t e m e n tas discussed below.

23.2.1 On

The on statement controls on which locale a computation or data should be placed. The syntax of the on
statement is given by

on- s t a t e m e n t:
on e x p r e s s i o n do s t a t e m e n t
on e x p r e s s i o n b lock- l e v e l- s t a t e m e n t

If the e x p r e s s i o nis a value oflocale type, thes t a t e m e n tor b lock- l e v e l- s t a t e m e n tis executed on the
locale specified directly by the expression. Otherwise, theexpression must be a variable and the locale is
taken to be the locale where the variable is located. Execution continues after theon-statement after
execution of thes t a t e m e n tor b lock- l e v e l- s t a t e m e n tcompletes.

If the locale that thee x p r e s s i o nrefers to is equal toGlobal , then the locale is unspecified and is determined
by the runtime and/or compiler.

Example. A common idiom is to useon in conjunction withforall to access an array decom-
posed over multiple locales. The code

forall i in D do on A(i) {
// some computation

}

executes each iteration of the forall loop on the locale where the element ofA(i) is located.

By default, when new variables and data objects are created,they are created in the locale where the compu-
tation is running. This locale can be changed by using theon keyword. Variables can be defined within an
on- s t a t e m e n tto define them on a particular locale.

Locality and Distribution 135

23.2.2 On and Iterators

When a loop iterates over a sequence specified by an iterator,on-statements inside the iterator control where
the corresponding loop body is executed.

Example. An iterator over a distributed tree might include an iterator over the nodes as defined
in the following code:

class Tree {
var left, right: Tree;
iterator nodes {
on this yield this;
if left then

forall t in left.nodes do
yield t;

if right then
forall t in right.nodes do

yield t;
}

}

Given this code and a binary tree of typeTree stored in variabletree , then we can use the
nodes iterator to iterate over the tree with the following code:

forall t in tree.nodes {
// body executed on t as specified in nodes

}

Here, each instance of the body of theforall loop is executed on the locale where the corre-
sponding objectt is located. This is specified in thenodes iterator where theon keyword is
used. In the case of zipper or tensor product iteration, the location of execution is taken from
the first iterator. This can be overridden by explictly usingon in the body of the loop or by
reordering the product of iteration.

23.3 Distributions

A mapping from domain index values to locales is called adistribution.

23.3.1 Distributed Domains

A domain for which a distribution is specified is referred to as adistributed domain. A domain supports a
method,locale , that maps index values in the domain to locales that correspond to the domain’s distribution.

Iteration over a distributed domain implicitly executes the control computation in the domain of the associ-
ated locale. Similarly, when iterating over the elements ofan array defined over a distributed domain, the
controlled computations are determined by the distribution of the domain. If there are conflicting distributions
in product iterations, the locale of the computation is taken to be the first component in the product.

Example. If D is a distributed domain, then in the code
forall d in D {

// body
}

the body of the loop is executed in the locale where the indexd maps to by the distribution ofD.

136 Chapel Language Specification

23.3.2 Distributed Arrays

Arrays defined over a distributed domain will have the element variables stored on the locale determined by
the distribution. Thus, ifd is an index of distributed domainD andA is an array defined over that domain,
thenA(d).locale is the locale to whichd maps to according toD.

23.3.3 Undistributed Domains and Arrays

If a domain or an array does not have a distributed part, the domain or array is not distributed and exists only
on the locale on which it is defined.

23.4 Standard Distributions

Standard distributions include the following:

• The block distributionBlock

• The cyclic distributionCyclic

• The block-cyclic distributionBlockCyclic

• The cut distributionCut

A design goal is that all standard distributions are defined with the same mechanisms that user-defined distri-
butions (§23.5) are defined with.

23.5 User-Defined Distributions

This section is forthcoming.

Reductions and Scans 137

24 Reductions and Scans

Chapel provides a set of built-in reductions and scans with parallel semantics, a mechanism for defining more
reductions and scans with efficient implementations, and syntact support to make reductions and scans easy
to use.

24.1 Reduction Expressions

The syntax for a reduction expression is given by:

reduce- e x p r e s s i o n:
reduce- o p e r a t o r reduce e x p r e s s i o n
t y p e reduce e x p r e s s i o n

reduce- scan- o p e r a t o r: one o f
+ ∗ && | | & | ˆ min max

The expression on the right-hand side of the reduction can beof any type that can be iterated over,e.g., a
sequence or array.

The built-in reductions are defined inreduce- scan- o p e r a t o r. These include, in order, sum, product, logical
and, logical or, bitwise and, bitwise or, bitwise exclusiveor, minimum, and maximum.

User-defined reductions are specified by preceding the keyword reduce by the class type that implements
the reduction interface as described in§24.3.

24.2 Scan Expressions

The syntax for a scan expression is given by:

scan- e x p r e s s i o n:
reduce- scan- o p e r a t o r scan e x p r e s s i o n
t y p e scan e x p r e s s i o n

The expression on the right-hand side of the scan can be of anytype that can be iterated over,e.g., a sequence
or array.

The built-in scans are defined inreduce- scan- o p e r a t o r. These are identical to the built-in reductions and
are described in§24.1.

User-defined scans are specified by preceding the keywordscan by the class type that implements the scan
interface as described in§24.3.

138 Chapel Language Specification

24.3 User-Defined Reductions and Scans

User-defined reductions and scans are supported via class definitions where the class implements a structural
interface. The definition of this structural interface is forthcoming. The following paper sketched out such an
interface:

S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Snyder.Global-view abstractions for user-
defined reductions and scans. In Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2006.

Input and Output 139

25 Input and Output

Chapel provides a built-infile type to handle input and output to files using functions and methods called
read , write , andwriteln .

25.1 Thefile type

The file type contains the following fields:

• Thefilename field is astring that contains the name of the file.

• Thepath field is astring that contains the path of the file.

• Themode field is astring that indicates whether the file is being read or written.

• Thestyle field can be set totext or binary to specify that reading from or writing to the file should
be done with text or binary formats.

These fields can be modified any time that the file is closed.

Themode field supports the following strings:

• "r" The file can be read.

• "w" The file can be written.

Implementation note. Thestyle field is not yet implemented. All input and output is done in
text mode. All files must be text files.

There is an expectation that there will be more styles to control the default reading and writing
methods.

The file type supports the following methods:

• Theopen method opens the file for reading and/or writing.

• Theclose method closes the file for reading and/or writing.

• The isOpen method returns true if the file is open for reading and/or writing, and otherwise returns
false.

• Theflush() method flushes the file, finishing outstanding reading and writing.

Additionally, the file type supports the methodsread , write , andwriteln for input and output as discussed
in §25.4 and§25.5.

140 Chapel Language Specification

25.2 Standard filesstdout, stdin, and stderr

The filesstdout , stdin , andstderr are predefined and map to standard output, standard input, and stan-
dard error as implemented in a platform dependent fashion.

25.3 Thewrite, writeln, and readfunctions

The built-in functionwrite can take an arbitrary number of arguments and writes each of the arguments out
in turn tostdout . The built-in functionwriteln has the same semantics aswrite but outputs anend-of-
line character after writing out the arguments. The built-in function read can take an arbitrary number of
arguments and reads each of the arguments in turn fromstdin .

These functions are wrappers for the methods on files described next.

Example. Thewriteln wrapper function allows for a simple implementation of theHello-
Worldprogram:

writeln("Hello, World!");

25.4 Thewrite and writeln method on files

The file type supports methodswrite andwriteln for output. These methods are defined to take an
arbitrary number of arguments. Each argument is written in turn by calling thewrite method bound to that
type. Defaultwrite methods are bound to any type that the user does not explicitly create one for.

A lock is used to ensure that output is serialized across multiple computations.

25.5 Thereadmethod on files

The file type supports a methodread that takes an arbitrary number of arguments. Each argument is read
in turn by calling a method also bound to thefile type that takes a single argument of that type.

25.6 User-Definedreadand write methods

To define the output for a given type, the user must define a method calledwrite on that type that takes a
single argument of file type. If such a method does not exist, adefault method is created.

Input and Output 141

25.7 Defaultreadand write methods

Defaultwrite methods are created for all types for which a userwrite method is not defined. They have
the following semantics:

• arrays Outputs the elements of the array in row-major order where rows are separated by line-feeds
and blank lines are used to separate other dimensions.

• domainsOutputs the dimensions of the domain enclosed by[and] .

• sequencesOutputs the elements of the sequence in order delimited by the sequence delimiters(/ and
/) and separated by commas.

• arithmetic sequencesOutputs the lower bound of the sequence followed by.. followed by the upper
bound of the sequence. If the stride of the sequence is not one, the output is additionally followed by
the wordby followed by the stride of the sequence.

• tuplesOutputs the components of the tuple in order delimited by(and) , and separated by commas.

• classesOutputs the values within the fields of the class prefixed by the name of the field and the
character=. Each field is separated by a comma. The output is delimited by{ and} .

• records Outputs the values within the fields of the class prefixed by the name of the field and the
character=. Each field is separated by a comma. The output is delimited by(and) .

Default read methods are created for all types for which a userread method is not defined. The default
read methods are defined to read in the output of the defaultwrite method.

142 Chapel Language Specification

Standard Modules 143

26 Standard Modules

This section describes predefined functions that are available to any Chapel program as well as a set of
standard modules that, when used, define a set of functions and types available to Chapel programs. The
standard modules include the following:

BitOps Bit manipulation routines
Math (used by default) Math routines
Random Random number generation routines
Standard (used by default) Basic routines
Time Types and routines related to time
Types (used by default) Routines related to primitive types

There is an expectation that each of these modules will be extended and that more standard modules will be
defined.

26.1 BitOps

The moduleBitOps defines routines that manipulate the bits of values of integral types.

def bitPop(i: integral): int

Returns the number of bits set to one in the integral argumenti .

def bitMatMultOr(i: uint(64), j: uint(64)): uint(64)

Returns the bitwise matrix multiplication ofi andj where the values ofuint(64) type are treated as
8 × 8 bit matrices and the combinator function is bitwise or.

def bitRotLeft(i: integral, shift: integral): i. type

Returns the value of the integral argumenti after rotating the bits to the leftshift number of times.

def bitRotRight(i: integral, shift: integral): i. type

Returns the value of the integral argumenti after rotating the bits to the rightshift number of times.

26.2 Math

The moduleMath defines routines for mathematical computations. This module is used by default; there is no
need to explictly used this module. The Math module defines routines that are derived from and implemented
via the standard C routines defined inmath.h .

def abs(i: int(?w)): int(w)
def abs(i: uint(?w)): uint(w)
def abs(x: real): real
def abs(x: complex): real

144 Chapel Language Specification

Returns the absolute value of the argument.

def acos(x: real): real

Returns the arc cosine of the argument. It is an error ifx is less than−1 or greater than1.

def acosh(x: real): real

Returns the inverse hyperbolic cosine of the argument. It isan error ifx is less than1.

def asin(x: real): real

Returns the arc sine of the argument. It is an error ifx is less than−1 or greater than1.

def asinh(x: real): real

Returns the inverse hyperbolic sine of the argument.

def atan(x: real): real

Returns the arc tangent of the argument.

def atan2(y: real, x: real): real

Returns the arc tangent of the two arguments. This is equivalent to the arc tangent ofy / x except
that the signs ofy andx are used to determine the quadrant of the result.

def atanh(x: real): real

Returns the inverse hyperbolic tangent of the argument. It is an error ifx is less than−1 or greater than
1.

def cbrt(x: real): real

Returns the cube root of the argument.

def ceil(x: real): real

Returns the value of the argument rounded up to the nearest integer.

def conjg(a: complex(?w)): complex(w)

Returns the conjugate ofa.

def cos(x: real): real

Returns the cosine of the argument.

def cosh(x: real): real

Returns the hyperbolic cosine of the argument.

def erf(x: real): real

Standard Modules 145

Returns the error function of the argument defined as

2√
π

∫ x

0

e−t2dt

for the argumentx.

def erfc(x: real): real

Returns the complementary error function of the argument. This is equivalent to1.0 - erf(x) .

def exp(x: real): real

Returns the value ofe raised to the power of the argument.

def exp2(x: real): real

Returns the value of2 raised to the power of the argument.

def expm1(x: real): real

Returns one less than the value ofe raised to the power of the argument.

def floor(x: real): real

Returns the value of the argument rounded down to the nearestinteger.

def lgamma(x: real): real

Returns the natural logarithm of the absolute value of the gamma function of the argument.

def log(x: real): real

Returns the natural logarithm of the argument. It is an errorif the argument is less than or equal to
zero.

def log10(x: real): real

Returns the base 10 logarithm of the argument. It is an error if the argument is less than or equal to
zero.

def log1p(x: real): real

Returns the natural logarithm ofx+1 .

def log2(i: int(?w)): int(w)
def log2(i: uint(?w)): uint(w)
def log2(x: real): real

Returns the base 2 logarithm of the argument. It is an error ifthe argument is less than or equal to zero.

def nearbyint(x: real): real

146 Chapel Language Specification

Returns the rounded integral value of the argument determined by the current rouding direction.

def rint(x: real): real

Returns the rounded integral value of the argument determined by the current rouding direction.

def round(x: real): real

Returns the rounded integral value of the argument. Cases halfway between two integral values are
rounded towards zero.

def sin(x: real): real

Returns the sine of the argument.

def sinh(x: real): real

Returns the hyperbolic sine of the argument.

def sqrt(x: real): real

Returns the square root of the argument. It is an error if the argument is less than zero.

def tan(x: real): real

Returns the tangent of the argument.

def tanh(x: real): real

Returns the hyperbolic tangent of the argument.

def tgamma(x: real): real

Returns the gamma function of the argument defined as

∫

∞

0

tx−1e−tdt

for the argumentx.

def trunc(x: real): real

Returns the nearest integral value to the argument that is not larger than the argument in absolute value.

Standard Modules 147

26.3 Random

The moduleRandom supports the generation of pseudo-random values and streams of values. The current
interface is minimal and should be expected to grow and evolve over time.

class RandomStream

Implements a pseudo-random stream of values. Our current implementation generates the values using
a linear congruential generator. In future versions of thismodule, the RandomStream class will offer a
wider variety of algorithms for generating pseudo-random values.

const RandomStream.seed: int(64)

The seed value for the random stream. If no seed is specified inthe constructor, the millisecond value
of the current time is used. The seed value must be an odd integer. If an even integer is supplied, the
class constructor will increment it to obtain an odd integer.

def RandomStream.fillRandom(x:[?D] real)

Fill the argument array,x , with the next|D| values of the pseudo-random stream. Arrays of arbitrary
rank can be passed to this routine, causing the 1D stream of values to be mapped to the array elements
according to the array’s default iteration order. Once our implementation supports distributed arrays,
this routine is intended to fill the array’s values in parallel.

def RandomStream.fillRandom(x:[?D] complex)

Similar to the previous routine, but for use with arrays of complex values. The elements are filled
in the same order as above except that pairs of values from thestream are assigned to each element,
the first to the real component, the second to the imaginary. As this module matures, we will support
fillRandom for arrays of other element types as well.

SeedGenerator

A symbol that can be used to generate seed values for the RandomStream class.

SeedGenerator.clockMS

Generates a seed value using the milliseconds value from thecurrent time. As this module matures,
SeedGenerator will support additional mechanisms for generating seed values.

def fillRandom(x:[], initseed: int(64))

A routine provided for convenience to support filling an array x with pseudo-random values without
explicitly constructing an instance of theRandomStream class, useful for filling a single array or
multiple arrays which require no coherence between them. The initseed parameter corresponds to
theseed member of theRandomStream class and will default to the milliseconds value of the current
time if no seed value is provided.

148 Chapel Language Specification

26.4 Standard

def ascii(s: string): int

Returns the ASCII code number of the first letter in the argument s .

def assert(test: bool) {

Exits the program iftest is false and prints to standard error the location in the Chapel code of the
call to assert . If test is true, no action is taken.

def assert(test: bool, args ...?numArgs) {

Exits the program iftest is false and prints to standard error the location in the Chapel code of the
call to assert as well as the rest of the arguments to the call. Iftest is true, no action is taken.

def complex.re: real

Returns the real component of the complex number.

def complex.im: real

Returns the imaginary component of the complex number.

def complex.=re(f: real)

Sets the real component of the complex number tof .

def complex.=im(f: real)

Sets the imaginary component of the complex number tof .

def exit(status: int)

Exits the program with codestatus .

def halt() {

Exits the program and prints to standard error the location in the Chapel code of the call tohalt as
well as the rest of the arguments to the call.

def halt(args ...?numArgs) {

Exits the program and prints to standard error the location in the Chapel code of the call tohalt as
well as the rest of the arguments to the call.

def length(s: string): int

Returns the number of characters in the arguments .

def max(x, y...?k)

Returns the maximum of the arguments when compared using the“greater-than” operator. The return
type is inferred from the types of the arguments as allowed byimplicit coercions.

def min(x, y...?k)

Returns the minimum of the arguments when compared using the“less-than” operator. The return type
is inferred from the types of the arguments as allowed by implicit coercions.

def string.substring(x): string

Returns a value of string type that is a substring of the base expression. Ifx is i, a value of typeint ,
then the result is theith character. Ifx is an arithmetic sequence, the result is the substring wherethe
characters in the substring are given by the values in the arithmetic sequence.

Standard Modules 149

26.5 Time

The moduleTime defines routines that query the system time and a recordTimer that is useful for timing
portions of code.

record Timer

A timer is used to time portions of code. Its semantics are similar to a stopwatch.

enum TimeUnits { microseconds, milliseconds, seconds, minutes , hours };

The enumeration TimeUnits defines units of time. These unitscan be supplied to routines in this
module to specify the desired time units.

def getCurrentDate(): (int, int, int)

Returns the year, month, and day of the month as integers. Theyear is the year since 0. The month is
in the range 1 to 12. The day is in the range 1 to 31.

def getCurrentTime(unit: TimeUnits = seconds): real

Returns the elapsed time since midnight in the units specified.

def Timer.clear()

Clears the elapsed time stored in the Timer.

def Timer.elapsed(unit: TimeUnits = seconds): real

Returns the cumulative elapsed time, in the units specified,between calls tostart andstop . If the
timer is running, the elapsed time since the last call tostart is added to the return value.

def Timer.start()

Start the timer. It is an error to start a timer that is alreadyrunning.

def Timer.stop()

Stops the timer. It is an error to stop a timer that is not running.

def sleep(t: uint)

Delays the computation fort seconds.

26.6 Types

def numBits(type t): int

Returns the number of bits used to store the values of typet . This is implemented for all numeric types
andbool .

def max(type t): t

Returns the maximum value that can be stored in typet . This is implemented for all numeric types.

def min(type t): t

Returns the minimum value that can be stored in typet . This is implemented for all numeric types.

150 Chapel Language Specification

Index
&, 54
&&, 56
&&=, 62
&=, 62
(/ , 97
* , 51
* tuples, 95
** , 54
** =, 62
* =, 62
+, 50, 59
+ (unary), 49
+=, 62
- , 50
- (unary), 49
-= , 62
/ , 52
/= , 62
<, 57
<<, 55
<<=, 62
<=, 58
=, 62
==, 58
>, 57
>=, 58
>>, 55
>>=, 62
?, 27, 46
#, 59, 98
#=, 62
%, 53
%=, 62
˜ , 54
ˆ , 55
ˆ= , 62
_, 94

argv , 70
arithmetic sequences, 103

indefinite, 103
integral element type, 103
literals, 103
strided, 103

arrays, 11, 105, 107
association to domains, 22
slicing, 15
arithmetic, 110

arithmetic, strided, 111
as formal arguments, 18, 109, 112
assignment, 14, 108
association to domains, 115
distributed, 136
enumerated, 115
indefinite, 113
indexing, 108
initialization, 110
opaque, 114
predefined functions, 116
promotion, 109
slice, 112
slicing, 14, 108
sparse, 112
types, 107

assignment, 62
tuples, 93

atomic , 131
atomic transactions, 131
automatic memory management, 88

begin , 20, 127
block, 61
block level statement, 62
bool , 31
by , 59

case sensitivity, 27
casts, 47
class , 83
classes, 22, 83

assignment, 83
constructors, 86
declarations, 83
fields, 83
generic, 121
getters, 86
indexing, 85
inheritance, 87
methods, 84
methods without parentheses, 85
nested, 88
promotion, 88
setters, 86

cobegin , 127
command-line arguments, 70
comments, 27

151

152 Chapel Language Specification

compiler errors
user-defined, 29

complex
casts from tuples, 47

complex , 32
conditional

expression, 60
statement, 63

conditional statement
dangling else, 63

config , 12, 40
configuration variables, 21
const , 39
constants

compile-time, 39
runtime, 39

conversions
bool, 42
class, 42, 43
enumeration, 41, 42
explicit, 42
implicit, 41
numeric, 41, 42
parameter, 42
record, 42, 43

def , 73
default values, 75
distributions, 135
domains, 11, 105

arithmetic, 14, 110
arithmetic literals, 110
arithmetic, strided, 111
as formal arguments, 106
assignment, 106
association to arrays, 115
distributed, 135
enumerated, 115
indefinite, 113
index types, 106
opaque, 114
predefined functions, 116
promotion, 107
sparse, 112
subdomains, 115
types, 11, 105

dynamic dispatch, 87

else , 60, 63
elt_type , 123
enumerated types, 18, 34

execution environment, 133
exploratory programming, 70
expression

as a statement, 62
expression statement, 62

fields
generic types, 123
without types, 123

file type, 139
methods, 139
standard files, 140

for , 65, 66
for loops, 65

parameters, 66
forall , 125
forall expressions, 126
forall loops, 125

alternative syntax, 125
ordered, 126

formal arguments, 74
arithmetic arrays, 112
array types, 121
defaults, 75
domains, 106
generic types, 121
naming, 75
queried types, 120
tuples, 95
without types, 120

function calls, 45, 74
functions, 16, 73

as lvalues, 76, 77
candidates, 78
generic, 16, 119
most specific, 79
nested, 80
overloading, 16, 77
setters, 77
syntax, 73
variable number of arguments, 80
visibile, 78
with class arguments, 78

generics
function visibility, 121
functions, 16, 119
methods, 123
types, 121

Global , 133, 134

high , 103

Standard Modules 153

identifiers, 27
if , 60, 63
imaginary , 32
in , 76
indexing, 46
inheritance, 87
inout , 76
int , 31
integral , 121
intents, 75

in , 76
inout , 76
out , 76
param , 120
type , 119

iterator , 117
iterators, 15, 117

and sequences, 117
on, 135
structural interface, 118

Jacobi method
example, 11

keywords, 28

length

on sequences, 101
let , 60
literals

primitive type, 33
local, 133
locale , 133, 134
Locales , 133
locales, 133
low , 103
lvalue, 47

main , 69
member access, 46, 84
memory consistency model, 131
module , 69
modules, 16, 69

and files, 71
nested, 71
using, 66, 70

multiple inheritance, 88

named arguments, 75
numeric , 121
numLocales , 133

on, 134
operators

arithmetic, 49
associativity, 48
bitwise, 54
logical, 56
overloading, 77
precedence, 48
relational, 57

ordered , 126, 127
out , 76

param , 39, 66
parameters, 39

configuration, 40
in classes or records, 122

read, 140
default methods, 141
on files, 140

read , 140
readFF , 130
readXF , 130
readXX , 130
real , 32
record, 22
record , 89
records, 89

assignment, 90
differences with classes, 89
equality, 90
generic, 121
inequality, 90
inheritance, 89

reductions, 15
remote, 133
reserved words, 28
reshape , 102
return , 74
reverse , 101

scalar promotion, 99
tensor product iteration, 100
zipper iteration, 99

select , 18, 63
seq , 97
sequences

and conditional expressions, 101
and conditional statements, 100
and select statements, 101
and while statements, 100
arithmetic, 103

154 Chapel Language Specification

assignment, 97
cast to tuples, 47
casts from tuples, 104
indexing, 98, 99
iteration, 98
literals, 97
promotion, 99
rank, 97
types, 97

serial , 128
single , 129
spread , 102
statement, 61
stride , 103
string , 33
strings

format string casts, 47
subdomains, 115
sync , 130
synchronization variables, 20, 128

built-in functions on, 130
implicit in cobegin , 129
of class type, 131
of record type, 131
single , 129
sync , 130

tensor product iterator, 65
then , 60, 63
this , 85, 88
transpose , 102
tuples, 15, 93

assignment, 93
cast to sequences, 47
casts from sequences, 104
destructuring, 94
homogeneous, 94
indexing, 95
types, 93
variable declarations, 94

type aliases, 22, 35
in classes or records, 122

type inference, 14, 38
type select statements, 66
types

primitive, 31

uint , 31
union , 91
unions, 91

assignment, 91

fields, 91
type select , 91

use , 66

variables
configuration, 12, 40
declarations, 37
default initialization, 38
global, 38
local, 38

when, 63
where , 124
while , 64
while loops, 64
white space, 27
write, 140

default methods, 14, 141
on files, 140

write , 140
writeFE , 130
writeln , 14, 140
writeXE , 130
writeXF , 130

yield , 117

zipper iteration, 65

	Scope
	Notation
	Organization
	Acknowledgments
	Language Overview
	Motivating Principles
	Getting Started
	Example Chapel Programs
	Jacobi Method
	Matrix and Vector Norms
	Simple Producer-Consumer Program
	Generic Stack Implementations

	Lexical Structure
	Comments
	White Space
	Case Sensitivity
	Tokens
	Identifiers
	Keywords
	Literals
	Operators and Punctuation
	Grouping Tokens

	User-Defined Compiler Errors

	Types
	Primitive Types
	The Bool Type
	Signed and Unsigned Integral Types
	Real Types
	Complex Types
	Imaginary Types
	The String Type
	Primitive Type Literals

	Enumerated Types
	Class Types
	Record Types
	Union Types
	Tuple Types
	Sequence Types
	Domain and Array Types
	Type Aliases

	Variables
	Variable Declarations
	Default Initialization
	Local Type Inference

	Global Variables
	Local Variables
	Constants
	Compile-Time Constants
	Runtime Constants

	Configuration Variables

	Conversions
	Implicit Conversions
	Implicit Numeric Conversions
	Implicit Enumeration Conversions
	Implicit Class Conversions
	Implicit Record Conversions
	Implicit Compile-Time Constant Conversions
	Implicit Statement Bool Conversions

	Explicit Conversions
	Explicit Numeric Conversions
	Explicit Enumeration Conversions
	Explicit Class Conversions
	Explicit Record Conversions

	Expressions
	Literal Expressions
	Variable Expressions
	Call Expressions
	Indexing Expressions
	Member Access Expressions

	The Query Expression
	Casts
	LValue Expressions
	Operator Precedence and Associativity
	Operator Expressions
	Arithmetic Operators
	Unary Plus Operators
	Unary Minus Operators
	Addition Operators
	Subtraction Operators
	Multiplication Operators
	Division Operators
	Modulus Operators
	Exponentiation Operators

	Bitwise Operators
	Bitwise Complement Operators
	Bitwise And Operators
	Bitwise Or Operators
	Bitwise Xor Operators

	Shift Operators
	Logical Operators
	The Logical Negation Operator
	The Logical And Operator
	The Logical Or Operator

	Relational Operators
	Ordered Comparison Operators
	Equality Comparison Operators

	Miscellaneous Operators
	The String Concatenation Operator
	The Sequence Concatenation Operator
	The Arithmetic Domain By Operator
	The Arithmetic Sequence By Operator

	Let Expressions
	Conditional Expressions

	Statements
	Blocks
	Block Level Statements
	Expression Statements
	Assignment Statements
	The Conditional Statement
	The Select Statement
	The While and Do While Loops
	The For Loop
	Zipper Iteration
	Tensor Product Iteration
	Parameter For Loops

	The Use Statement
	The Type Select Statement
	The Empty Statement

	Modules
	Module Definitions
	Program Execution
	The main Function
	Command-Line Arguments
	Module Execution
	Programs with a Single Module

	Using Modules
	Explicit Naming

	Nested Modules
	Implicit Modules

	Functions
	Function Definitions
	The Return Statement
	Function Calls
	Formal Arguments
	Named Arguments
	Default Values

	Intents
	The Blank Intent
	The In Intent
	The Out Intent
	The Inout Intent

	Variable Functions
	Explicit Setter Functions

	Function Overloading
	Function Resolution
	Identifying Visible Functions
	Determining Candidate Functions
	Determining More Specific Functions

	Nested Functions
	Accessing Outer Variables

	Variable Length Argument Lists

	Classes
	Class Declarations
	Class Assignment
	Class Fields
	Class Field Accesses

	Class Methods
	Class Method Declarations
	Class Method Calls
	The this Reference
	Class Methods without Parentheses
	The this Method

	Class Constructors
	The Default Constructor

	Getters and Setters
	Inheritance
	Accessing Base Class Fields
	Derived Class Constructors
	Shadowing Base Class Fields
	Overriding Base Class Methods
	Inheriting from Multiple Classes

	Class Promotion of Scalar Functions
	Nested Classes
	Automatic Memory Management

	Records
	Record Declarations
	Class and Record Differences
	Records as Value Classes
	Record Inheritance
	Record Assignment

	Default Comparison Operators on Records

	Unions
	Union Declarations
	Union Fields

	Union Assignment
	The Type Select Statement and Unions

	Tuples
	Tuple Expressions
	Tuple Type Definitions
	Tuple Assignment
	Tuple Destructuring
	Variable Declarations in a Tuple
	Ignoring Values with Underscore

	Homogeneous Tuples
	Declaring Homogeneous Tuples

	Tuple Indexing
	Formal Arguments of Tuple Type
	Formal Argument Declarations in a Tuple

	Sequences
	Sequence Literals
	Sequence Type Definitions
	Sequence Rank
	Sequence Assignment
	Iteration over Sequences
	Sequence Concatenation
	Sequence Indexing
	Sequence Indexing by Integers
	Sequence Indexing by Tuples

	Sequence Promotion of Scalar Functions
	Zipper Promotion
	Tensor Product Promotion

	Sequence Operators
	Sequences in Logical Contexts
	Sequences in Select Statements

	Filtering Predicates
	Methods and Functions on Sequences
	The length Method
	The reverse Method
	The spread Function
	The transpose Function
	The reshape Function

	Arithmetic Sequences
	Strided Arithmetic Sequences
	Querying the Bounds and Stride of an Arithmetic Sequence
	Indefinite Sequences

	Conversions Between Sequences and Tuples

	Domains and Arrays
	Domains
	Domain Types
	Index Types
	Domain Assignment
	Formal Arguments of Domain Type
	Iteration over Domains
	Domain Promotion of Scalar Functions

	Arrays
	Array Types
	Array Indexing
	Array Slicing
	Array Assignment
	Formal Arguments of Array Type
	Iteration over Arrays
	Array Promotion of Scalar Functions
	Array Initialization

	Arithmetic Domains and Arrays
	Arithmetic Domain Literals
	Arithmetic Domain Types
	Strided Arithmetic Domains
	Arithmetic Domain Indexing
	Arithmetic Array Indexing
	Arithmetic Array Slicing
	Formal Arguments of Arithmetic Array Type

	Sparse Domains and Arrays
	Changing the Indices in Sparse Domains

	Indefinite Domains and Arrays
	Changing the Indices in Indefinite Domains
	Testing Membership in Indefinite Domains

	Opaque Domains and Arrays
	Enumerated Domains and Arrays
	Association of Arrays to Domains
	Subdomains
	Predefined Functions and Methods on Domains
	Predefined Functions and Methods on Arrays

	Iterators
	Iterator Functions
	The Yield Statement
	Iterator Calls
	Iterators in For and Forall Loops
	Iterators as Sequences

	The Structural Iterator Interface

	Generics
	Generic Functions
	Formal Type Arguments
	Formal Parameter Arguments
	Formal Arguments without Types
	Formal Arguments with Queried Types
	Formal Arguments of Generic Type
	Formal Arguments of Generic Array Types

	Function Visibility in Generic Functions
	Generic Types
	Type Aliases in Generic Types
	Parameters in Generic Types
	Fields without Types
	Fields of Generic Types
	Generic Methods
	The elt_type Type

	Where Expressions
	Example: A Generic Stack

	Parallelism and Synchronization
	The Forall Loop
	Alternative Forall Loop Syntax
	The Ordered Forall Loop

	The Forall Expression
	The Cobegin Statement
	The Begin Statement
	The Ordered Expression
	The Serial Statement
	Synchronization Variables
	Single Variables
	Sync Variables
	Additional Synchronization Variable Functions
	Synchronization Variables of Record and Class Types

	Memory Consistency Model
	Atomic Statement

	Locality and Distribution
	Locales
	The Locale Type
	Predefined Locales Array
	Querying the Locale of a Variable

	Specifying Locales for Computation
	On
	On and Iterators

	Distributions
	Distributed Domains
	Distributed Arrays
	Undistributed Domains and Arrays

	Standard Distributions
	User-Defined Distributions

	Reductions and Scans
	Reduction Expressions
	Scan Expressions
	User-Defined Reductions and Scans

	Input and Output
	The file type
	Standard files stdout, stdin, and stderr
	The write, writeln, and read functions
	The write and writeln method on files
	The read method on files
	User-Defined read and write methods
	Default read and write methods

	Standard Modules
	BitOps
	Math
	Random
	Standard
	Time
	Types

