Chapel Language Specification 0.702

Cray Inc
411 First Ave S, Suite 600
Seattle, WA 98104

Chapel Language Specification

Contents

[—Scopk
_Notatiod

Chapel Language Specification

B Variabled 37
B1 VariableDeclaratichs 37
811 DefaultInitializatidn e 38
B12 localTypelnferenbe, 38

B2 GlobalVariahlés 38
B3 localVariablds 38
B4 _Constanks. 39
841 Compile-Time Constahts v i 39
B42 RuntimeConstahts 39

B5 ConfigurationVariables 40
[0 Conversionk 41
9.1 Implicit CONVEISIONS . .+« v o v e e e e e e 41
ici i S e e e e e e e e e 41

0.1.2 Implicit Enumeration CONVErSIONS . . . « « v v v v v e e e e e 41
0.1.3 ImplicitClass Conversidns cu...... 42
014 |mD|ICIt Record ConverS|dns 42

- ns 42

0.1.6 Implicit Statement Bool CONVEISIONS .« « « « v v v v v e e e e e e 42

S i e e e e e e e 42

0.2.1 Explicit Numeric CONVEISIANS . « « « v v v v e e e e e e 42
[9.2.2 Explicit Enumeration CONVEISIONS v o oo v e e o 42
023 Explicit Class ConVersidns v v v v v e e 43
024 FExplicitRecordConversidns 43

[10 Expressions 45
01 literalExpressiohs 45
02 Variable Expressidns. 45
[10.3 CallEXpressions o o 45
[10.3.1 Indexing EXPressiansov it 46
[10.3.2 Member Access EXpressionso e 46
04 TheQueryExpression 46
BO5 Caslsot 47
S i e e e e e 47
[10.7 Operator Precedence and Associalivity v e oo 48
0.8 OperatorExpressidns 48
[10.9 ArithmeticOperatdrs o o v 49
[10.9.1 Unary PIUS OPerathrs oot v v e e e et e e e e 49
092 Unary MiNUS OPEIADIS . « . « « v o o oo e e e e 49
093 AdditionOperatdrs 50
[10.9.4 Subtraction Operatbrs 50
10,95 Multiplication Operatdrs 51
[109.6 Division Operatars v v i 52
097 ModulusOperatdrs 53
[10.9.8 Exponentiation Operatiors v v i 54
o010 Bitwise Operatdrs 54
[10.10.1 Bitwise Complement Operaiors v .« v v v vt e e e 54
[10.10.2 Bitwise And Qperatdrs 54
[10.10.3 Bitwise Or Operatdrs v v v v e 55
[10.10.4 Bitwise Xor Operatdrs i e 55

Chapel Language Specification

IJil.lA..llh.e_SlLIﬂg Concatenation Opeflator v oo

[10.14.2 The Sequence Concatenation Qperator .

10.14.3 The Arlthmetlc Domain By OpErator vviime

Chapel Language Specification

0351 TheBlankinteht 75
352 Thelnlinteht 76
0353 TheOutinteht 76
354 Thelnoutlnteht. 76
3.6 Variable Functiohs 76
[3.6.1 FExplicit Sefter FUnctidns vt 77
3.7 FunctionOQverloadihg 77
[13.8 FunctionResolutibn 78
(381 1dentfying ViSO FUNGHONS . . « « « « « « oo oeeee e 78
[13.8.2 Determining Candidate Functions 78
[13.8.3 Determining More Specific Functibns 79
[13.9 Nested FUNCHONS . . .« « o v o o o e e e e e 80
1391 AccessingQuterVariatllescoooee ... 80
[13.10 Variable Length Argument Libts 80
[14 Classds 83
41 ClassDeclaratidns 83
42 ClassAssignmént 83
43 ClassFiellls e 83
1431 ClassFieldAcceshbes 84
4.4 ClassMetholls e 84
441 Class Method Declaratibns i 84
1442 ClassMethod CAlls 84
1443 ThehisReferende 85
[14.4.4 Class Methods without Parenthbses 85
[14.45 ThehisMethodl 85
45 Class Constructbrs 86
451 The Default Construdtor 86
146 Geftersand Seters v ot 86
47 Inhemtande o oo e 87
[4.7.1 AccessingBase CIASSEIBIAS . . . o o o oo e 87
472 DerivedClass Construclors 87
(473 ShadowingBase CIASS EIBIOS . « « v o oot oo 87
4.7.4 Overriding Base Class MethiodSo oo oot e o e 87
[14.7.5 Inheriting from Multiple Clasdes oo it 88
[14.8 Class Promotion of Scalar Functions 88
49 NestedClasdes 88
[14.10 Automatic Memory ManagemPent 88
[15 Records 89
151 Record Declaratidns v . v v v e 89
[15.2 Class and Record Differenices o o o v i i e 89
521 RecordsasValueCladses 89
522 Recordlinheritadce 89
[5.2.3 RecordAssignmént 90
[15.3 Default Comparison Operatorson Redords oo v i .. 90

Chapel Language Specification

91
91
91
91
91

93
93
93
93
94
94
94
94
95
95
95
95

Chapel Language Specification

(19 _Domains and Arrays 105
M1 Domaidso 105
1911 DomainTVPRES v v v o e e e e e e e 105
1912 IndeXTVDES v v o e e e e e e e 106
[19.1.3 DomainAssignmént 106
[19.1.4 Formal Argumentsof DOMAINTYPE oo vvov v 106
1915 lterationoverDomains e 106
[19.1.6 Domain Promotion of Scalar Functionscccco oo ... 107
92 Amavk 107
1921 AAYTYDES o o o o e e e e e e 107
1922 ArrayIndexidg oo vt e 108
1923 Array SHCIOG . . .« .« o o o v e e e e 108
1924 Array ASSignmeint 108
Pe . .. e e 109
19.2.6 lterationoverArralys 109
[19.2.7 Array Promotion of Scalar Functions e 109
[19.2.8 Array Initialization e 110
[19.3 Arithmetic Domainsand Arrdys 110
i i inli IS . e 110
19,32 Arithmetic DOmaIN TYPES v v v e e e e e e e 111
[19.3.3 Strided ArithmeticDomains 111
[19.3.4 Arithmetic Domain Indexifgo e 111
[19.3.5 Arithmetic Array Indexifg oo i e e e e e 112
[19.3.6 Arithmetic Array SHCIOG v v v v v v 112
[19.3.7 Formal Arguments of Arithmetic Array T¥pe 112
9.4 Sparse Domainsand ArfAyS e 112
[19.4.1 Changingthe Indicesin Sparse Domains 113
[19.5 Indefinite Domainsand Arrdys e 113
[19.5.1 Changing the Indices in Indefinite Domhins 114
[19.5.2 Testing Membership in Indefinite Doméins 114
[19.6 Opaque DOMAINS AN AITBYS\ o v v v e e e e e e e e 114
9.7 Enumerated Domainsand Arlays 115
[19.8 Association of Arraysto DOMAINS v i e e e e 115
9.9 Subdomaihs 115
[19.10 Predefined Functions and Methods on Dathains 116
[19.11 Predefined Functions and Methodson Afrayso oot .. 116
0 _teratord 117
R0.1 lterator Functiohs e 117
202 TheYield Statement 117
203 lteratorCalls 117
20.3.1 lteratorsin Forand ForallLo®ps v v v i e e 117
032 lteratorsasSequedces, 117
0.4 The Structural lterator Interface e 118
1_Generick 119
R11 _GenericFUNClionS 119
2111 FormalType Argumentsou... 119

NS . . e e 120

Chapel Language Specification vii

21.1.5 Formal Arguments of Genefic TYPe o v oo v vt e e e 121
21.1.6 Formal Arguments of Generic Array Tylpes 121
1.2 Function Visibility in Generic Functidnst e 121
P13 GenericTypbs 121
21.3.1 Type Aliasesin Generic TYPES o o v v v v v v et e e o e 122
£1.3.2 Parametersin GenericTypes 122
2133 FieldswithoutTypks, 123
134 Fieldsof GenericTydes i 123
£135 GenericMethdds, 123
2136 TheelttypeTypd 123
R1.4 Where EXpressians oot 124
P15 Example: AGenericStdck 124
[22_Parallelism and Synchronizatioh 125
P21 TheForalllodp 125
22.1.1 Alternative Forallloop Synfax v vt e 125
P2.12 TheOrdered Forallldop o v v vt e e e e e e 126
P22 TheForallExpressbn e 126
P23 The Cobegin Statembent 127
P24 TheBeginStatemént. 127
22.5 The Ordered EXPIeSSION o o v vt e e e e e e 127
2.6 TheSerialStatembnt. 128
2.7 SynchronizationVariables e 128
271 SingleVariablbs. e 129
272 SyncVariablbs 130
22.7.3 Additional Synchronization Variable Functions . - 130
122.7.4 _Synchronization Variables of Record and Class Types 131
2.8 Memory Consistency Molel 131
2.9 Atomic Statemdnt 131
[23 1 qcality and Distribution 133
P31 10Calds oo 133
2311 ThelocaleType e 133
23.1.2 PredefinedlocalesAttay 133
23.1.3 QueryingthelocaleofaVarigble 134
3.2 Specifying L ocales for Computafion 134
B321 Oh. 134
2322 Onandlteratdrs. o ot e 135
P33 Distribufionds e 135
2331 Distributed Domaihs 135
P332 Distributed Arrays 136
[23.3.3 Undistributed Domainsand ArtRysS 136
3.4 Standard Distributions 136
-Defi SIBURONS 136
[24_Reductions and Scans 137
P41 Reduction Expressidns. 137
4.2 Scan EXpressianso e e e 137

viii Chapel Language Specification

25_1nput and Qutputl 139
R5.1 _Thefiletyne 139
[25.2 Standard filestdout stdin andstderr. 140
5.3 _Thewrite, writeln, andreadfunctionb 140
5.4 Thewrite andwriteln method onfilds 140
P55 _Thereadmethod ONFIAS v v oot 140
5.6 User-Definedeadandwrite methads 140
25.7 Defaulreadandwrite methods 141

26 Standard Modulek 143
P61 BIOME . . . o o 143
B62 Math 143
P63 Randoln 147
6.4 Standald 148
P65 _Timb, 149

Scope 1
1 Scope

Chapel is a new parallel programming language that is unéegldpment at Cray Inc. in the context of
the DARPA High Productivity Language Systems initiativalahe DARPA High Productivity Computing
Systems initiative. This document specifies the Chapeldagg.

This document is a work in progress and is not definitive. Inipalar, it is not a standard.

Chapel Language Specification

Notation 3
2 Notation

Special notations are used in this specification to denosp€@litode and to denote Chapel syntax.

Chapel code is represented with a fixed-width font where kegeare bold and comments are italicised.

Example
for i in D do /! iterate over domain D
writeln(i); /1 output indices in D

Chapel syntax is represented with standard syntax notatievhich productions define the syntax of the
language. A production is defined in terms of non-termiitali€¢ized) and terminal (non-italicized) symbols.
The complete syntax defines all of the non-terminal symbolsiims of one another and terminal symbols.

A definition of a non-terminal symbol is a multi-line consttu The first line shows the name of the non-
terminal that is being defined followed by a colon. The nex¢di before an empty line define the alternative
productions to define the non-terminal.

Example The production

bool- literal :
true
false

definesbool- literal to be either the symbake or false

In the event that a single line of a definition needs to brea@sscmultiple lines of text, more indentation is
used to indicate that it is a continuation of the same altamaroduction.

As a short-hand for cases where there are many alternatia¢gléfine one symbol, the first line of the
definition of the non-terminal may be followed by “one of” tadicate that the single line in the production
defines alternatives for each symbol.

Example The production
unary- operator: one of
+ - "1
is equivalent to

unary- operator:
+

As a short-hand to indicate an optional symbol in the definitif a production, the subscript “opt” is suffixed
to the symbol.

Example The production

formal:
formal- tag

is equivalent to

formal:
formal- tag
formal- tag
formal- tag
formal- tag

identifier

identifier
identifier
identifier
identifier

Chapel Language Specification

formal type,,: default expression,:

formal type default expression
formal type
default expression

Organization 5

3 Organization

This specification is organized as follows:

e Sectiorl, Scope, describes the scope of this specification.

e Sectiorl2, Notation, introduces the notation that is usesligghout this specification.

e SectiorB, Organization, describes the contents of eadteaféctions within this specification.
e Sectiorl#, Acknowledgments, offers a note of thanks to peaptl projects.

e Sectior[b, Language Overview, describes Chapel at a high lev

e Sectior®, Lexical Strucutre, describes the lexical coneptsmof Chapel.

e Sectiorl¥, Types, describes the types in Chapel and defiagsithitive and enumerated types.
e SectiorB, Variables, describes variables and constaibapel.

e Sectior®, Conversions, describes the legal implicit andiedconversions allowed between values of
different types. Chapel does not allow for user-defined easions.

e SectiorID, Expressions, describes the serial expressi@isapel.

e SectiorTlL, Statements, describes the serial stateme@twivel.

e Sectior IR, Modules, describes modules, Chapel’'s abistnact allow for name space management.
e SectiorIB, Functions, describes functions and functisalution in Chapel.

e Sectior IH, Classes, describes reference classes in Chapel

e SectiorIb, Records, describes records or value classdwmipeC

e SectiorIb, Unions, describes unions in Chapel.

e Sectior IV, Tuples, describes tuples in Chapel.

e SectiorIB, Sequences, describes sequences in Chapel.

e SectionIP, Domains and Arrays, describes domains andsaima@hapel. Chapel arrays are more
general than arrays in many other languages. Domains ae& Bels, an abstraction that is typically
not distinguished from arrays.

e Sectior 2D, Iterators, describes iterator functions arldssdterator interface in Chapel.
e SectiorZlL, Generics, describes Chapel’s support for gefugrctions and types.

e Sectior 2P, Parallelism and Synchronization, describesllghexpressions and statements in Chapel
as well as synchronization constructs and atomic sections.

e SectiorZB, Locality and Distribution, describes condsdier managing locality and distributing data
in Chapel.

e Section[24, Reductions and Scans, describes the buildinctions and scans as well as structural
interfaces to support user-defined reductions and scans.

Chapel Language Specification

e SectiorZb, Input and Output, describes support for inpdtaarput in Chapel, including file input and
output..

e Sectior2b, Standard Modules, describes the standard ewthat are provided with the Chapel lan-
guage.

Acknowledgments 7

4 Acknowledgments

We would like to recognize the following people for theirats and impact on the Chapel language and its
implementation—David Callahan, Hans Zima, John Plevyak&on Hoffswell, Roxana Diaconescu, Mark
James, Mackale Joyner, and Robert Bocchino.

Chapel is a derivative of a number of parallel and distriduéanguages and takes ideas directly from them.
These include the MTA extensions of C, HPF, and ZPL.

Chapel also takes many serial programming ideas from mdrer programming languages, especially C#,
C++, Java, Fortran, and Ada.

The preparation of this specification was made easier arfahtileesult greatly improved because of the good
work that went in to the creation of other language standandspecifications, in particular the specifications
of C# and C.

Chapel Language Specification

Language Overview 9

5 Language Overview

5.1 Motivating Principles

Chapel is a new programming language being developed byl@cags part of DARPA's High Productivity
Computing Systems (HPCS) program to improve the produgtofiprogramming parallel systems. There
are four main motivating principles for the design of the gdldanguage.

General Parallel Programming Chapel’s first motivating principle is to support generaigiel program-
ming through the use of high-level language abstractionsefpressing parallelism. Chapel supports a
global-view programming mod#iat raises the level of abstraction for the expression tf bata and control
flow as compared to parallel programming models currentbgs production.

Global-view data structureare arrays and other data aggregates whose sizes and iatiagressed glob-
ally in spite of the fact that their implementations may wligtte them across the memories of multiple nodes
or localed] This contrasts with most parallel languages used in practibich tend to require users to par-
tition distributed data aggregates into per-processonksieither manually or using language abstractions.
As a simple example, to create a 0-based vector wighlements distributed betweerocales, a language
like Chapel that supports global-view data structuresaallthe user to declare the array to contaiele-
ments and to refer to the array using the indiges.n — 1. In contrast, most traditional approaches require
the user to declare the array mghunks ofn/p elements each and to specify and manage inter-processor
communication and synchronization explicitly (and theadlstcan be messy j# does not divide: evenly).
Moreover, the chunks are typically accessed using locat@sdon each processa.g, 0..n/p), requiring

the user to explicitly translate between logical indiced Hiose used by the implementation.

A global view of controlmeans that a user’s program commences execution with aedogjtal thread of
control and then introduces additional parallelism thiotlge use of certain language concepts. All paral-
lelism in Chapel is implemented via multithreading, thotigdése threads are created via high-level language
concepts and managed by the compiler and runtime, ratherttiiaugh explicit fork/join-style program-
ming. An impact of this approach is that Chapel can expresslpbsm that is more general than the Single
Program, Multiple Data (SPMD) model that today’s most comrparallel programming approaches use as
the basis for their programming and execution models. Qlsageneral support for parallelism does not
preclude users from coding in an SPMD style if they wish.

Supporting general parallel programming also means tagatbroad range of parallel architectures. Chapel
is designed to target a wide spectrum of HPC hardware intfudiusters of commodity processors and
SMPs; vector, multithreading, and multicore processanstam vendor architectures; distributed-memory,
shared-memory, and shared address space architectudasetarorks of any topology. Our portability goal
is to have any legal Chapel program run correctly on all oféharchitectures, and for Chapel programs that
express parallelism in an architecturally-neutral wayddqrm reasonably on all of them. Naturally, Chapel
programmers can tune their codes to more closely match iggartmachine’s characteristics, though doing
S0 may cause the program to be a poorer match for other astthits.

1A locale in Chapel is a unit of the target architecture that suppartaputation and data storage. Locales are defined for an
architecture such that a locale’s threads will all have lsingiccess times to any specific memory address. For comyrmdsters, each
of their (single-core) processors, multicore processar§SMP nodes would be considered a locale.

10 Chapel Language Specification

Control of Locality A second principle in Chapel is to allow the user to optionalhd incrementally
specify where data and computation should be placed on fymqathmachine. We consider this control over
program locality to be essential for achieving scalabldgrarance on large machine sizes. Such control
contrasts with shared-memory programming models whickegurethe user with a flat memory model. It
also contrasts with SPMD-based programming models in whidh details are explicitly specified by the
programmer on a process-by-process basis via the multipleerating program instances.

Object-Oriented Programming (OOP) A third principle in Chapel is support for object-orientetbp
gramming. OOP has been instrumental in raising produgtimithe mainstream programming community
due to its encapsulation of related data and functions irsiongie software component, its support for spe-
cialization and reuse, and its use as a clean mechanism fioirdeand implementing interfaces. Chapel
supports objects in order to make these benefits availalbdeparallel language setting, and to provide a
familiar paradigm for members of the mainstream prograngnciemmunity. Chapel supports traditional
reference-based classes as well as value classes thasigmeedsand passed by value.

Chapel does not require the programmer to use an objecitedestyle in their code, so that traditional
Fortran and C programmers in the HPC community need not adoptv programming paradigm in order
to use Chapel effectively. Many of Chapel's standard Iipicapabilities are implemented using objects, so
such programmers may need to utilize a method-invocatyde ef syntax to use these capabilities. However,
using such libraries does not necessitate broader adagti@@P methodologies.

Generic Programming Chapel’s fourth principle is support for generic programgnand polymorphism.
These features allow code to be written in a style that is geneross types, making it applicable to variables
of multiple types, sizes, and precisions. The goal of theséufes is to support exploratory programming
as in popular interpreted and scripting languages, andppati code reuse by allowing algorithms to be
expressed without explicitly replicating them for each gible type. This flexibility at the source level is
implemented by having the compiler create versions of tltkedor each required type signature rather than
by relying on dynamic typing which would result in unaccdgp¢aruntime overheads for the HPC community.

Chapel’s first two principles are designed to provide supfmorgeneral, performance-oriented parallel pro-
gramming through high-level abstractions. The second tirciples are supported to help narrow the gulf
that exists between parallel programming languages andstneam programming and scripting languages.

5.2 Getting Started

A Chapel version of the standard “hello world” computatismiven here:

writeln("Hello, world!");

This program contains a single line of code that makes a@#le standardriteln ~ subroutine, passing it
a string literal argumentHello, world!" . This call causes the string to be printed to the console when
the program is executed.

In general, Chapel programs define code using one or morechawoduleseach of which supports top-level
initialization code that is invoked the first time the modisl@eised. Programs also define a single entry point
via a subroutine namedain . To facilitate exploratory programming, Chapel allowsgmammers to define
modules using files rather than an explicit module declamatind to omit the program entry point when the
program only has a single user module. This example takesnsalye of both these features.

Language Overview 11

Chapel code is stored in files with the extensidnpl . Assuming this program is stored in a file called
hello.chpl , it would define a single user modulgllo , whose name is taken from the filename. Since
the file defines a module, the top-level code in the file definesiiodule’s initialization code. And since the
program is composed of the sindlello module, it need not define an entry point. Thus, when the pragr
is executed, the singleello module will be initialized by executing its top-level codeyoking the call to
writeln() , and printing out the message.

To compile and run this program, execute the following comdseat the system prompt:

> chpl -0 hello hello.chpl
> ./hello

The following output will be printed to the console:

> Hello, world!

5.3 Example Chapel Programs

To introduce the Chapel language, four short example codeprasented and discussed. Each example
highlights certain Chapel features, showing how they aegl urs the context of a program. These examples
do not cover all of Chapel’s features. They are intended tmdluce the user to many of the basic serial
features that are currently supported in the compiler amténonstrate how to program with these features.
As more features are supported in the Chapel compiler, m@maples will be added to this section.

All examples in this section are included with the releasthefChapel compiler.

5.3.1 Jacobi Method

Description The following example Chapel program solves a system offidifference equations for the
Laplace equation using the Jacobi method. The program weedimensional arrayss andXNew to store
and calculate the approximate solution. At each iteratimmnext approximation for the solution at each grid
point, XNew(i,j) is calculated by computing the average of the four neighgogrrid points X(i-1,))
X@ij-1) , X(@i+1,)) , andX(ij+1) . After all entries inXNeware computedX is assignedkNewand
convergence is tested. If convergence has not been reableatgxt approximation is calculated, and so on
until the convergence test is met.

Chapel Features This program demonstrates haways are declared and used. In Chapel, arrays are
declared usinglomains. Domains are sets of indices which may be distributed aaragple processors
indicating how data and parallel work should be divided agnitre processors. An array is a mapping from
the domain to a collection of variables. An array is thus aefinsing a domain, distributing the entries of
the array according to the domain’s distribution. Domairesyralso be used to define arraljcesand as
iterators There are five kinds of domains in the Chapel languagéghmetic sparseindefinite opaqueand
enumeratedThis example program uses arithmetic domains and arrays.

12 Chapel Language Specification

Code Listing The Chapel code for this example follows.

1 config var n = 5, [/ size of nxn grid

2 epsilon = 0.00001, /1 convergence tol erance

3 verbose = fal se; /1 control for anount of output
s def main() {

6 const ProblemSpace = [1..n, 1..n], // domain for interior points

7 BigDomain = [0..n+1, 0..n+1]; /1 domain with boundary points

9 var X, XNew: [BigDomain] real = 0.0; // X holds approximate solution
10 /1 XNew is work array

12 X[n+1, 1..n] = 1.0;

1 if (verbose) {

15 writeln("Initial configuration:");

16 writeln(X, "\n");

17}

19 var iteration = 0, /'l iteration counter
20 delta: real ; /] covergence neasure
2 do {

23 forall (i) i n ProblemSpace do

24 XNew(i,j) = (X(i-1,)) + X(i+1,j) + X(i,j-1) + X(i,j+1)) / 4.0

26 delta = max reduce abs(XNew[ProblemSpace] - X[ProblemSpace]);
27 X[ProblemSpace] = XNew[ProblemSpace];

29 iteration += 1;

31 i f (verbose) {

32 writeln(“iteration: ", iteration);

33 writeln(X);

34 writeln("delta: ", delta, "\n");

35
3} while (delta > epsilon);

ss writeIn("Jacobi computation complete.");

39 writeIn("Delta is ", delta, " (< epsilon = ", epsilon, ")");
20 writeln("# of iterations: ", iteration);
a '}

Execution and Output Compiling and running this program gives the following auttp

> Ja.out

Jacobi computation complete.

Delta is 9.92124e-06 (< epsilon = 1e-05)
of iterations: 60

Itis possible to run a different sized problem, to use a diffie convergence tolerance, or enable more output
without recompiling this program. There are three varialdefined in lineElI1[Ed3, epsilon andverbose
which areconfiguration variablesand can be set at the time of program execution through comhhiran
switches. Executing the following command line sequence,

> ./a.out --verbose=true --n=2 --epsilon=0.01

Language Overview 13

results in overriding the default values farbose , n andepsilon , producing the following output.

Initial configuration:
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 1.0 1.0 0.0

iteration: 1

0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.25 0.25 0.0
0.0 1.0 1.0 0.0
delta: 0.25

iteration: 2

0.0 0.0 0.0 0.0

0.0 0.0625 0.0625 0.0
0.0 0.3125 0.3125 0.0
0.0 1.0 1.0 0.0

delta: 0.0625

iteration: 3

0.0 0.0 0.0 0.0

0.0 0.09375 0.09375 0.0
0.0 0.34375 0.34375 0.0
0.0 1.0 1.0 0.0

delta: 0.03125

iteration: 4

0.0 0.0 0.0 0.0

0.0 0.109375 0.109375 0.0
0.0 0.359375 0.359375 0.0
0.0 1.0 1.0 0.0

delta: 0.015625

iteration: 5

0.0 0.0 0.0 0.0

0.0 0.117188 0.117188 0.0
0.0 0.367188 0.367188 0.0
0.0 1.0 1.0 0.0

delta: 0.0078125

Jacobi computation complete.
Delta is 0.0078125 (< epsilon = 0.01)
of iterations: 5

Implementation Details This example program begins with the declaration of thegtlemnfiguration vari-
ables. Note that these variables do not contain a type indeeiaration:

config var n = 5,
epsilon = 0.00001,
verbose = fal se;

14 Chapel Language Specification

Instead the types of these variables are inferred from thitial values:n is an integerepsilon is a real
type, andrerbose is a boolean type. In Chapel, if a variable declaration dostan initialization expression,
it is optional to include a type specification. More detabsat variable declarations are givendg.1.

After the configuration variables are declared,rtten function is defined. The first two lines ofain define
two arithmetic domains:
def main() {

const ProblemSpace = [1..n, 1..n],
BigDomain = [0..n+1, 0..n+1];

Both domains are declared to benst , indicating that the values for the domains remain constarihg the
execution of the program. They are defined using arithmetijuiences, and are, thus, arithmetic domains.
Because the domains are initialized in their declaratios,not necessary to specify that they are of domain
type. In this case, domain(2) was omitted from both domain declaratio®$gDomain is essentially the
ProblemSpace domain with additional boundary rows and columns. By defjiiroblemSpace to be the
interior points of the larger gridBigDomain , the Jacobi computation can be cleanly specified in one line,
line23, for just the interior points, eliminating the needxtrite special case computations for the boundary
points.

After the domains are declared, the arrays are declared B&Bomain , and the last row oX is set to one.
var X, XNew: [BigDomain] real = 0.0;

X[n+1, 1..n] = 1.0;

Because they are defined usiBigDomain , the arrayX andXNeware of sizen+2 x n+2. They are declared
to be of typereal and all elements of the arrays are initialized to zero. Whearaay is assigned a scalar
value, as in the initialization to zero, each element of thayais assigned the scalar value. In the following
line, the notatiom+1, 1..n indicates aslice of the arrayX is to be assigned the value one. Each entry in
this slice, which is the last row ¢f, is set to one.

Lines[I3 {I¥ print the initial configuration of the probleryérbose is set to true.

i f (verbose) {
writeIn("Initial configuration:");
writeln(X, "\n");

}

Thewriteln ~ function outputs strings and values of variables that assgh as arguments, followed by a
line return. When an array is passed as an argument, it isibistpow-major order with linefeeds after each
row. Including the character stringn" inserts an additional line return.

Lines[I® {20 contain the remaining variable declarations:

var iteration = 0,
delta: real ;

The variabladelta must be specified to be of typeal since it does not have an initialization expression.

The computational loop in lindsPZ =136 performs the Jacolthowk This loop is executed untielta is
less than or equal tepsilon . Each iteration of theo while loop computes the next approximate solution
using aforall loop.

Language Overview 15

do{
forall (i) i n ProblemSpace do
XNew(i,j) = (X(i-1,)) + X(i+1,j) + X(i,j-1) + X(i,j+1)) / 4.0

This loop uses th@roblemSpace domain as ariterator. Iterators for loops provide a value or a set of
values to be used in each iteration of the loop. In this caseh @eration is indexed by tiple of indices
(i) , which avoids the use of a nest of two loops, one loop for tliexri and one loop for the index
j . The compiler determines how this loop is made parallelpating to the default distribution for the
ProblemSpace domain. Note that theroblemSpace domain is the set of interior points afs domain.
All of the references t&X in this loop are defined, and do not go out of bounds.

After the next approximate solution is computed and stanethiew the change betweetNewandX, for just
the interior points, is calculated and storediétta :

delta = max reduce abs(XNew[ProblemSpace] - X[ProblemSpace));

The built-in reduction max reduce computes the maximum value of the expression that followdrit
this case the expression is the computed array of absolltesvaf the difference between ti@&lewand
X arrays. IfXNewandX are distributed, then this reduction is computed in pdraieordingly. The use of
ProblemSpace with these two arrays indicates that the slice of the arrapesponding to the interior points
are to be used in this calculation.

Next, X is updated with the new approximate solution and the itenatumber is advanced.

X[ProblemSpace] = XNew[ProblemSpace];

iteration += 1;

The domairProblemSpace is used in the assignment ®@Newto X, updating only the slice of correspond-
ing to the interior points of the array.

The remaining part of the loop optionally provides output@the iteration.

i f (verbose) {
writeln(“iteration: ", iteration);
writeln(X);
writeln("delta: ", delta, "\n");

}
} while (delta > epsilon);

If verbose is set to true, then information about the current approténsalution anddelta is output.
Then,delta is compared to the convergence tolerarggsijlon . If delta is not small enough, then the
do while loop continues. Otherwise, the loop exits.

The program ends with three lines of output.

writeln("Jacobi computation complete.");
writeln("Delta is ", delta, " (< epsilon = ", epsilon, ")");
writeln("# of iterations: ", iteration);

}

Information about the convergence is given, printing theesforepsilon and the iteration counter.

16 Chapel Language Specification

5.3.2 Matrix and Vector Norms

Description The following example contains a modiNerm which providesiorm functions that compute
either a vector or matrix norm, depending on the rank of thayathat is passed as the argument. There are
four norm type options: 1-norm, 2-norm, infinity norm and Beaius norm. For vectors, all four options
are implemented in this module. For matrices, all optioristie 2-norm are provided. The module uses a
variable of enumerated typ@rmType to indicate the choice of norm.

Chapel Features This example demonstrates the definition and use of modgksgric functions and
function overloading . When thigorm module is used, the user may cadrm(x) or norm(x,normType)
wherex is any array andormType is theenumerated typas defined in thelorm module. Thenorm function

is overloadedwith four separate function definitions fabrm, based on the the rank of the input array, or
the number of formal arguments used in tlvem function call. Each of these four function definitions is a
genericfunction, not specifying the type of the array argumen&eneric functions allow for code reuse and
readability.

Program Listing The following program gives the definition of tierm module followed by a module
which testsNorm, demonstrating different calls to tmerm function.

1 nodul e Norm{
2 enum normType {norml, norm2, norminf, normFrob};

4 def norm(x: [], p: normType) where x.rank == 1 {

s [/ vector normroutine

6 select (p) {

7 when norml do return + reduce abs(x);

8 when norm2 do return sqrt(+ reduce (abs(x) =*abs(x)));

9 when norminf do return max reduce abs(x);

10 when normFrob do return sgrt(+ reduce (abs(x) *abs(x)));
1 ot herw se halt("Unexpected norm type");

12 }

13}

15 def norm(x: [?D], p: normType) where x.rank == 2 {

16 // matrix normroutine

17 select (p) {

18 when norml do

19 return max reduce [j in D(2)] (+ reduce abs(x[D(1), j]));
21 when norm2 do

22 halt("Haven't implemented 2-norm for 2D arrays yet");

24 when norminf do

25 return max reduce [i in D(1)] (+ reduce abs(x[i, D(2)]);
27 when normFrob do return sqrt(+ reduce (abs(x) *abs(x)));
29 ot herw se halt("Unexpected norm type");

30 }

a }

a3 def norm(x: [], p: normType) where x.rank > 2 {

34 compilerError("Norms not implemented for array ranks > 2D");
s}

37 def norm(x: []) {
s [// default normroutine

Language Overview 17

39 sel ect (x.rank) {

40 when 1 do return norm(x, norm2);

il when 2 do return norm(x, normFrob);

42 ot herw se compilerError("Norms not implemented for array ranks > 2D");
43 }

24 }

45}

47 modul e TestNorm {
48 use Norm;

so def testNorm(arr: []) {

51 /1 test all possible norms of arr

52 var testType = if (arrrank == 1) t hen "vector" el se "matrix";
53 writeln("Test of ", testType, " norms. Array = ");
54 writeln(arr);

55 writeln("1-norm = ", norm(arr, norml));

56 if (arrrank == 1) t hen

57 writeln("2-norm = " , norm(arr, norm2));

58 writeln("infinity norm = ", norm(arr, norminf));

59 writeln("frobenius norm = ", norm(arr, normFrob));
60 writeln("default norm = ", norm(arr));

61 writeln();

62 }

62 def main() {

65 /] test vector nornmns:

66 const D1 = [1..4];

67 var a:D1l] real;

68 a = 2.0;

69 testNorm(a);

71 /] test matrix norms:

72 const D2 = [1..2,1..2];

73 var b:[D2] real;

74 b = 2.0;

75 testNorm(b);

%}

77}

Execution and Output After the definition of theNorm module, aTestNorm module is defined in lindsH#7
-[74, giving an example of how theorm functions can be used in a program.

On line[48 ,use Norm, indicates that thédorm module is to be used when resolving functions in the
TestNorm module. AtestNorm function is defined, takingrr as an argument. Based am.rank

all of the valid norm options are tested, along with the geenesrm(arr) function call. ThistestNorm
function is called to test two arrays,andb. The arraya is a one-dimensional array, as defined by the do-
mainD1. The array is a two-dimensional array, as defined by the dont@nEach array has a total of four
elements, and each is initialized to 2.0.

The output of this program is given below. The first set of @rsncomputed foa which is a vector and the
second set is computed fbrwhich is a matrix. Even though the vector and matrix in thiaraple contain
the same number of elements with the same values, some obtiguted norms are different between the
vector and the matrix. Thus, different implementationshefhorm functions are used to compute the norms,
depending on the whether the input is a vector or matrix.

Test of vector norms. Array =

18 Chapel Language Specification

2.0 20 2.0 2.0
1-norm = 8.0
2-norm = 4.0

infinity norm = 2.0
frobenius norm = 4.0
default norm = 4.0

Test of matrix norms. Array =
2.0 2.0

2.0 20

1-norm = 4.0

infinity norm = 4.0

frobenius norm = 4.0

default norm = 4.0

Implementation Details TheNorm module begins with definingormType to be an enumerated type with
constant valuesorm1, norm2, norminf , normFrob . For three of the founorm function definitions (see
lines[4 [I5[3B), one of the formal arguments isofmType , indicating which type of norm is to be com-
puted. Ifnorm is called without thexormType argument, then the default norm for vectors is the 2-norma (se
line[40) and the default norm for matrices is the Frobeniusnee lind411).

The firstnorm function is defined for vectors. This definition begins witrel4:

def norm(x: [], p: normType) where x.rank == 1 {

The function definition containswehere x.rank == clause, indicating that this versionmdrm is to be
used when the input array has just one dimension, and is thus, a vector. The argumentki$ version

of norm arex of generic array type anpl of normType . Since all norm types for the vector case can be
computed with whole array operations, there is no need toifspee domain type fox. It is good practice to
specifyx as an array type by using[] since thenorm function is only defined for arrays. The compiler
can detect errors if other, non-array types are passed asargs tanorm .

The body of the vector version of tlerm function is aselect statement op in lines[@ {12.

select (p) {
when norml do return + reduce abs(x);
when norm2 do return sqri(+ reduce (abs(x) =*abs(x)));
when norminf do return max reduce abs(x);
when normFrob do return sqgri(+ reduce (abs(x) =*abs(x)));
ot herw se halt("Unexpected norm type");

For the first four cases of the select statement, whismorm1, norm2, norminf or normFrob a reduction
operator is used along withbs(x) to compute the value that is returned. Tdies function is promoted
over thex array, computing the absolute values of each entwy. dfhe 1-norm of a vector is the sum of the
absolute values of the entriesxof computed with the sum reduction expressiermeduce abs(x) . The
2-norm of a vector is the sum of the squares of the absoluteesalf the entries of, computed with the sum
reduction expression, reduce (abs(x) *abs(x)) . The infinity norm of a vector is the maximum entry of
x in absolute value, which can be computed with the maximumgtoh expressiomax reduce abs(x)

The Frobenius norm of a vector is the same computation as-tiverd of a vector.

The last case of the select statement, the otherwise classdts in the program halting, outputting the string
that is passed to tHelt function indicating thap has an unexpected value.

The secondiorm function is defined for matrices. This definition begins witte [13:

Language Overview 19

def norm(x: [?D], p: normType) where x.rank == 2 {

This version of the function will be used whenis a matrix, that is theank of the arrayx is 2. The
arguments for this version obrm arex of generic array type ang of normType . For this matrix version,
the domain ok is needed to express the norm computations. So, the donpanstgjueriedand set ta with
the expressiofPD] .

The body of the matrix version aform is a select statement qnin lines[IT {3D. Thenorm1 case, the
1-norm of a matrix, is the maximum absolute column sum of tlaérim

when norml do
return max reduce [j in D(2)] (+ reduce abs(x[D(1), j]));

The return expression is the maximum reductionfofall loop, which computes a sum reduction for each
iteration. It use®©(1) andD(2) , which are the first and second dimension, respectiveih@domairD.
The shorthand version offarall loop is usedfj in D(2)] , indicating that for alj in D(2) ,the sum

of the absolute values across the rowsieduce abs(x[D(1), j]) , is computed. Then, the maximum
value of thesg¢ absolute column sums is computed withx reduce .

Thenorm2 case, the 2-norm of a matrix, is notimplemented. Since ther2a of a matrixA is the square root
of the maximum eigenvalue of the matti¢" A (or A¥ A in the case wherd is complex), this norm has not
been included in this simple example code. This case withkidéh a message indicating this unimplemented
status.

Thenorminf case, the infinity norm of a matrix, is the maximum absolute sam.

when norminf do
return max reduce [i in D()] (+ reduce abs(x[i, D(2)]));

Foralli in D(1) ,the sum of the absolute values across columngduce abs(x[i, D(2)]) is com-
puted. Then the maximum value of thésabsolute row sums is computed wittax reduce .

ThenormFrob case which is the Frobenius norm of a matrix, is the same ctatipo as the 2-norm of a
vector.

when normFrob do return sgrt(+ reduce (abs(x) =*abs(x)));

The Frobenius norm is the square root of the sum of the squéadrsolute values of all entries in the matrix.

The final case of the select statement, ¢hteerwise clause, halts with a message that the norm type is
unexpected.

The third version of theorm function with arguments andp, given in lined33B 35 is for the case where
x.rank > 2 . The module was designed to only compute norms of vectorsraidces. Calling th@orm
function with three-dimensional or higher arrays shouldegan error at compile time. In this case, an
appropriate compiler error is given using dwnpilerError function.

compilerError("Norms not implemented for array ranks > 2D");

For more information about user-defined compiler errorsJEed.

The final version of theorm function is given in line§37[44.

20 Chapel Language Specification

def norm(x: []) {
sel ect (x.rank) {
when 1 do return norm(x, norm2);
when 2 do return norm(x, normFrob);
ot her wi se compilerError("Norms not implemented for array ranks > 2D");

}
}

This version has one formal argumenxt,allowing the user to omit the norm type. It calls the othem
functions with default values farormType . For vectors, the default norm is defined to be the 2-norm. For
matrices, the default norm is defined to be the Frobenius n®his version ofiorm is a select statement on
x.rank . Depending on the rank af thenorm function is called with the appropriate default norm typeor
compiler error is given.

5.3.3 Simple Producer-Consumer Program

Description The following example demonstrates a simple producer anguwooer program. Theroducer
computationsets the value of a sync variable and ttensumer computatioprints the value of the same
variable.

Chapel Features The program contains begin Statement to implement two concurrent computations,
and async variable to coordinate between the two. Sync variables eat@ state associated with them
to indicate whether they are logicallyll or empty A sync variable is intended to be accessed by multiple
concurrent computations, each of which may change the otsnéad state of the variable. A sync variable
can be read when its state is full. Attempts to read an empiy ggriable from one computation will suspend
execution until another computation changes its statelto@mce a sync variable is able to be read, its state
is atomically set to empty. Conversely, a sync variable @awitten only when its state is empty. Attempts
to write to a full sync variable will suspend until its staseeimpty. Once the variable is written to, the state is
atomically set to full. In addition, there are functionstthead and write sync variables which override this
default behavior. More information about sync variabled teir functions is if2Z.7.2 andZZ.7.3.

Program Listing The Chapel code for this example is given below.

1 use Time;
3 config var numiterations: int =5,
4 sleepTime: uint = 2;

6 var s: sync int;

s begin { // create consuner conputation
9 for c in l.numlterations do
10 writeln("consumer got ", s);

1}

13 // producer conputation
1 for p in l.numlterations {
15 sleep(sleepTime);

6 S =p;

17 }

Language Overview 21

Execution and Output When this program executes, a consumer computation isect@ath thebegin
statement. However, the consumer computation cannotsrdedore it has been written to. So, execution
begins with the producer computation which assigns theasato s after calling thesleep functiorl. Once

s has the valua, the consumer computation can read it and print it. Exenuiwitches back and forth
between the producer and consumer computationfmiterations

Running the program with the default values fiomiterations results in:

consumer got 1
consumer got 2
consumer got 3
consumer got 4
consumer got 5

Each line is printed after a delay sitepTime seconds.

Since the variablesumiterations andsleepTime areconfiguration variablesthey can be reset at exe-
cution time. For example, to change the number of iteratiori® and to change the number of seconds to
sleep to 5, the following execution command may be used:

> a.out --numlterations=10 --sleepTime=5

Implementation Details The program uses thieep function in linelIH, which is provided in the standard
Chapel moduleTime. So, the first lineuse Time , is needed to include thEme module when resolving
function calls in this program.

Lines[3 -[3 give the declarations and initial default values the two variablespumlterations and
sleepTime . Theconfig keyword in front of these two variable declarations indésathat these are con-
figuration variables. Configuration variables can be set/tride their default values at program execution
time, through the use of command line switches.

In line[, the variables is declared to be sync variable of typent . Sinces is not initialized, its state is
empty at the beginning of the program’s execution. The é&is will be used to synchronize the exchange
of data between the producer and consumer computations.

The remainder of the code defines the consumer and producgrutations. The new computation that is
created with thévegin statement will be referred to as the consumer computatibe.cbntinuing compu-
tation will be referred to as the producer computation. Exeo control switches between the producer and
consumer computations as the state of the sync varsatifi@anges when it is read and written to.

Thebegin statement in linEl8 creates a new computation to executerthéop in lined® ID.

begin {
for c in 1.numlterations do
writeln("consumer got ", s);

}

2The call to thesleep function is used to mimic some amount of computational tifhés not necessary to use a sleep function
when synchronizing between concurrent computations.

22 Chapel Language Specification

This loop is indexed by, which iterates over the arithmetic sequemceumiterations . The variable

is a new variable defined for the scope of the loop. Its typeferied to be integer from the integer arithmetic
sequence that follows. During each iteration of flve loop, thewriteln ~ function is called which outputs
the string literat'consumer got " and the value of the sync variabefollowed by a line break. In order
to print the value stored in, the sync variable is read only when its state is full. Osds successfully
read, its state will be set to empty. The next iteration feipand the consumer computation will suspend
execution until the state afis made full again. Since the consumer computation onlyseai will be the
producer computation that changes the statastoffull.

The producer computation executes fitve loop in line<T# £1I7.
for p in l.numlterations {
sleep(sleepTime);
S =P
}

This loop is indexed by which iterates over the same arithmetic sequence as them@nsomputation.
Like the indexc, p is inferred to be an integer. During each iteration of fois loop, thesleep function

is called with the argumesitepTime . Thissleep function is provided in th&ime standard module, and
it causes the producer computationsteepTime seconds. After returning from theeep function, the
producer computation assigago be the iteration number. Becauses is a sync variable, this assigment
is executed only when the state ©fs empty. Onces is written, its state is changed to full and the next
iteration of the producer loop follows. Since the produeaenputation only writes, it will be the consumer
computation that changes the state ¢ empty allowing the next iteration to write its iterationmber tos.

The program terminates afteumiterations of both the consumer and producer loops.

5.3.4 Generic Stack Implementations

Description Two implementations of a generic stack typeack , are given below. The first defin€sack
to be a linked list oMyNode objects. In the second implementati@tack is an array. Both implementations
of Stack define the methodgush, pop andisEmpty? .

Chapel Features These examples demonstratassesandrecords Chapel classes and records are both
structured data types containing fields and methods. Glassaeference types while records are value types.
The examples also use thaspecified type aliagmType as the generic type for the items in the stack and
define generic stack methods. To use either version, a typeforype must be specified whe®tack is
instantiated. More information about type aliases can beddn §21.371. The array implementation of the
generic stack demonstrates the association of arrays taidemin this example, the array’s size is doubled
by reassigning its domain to one that is twice in size.

Sample Stack A simple example of how this generic stack can be used:

var stackl: Stack(string);
stackl.push("one");
stackl.push("two");
stackl.push(“three");
writeln(stackl.pop());
writeln(stackl.pop());
writeln(stackl.pop());

Language Overview 23

In this simple example, the varialdeackl is declared to be a stack of string type. By specifystigng

as an input, the default constructor fatack will initialize the type alias for the generic stack to be @rgj.
The strings,'one" , "two" and"three" are pushed ostackl , and then three items are popped off of
stackl , in the reverse order from how they were put on the stack. Titygut of this example is:

three
two
one

Linked List Implementation This implementation of a generic stack definetess MyNode and arecord,
Stack . In the following code, the reference pointersMfNode objects are used to point to the top of the
stack and to point between items in the stack, thus impleimgtite stack as a linked list.

1 cl ass MyNode {

2 type itemType;

3 var item: itemType;

4 var next: MyNode(itemType);
5}

7 record Stack {

s type itemType;

9 var top: MyNode(itemType);

1 def push(item: itemType) {

12 top = MyNode(itemType, item, top);
13}

15 def pop() {

16 if isEmpty? then

17 halt("attempt to pop an item off an empty stack");
18 var oldTop = top;

19 top = top.next;

20 return oldTop.item;

2}

23 def isEmpty? return top == nil;
24 }

Linked List Implementation Details The code begins with a definition of tivyNode class in line§11 E15.

cl ass MyNode {
type itemType;
var item: itemType;
var next: MyNode(itemType);

Objects of typeMyNode are used to store the generic items in the stack as a linked lisre are three fields
in MyNode: itemType , item andnext . MyNode objects are instantiated withBtack to have the same
itemType as theStack . Theitem field holds the data angext is a pointer to the nextlyNode object in
the linked list.

TheStack record contains two fields:

record Stack {
type itemType;
var top: MyNode(itemType);

24 Chapel Language Specification

WhensStack is instantiated, a type is specified for the type ali@mType . Thetop field is a pointer to
the top of the stack, which isyNode object ofitemType . When the stack is first instantiatadp is set
to nil. To add and remove items from the stack, pheh andpop methods are used.

The push method is given in lineEZ11[=13. This method adds an item tddpeof the stack by resetting
top to pointto a newMyNode object. This new top object stores the added item and setsxtsfield to the
previoustop object of the stack.

def push(item: itemType) {

top = MyNode(itemType, item, top);
}

The default constructor faviyNode is called to create a new object witlkmType andtop fields of the
Stack instance on whichop is called, and the formal argumétm of thepop function call. To reference
fields of an instance of a structured typiés is used. In this casehis.top andthis.itemType are
implicit in the uses ofop anditemType .

Thepop method is given in lineSZ 5=21.

def pop() {
i f isEmpty? then
halt("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

}

This method returns the item at the top of the stack and reget® point to the next objectin the stack. First,
a call to theStack methodisEmpty? is made to determine if the stack is empty. If it is, the progtelts
with a message indicating that an attempt was made to pogenaff of an empty stack. Otherwisep

is reset, and the appropriate item is returned. In this ntkth.isEmpty? andthis.top are implicit
whenisEmpty? andtop are used. The memory of thdTop object is freed, through automatic garbage
collection.

TheisEmpty? method, which is used to check if the stack is empty ingbye method, is defined to be:

def iSEmpty? return top == nil;

Array Implementation The following implementation of a generic stack uses thayartata , to store
the generic items in the stack, and the countemitems , to track the number of items in the stack and to
indicate the index of the top item of the stack. The numbeteyhs in the stack and the size ddfta are
checked when a new item is pushed on the stack. If neceshargjze ofdata is doubled. This example
demonstrates how the size of an array is increased by inngeigs domain.

1 record Stack {

2 type itemType;

3 var numltems: int = 0;

4 var data: [1..2] itemType;

¢ def push(item: itemType) {

7 var height = data.numElements;

8 i f numltems == height t hen

9 data. domai n = [1..height *2];
10 data(numitems+1) = item;

11 numltems += 1,

12}

Language Overview 25

1 def pop() {

15 if isEmpty? then

16 halt("attempt to pop an item off an empty stack");
17 numitems -= 1,

18 return data(numltems+1);

19}

21 def isEmpty? return numltems == O;

2 }

Array Implementation Details There are three fields defined for tigack record,itemType , an inte-
ger variablenumitems and an arraylata of itemType . When first instantiated, the stack is empty and
numitems is initialized to zero. Thelata array is declared with an anonymous one-dimensional dgmain
[1..2]

The same three methodsysh, pop, andisEmpty? are defined for this array implementation. Like the
linked list implementation, there are no explicit referemtothis when accessing fields and methods.

In push, lines[® {12jtem is stored in thelata(numitems+1) and thenumltems counter is incremented.

def push(item: itemType) {
var height = data.numElements;
i f numltems == height t hen
data. domai n = [1l..height *2];
data(numitems+1) = item;
numitems += 1,

}

Beforeitem can be added to the stack, the sizedaa must be checked to determine if the array’s size
needs to be increased to accomodate another item being tultleelstack. The methatimElements is
predefined for arrays, returning the total number of elemgnan array. The variableeight is set to the
total number of elements iata , which is the size of the current array allocated to stomastén the stack.

If the number of items in the stackumitems equalsheight , then more storage idata is needed. To
increase the size of an array, the size of its domain is iseaBy resetingata 's domain to a domain of
twice the size, the arragata itself is now doubled in size, and more items can be pushemitoetstack.

In pop, the top item in the stack, as indicated by tlvenitem counter, is returned, if the stack is not empty.
def pop() {
i f isEmpty? then
halt("attempt to pop an item off an empty stack");
numitems -= 1,
return data(numltems+1);

}

The pop method first checks to see if the stack is empty. If it is, thegpam halts indicating that there
was an attempt to pop an item off of an empty stack. Othentli@numitems counter is decremented and
data(numitems+1) is returned as the popped item.

TheisEmpty? method checks to see if the stack is empty, thatisiifiltems equals zero.

def isEmpty? return numltems == 0;

26

Chapel Language Specification

Lexical Structure 27

6 Lexical Structure

This section describes the lexical components of Chapeirpros.

6.1 Comments

Two forms of comments are supported. All text following tlemsecutive charactefs and before the end
of the line is in a comment. All text following the consecuticharacters * and before the consecutive
characters/ isin a comment.

Comments, including the characters that delimit them,gmeried by the compiler. If the delimiters that start
the comments appear within a string literal, they do not staomment but rather are part of the string literal.

6.2 White Space

White-space characters are spaces, tabs, and new-lingge fhem delimiting comments and tokens, they
are ignored by the compiler.

6.3 Case Sensitivity

Chapelis a case sensitive language so identifiers that@mécdl except of the case of the characters are still
different.

6.4 Tokens

Tokens include identifiers, keywords, literals, operagtaral punctuation.

6.4.1 Identifiers

An identifier in Chapel is a sequence of characters that ntatwith a letter, lower-case or upper-case, or
an underscore, and can include lower-case letters, ugsertetters, digits, the underscore, and the question
mark.

Example The following are legal identifiers:

X, xle, xt3, isLegalChapelldentifier?, legal_chapel_ide ntifier

28

6.4.2 Keywords

The following keywords are reserved:

atom ¢ begi n bool br eak
cl ass cobegi n conpl ex config
conti nue def distributed do
el se enum fal se for
goto i f i mag in
i nout iterator | et | ocal e
nil of on order ed
out param pragma real
reduce return scan sel ect
serial single sync t hen
type ui nt uni on use
when wher e whil e yield
6.4.3 Literals

Literal values for primitive types are describedin41.7.

6.4.4 Operators and Punctuation

by
const
domai n
foral
int
nmodul e
ot herw se
record
seq
true
var

Chapel Language Specification

The following special characters are interpreted by théssyaf the language specially:

symbols

use

*= [=

= 4= -=

&& || !

& | 77 << >>
<= > < >
* [O *x

+ -
#

% = Op= &= |: "= &&= ”: #= <<= >>=

assignment

arithmetic sequences
variable argument lists
logical operators
bitwise operators
relational operators
arithmetic operators
sequence concatenation operator
types

statement separator
expression separator
member access
query types

string delimiters

6.4.5 Grouping Tokens

The following braces are part of the Chapel language:

Lexical Structure

braces

use

()
[]
)
{}

parenthesization, function calls, and tuples

domains, square tuples, forall expressions, and functds
sequence literals

type scopes and blocks

6.5 User-Defined Compiler Errors

The special compiler error statement given by

compiler- error- statement
compilerError (string- literal)

29

invokes a compiler error if the function that the statemenbcated within may be called when the program
is executed and the statement is not eliminated by pararfoddéng.

The compiler error is defined to be the string literal and inpoto the spot in the Chapel program where the
function containing theompiler- error- statementis called from.

30

Chapel Language Specification

Types 31

7 Types

Chapel is a statically typed language with a rich set of typéese include a set of predefined primitive types,
enumerated types, classes, records, unions, tuples,rssgpjelomains, and arrays. This section defines the
primitive types, enumerated types, and type aliases.

Programmers can define their own enumerated types, classesjs, unions, and type aliases in type decla-
ration statements summarized by the following syntax:

type- declaration- statement
enum declaration- statement
class declaration- statement
record- declaration- statement
union- declaration- statement
type- alias- declaration- statement

Classes are discussedffil. Records are discussedfifH. Unions are discusseddfid. Tuples are discussed
in §I4. Sequences are discusseflfi. Domains and arrays are discussedli§.

7.1 Primitive Types

The primitive types include the following typesool , int , uint , real , complex , imag, string , and
locale . These primitive types are defined in this section exceptHerocale type which is defined

in 237177.

7.1.1 The Bool Type

Chapel defines a logical data type designated by the syhalool with the two predefined valuesie and
false

The relational operators return valuesobl type and the logical operators operate on valugsof type.

Some statements require expressionsarfl type and Chapel supports a special conversion of values to
bool type when used in this contexfd 1.8). For example, an integer can be used as the conditian i
conditional statement. It is convertedfédse if it is zero, and otherwise, it is convertedttae .

7.1.2 Signed and Unsigned Integral Types

The integral types can be parameterized by the number ofibéd to represent them. The default signed
integral typejnt , and the default unsigned integral typayt , are 32 bits.

The integral types and their ranges are given in the follgvéble:

32

Chapel Language Specification

Type Minimum Value Maximum Value
int(8) -128 127
uint(8) 0 255
int(16) -32768 32767
uint(16) 0 65535
int(32) ,int -2147483648 2147483647
uint(32) , uint 0 4294967295
int(64) -9223372036854775808 9223372036854775807
uint(64) 0 | 18446744073709551615

The unary and binary operators that are pre-defined oventhgral types operate with 32- and 64-bit pre-
cision. Using these operators on integral types repregdarith fewer bits results in a coercion according to
the rules defined if@.1.

7.1.3 Real Types

Like the integral types, the real types can be parametebyeatie number of bits used to represent them.
The default real typegal , is 64 bits. The real types that are supported are machipendient, but usually
includereal(32) andreal(64) , and sometimes includeal(128)

Arithmetic over real values follows the IEEE 754 standard.

7.1.4 Complex Types

Like the integral and real types, the complex types can barpeterized by the number of bits used to

representthem. A complex number is composed of two real eusrdn the number of bits used to represent a
complex is twice the number of bits used to represent themgabers. The default complex typemplex |,

is 128 bits; it consists of two 64-bit real numbers. The carpypes that are supported are machine-
dependent, but usually includemplex(64) andcomplex(128) , and sometimes includ®mplex(256)

The real and imaginary components can be accessed via thedset andim. The type of these compo-
nents is real.

Example Given a complex numb&r14+2.72i
and2.72 respectively.

, the expressionsre andc.im refer t03.14

7.1.5 Imaginary Types

The imaginary types can be parameterized by the numberotibéd to represent them. The default imag-
inary type,imag, is 64 bits. The imaginary types that are supported are maetiépendent, but usually
includeimag(32) andimag(64) , and sometimes includmag(128)

Rationale The imaginary type is included to avoid numeric instaieiitand under-optimized
code stemming from always coercing real values to compleiegavith a zero imaginary part.

Types 33

7.1.6 The String Type

Strings are a primitive type designated by the synsirdlg . Their length is unbounded.

Characters in a string can be accessed viatbhstring method on strings. This method takes an inteéger
and returns théth character in the string.

Example The first character of a strirggcan be selected by the method &adubstring(1)

7.1.7 Primitive Type Literals

Bool literals are designated by the following syntax:

bool- literal : one of
true false

Signed and unsigned integer literals are designated bytlosving syntax:
integer- literal :
digits
0 'x' hexadecimaldigits
0 'b’ binary- digits
digits:
digit
digit digits
digit: one of
0123456789

hexadecimal digits:
hexadecimal digit
hexadecimal digit hexadecimal digits

hexadecimal digits: one of
0123456789ABCDEFabcdef

binary- digits:
binary- digit
binary- digit binary- digits

binary- digits: one of
01

Suffixes, like those in C, are not necessary. The type of agartliteral is the first type of the following that
can hold the value of the digitsit , int(64) ,uint(64) . Explicit conversions are necessary to change the
type of the literal to another integer size.

Real literals are designated by the following syntax:
real- literal :
digits,p: . digit digits,,: exponentparty,.

exponent part:
‘e’ sign,,: digits

sign: one of
+ -

34 Chapel Language Specification

The type of a real literal iseal . Explicit conversions are necessary to change the typeeofitiéral to
another real size.

Note that real literals require that a digit follow the dealmpoint. This is necessary to avoid an ambiguity in
interpreting2.e+2 that arises if a method calledis defined on integers.

Imaginary literals are designated by the following syntax:

imaginary- literal :
real- literal i
integer- literal i

A complex number is specified by adding or subtracting an ineay literal with a real literal. Alternatively,
a 2-tuple literal of expressions of integer or real type carcast to a complex. These expressions can be
literals, but do not need to be. To create a complex literglavameter, they must be literals or parameters.

Example The following codes represent the same complex literal:

2.0i , 0.0+2.0i , (0.0,2.0):complex

String literals are designated by the following syntax:

string- literal :
" characters ”
characters ’

characters:
character
character characters

character:
any- character

Implementation note Strings are currently restricted to ASCII characters. fatare version of
Chapel, strings will be defined over alphabets to allow forerexotic characters.

7.2 Enumerated Types

Enumerated types are declared with the following syntax:

enum declaration- statement
enum identifier { enum constant list } ;

enum constant list
enum constant
enum constant , enum constant list

enum constant:
identifier init-part,,.

init- part:

= expression

An enumerated type defines a set of named constants. Thesesaated with parameters of integral type.
Each enumerated type is a distinct type.

Types 35

7.3 Class Types

The class type defines a type that contains variables andarisscalled fields, and functions, called meth-
ods. Classes are defineddbd. The class type can also contain type aliases and pamanstech a class is
generic and is defined W

7.4 Record Types

The record type is similar to a class type; the primary differe is that a record is a value rather than a
reference. The difference between classes and recordzbigrated on infI3.

7.5 Union Types

The union type defines a type that contains one of a set ofblasaLike classes and records, unions may
also define methods. Unions are define§la.

7.6 Tuple Types

Atuple is a light-weight record that consists of one or marereymous fields. If all the fields are of the same
type, the tuple is homogeneous. Tuples are defingEan

7.7 Sequence Types

A sequence defines an ordered set of values of some type. i@egpare defined ifl3.

7.8 Domain and Array Types

Domains are index sets. Arrays are types that contain a getofor more elements all of the same type. The
elements are referenced via indices that are in the domaiitité array is declared over. Domains and arrays
are defined iffIg.

7.9 Type Aliases

Type aliases are declared with the following syntax:

type- alias- declaration- statement
type type- alias- declaration ;

type- alias- declaration:
identifier type part,y
identifier type part,,: , type- alias- declaration

type- part:
= type

36 Chapel Language Specification

A type alias is a symbol that aliases any type as specifieckiryite- part. A use of a type alias has the same
meaning as using the type specifiediype- part directly.

Thetype- part is optional in the definition of a class or record. Such a tyj@esas called an unspecified type
alias. Classes and records that contain type aliasesfisplemi unspecified, are generf2{.31).

Variables 37

8 Variables

A variable is a symbol that represents memory. Chapel istacallg-typed, type-safe language so every
variable has a type that is known at compile-time and the dempnforces that values assigned to the
variable can be stored in that variable as specified by its.typ

8.1 Variable Declarations

Variables are declared with the following syntax:

variable- declaration- statement
config ., variable- kind variable- declaration ;

variable- kind: one of
param const var

variable- declaration- list:
variable- declaration
variable- declaration , variable- declaration- list

variable- declaration:
identifier- list type- part,,: initialization- part
identifier- list type- part

identifier- list:

identifier
identifier , identifier-list

type- part:
. type
synchronizationtype type

initialization- part:
= expression

A variable- declaration- statementis used to define one or more variables. If the statement ig-fete!
module statement, the variables are global; otherwisedheyocal. Global variables are discussed8.
Local variables are discussed§@.3.

The optional keyworctonfig specifies that the variables are configuration variables¢rid®ed in Sec-

tion §8.3.

The variable- kind specifies whether the variables are parametanaifn), constantsdonst), or regular
variables yar). Parameters are compile-time constants whereas cosstantuntime constants. Both levels
of constants are discussed§f4.

Multiple variables can be defined in the same variable datitar list. All variables defined in the same
identifier- list are defined to have the same type and initialization expressi

Thetype- part of a variable declaration specifies the type of the variabig optional if theinitialization- part
is specified. If thetype- part is omitted, the type of the variable is inferred using logglet inference de-

scribed ing8.1.2.

Theinitialization- part of a variable declaration specifies an initial expressioadsign to the variable.
Ifthe initialization- part is omitted, the variable is initialized to a default valuscibed in§8.11.

38

8.1.1 Default Initialization

Chapel Language Specification

If a variable declaration has no initialization expressiarvariable is initialized to the default value of its
type. The default values are as follows:

Type Default Value

bool false

int(*) 0

uint(=) 0

real(=) 0.0

imag(*) 0.0i

complex(*) | 0.0 + 0.0i

string

enums first enum constant

classes nil

records default constructed record
sequences empty sequence

arrays elements are default values
tuples components are default valugs

8.1.2 Local Type Inference

If the type is omitted from a variable declaration, the typthe variable becomes the type of the initialization
expression.

8.2 Global Variables

Variables declared in statements that are in a module buhrefunction or block within that module are
global variables. Global variables can be accessed angwtigrin that module after the declaration of that
variable. They can also be accessed in other modules th#iatsmodule.

8.3 Local Variables

Local variables are variables that are not global. Locakiées are declared within block statements. They
can only be accessed within the scope of that block statefiretiding all inner nested block statements
and functions).

A local variable only exists during the execution of codet fies within that block statement. This time is
called the lifetime of the variable. When execution has fiatswithin that block statement, the local variable
and the storage it represents is removed. Variables of glpesare the sole exception. Constructors of class
types create storage that is not associated with any scoph.sforage is managed automatically as discussed

in JTZT0.

Variables 39

8.4 Constants

Constants are divided into two categories: parametersijfigaewith the keyworgparam, are compile-time
constants and constants, specified with the keywondt , are runtime constants.

8.4.1 Compile-Time Constants

A compile-time constant or parameter must have a singleevilat is known statically by the compiler.
Parameters are restricted to primitive and enumeratedtype

Parameters can be assigned expressions that are pararpeésms@ns. Parameter expressions are restricted
to the following constructs:

e Literals of primitive type.
e Parenthesized parameter expressions.
e Casts of parameter expressions to primitive or enumergpebt

e Applications of the unary operatots -, ! , and™ on operands that are bool or integral parameter
expressions.

e Applications of the binary operatots -, *,/, % * ,&& || ,!,&|,”,”,<<,>>,==,1= /<=, >=,
<, and> on operands that are bool or integral parameter expressions

e The conditional expression where the condition is a paran@atd the then- and else-expressions are
parameters.

There is an expectation that parameters will be expandeate tgpes and more operations, and that func-
tions that return parameters will be introduced, in the ffeitu

8.4.2 Runtime Constants

Constants, as opposed to parameters, do not have thetrestithat are associated with parameters. Con-
stants can be any type. They require an initialization esgiom and contain the value of that expression
throughout their lifetime.

Variables of class type that are constants are constamerefes. The fields of the class can be modified, but
the variable always points to the object that it was iniziedl to reference.

40 Chapel Language Specification
8.5 Configuration Variables

If the keywordconfig precedes the keywonehr , const , or param, the variable, constant, or parame-
ter is called a configuration variable, configuration contstar configuration parameter respectively. Such
variables, constants, and parameters must be global.

The initialization of these variables can be set via impletatton dependent means, such as command-line
switches or environment variables. The initializationmgsion in the program is ignored if the initialization
is alternatively set.

Configuration parameters are set during compilation tinaeceimpilation flags or other implementation de-
pendent means.

Example A configuration parameter is set via a compiler flag. It maybed to control the
target that is being compiled. For example, the code

confi g param target: string = "XT3"%

sets a string parameterget to"XT3" . This can be checked to compile different code for this
target.

Conversions 41

9 Conversions

A conversion allows an expression of one type to be convémtecanother type. Conversions can be either
implicit or explicit.

Implicit conversions can occur during an assignment (froenexpression on the right-hand side to the vari-
able on the left-hand side) or during a function call (frore #ttual expression to the formal argument). An
implicit conversion does not require a cast.

Explicit conversions require a cast in the code. Casts dieatkin JI0.3. Explicit conversions are supported
between more types than implicit conversions, but expticitversions are not supported between all types.

9.1 Implicit Conversions

Implicit conversions are allowed between numeric ty@BsI 1), from enumerated types to numeric tyEs1.2),
between class type§9.1.3), and between record typg8{L.4). A special set of implicit conversions are al-
lowed from compile-time constants of type andint(64) to other smaller numeric types if the value is
in the range of the smaller numeric tyd@[1.5). Lastly, implicit conversions are supported frorregeral
and class types to bool in the context of a statem§RI(B).

9.1.1 Implicit Numeric Conversions

Lets, 7, andk range over the constants 16, 32, and64 when parameterizingt anduint and over the
constants2, 64, and128 when parameterizingal ,imag, andcomplex . The implicit numeric conversions
are as follows:

e Frombool toint(j),uint(7), Orstring

Fromint() toint(j),real(k), complex(k), orstring wherej > i

Fromuint(4) toint(j),uint(j),real(k), complex(k), orstring wherej > i

Fromreal(i) toreal(j),complex(k), orstring wherej > iandk > 2i

Fromimag(¢) toimag(j), complex(k), orstring wherej > i andk > 2i

Fromcomplex(i) tocomplex(j),orstring wherej > i

The implicit numeric conversions do not result in any lossnédrmation except for the conversions from
any of theint anduint types to any of theeal andcomplex types and from any of theeal , imag, and
complex typestostring where there is a loss of precision.

9.1.2 Implicit Enumeration Conversions

An expression that is an enumerated type can be implicithweded to any integral type as long as all of
the constants defined by the enumerated type are within r@fne integral type. It can also be implicitly
converted tastring where the string is the name of the enumerated constant.

42 Chapel Language Specification

9.1.3 Implicit Class Conversions

An expression of class typecan be implicitly converted to another class typprovided thaiC is derived
from D.

9.1.4 Implicit Record Conversions

An expression of record typ&can be implicitly converted to another record typerovided thaC s derived
from D.

9.1.5 Implicit Compile-Time Constant Conversions
The following two implicit conversions of parameters arpported:

e A parameter of typent(32) can be implicitly converted tint(8) , int(16) , or any unsigned
integral type if the value of the parameter is within the mpfjthe target type.

e A parameter of typént(64) can be implicitly converted taint(64) if the value of the parameter
is nonnegative.

9.1.6 Implicit Statement Bool Conversions

In the condition of an if-statement, while-loop, and do-leHbop, the following implicit conversions are
supported:

e An expression of integral type is taken to be true if it is ramme and is otherwise false.
e An expression of a class type is taken to be true if is not rdliarotherwise false.
9.2 Explicit Conversions

The explicit conversions are a superset of the implicit eogions.

9.2.1 Explicit Numeric Conversions

Explicit conversions are allowed from any numeric type tg ather numeric type, bool, or string, and vice
versa.

9.2.2 Explicit Enumeration Conversions

Explicit conversions are allowed from any enumerated typesmy numeric type, bool, or string, and vice
versa.

Conversions 43

9.2.3 Explicit Class Conversions

An expression of class typgcan be explicitly converted to another class typerovided thatC is derived
from D or Dis derived fromC. In the event thab is derived fromC, the runtime type ob must be aC.

9.2.4 Explicit Record Conversions

An expression of record typgcan be explicitly converted to another record typgrovided thatC is derived
from D. There are no explicit record conversions that are not afgiicit record conversions.

44

Chapel Language Specification

Expressions 45
10 Expressions

This section defines expressions in Chapel. Forall expressire described #P22.2.

The syntax for an expression is given by:

expression
literal- expression
variable- expression
member access expression
call- expression
query- expression
cast- expression
Ivalue- expression
unary- expression
binary- expression
let- expression
if- expression
forall- expression

10.1 Literal Expressions

A literal value for any of the built-in types is a literal exgssion. These are defined where the type is defined.
The list of literal values is given by the following syntax:

literal- expression
bool- literal
integer- literal
real- literal
imaginary- literal
string- literal
sequence literal
domain literal

10.2 Variable Expressions

A use of a variable is itself an expression. The syntax of alber expression is given by:

variable- expression
identifier

10.3 Call Expressions

The syntax to call a function is given by:

call- expression
expression (named expression list)

named expression list:
named expression
named expression , named expression list

named expression
expression
identifier = expression

46 Chapel Language Specification

A call- expressionis resolved to a particular function according to the alidponi for function resolution

described irffI3.8.

A named expressionis an expression that may be optionally named. The optichahtifier represents a
named actual argument describedZ.Z.1.

10.3.1 Indexing Expressions

Indexing into arrays, sequences, tuples, and domainssti@eame syntax of a call expression. Indexing,
at its core, is nothing more than a call to the indexing fuorctiefined on these types.

10.3.2 Member Access Expressions

Member access expressions are call expressions to menflaisses, records, or unions. The syntax for a
member access is given by:

member access expression
expression . identifier

The member access may be an access of a field or a functior msidss, record, or union.

10.4 The Query Expression

A query expression is used to query a type or value within mé&argument type expression. The syntax of
a query expression is given by:

query- expression
? identifier

Querying is restricted to querying the type of a formal argaimthe element type of an formal argument that
is an array, the domain of a formal argument that is an arrafeosize of a primitive type.

Example The following code defines a generic function where the tyfphe first parameter
is queried and stored in the type aliasind the domain of the second argument is queried and
stored in the variable:
def foo(x: 2t, y: [?D] t) {
for i in D do
yliil = x;
}

The type aliag is used to specify the element type of arsayArrays passed to this function
must have element type The body of the function iterates over the domairy afaptured in
variableD and assigns the value of argumertb each element in arragy

There is an expectation that query expressions will be &bim more places in the future.

Expressions 47

10.5 Casts

A cast is specified with the following syntax:

cast- expression
expression: type

The expression is converted to the specified type. Excephfocasts listed below, casts are restricted to
valid explicit conversionsjg.2).

The following casts have special meanings and do not casres an explicit conversion:

A cast to the keywordeq converts a tuple to a sequence as describ&d#nl3.

A cast to a parameter expression of integral type convergaence to a tuple as describedIiZ. 13.

A cast from a 2-tuple t@womplex converts the 2-tuple into a complex where the first component
becomes the real part and the second component becomesifieany part. The size of the complex
is determined from the size of the components based on ingdioversions.

e A cast from any primitive type to a string literal that is a e format string creates a formatted string
based on that format.

10.6 LValue Expressions

An Ivalueis an expression that can be used on the left-hand side ofsagnagent statement, passed to a
formal argument of a function that hast orinout intent, or returned by a variable function. Valid Ivalue
expressions include the following:

Variable expressions.
e Member access expressions.

e Call expressions that are either setters or variable fansti

Indexing expressions.

Let expressions where the inner expression is an lvalueessn.

Conditional expressions where the then- and else-expresare lvalue expressions.

LValue expressions are given by the following syntax:

Ivalue- expression
variable- expression
member access expression
call- expression
let- expression
conditional- expression

The syntax is more relaxed than the definition above. For pi@mot allcall- expressiors are Ivalues.

48 Chapel Language Specification
10.7 Operator Precedence and Associativity

The following table summarizes the precedence of operatmigheir associativity. Operators listed earlier
have higher precedence than those listed later.

operators associativity | use
. left member access
01 left function call, index expression
: left cast
*k right exponentiation
unary+ - ~ right sign and bitwise negation
* | % left multiply, divide, and modulus
+ - left plus and minus
& left bitwise and
a left bitwise xor
<< >> left shift left and shift right
left bitwise or
<= >= < > left ordered comparison
== I= left equality comparison
! right logical negation
&& left logical and
Il left logical or
left sequence concatenation
. left arithmetic sequences
in left forall expressions
by left striding sequences
if left conditional expressions
reduce scan left reductions and scans
, left comma separated expressions

10.8 Operator Expressions

The application of operators to expressions is itself amasgion. The syntax of a unary expression is given
by:

unary- expression
unary- operator expression

unary- operator: one of
+ - "1

The syntax of a binary expression is given by:

binary- expression
expression binaryoperator expression

binary- operator: one of
ook Wk & | T K> || === <E>E>#

The operators are defined in subsequent sections.

Expressions 49

10.9 Arithmetic Operators

This section describes the predefined arithmetic operaidrese operators can be redefined over different
types using operator overloadinfil3.1).

All arithmetic operators are implemented over integraktypf size 32 and 64 bits only. For example, adding
two 8-bit integers is done by first converting them to 32-biegers and then adding the 32-bit integers. The
result is a 32-bit integer.

10.9.1 Unary Plus Operators

The unary plus operators are predefined as follows:

def +(@: int(32): i nt(32)

def +(@: int(64)): i nt (64)

def +(@: uint(32)): ui nt (32)

def +(a: uint(64)): ui nt (64)

def +(@: real (32): real (32)

def +(a: real (64)): r eal (64)

def +(@: real (128)): real (128)

def +(@: img(32)): i mag(32)

def +(@: inag(64)): i mag(64)

def +(a: inmag(128)): i mag(128)

def +(@: conpl ex(32)): conpl ex(32)
def +(@: conpl ex(64)): conpl ex(64)
def +(a: conpl ex(128)): conpl ex(128)

For each of these definitions, the result is the value of thera.

10.9.2 Unary Minus Operators

The unary minus operators are predefined as follows:

def -(a: int(32): i nt(32)

def -(a: int(64)): i nt (64)

def -(a: uint(64))

def -(a: real (32): real (32)
def -(a: real (64)): r eal (64)
def -(a: real (128)): real (128)
def -(a: img(32)): i mag(32)
def -(a: inag(64)): i mag(64)
def -(a: imag(128)): i mag(128)

def -(a: conpl ex(32)): conpl ex(32)
def -(a: conpl ex(64)): conpl ex(64)
def -(a: conpl ex(128)): conpl ex(128)

For each of these definitions that return a value, the restiteé negation of the value of the operand. For
integral types, this corresponds to subtracting the valu@ zero. For real and imaginary types, this corre-
sponds to inverting the sign. For complex types, this cpads to inverting the signs of both the real and
imaginary parts.

It is an error to try to negate a value of typmt(64) . Note that negating a value of typént(32) first
converts the type tmt(64) using an implicit conversion.

50

10.9.3 Addition Operators

The addition operators are predefined as follows:

Chapel Language Specification

def +(@ int(32), b: i nt (32)): i nt(32)

def +(@: int(64), b: i nt (64)): i nt (64)

def +(a: uint(32), b: ui nt (32)): ui nt (32)

def +(@: uint(64), b: ui nt (64)): ui nt (64)

def +(a: uint(64), b: i nt (64))

def +(@: int(64), b: ui nt (64))

def +(@: real (32), b: r eal (32)): real (32)

def +(@: real (64), b: r eal (64)): real (64)

def +(a: real (128), b: r eal (128)): real (128)

def +(a: imag(32), b: i mag(32)): i mag(32)

def +(@: inmg(64), b: i mag(64)): i mag(64)

def +(a: inmag(128), b: i mag(128)): i mag(128)

def +(@: conpl ex(64), b: conpl ex(64)): conpl ex(64)
def +(a: conpl ex(128), b: conpl ex(128)): conpl ex(128)
def +(@: conpl ex(256), b: conpl ex(256)): conpl ex(256)
def +(@: real (32), b: i mag(32)): conpl ex(64)

def +(a: imag(32), b: r eal (32)): conpl ex(64)

def +(@: real (64), b: i mag(64)): conpl ex(128)

def +(a: inmag(64), b: r eal (64)): conpl ex(128)

def +(@: real (128), b: i mag(128)): conpl ex(256)
def +(@: inmag(128), b: r eal (128)): conpl ex(256)
def +(@: real (32), b: conpl ex(64)): conpl ex(64)
def +(@: conpl ex(64), b: r eal (32)): conpl ex(64)
def +(@: real (64), b: conpl ex(128)): conpl ex(128)
def +(a: conpl ex(128), b: r eal (64)): conpl ex(128)
def +(@: real (128), b: conpl ex(256)): conpl ex(256)
def +(@: conpl ex(256), b: real (128)): conpl ex(256)
def +(@: inmag(32), b: conpl ex(64)): conpl ex(64)
def +(@: conpl ex(64), b: i mag(32)): conpl ex(64)
def +(@: inmag(64), b: conpl ex(128)): conpl ex(128)
def +(a: conpl ex(128), b: i mag(64)): conpl ex(128)
def +(@: inmag(128), b: conpl ex(256)): conpl ex(256)
def +(@: conpl ex(256), b: i mag(128)): conpl ex(256)

For each of these definitions that return a value, the resthig sum of the two operands.

It is a compile-time error to add a value of typiat(64)

and a value of typent(64)

Addition over a value of real type and a value of imaginaretppoduces a value of complex type. Addition
of values of complex type and either real or imaginary typss produces a value of complex type.

10.9.4 Subtraction Operators

The subtraction operators are predefined as follows:

def -(a: int(32), b: i nt (32)):
def -(a: int(64), b: i nt (64)):
def -(a: uint(32), b: ui nt (32)):
def -(a: uint(64), b: ui nt (64)):

i nt (32)

i nt (64)
ui nt (32)
ui nt (64)

Expressions 51

def -(a: uint(64), b: i nt (64))
def -(a: int(64), b: ui nt (64))

def -(a: real (32), b: r eal (32)): real (32)
def -(a: real (64), b: r eal (64)): r eal (64)
def -(a: real (128), b: r eal (128)): r eal (128)

def -(a: imag(32), b: i mag(32)): i mag(32)
def -(a: inmg(64), b: i mag(64)): i mag(64)
def -(a: imag(128), b: i mag(128)): i mag(128)

def -(a: conpl ex(64), b: conpl ex(64)): conpl ex(64)
def -(a: conpl ex(128), b: conpl ex(128)): conpl ex(128)
def -(a: conpl ex(256), b: conpl ex(256)): conpl ex(256)

def -(a: real (32), b: i mag(32)): conpl ex(64)
def -(a: imag(32), b: r eal (32)): conpl ex(64)
def -(a: real (64), b: i mag(64)): conpl ex(128)
def -(a: inmag(64), b: r eal (64)): conpl ex(128)
def -(a: real (128), b: i mag(128)): conpl ex(256)
def -(a: imag(128), b: r eal (128)): conpl ex(256)

def -(a: real (32), b: conpl ex(64)): conpl ex(64)
def -(a: conpl ex(64), b: r eal (32)): conpl ex(64)
def -(a: real (64), b: conpl ex(128)): conpl ex(128)
def -(a: conpl ex(128), b: r eal (64)): conpl ex(128)
def -(a: real (128), b: conpl ex(256)): conpl ex(256)
def -(a: conpl ex(256), b: real (128)): conpl ex(256)

def -(a: inmag(32), b: conpl ex(64)): conpl ex(64)
def -(a: conpl ex(64), b: i mag(32)): conpl ex(64)
def -(a: inmg(64), b: conpl ex(128)): conpl ex(128)

def -(a: conpl ex(128), b: i mag(64)): conpl ex(128)
def -(a: imag(128), b: conpl ex(256)): conpl ex(256)
def -(a: conpl ex(256), b: i mag(128)): conpl ex(256)

For each of these definitions that return a value, the resuha value obtained by subtracting the second
operand from the first operand.

Itis a compile-time error to subtract a value of typet(64) from a value of typént(64) , and vice versa.

Subtraction of a value of real type from a value of imagingpet and vice versa, produces a value of complex
type. Subtraction of values of complex type from either ogdiaginary types, and vice versa, also produces
a value of complex type.

10.9.5 Multiplication Operators

The multiplication operators are predefined as follows:

def *(a: int(32), b: i nt (32)): i nt(32)
def *(a: int(64), b: i nt (64)): i nt (64)
def =(a: uint(32), b: ui nt (32)): ui nt (32)
def =(a: uint(64), b: ui nt (64)): ui nt (64)
def =(a: uint(64), b: i nt (64))

def =(a: int(64), b: ui nt (64))

def *(a: real (32), b: real (32)): real (32)
def =(a: real (64), b: r eal (64)): r eal (64)
def =(a: real (128), b: r eal (128)): r eal (128)

52

def =(a: inmag(32), b: i mag(32)): real (32)
def =(a: inmag(64), b: i mag(64)): r eal (64)
def =(a: imag(128), b: i mag(128)): real (128)

def =(a: conpl ex(64), b: conpl ex(64)): conpl ex(64)
def =(a: conpl ex(128), b: conpl ex(128)): conpl ex(128)
def =(a: conpl ex(256), b: conpl ex(256)): conpl ex(256)

def *(a: real (32), b: i mag(32)): i mag(32)
def =(a: inmag(32), b: r eal (32)): i mag(32)
def =(a: real (64), b: i mag(64)): i mag(64)
def =(a: inmag(64), b: r eal (64)): i mag(64)
def =(a: real (128), b: i mag(128)): i mag(128)
def =(a: imag(128), b: r eal (128)): i mag(128)

def *(a: real (32), b: conpl ex(64)): conpl ex(64)
def =(a: conpl ex(64), b: real (32)): conpl ex(64)
def =(a: real (64), b: conpl ex(128)): conpl ex(128)
def =*(a: conpl ex(128), b: r eal (64)): conpl ex(128)
def =(a: real (128), b: conpl ex(256)): conpl ex(256)
def *(a: conpl ex(256), b: real (128)): conpl ex(256)

def =(a: imag(32), b: conpl ex(64)): conpl ex(64)
def =(a: conpl ex(64), b: i mag(32)): conpl ex(64)
def =(a: inmag(64), b: conpl ex(128)): conpl ex(128)

def =(a: conpl ex(128), b: i mag(64)): conpl ex(128)
def *(a: inmag(128), b: conpl ex(256)): conpl ex(256)
def *(a: conpl ex(256), b: i mag(128)): conpl ex(256)

Chapel Language Specification

For each of these definitions that return a value, the resthig product of the two operands.

Itis a compile-time error to multiply a value of typint(64) and a value of typat(64)

Multiplication of values of imaginary type produces a vabfeeal type. Multiplication over a value of real
type and a value of imaginary type produces a value of imagitype. Multiplication of values of complex

type and either real or imaginary types produces a valueropbex type.

10.9.6 Division Operators

The division operators are predefined as follows:

def /(a: int(32), b: i nt (32)): i nt(32)
def /(a: int(64), b: i nt (64)): i nt (64)
def /(a: uint(32), b: ui nt (32)): ui nt (32)
def /(a: uint(64), b: ui nt (64)): ui nt (64)
def /(a: uint(64), b: i nt (64))

def /(a: int(64), b: ui nt (64))

def /(a: real (32), b: real (32)): real (32)
def /(a: real (64), b: r eal (64)): r eal (64)
def /(a: real (128), b: r eal (128)): r eal (128)

def /(a: inmag(32), b: i mag(32)): real (32)
def /(a: inmag(64), b: i mag(64)): r eal (64)
def /(a: inmag(128), b: i mag(128)): real (128)

def /(a: conpl ex(64), b: conpl ex(64)): conpl ex(64)
def /(a: conpl ex(128), b: conpl ex(128)): conpl ex(128)

Expressions 53

def /(a: conpl ex(256), b: conpl ex(256)): conpl ex(256)

def /(a: real (32), b: i mag(32)): i mag(32)
def /(a: inag(32), b: real (32)): i mag(32)
def /(a: real (64), b: i mag(64)): i mag(64)
def /(a: inmag(64), b: r eal (64)): i mag(64)
def /(a: real (128), b: i mag(128)): i mag(128)
def /(a: imag(128), b: r eal (128)): i mag(128)

def /(a: real (32), b: conpl ex(64)): conpl ex(64)
def /(a: conpl ex(64), b: r eal (32)): conpl ex(64)
def /(a: real (64), b: conpl ex(128)): conpl ex(128)
def /(a: conpl ex(128), b: r eal (64)): conpl ex(128)
def /(a: real (128), b: conpl ex(256)): conpl ex(256)
def /(a: conpl ex(256), b: r eal (128)): conpl ex(256)

def /(a: imag(32), b: conpl ex(64)): conpl ex(64)
def /(a: conpl ex(64), b: i mag(32)): conpl ex(64)
def /(a: inmag(64), b: conpl ex(128)): conpl ex(128)

def /(a: conpl ex(128), b: i mag(64)): conpl ex(128)
def /(a: imag(128), b: conpl ex(256)): conpl ex(256)
def /(a: conpl ex(256), b: i mag(128)): conpl ex(256)

For each of these definitions that return a value, the resthig quotient of the two operands.

Itis a compile-time error to divide a value of typit(64) by a value of typént(64) , and vice versa.

Division of values of imaginary type produces a value of tgpk. Division over a value of real type and a
value of imaginary type produces a value of imaginary typwidibn of values of complex type and either
real or imaginary types produces a value of complex type.

10.9.7 Modulus Operators

The modulus operators are predefined as follows:

def %(a: int(32), b: i nt (32)): i nt(32)
def %(a: int(64), b: i nt (64)): i nt (64)
def %(a: uint(32), b: ui nt (32)): ui nt (32)
def %(a: uint(64), b: ui nt (64)): ui nt (64)
def 9%(a: uint(64), b: i nt (64))

def %(a: int(64), b: ui nt (64))

For each of these definitions that return a value, the restitta remainder when the first operand is divided
by the second operand.

It is a compile-time error to take the remainder of a valueypBuint(64) and a value of typit(64)
and vice versa.

There is an expectation that the predefined modulus opsnaithbe extended to handle real, imaginary, and
complex types in the future.

54 Chapel Language Specification

10.9.8 Exponentiation Operators

The exponentiation operators are predefined as follows:

def =*x (a: int(32), b: i nt (32)): i nt(32)
def = (a: int(64), b: int(64)): int(64)
def *+ (a: uint(32), b: ui nt (32)): ui nt (32)
def = (a: uint(64), b: ui nt (64)): ui nt (64)
def =+ (a: uint(64), b: i nt (64))

def *x (a: int(64), b: ui nt (64))

def *+ (a: real (32), b: r eal (32)): real (32)
def *x (a: real (64), b: r eal (64)): r eal (64)
def =+ (a: real (128), b: r eal (128)): real (128)

For each of these definitions that return a value, the resthie value of the first operand raised to the power
of the second operand.

It is a compile-time error to take the exponent of a value pétyint(64) by a value of typént(64) , and
vice versa.

There is an expectation that the predefined exponentiaperators will be extended to handle imaginary
and complex types in the future.

10.10 Bitwise Operators

This section describes the predefined bitwise operatoressd iperators can be redefined over different types
using operator overloadingI3.1.

10.10.1 Bitwise Complement Operators

The bitwise complement operators are predefined as follows:

def “(a: bool): bool

def “(a: int(32): i nt(32)
def “(a: int(64)): i nt (64)
def “(a: uint(32)): ui nt (32)
def “(a: uint (64)): ui nt (64)

For each of these definitions, the result is the bitwise cemeht of the operand.

10.10.2 Bitwise And Operators

The bitwise and operators are predefined as follows:

def &(a: bool, b: bool): bool

def &(a: int(32), b: i nt (32)): i nt(32)
def &(a: int(64), b: i nt (64)): i nt (64)
def &(a: uint(32), b: ui nt (32)): ui nt (32)
def &(a: uint(64), b: ui nt (64)): ui nt (64)
def &(a: uint(64), b: i nt (64))

def &(a: int(64), b: ui nt (64))

Expressions 55

For each of these definitions that return a value, the resahiinputed by applying the logical and operation
to the bits of the operands.

It is a compile-time error to apply the bitwise and operatoa tvalue of typaiint(64) and a value of type
int(64) , and vice versa.

10.10.3 Bitwise Or Operators

The bitwise or operators are predefined as follows:

def |(@: bool, b: bool): bool

def |(a: int(32), b: i nt (32)): i nt(32)

def |(a: int(64), b: i nt (64)): i nt (64)

def |(a: uint(32), b: ui nt (32)): ui nt (32)
def |(a: uint(64), b: ui nt (64)): ui nt (64)
def |(a: uint(64), b: i nt (64))

def |(a: int(64), b: ui nt (64))

For each of these definitions that return a value, the resatiinputed by applying the logical or operation to
the bits of the operands.

It is a compile-time error to apply the bitwise or operatoatvalue of typeuint(64) and a value of type
int(64) , and vice versa.

10.10.4 Bitwise Xor Operators

The bitwise xor operators are predefined as follows:

def “(a: bool, b: bool): bool

def “(a: int(32), b: i nt (32)): i nt(32)
def “(@a: int(64), b: i nt (64)): i nt (64)
def “(a: uint(32), b: ui nt (32)): ui nt (32)
def “(a: uint(64), b: ui nt (64)): ui nt (64)
def “(a: uint(64), b: i nt (64))

def “(a: int(64), b: ui nt (64))

For each of these definitions that return a value, the resatiinputed by applying the XOR operation to the
bits of the operands.

It is a compile-time error to apply the bitwise xor operamatvalue of typaiint(64) and a value of type
int(64) , and vice versa.

10.11 Shift Operators

This section describes the predefined shift operators. eTbpsrators can be redefined over different types
using operator overloadingI3.1.

The shift operators are predefined as follows:

56 Chapel Language Specification

def <<(a: int(32), b): int(32)
def >>(a: int(32), b): i nt(32)
def <<(a: int(64), b): i nt (64)
def >>(a: int(64), b): int(64)

def <<(a: uint(32), b): ui nt (32)
def >>(a: uint(32), b): ui nt (32)
def <<(a: uint(64), b): ui nt (64)
def >>(a: uint(64), b): ui nt (64)

The type of the second actual argument must be any integral ty
The << operator shifts the bits af left by the integeb. The new low-order bits are set to zero.

The>> operator shifts the bits af right by the integeb. Whena is negative, the new high-order bits are set
to one; otherwise the new high-order bits are set to zero.

The value ob must be non-negative.

10.12 Logical Operators

This section describes the predefined logical operatorssd bperators can be redefined over different types
using operator overloadingI3.1).

10.12.1 The Logical Negation Operator

The logical negation operator is predefined as follows:
def !(a: bool): bool

The result is the logical negation of the operand.

10.12.2 The Logical And Operator

The logical and operator is predefined over bool type. Itrreturue if both operands evaluate to true;
otherwise it returns false. If the first operand evaluatdals®e, the second operand is not evaluated and the
result is false.

The logical and operator over expressiarendb given by
a&&b

is evaluated as the expression

if a false? then false else b.true?

The method#alse? andtrue? are predefined over bool type as follows:

def bool.true? return this;
def bool.fal se? return lthis;

Overloading the logical and operator over other types isiuished by overloading thHfelse? andtrue?
methods over other types.

Expressions 57
10.12.3 The Logical Or Operator

The logical or operator is predefined over bool type. It resurue if either operand evaluate to true; otherwise
it returns false. If the first operand evaluates to true, dov®sd operand is not evaluated and the result is true.

The logical or operator over expressianandb given by
a&& b

is evaluated as the expression

if a.true? then true else b.true?

The methodsalse? andtrue? are predefined over bool type as describelif. IZ.2. Overloading the
logical or operator over other types is accomplished by loa€liing thefalse? andtrue? methods over
other types.

10.13 Relational Operators

This section describes the predefined relational operafidisse operators can be redefined over different
types using operator overloadirffl3.1.

10.13.1 Ordered Comparison Operators

The “less than” comparison operators are predefined asfgllo

def <(a: int(32), b: i nt (32)): bool

def <(a: int(64), b: i nt (64)): bool

def <(a: uint(32), b: ui nt (32)): bool
def <(a: uint(64), b: ui nt (64)): bool
def <(a: real (32), b: r eal (32)): bool
def <(a: real (64), b: r eal (64)): bool
def <(a: real (128), b: r eal (128)): bool
def <(a: img(32), b: i mag(32)): bool
def <(a: inmg(64), b: i mag(64)): bool
def <(a: imag(128), b: i mag(128)): bool

The result ofa < b is true ifa is less tharb; otherwise the result is false.

The “greater than” comparison operators are predefinedlasvfo

def >(@: int(32), b: i nt (32)): bool

def >(a: int(64), b: i nt (64)): bool

def >(a: uint(32), b: ui nt (32)): bool
def >(a: uint(64), b: ui nt (64)): bool
def >(@: real (32), b: r eal (32)): bool
def >(a: real (64), b: r eal (64)): bool
def >(a: real (128), b: r eal (128)): bool
def >(@: inmag(32), b: i mag(32)): bool
def >(a: inmag(64), b: i mag(64)): bool
def >(a: inmag(128), b: i mag(128)): bool

58 Chapel Language Specification

The result ofa > b is true ifa is greater tham; otherwise the result is false.

The “less than or equal to” comparison operators are presteén follows:

def <=(a: int(32), b: i nt (32)): bool

def <=(a: int(64), b: i nt(64)): bool

def <=(a: uint(32), b: ui nt (32)): bool
def <=(a: uint(64), b: ui nt (64)): bool
def <=(a: real (32), b: r eal (32)): bool
def <=(a: real (64), b: r eal (64)): bool
def <=(a: real (128), b: real (128)): bool
def <=(a: img(32), b: i mag(32)): bool
def <=(a: imag(64), b: i mag(64)): bool
def <=(a: img(128), b: i mag(128)): bool

The result ofa <= b is true ifa is less than or equal to; otherwise the result is false.

The “greater than or equal to” comparison operators aregfireztl as follows:

def >=(a: int(32), b: int(32): bool

def >=(a: int(64), b: i nt (64)): bool

def >=(a: uint(32), b: ui nt (32)): bool
def >=(a: uint(64), b: ui nt (64)): bool
def >=(a: real (32), b: r eal (32)): bool
def >=(a: real (64), b: r eal (64)): bool
def >=(a: real (128), b: r eal (128)): bool
def >=(a: imag(32), b: i mag(32)): bool
def >=(a: inmag(64), b: i mag(64)): bool
def >=(a: inmag(128), b: i mag(128)): bool

The result ol >= b is true ifa is greater than or equal tg otherwise the result is false.

10.13.2 Equality Comparison Operators

The equality comparison operators are predefined over Inaithee numeric types as follows:

def ==(@: int(32), b: i nt (32)): bool

def ==(a: int(64), b: i nt (64)): bool

def ==(a: uint(32), b: ui nt (32)): bool

def ==(a: uint(64), b: ui nt (64)): bool

def ==(a: real (32), b: r eal (32)): bool

def ==(a: real (64), b: r eal (64)): bool

def ==(a: real (128), b: r eal (128)): bool

def ==(a: inmag(32), b: i mag(32)): bool

def ==(a: inmag(64), b: i mag(64)): bool

def ==(a: inmg(128), b: i mag(128)): bool

def ==(a: conpl ex(64), b: conpl ex(64)): bool
def ==(a: conpl ex(128), b: conpl ex(128)): bool
def ==(a: conpl ex(256), b: conpl ex(256)): bool

The result ofa == b is true ifa andb contain the same value; otherwise the result is false. Thdtref
a != b is equivalenttd(a == b)

The equality comparison operators are predefined overadassfollows:

def ==(a: object, b: object): bool
def !=(a: object, b: object): bool

Expressions 59

The result ol == b is true ifa andb reference the same storage location; otherwise the redalsie. The
result ofa != b is equivalenttd(a == b)

Default equality comparison operators are generated fwrds if the user does not define them. These
operators are described §fi5.3.

The equality comparison operators are predefined ovegsten follows:

def ==(@: string, b: string): bool
def !=(@: string, b: string): bool

The result ofa == b is true if the sequence of characteraimatches exactly the sequence of characters in
b; otherwise the result is false. The resulof= b is equivalenttd(a == b)

10.14 Miscellaneous Operators

This section describes several miscellaneous operatbeseloperators can be redefined over different types
using operator overloadingI3.1.

10.14.1 The String Concatenation Operator

The string concatenation operator is predefined as follows:
def +(@: string, b: string): string

The result is the concatenationafollowed byb.

Example Since integers can be implicitly converted to strings,rdager can be appended to a
string using the string concatenation operator. The code

"result; "+i

wherei is an integer appends the value ab the string literal. 1i is 3, then the resulting string
would be"result: 3"

10.14.2 The Sequence Concatenation Operator

The operatot is predefined on sequences and their element types. It isiltledin J18.6.

10.14.3 The Arithmetic Domain By Operator

The operatoby is predefined on arithmetic domains. It is describediB.3.3.

10.14.4 The Arithmetic Sequence By Operator

The operatoby is predefined on arithmetic sequences. It is describ&i@nl3.1.

60 Chapel Language Specification

10.15 Let Expressions

A let expression allows variables to be declared at the e level and used within that expression. The
syntax of a let expression is given by:

let- expression
let variable- declaration- list in expression

The scope of the variables is the let-expression.

Example Let expressions are useful for defining variables in theaedrof expression. In the
code

let x: real = axb, y = x *x in 1lly

the value determined by~ b is computed and converted to type real if it is not alreadyad re
The square of the real is then stored/iand the result of the expression is the reciprocal of that
value.

10.16 Conditional Expressions

A conditional expression is given by the following syntax:

conditional- expression
if expressionthen expressionelse expression
if expressionthen expression

The conditional expression is evaluated in two steps. ,Riistexpression following thié keyword is eval-
uated. Then, if the expression evaluated to true, the esjorefollowing thethen keyword is evaluated and
taken to be the value of this expression. Otherwise, theesgpwn following theslse keyword is evaluated
and taken to be the value of this expression. In both casesitbelected expression is not evaluated.

The ‘else’ keyword can be omitted only when the conditioxalression is immediately nested inside a forall
expression. Such an expression is used to filter predicatdsszribed I8 1].

Statements 61

11 Statements

Chapel is an imperative language with statements that mag $ide effects. Statements allow for the se-
guencing of program execution. They are as follows:

statement
block- statement
expression statement
conditional statement
select statement
while- do- statement
do- while- statement
for- statement
param for- statement
return- statement
yield- statement
module declaration- statement
function- declaration- statement
type- declaration- statement
variable- declaration- statement
use statement
type- select statement
empty statement
cobegin statement
begin statement
serial- statement
atomic- statement
on- statement

The declaration statements are discussed in the sectiahddfine what they declare. Module declaration
statements are definedJid. Function declaration statements are definégfl® Type declaration statements
are defined irffd. Variable declaration statements are define§@inReturn statements are definediiZ.2.
Yield statements are defined J@0.2.

Thecobegin statementis defined ilZZ3. Thebegin statements defined iffZZ4. Theserial- statement
is defined ing2Z8. Theatomic- statementis defined ing2ZZ9. Theon- statementis defined if23.2.1.

11.1 Blocks

A block is a statement or a possibly empty list of statemdrasfiorm their own scope. A block is given by

block- statement
{ statements,: }

)

statements
statement
statement statements

Variables defined within a block are local variablg8.8).

The statements within a block are executed serially unkesblock is in a cobegin statemefPP.3).

62 Chapel Language Specification

11.2 Block Level Statements

A block level statement is a category of statement that isesiones called for by the language syntax. A
block level statement is given by
block- level- statement
block- statement
conditional statement
select statement
while- do- statement
for- statement
param for- statement
return- statement
yield- statement
type- select statement
empty statement
cobegin statement
begin statement
serial- statement
atomic- statement
on- statement

Block level statements are part of the language to avoidxbessive and unnecessary use of curly brackets.
For example, function bodies are not required to be bloaksirust be block level statements.

11.3 Expression Statements

The expression statement evaluates an expression sotaidéoeffects. The syntax for an expression state-
ment is given by

expression statement
expression ;

11.4 Assignment Statements

An assignment statement assigns the value of an express@mmother expression that can appear on the
left-hand side of the operator, for example, a variableigksaent statements are given by

assignment statement
Ivalue- expression assignmenbperator expression

assignmentoperator: one of
= += -= x= [= U= xx= &= ‘: "= &&= H: H= <<= >>=

The expression on the right-hand side of the assignmenatipés evaluated first; it can be any expression.
The expression on the left hand side must be a valid Ivallig.§). It is evaluated second and then assigned
the value.

The assignment operators that contain a binary operatopasfia is a short-hand for applying the binary
operator to the left and right-hand side expressions andaksigning the value of that application to the al-
ready evaluated left-hand side. Thus, for examples y is equivalenttx = x + y where the expression
x is evaluated once.

Statements 63

Values of one primitive or enumerated type can be assignesather primitive or enumerated type if an
implicit coercion exists between those typ&a.1).

The validity and semantics of assigning between clagfgsd), recordsiI5ZB), unionsylt.2), tuples§I3),
sequencesil8.4), domainsI9.1.3), and array$lT9.2.3) is discussed in these later sections.

11.5 The Conditional Statement

The conditional statement allows execution to choose bEtv@o statements based on the evaluation of an
expression obool type. The syntax for a conditional statement is given by
conditional- statement

if expressionthen statement elsepart,,:
if expression blocklevel- statement elsepart,,.

else part:
else statement

A conditional statement evaluates an expression of bod.typthe expression evaluates to true, the first
statement in the conditional statement is executed. If Xipeession evaluates to false and the optional else-
clause exists, the statement following thee keyword is executed.

If the expression is a parameter, the conditional statemsdntded by the compiler. If the expression eval-
uates to true, the first statement replaces the conditidatdeent. If the expression evaluates to false, the
second statement, if it exists, replaces the conditioadstent; if the second statement does not exist, the
conditional statement is removed.

If the statement that immediately follows the optiottan keyword is a conditional statement and it is not
in a block, the else-clause is bound to the nearest precedimdjtional statement without an else-clause.

Each statement embedded in #@nditional-statemerttas its own scope whether or not an explicit block
surrounds it.

11.6 The Select Statement

The select statement is a multi-way variant of the conditietatement. The syntax is given by:

select statement
select expression{ when statements}

when statements
when statement
when statement whenstatements

when statement
when expression list do statement
when expression list block- level- statement
otherwise statement

expression list:
expression
expression , expression list

64 Chapel Language Specification

The expression that follows the keywaselect |, the select expression, is compared with the list of expres-
sions following the keyworavhen, the case expressions, using the equality operatolf the expressions
cannot be compared with the equality operator, a compite-grror is generated. The first case expression
that contains an expression where that comparistonds will be selected and control transferred to the asso-
ciated statement. If the comparison is alwéyse , the statement associated with the keywatt@rwise

if it exists, will be selected and control transferred tdlihere may be at most omgherwise statement and

its location within the select statement does not matter.

Each statement embedded in tileen-statemeihtas its own scope whether or not an explicit block surrounds
it.

11.7 The While and Do While Loops

There are two variants of the while loop in Chapel. The syofake while-do loop is given by:

while- do- statement
while expressiondo statement
while expression blocklevel- statement

The syntax of the do-while loop is given by:

do- while- statement
do statementwhile expression;

In both variants, the expression evaluates to a value ofdyple which determines when the loop terminates
and control continues with the statement following the loop

The while-do loop is executed as follows:

1. The expression is evaluated.

2. If the expression evaluatesftose , the statement is not executed and control continues tatdbe- s
ment following the loop.

3. Ifthe expression evaluatesttoe , the statementis executed and control continues to stelliaing
the expression again.

The do-while loop is executed as follows:

1. The statement is executed.
2. The expression is evaluated.
3. If the expression evaluatesftdse , control continues to the statement following the loop.

4. If the expression evaluatesttae , control continues to step 1 and the the statement is exctagtsn.

In this second form of the loop, note that the statement isueeel unconditionally the first time.

Statements 65

11.8 The For Loop

The for loop iterates over sequences, domains, arrayatatst or any class that implements the structural
iterator interface. The syntax of the for loop is given by:

for- statement
for index- expressionin iterator- expressiondo statement
for index- expressionin iterator- expression blocklevel- statement

index- expression
expression

iterator- expression
expression

The index-expression can be an identifier or a tuple of ifierdi The identifiers are declared to be new
variables for the scope of this statement.

If the iterator-expression is a tuple, the components ofupke must support iteration, e.g., a tuple of arrays,
and those components are iterated over using a zippeiidie gafined irfgTT.8.1. If the iterator-expression is

a tuple delimited by square brackets, the components ofifiie must support iteration and these components
are iterated over using a tensor product iteration defingIng.2.

11.8.1 Zipper Iteration

When multiple iterators are iterated over in a zipper cantaxeach iteration, each expression is iterated over,
the values are returned by the iterators in a tuple and asgigrthe index, and the statement is executed.

The shape of each iterator, the rank and the extents in easéndion, must be identical.

Example The output of
for (i, j) in (1.3, 4..6) do
write(i, " ", j, " ")

is“142536".

11.8.2 Tensor Product Iteration

When multiple iterators are iterated over in a tensor prbdoatext, they are iterated over as if they were
nested in distinct for loops. There is no constraint on teeaibrs as there is in the zipper context.

Example The output of
for (i, j) in [1.3, 4..6] do
write(i, " ", j, " ")
i$“141516242526343536". The statement is equivalent to

for i in 1.3 do
for j in 4.6 do
write(i, " ", j, " ")

66 Chapel Language Specification

11.8.3 Parameter For Loops

Parameter for loops are unrolled by the compiler so that tldex variable is a parameter rather than a
variable. The syntax for a parameter for loop statementisrgby:
paranm for- statement

for param identifier in arithmetic- sequencedo statement
for param identifier in arithmetic- sequence blocklevel- statement

Parameter for loops are restricted to iteration over amticrsequence literals the bounds of which must also
be parameters. The loop is then unrolled for each iteration.

11.9 The Use Statement

The use statement makes symbols in a module available wittooessing them via the module name. The
syntax of the use statement is given by:

use statement
use module name ;

module name
identifier
module name . module name

The use statement makes symbols in the module’s scope ldeaitathe scope where the use statement
occurs.

It is an error for a variable, type or module to be defined bgth bise statement and by a declaration in the
same scope. Functions may be overloaded in this way.

11.10 The Type Select Statement

A type select statement has two uses. It can be used to deteting type of a union, as discussedI&.3. In
its more general form, it can be used to determine the types@®br more values using the same mechanisms
used to disambiguate function definitions. It syntax is gilsg:

type- select statement
type select expression list { type-when statements}

type- when statements
type- when statement
type- when statement typewhen statements

type- when statement
when type- list do statement
when type- list block- level- statement
otherwise statement

expression list:
expression
expression , expression list

type- list:
type
type , type list

Statements 67

Call the expressions following the keywaselect , the select expressions. The number of select expressions
must be equal to the number of types following each ofvthen keywords. Like the select statement, one
of the statements associated withwvaen will be executed. In this case, that statement is chosen &y th
function resolution mechanism. The select expressionshe&ractual arguments, the types following the
when keywords are the types of the formal arguments for diffeagr@inymous functions. The function that
would be selected by function resolution determines thiestant that is executed. If none of the functions
are chosen, the the statement associated with the keyotranavise , if it exists, will be selected.

As with function resolution, this can result in an ambigusitisation. Unlike with function resolution, in the
event of an ambiguity, the first statement in the list of whigatesnents is chosen.

11.11 The Empty Statement

An empty statement has no effect. The syntax of an emptynséattis given by

empty statement

68

Chapel Language Specification

Modules 69

12 Modules

Chapel supports modules to manage name spaces. Every synuhading variables, functions, and types,
are associated with some module.

Module definitions are described ffiZ]. A program consists of one or more modules. The exatofia
program and command-line arguments are describdiZi?. Module uses and explicit naming of symbols
is described ifflIZ3. Nested modules are describedfIZz.4. The relation between files and modules is

described irfIZ3.

12.1 Module Definitions

A module is declared with the following syntax:

module declaration- statement
module identifier block statement

A module’s name is specified after the module keyword. Thek- statementopens the module’s scope.
Symbols defined in this block statement are defined in the te@dkcope.

Module declaration statements may only be top-level statesin files or top-level statements in other
modules. A module that is declared in another module is d¢a@leested modulé€llZ.4).

12.2 Program Execution

Chapel programs start by executing the main functifiZZ.1). The main function takes no arguments but
command-line arguments can be passed to a program via d gkxheence of strings calledgv (§12.2.2).
Command-line flags can be passed to a program via confignnatitables, as discussedf&3.

12.2.1 Themain Function

The main function must be callenhin and must have zero arguments. There can be only one maindanct
in all of the modules that make up a program. Every main famdtarts by using the module that it is defined
in, and thus executing the top-level code in that mod¥I&Z2.3).

The main function can be omitted if there is only a single nledn the program other than the standard
modules, as discussed§hZ.2.3.

70 Chapel Language Specification

12.2.2 Command-Line Arguments

A predefined variable is used to capture arguments to thaiégamf a program. It has this declaration:

var argv: seq of string;

The number of arguments passed to the program executioreagmetnied with the sequenieagth function
asin
argv.length

Implementation note There is no support for the variakdegv . Only configuration variables
allow arguments to be passed to the execution of a program.

12.2.3 Module Execution

Top-level code in a module is executed the first time that nedwsed via aise statement

12.2.4 Programs with a Single Module

To aid in exploratory programming, if a program is defined siregle module that uses only standard mod-
ules, the module need not define a main function. A defaulhrhuction is created in this case. This main
function sole executable statement is to call the inite&afimction of that module.

Example The code
writeln("Hello World!");

is a legal and complete Chapel program. The module dedar&titaken to be the file as de-

scribed ingTZ.3.

12.3 Using Modules

Modules can be used by code outside of that module. This sllmeess to the symbols in the modules
without the need for explicit namingfTZ.31). Using modules is accomplished via the use stateasen

defined ingIT9.

12.3.1 Explicit Naming

All symbols can be named explicitly with the following syrta

module named identifier:
module identifier . identifier

module identifier:
identifier

This allows two variables that have the same name to be disshed based on the name of their module. If
code requires using symbols from two different modules hiage the same name, explicit naming is needed
to disambiguate between the two symbols. Explicit namingatao be used instead of using a module.

Modules 71

12.4 Nested Modules

A nested module is a module that is defined inside another tapthe outer module. Nested modules
automatically have access to all of the symbols in the outiute. However, the outer module needs to
explicitly use a nested module to have access to its symbols.

Example A nested module can be used without using the outer modudgctly naming the
module in the use statement. The code

use libmsl.blas;

uses a module naméxths that is nested inside a module nanfiechs|

12.5 Implicit Modules

Multiple modules can be defined in the same file and do not nebddr any relation to the file in terms of
their names. As a convenience, a module declaration staterae be omitted if it is the sole module defined
in a file. In this case, the module takes its name from the file.

72

Chapel Language Specification

Functions 73
13 Functions

This section defines functions. Methods and iterators aretions and most of this section applies to them
as well. They are defined separatehjifil andd1Z.4.

13.1 Function Definitions

Functions are declared with the following syntax:

function- declaration- statement
def function-name argumentlist var- clause,,
return- type,,: where clause,,; block- level- statement

function- name
identifier
= identifier
operator name

operator name: one of
- ok [Yk 8& || == == > >>& | " T #

argument list:
(formalsy,:)

formals:
formal
formal , formals

formal:
formal- tag identifier formal type,,, default- expression,:
formal-tag identifier formal type,,: variable- argument expression

formal- type:

. type
: TQUESTION identifier

default- expression
= expression

variable- argument expression
expression
. TQUESTION identifier

formal- tag: one of
in out inout param type

var- clause:
var

where- clause:
where expression

Operator overloading is supported in Chapel on the opeydisied above under operator name. Operator
and function overloading is discussediii3.1.

The intentsin , out , andinout are discussed ifI3.3. The formal tagparam andtype make a function
generic and are discusseddll. If the formal argument’s type is elided, generic, or peediwith a question
mark, the function is also generic and is discussefPhh

74 Chapel Language Specification

Default expressions allow for the omission of actual argotsat the call site, resulting in the implicit passing
of a default value. Default values are discussedlliB.Z4.2.

Functions can take a variable number of arguments. Suchidmscare discussed FL3.T0.

The optional var clause defines a variable function disaliss§I3.8. A variable setter function can be de-
fined explicitly by prefixing the function’s name with the mgsment operator. This type of variable function

is discussed ifI3.6.1.

The optional where clause is only applicable if the funct®generic. It is discussed §Z1.2.

13.2 The Return Statement

The return statement must appear in a function. It exitsfthattion, returning control to the point at which
that function was called. It can optionally return a valube Byntax of the return statement is given by

return- statement
return EXpI’ESSiOI'Am)

Example The following code defines a function that returns the suthiafe integers:

def sum(il: int, i2: int, i3: int)
return il + i2 + i3;

13.3 Function Calls

Functions are called in call expressions describeffh3. The function that is called is resolved according
to the algorithm described H3.3.

13.4 Formal Arguments

Chapel supports an intuitive formal argument passing mashra An argument is passed by value unless it
is a class, array, or domain in which case it is passed byaeter

Intents (L33) result in potential assignments to temporary vaesbluring a function call. For example,
passing an array by inteint , a temporary array will be created.

Functions 75

13.4.1 Named Arguments
A formal argument can be named at the call site to explicithpran actual argument to a formal argument.

Example Inthe code
def foo(x: int,y: int) { ..}
foo(x=2, y=3);
foo(y=3, x=2);

named argument passing is used to map the actual argumehésftrmal arguments. The two
function calls are equivalent.

Named arguments are sometimes necessary to disambigllateragnore arguments with default values.
For a function that has many arguments, it is sometimes goatipe to name the arguments at the callsite
for compiler-checked documentation.

13.4.2 Default Values

Default values can be specified for a formal argument by aglipgrthe assignment operator and a default
expression the declaration of the formal argument. If thHaa@rgument is omitted from the function call,
the default expression is evaluated when the function satiade and the evaluated result is passed to the
formal argument as if it were passed from the call site.

Example Inthe code

def foo(x: int =5 y: int =7){..}

foo();

foo(7);

foo(y=5);
default values are specified for the formal argumen@ndy. The three calls tdoo are
equivalent to the following three calls where the actualuargnts are explicitfoo(5, 7)
foo(7, 7) , andfoo(5, 5) . Note that named arguments are necessary to pass actual argu
ments to formal arguments but use default values for argtsrikat are specified earlier in the
formal argument list.

13.5 Intents

Intents allow the actual arguments to be copied to a forntalraent and also to be copied back.

13.5.1 The Blank Intent

If the intent is omitted, it is called a blank intent. In suchase, the value is copied in using the assignment
operator. Thus classes are passed by reference and reoomssaed by value. Arrays and domains are an
exception because assignment does not apply from the dottred formal. Instead, arrays and domains are
passed by reference.

With the exception of arrays, any argument that has blamirdannot be assigned within the function.

76 Chapel Language Specification

13.5.2 The In Intent

If in is specified as the intent, the actual argument is copiecetfottmal argument as usual, but it may also
be assigned to within the function. This assignment is ritected back at the call site.

If an array is passed to a formal argument that ihagntent, a copy of the array is made via assignment.
Changes to the elements within the array are thus not refldziek at the call site. Domains cannot be
passed to a function via the intent.

13.5.3 The Out Intent

If out is specified as the intent, the actual argument is ignorechutne call is made, but after the call, the
formal argument is assigned to the actual argument at thesital The actual argument must be a valid
Ivalue. The formal argument can be assigned to and read friimmvthe function.

The formal argument cannot not be generic and is treatedasable declaration. Domains cannot be passed
to a function via theut intent.

13.5.4 The Inout Intent

If inout is specified as the intent, the actual argument is both passind formal argument as if the
intent applied and then copied back as if the intent applied. The formal argument can be generic and
takes its type from the actual argument. Domains cannot bgeplato a function via thieout intent. The
formal argument can be assigned to and read from within thetion.

13.6 Variable Functions

A variable function is a function that can be assigned a vallege that a variable function does not return a
reference. That is, the reference cannot be captured.

A variable function is specified by following the argumesst Wwith thevar keyword. A variable function
must return an expression that can be assigned.

When a variable function is called on the left-hand side oassignment statement, the expression that is
normally returned is instead assigned the result of theesgion on the right-hand side of the assignment
statement. Note that the right-hand side expression isiaied before the variable function is called. Other-
wise a variable function evaluates normally and returnsébalt of the expression that it returns.

Example The following code creates a function that can be integatas a simple two-element
array where the elements are actually global variables:

var X, y = 0;

def A(i: int) var {
ifi<o]i>1 then
halt("array access out of bounds");
return if i == then x else vy;

}

Functions 77

This function can be assigned to in order to write to the “alats” of the array as in

A(0) = 1;
AQ) = 2;

It can be called as an expression to access the “elements” as i
writeln(A(0) + A(1));

This code outputs the number

13.6.1 Explicit Setter Functions

Variable functions can be created by overloading a norntattfan with an explicit setter function. Alter-
natively, an explicit setter function can be defined witheutormal counterpart to create a function that can
only be assigned values.

An explicit setter function is defined by prepending the gasient operator to the function name. Setter
functions can only be called from the left-hand side of angassent statement.

Setter functions require an extra formal argument (thattdineshe last argument). This argument is passed
the value on the right-hand side of the assignment statement

Example The following code defines a functi@rand a setter functioA. These two definitions
of A are equivalent to the single definition in the previous secti

var X, y = 0;

def A(i: int) {
ifi<o]i>1 then
halt("array access out of bounds");
return if i == then x else vy;

}

def =A(i: int, value: int) {
ifi<o0o]i>1 t hen
halt("array access out of bounds");
(if i==0 then x else y) = value;

}

This code has the extra constraint that the expression onighehand side of the assignment
statement needs to be able to be passed to an argument ofttypieor typeint , the constraints
between assignment and argument passing are the sameseaduhetions are equivalent to in
the previous section.

In the variable function, there is no type constraint on tkgression other than any constraint
placed on it by the assignment statement. The equivaletar gahction would be generic in
respect to the last argument.

13.7 Function Overloading

Functions that have the same name but different argumésatdie called overloaded functions. Function
calls to overloaded functions are resolved according tatyerithm ingI3.3.

Operator overloading is achieved by defining a function w&ittame specified by that operator. The operators
that may be overloaded are listed in the following table:

78 Chapel Language Specification

arity operators
unary | + - !~
binary | + - * [% = && || ! == <= >=2 <> << >> & | " #

The arity and precedence of the operator must be maintaifesh Wt is overloaded. Operator resolution
follows the same algorithm as function resolution.

13.8 Function Resolution

Given a function call, the function that the call resolveistdetermined according to the following algorithm:

¢ |dentify the set of visible functions. A visible functionasy function with the same name that satisfies

the criteria indI3.8.1.

e From the set of visible functions, determine the set of cdaighi functions. A function is a candidate if
the function is a valid application of the function call'staal arguments as determineddf3.8.2. A
compiler error occurs if there are no candidate functions.

e From the set of candidate functions, the most specific fondt determined. The most specific func-
tion is a candidate function that is more specific than evéngocandidate function. If there is no

function that is more specific than every other candidatetfan, the function call is ambiguous and a
compiler error occurs. The termore specific functiois defined indI3.8.3.

13.8.1 Identifying Visible Functions

A function is a visible function to a function call if the naméthe function is the same as the name of the
function call and the function is defined or used in a lexiagko scope.

Additionally, functions that have arguments of class type@nsidered globally visible and so are always
visible regardless of the location of their definition.

13.8.2 Determining Candidate Functions

A function is a candidate function if there issalid mappingrom the function call to the function and each
actual argument is mapped to a formal argument thatégal argument mapping

Functions 79

Valid Mapping A function call is mapped to a function according to the fallog steps:

e Each actual argument that is passed by name is matched torthalfargument with that name. If
there is no formal argument with that name, there is no valigping.

e The remaining actual arguments are mapped in order to thaingrg formal arguments in order. If
there are more actual arguments then formal arguments thero valid mapping. If any formal
argument that is not mapped to by an actual argument doesametehdefault value, there is no valid

mapping.

e The valid mapping is the mapping of actual arguments to fbremguments plus default values to
formal arguments that are not mapped to by actual arguments.

Legal Argument Mapping An actual argument of typ&4 can be mapped to a formal argument of type
T if any of the following conditions hold:

T4 andTr are the same type.

e There is an implicit coercion frorfi4 to 7.

T4 is derived fromTlx.

T4 is scalar promotable t6.

13.8.3 Determining More Specific Functions
Given two functiong; and F», F; is determined to be more specific thBsx by the following steps:

o If at least one of the legal argument mappingsiois a more specific argument mappitigan the
corresponding legal argument mappingdoand none of the legal argument mapping#$ids a more
specific argument mapping than the corresponding legahaegtimapping taFy, then £} is more
specific.

e If I} shadowsF;, thenFy is more specific.

e Otherwise F is not more specific thahs.

Given an argument mapping/;, from an actual argumen#i, of typeT'4 to a formal argument'1, of type
Tr1 and an argument mappindy/, from the same actual argument to a formal argumgt,of type 7o,
the more specific argument mapping is determined by theWolig steps:

e If Try andT'r are the same type arfdl is an instantiated parametét; is more specific.

If Tr1 andTr, are the same type arf@® is an instantiated parametét, is more specific.

If M requires scalar promotion ardd, does not require scalar promotiaW; is more specific.

If M requires scalar promotion ardd; does not require scalar promotiaW; is more specific.

If F'1is generic over all types anil2 is not generic over all typed/, is more specific.

80 Chapel Language Specification

e If F'2is generic over all types anfl1 is not generic over all typed; is more specific.
e If Try andT'w, are the same type, neither mapping is more specific.

e If Ty andTr; are the same typé{; is more specific.

e If Ty andTr- are the same typé{s is more specific.

e If Try is derived froml'rzo, thenM; is more specific.

o If Tro is derived fromi's1, thenM, is more specific.

o If there is an implicit coercion froffi'’z; to T'r2, theni; is more specific.

o If there is an implicit coercion frorfi'r, to T'r1, then, is more specific.

e If Ty is anyint type andl'w; is anyuint type,M; is more specific.

o If Trois anyint type andl’r; is anyuint type, M- is more specific.

e Otherwise neither mapping is more specific.

13.9 Nested Functions

A function defined in another function is called a nested fiomc Nesting of functions may be done to
arbitrary degrees, i.e., a function can be nested in a nastetion.

Nested functions are only visible to function calls withiretscope in which they are defined. An exception
is to a function that has an argument that is a class type. fuctions are globally visible.

13.9.1 Accessing Outer Variables

Nested functions may refer to variables defined in the fandt which they are nested. If the function has
class arguments, and is thus globally visible, it is a coengtror to refer to a variable in the outer function.

Rationale It may be too strict to make this a compiler error. Are thateaatages to making
this a runtime error?

13.10 Variable Length Argument Lists

Functions can be defined to take a variable number of argwn€his allows the call site to pass a different
number of actual arguments.

If the variable argument expression is an identifier prepdray a question mark, the number of arguments
is variable. Alternatively, the variable expression caaleate to an integer parameter value requiring the call
site to pass that number of arguments to the function.

In the function, the formal argument is a tuple of the actuglienents.

Functions 81

Example The code

def mywriteln(x: int ..?2k) {
for parami in 1.k do
writeln(x(i));

defines a function calleshywriteln that takes a variable number of arguments and then writes
them out on separate lines. The parameter for-Igaf.8.3B) is unrolled by the compiler so that

is a parameter, rather than a variable. This function candmergenericdZl) to take arguments

of different types by eliding the type.

A tuple of variables arguments can be passed to a functiamekes variable arguments by destructuring the
tuple in a tuple destructuring expression. The syntax afdtpression is given by

tuple- destructuring expression
(... expression)

In this expression, the tuple defined bypressionis expanded in place to represent its components. This
allows for the forwarding of variable arguments as variastpuments.

82

Chapel Language Specification

Classes 83

14 Classes

Classes are an abstraction of a data structure where tlagstlmrcation is allocated independent of the scope
of the variable of class type. Each call to the constructeatas a new data object and returns a reference to
the object. Storage is reclaimed automatically as destiib§TZ.T0.

14.1 Class Declarations

A class is defined with the following syntax:

class declaration- statement
class identifier class inherit-type- listo,: {
class statement list }

class inherit- expression list:

class type

class type , inherit- expression list
class statement list:

class statement

class statement classstatement list
class statement

type- declaration- statement

function- declaration- statement
variable- declaration- statement

A class declaration- statementdefines a new type symbol specified by the identifier. Clagdexit data
and functionality from other classes if theherit- type- list is specified. Inheritance is describedflL1.

The body of a class declaration consists of a sequence efhstats where each of the statements either
defines a variable (called a field), a function (called a ma}har a type.

If a class contains a type alias or a parameter, the classerigeGeneric classes are describe .

14.2 Class Assignment

Classes are assigned by reference. After an assignmenbftenaariable of class type to another, the vari-
ables reference the same storage location.

14.3 Class Fields

Variables and constants declared within class declamdefine fields within that class. (Parameters make a
class generic.) Fields define the storage associated widss. c

Example The code

84 Chapel Language Specification

cl ass Actor {
var name: string;
var age: uint;

}

defines a new class type calladior that has two fields: the string fietdhme and the unsigned
integer fieldage.

14.3.1 Class Field Accesses

The field in a class is accessed via a member access exprasgiescribed iI0.3.2. Fields in a class can
be modified via an assignment statement where the left-hidadéthe assignment is a member access.

Example Given a variablanActor of typeActor , defined above, the code

var s: string = anActor.name;
anActor.age = 27;

reads the fielchame and assigns the value to the variableand assigns the storage location in
the objectanActor associated with the fielage the value27.

14.4 Class Methods

A method is a function that is bound to a class. A method ieddily passing an instance of the class to the
method via a special syntax that is similar to a field access.

14.4.1 Class Method Declarations

Methods are declared with the following syntax:

method declaration- statement
def type- binding function name argumentlist,,: var- clause,,.
return- type,,: where clause,,; block- level- statement

type- binding:
identifier .

If a method is declared within the lexical scope of a classpm, or union, the type binding can be omitted
and is taken to be the innermost class, record, or uniontleanethod is defined in.

14.4.2 Class Method Calls

A method is called by using the member access syntax as deddn§I0.3.2 where the accessed expression
is the name of the method.

Example A method to output information about an instance ofak®r class can be defined
as follows:

Classes 85

def Actor.print() {
writeln("Actor ", name, " is ", age, " years old");

}

This method can be called on an instance ofttter classanActor , by writinganActor.print()

14.4.3 Thethis Reference

The instance of a class is passed to a method using speciaksyndoes not appear in the argument list to
the method. The referendgs is an alias to the instance of the class on which the methaallisdc

Example Let classC, methodfoo , and functiorbar be defined as

class C {
def foo() {
bar(this);
}

}
def bar(c: C) { }

Then given an instance @fcalledc, the method calt.foo() results in a call tdbar where the
argumentis.

14.4.4 Class Methods without Parentheses

Methods do not require parentheses if they have empty angtlisis. Methods declared without parentheses
around empty argument lists must be called without pareethe

Example Given the definitions

class C {
def foo { }
def bar() { }
}

and an instance of calledc, then the methodbo can be called by writing.foo and the

methodbar can be called by writing.bar() . Itis an error to apply parentheseddo or omit
them frombar .

14.4.5 Thethis Method

A method declared with the nanttés allows a class to be “indexed” similarly to how a tuple, satpes or
array is indexed. Indexing into a class has the semanticallifig a method on the class named . There

is no other way to call a method call¢ds . Thethis method must be declared with parentheses even if
the argument list is empty.

Example In the following code, théhis method is used to create a class that acts like a simple
array that contains three integers indexed by 1, 2, and 3.

86 Chapel Language Specification

cl ass ThreeArray {

var x1, x2, x3: int;
def this(i: int) var {
select i {

when 1 do return xi1;
when 2 do return x2;
when 3 do return x3;

halt("ThreeArray index out of bounds: ", i);

}
}

14.5 Class Constructors

A class constructor is defined by declaring a method with éimeesname as the class. The constructor is used
to create instances of the class. When the constructorled¢cahemory is allocated to store a class instance.

14.5.1 The Default Constructor

A default constructor is automatically created for evergsslin the Chapel program. This constructor is
defined such that it has one argument for every field in thesckaach of the arguments has a default value.

The default constructor is very useful but its generalityeims of having one argument for each field all of
which have default values makes it slightly difficult for theer to create their own constructor. It is expected
that in many simple cases, the default constructor will béhat is necessary.

Example Given the class

class C {
def x: int;
def y: real =
def z: string

}

3.14;
= "Hello, World!";

then instances of the class can be created by calling theltlefastructor as follows:

e The callC() is equivalent tac(0,3.14,"Hello, World "L
e The callC(2) is equivalenttac(2,3.14,"Hello, World BIF
e The callC(z="") is equivalent taC(0,3.14,")

e The callC(0,0.0,") is equivalent tac(0,0.0,")

14.6 Getters and Setters

All field accesses are resolved via getter and setter methatiare defined in the class with the same name
as the field. A setter is defined as an explicit setter fundif.6.1). Default getters and setters are defined
that simply access or set the field if the user does not defeiedtvn.

Example Inthe code

Classes 87

class C {
var x: int;
def =x(value: int) {
if value < 0 then
halt("x assigned negative value");
x = value;
}
}

a setter is defined for fiekl that ensures thatis never assigned a negative value.

14.7 Inheritance

A “derived” class can inherit from one or more other classgsyecifying those classes, the base classes,
following the name of the derived class in the declaratiothefderived class. When inheriting from multiple
base classes, only one of the base classes may contain fidldsother classes can only define methods.
Note that a class can still be derived from a class that cosféélds which is itself derived from a class that
contains fields.

14.7.1 Accessing Base Class Fields

A derived class contains data associated with the fieldsibase classes. The fields can be accessed in the
same way that they are accessed in their base class unlegstteeor setter method is overridden in the
derived class, as discussediiZ.7.3.

14.7.2 Derived Class Constructors

Derived class constructors automatically call the defeatistructor of the base class. There is an expectation
that a more standard way of chaining constructor calls wlsbpported.

14.7.3 Shadowing Base Class Fields

A field in the derived class can be declared with the same nanzefield in the base class. Such a field
shadows the field in the base class in that it is always refetmwhen it is accessed in the context of the
derived class. There is an expectation that there will beyataaeference the field in the base class but this
is not defined at this time.

14.7.4 Overriding Base Class Methods

If a method in a derived class is declared with the identicaiaure as a method in a base class, then it is
said to override the base class’s method. Such a method rdidede for dynamic dispatch in the event that
a variable that has the base class type references a vatiableas the derived class type.

The identical signature requires that the names, typespated of the formal arguments be identical.

88 Chapel Language Specification

14.7.5 Inheriting from Multiple Classes

Implementation note Multiple inheritance is not yet supported.

A class can be derived from multiple base classes providediily one of the base classes contains fields
either directly or from base classes that it is derived fréime methods defined by the other base classes can
be overridden.

14.8 Class Promotion of Scalar Functions

A class can be defined to promote scalar functions by definmgeaator in the class namatiis and
specifying a return type. The return type indicates the tyya¢ the class promotes. The body of this
iterator is ignored. The class must also implement thetibeiaterface as described 20.4.

There is an expectation that class promotion will be impletee in a different way in the future.

14.9 Nested Classes

Implementation note Nested classes are not yet supported.

A class defined within another class is a nested class.

14.10 Automatic Memory Management

Implementation note Memory allocated to store class objects is not yet recldime

Memory associated with class instances is reclaimed auicaiig when there is no way for the current
program to reference this memory. The programmer does rat toefree the memory associated with class
instances.

Records 89

15 Records

A record is a data structure that is like a class but has vaoeaatics. The key differences between records
and classes are described in this section.

15.1 Record Declarations

A record is defined with the following syntax:

record- declaration- statement
record identifier inherit-type- listy,: {
record- statement list }

record- inherit- expression list:
record- type
record- type , inherit- expression list

record- statement list:
record- statement
record- statement recordstatement list

record- statement
type- declaration- statement
function- declaration- statement
variable- declaration- statement

The only difference between record and class declaratotisi therecord keyword replaces thelass
keyword.

15.2 Class and Record Differences

The main differences between records and classes are tmatiseare value classes. They do not need to be
reclaimed since the data is recovered when the variable@desf scope, do not support dynamic dispatch,
and are assigned by value.

15.2.1 Records as Value Classes

Arecord is not a reference to a storage location that costhimdata in the record but is more like a variable
of a primitive type. A record directly contains the data asai@d with the fields in the record.

15.2.2 Record Inheritance

When a record is derived from a base record, it contains tteeidahe base record. The difference between
record inheritance and class inheritance is that there @ynamic dispatch. The record type of a variable is
the exact type of that variable.

20 Chapel Language Specification

15.2.3 Record Assignment

In record assignment, the fields of the record on the lefdlsiae of the assignment are assigned the values
in the fields of the record on the righ-hand side of the ass@mnmVhen a base record is assigned a derived
record, just the fields that exist in the base record are r@egig

15.3 Default Comparison Operators on Records

Default functions to overload= and!= are defined for records if there is none defined for the recotle
Chapel program. The default implementation-efapplies==to each field of the two argument records and
reduces the result with the% operator. The default implementation!ef appliesi= to each field of the two
argument records and reduces the result witH|theperator.

Unions 91
16 Unions

Unions have the semantics of records, however, only oneifidlte union can contain data at any particular
point in the program’s execution. Unions are safe so thattapss to a field that does not contain data is a
runtime error. When a union is constructed, it is in an unsgésso that no field contains data.

16.1 Union Declarations

A union is defined with the following syntax:

union- declaration- statement
union identifier { union- statementlist }

union- statement list:

union- statement

union- statement unionstatement list
union- statement

type- declaration- statement

function- declaration- statement
variable- declaration- statement

16.1.1 Union Fields

Union fields are accessed in the same way that record fieldscaessed. It is a runtime error to access a
field that is not currently set.

Union fields should not be specified with initialization eggsions.

16.2 Union Assignment

Union assignment is by value. The field set by the union onigfg-hand side of the assignment is assigned
to the union on the left-hand side of the assignment and émeedield is marked as set.

16.3 The Type Select Statement and Unions

The type-select statement can be applied to unions to atteefislds in a safe way by determining the type
of the union.

Implementation note The type-select statement is not yet implemented on unions

92

Chapel Language Specification

Tuples 93

17 Tuples

Atuple is an ordered set of components that allows for theifipation of a light-weight record with anony-
mous fields.

17.1 Tuple Expressions

A tuple expression is a comma-separated list of express#imiss enclosed in parentheses. The number of
expressions is the size of the tuple and the types of the ssiores determine the component types of the
tuple.

The syntax of a tuple expression is given by:

tuple- expression
(expression list)

expression list:
expression
expression , expression list

Example The statement

var x = (1, 2);

defines a variable that is a 2-tuple containing the valuesnd2.

17.2 Tuple Type Definitions

A tuple type is a comma-separated list of types. The numbs#pafs in the list defines the size of the tuple,
which is part of the tuple’s type. The syntax of a tuple typgiien by:
tuple- type:
(type- list)
type- list:

type
type , type list

Example Given atuple expressidm, 2) , the type of the tuple value {&t, int) , referred
to as a 2-tuple of integers.

17.3 Tuple Assignment

In tuple assignment, the compoonents of the tuple on thénbeft side of the assignment operator are each
assigned the components of the tuple on the right-hand $itte@ssignment. The assignments are simul-
taneous so that each component expression on the rightsideni fully evaluated before being assigned to

the left-hand side.

94 Chapel Language Specification

17.4 Tuple Destructuring

When a tuple expression appears on the left-hand side ofsignasent statement, the expression on the
right-hand side is said to b#estructured The components of the tuple on the right-hand side arerasgig
to each of the component expressions on the left-hand sitdés aBsignment is simultaneous in that the
right-hand side is evaluated before the assignments are.mad

Example Given two variables of the same type, x and y, they can be padpy the following
single assignment statement:

x ¥ = x;

17.4.1 Variable Declarations in a Tuple

Variables can be defined in a tuple to facilitate capturireguhilues from a function that returns a tuple. The
extension to the syntax of variable declarations is asvidlo

tuple- variable- declaration- statement
config ..+ variable- kind tuple variable- declaration ;

tuple- variable- declaration:

(identifier-list) type part,,: initialization- part
(identifier-list) type part

The identifiers defined within thedentifier- list are declared to be new variables in the scope of the
statement. Theype- part and/orinitialization- part defines a tuple that is destructured when assigned
to the new variables.

17.4.2 Ignoring Values with Underscore

If an underscore appears as a component in a tuple expressaamhestructuring context, the expression on
the right-hand side is ignored, though it is still evaluated

Implementation note Underscores are currently not treated specially. The waly to ignore
values when destructuring a tuple is to put them into vagsitthat are never read.

17.5 Homogeneous Tuples

A homogeneous tuple is a special-case of a general tupleavihertypes of the components are identical.
Homogeneous tuples have less restrictions for how they eandexed {I7.6).

Tuples 95

17.5.1 Declaring Homogeneous Tuples

A homogeneous tuple type may be specified with the followyrgax if it appears as a top-level type in a
variable declaration, formal argument declaration, retype specification, or type alias declaration:

homogeneoustuple- type:
integer- parameter expression x type

integer- parameter expression

expression

The homogeneous tuple type specification is syntactic slagahe type explicitly replicated a number of
times equal to thénteger parameter expression

Example The following types are equivalent:

3*int (int, int, int)

17.6 Tuple Indexing

A tuple may be indexed into by an integer. Indexing a tuplevemby the following syntax:

tuple-indexing- expression
expression (integer- expression)

The result of indexing a tuple by integeis the value of thé&th component. If the tuple is not homogeneous,
the tuple can only be indexed by an integer parameter. Tisigren that the type of the indexing expression
is known at compile-time.

17.7 Formal Arguments of Tuple Type

Implementation note Formal arguments of tuple type are treated as if they wererds.
Conversions are not applied to the components.

17.7.1 Formal Argument Declarations in a Tuple

Implementation note Formal arguments cannot be grouped together in a tuple.

96

Chapel Language Specification

Sequences 97

18 Sequences

A sequence is an ordered set of elements of the same type.

18.1 Sequence Literals

Literal sequences are delimited by the bragesand/) . The expressions enclosed in these braces are
elements of the sequence. These expressions do not neelitewdle themselves.

Example The following code defines a sequence of integers:
(1, 1, 2, 3, 5, 8, 13, 21/)

18.2 Sequence Type Definitions

A sequence type can be specified with an explicit elementuigpey the following syntax:

sequencetype
seq of type
seq (type)
seq (elt type = type)

The element type of a sequence can be referred to by its aamge . If s is a sequence, then the type
s.elt_type refers to the type of its elements.

18.3 Sequence Rank
The rank of a sequence is determined as follows:

¢ If the element type of the sequence is not a sequence, thearth®f the sequence is 1.

o If the element type of the sequence is a sequence ofkattiien the rank of the sequencekis- 1.

Example The rank of the sequence specified by the type

seq of seq of int

is two.

18.4 Sequence Assignment

Sequence assignment is by value.

98 Chapel Language Specification
18.5 Iteration over Sequences

Sequences can be iterated over within the context of a fasratlfloop. The type of the index is the element
type of the sequence.

Example Inthe code

var ss: seq of string = (/"one", "two", "three"/);
for s in ss do
writeln(s);

the sequence of strings is iterated over with index of type string. The output to this code is

one
two
three

18.6 Sequence Concatenation

The operato# is used to concatenate two sequences and to append or papetament to a sequence. In
each case, the operands are unchanged and a new sequehomedieVhen applied to two sequences, the
new sequence is the concatenation of the two sequences. &pgipdiad to an element and a sequence, the
new sequence is a copy of the sequence with the element pleghemit. When applied to a sequence and an
element, the new sequence is a copy of the sequence withetime el appended to it.

The concatenation, prepend, and append operations appkptessions of types according to the rules of
function resolution as specified by the following functioofotypes:
def #(sl: seq, s2: seq) where sl. type == s2. type // concatenate

def #(e, s: seq) where e.type:s.elt_type /1 prepend
def #(s: seq, e) where e.type:s.elt_type /1 append

18.7 Sequence Indexing

Sequences can be indexed into by applying a function calidmt They can be indexed into by integers or
tuples of integers.

18.7.1 Sequence Indexing by Integers

If s is a sequence andis an integer, then the expressisff) is evaluated to return an element in the
sequence. A runtime error occursiifis zero or the absolute value ofis greater than the length of the
sequence. Let the elements of the sequence be denate@as . ., e,, wheren is the length of the sequence.
If i is positive, thers(i) is the valuee;. If i is negative, then(i) isthe values,, ;1.

Sequences 99

18.7.2 Sequence Indexing by Tuples

If s is a sequence andis a tuple of integers of size, then the expressicsit) indexes into the sequence
s k times using the integers in the tuple. In this caseust be a sequence whose rank is at least as great as
the size of . If s has rank less than the size of the tuple, then the result iguesee.

If the integers in tuple are denoted as ,i2 , ..., ik , then the expressics(t) is equivalent to the expres-
sions(i1)(i2) ...(>k)

A sequence can also be indexed by multiple integers. Thgémseare collected into a tuple and the sequence
is then indexed by the tuple.

18.8 Sequence Promotion of Scalar Functions

Sequence promotion of a scalar function is defined over tipgesece and itkeaf element typdf the sequence
has rank one, then the leaf element type is the element tythe gequence. If the sequence has rank greater
than one, then the leaf element type is defined to be the fanstazit type encountered by recursively indexing
into the sequence such that the element type is not a sequence

If a variable of type equal to the leaf element type of the sega can be passed to a function’s formal
argument according to the rules of function resolutioffIiZ.8, then the sequence can be passed to this
function and the function is said to be sequence promotedeiheral, it is said to be scalar promoted since
types other than sequences may result in the promotion.

18.8.1 Zipper Promotion

Consider a functioi with formal argumentsi, s2, ... that are sequence promoted and formal arguments
al, a2, ... that are not promoted. The call

f(s1, s2, ..., al, a2, ..)

is equivalent to
[(e1, e2, ..) in (si, s2, ..)] f(el, e2, ..., al, a2, ..)

The usual constraints of zipper iteration apply to zippempotion so the sequences must have the same
shape.

The result of the promotion is a sequence of the same rankbueaf element type is the return type of the
function that is promoted.

Example Given a function defined as

def foo(i: int,j; int){
write(i, " ", j, " ")
}

and a call to this function written
foo((/1, 2, 3/), (/4, 5, 6));

then the outputis “142536".

100 Chapel Language Specification

18.8.2 Tensor Product Promotion

If the functionf were called by using square brackets instead of parenththse=quivalent rewrite would be
[(e1, e2, ..) in [s1, s2, ..]] f(el, e2, ..., al, a2, ..)

There are no constraints on tensor product promotion.

The result of the promotion is a sequence of rank equal touhedf the ranks of the promoted arguments.
The leaf element type of the sequence is the return type diitietion that is promoted.

Example Given a function defined as

def foo(i: int,j int){
write(i, " ", j, " ")

}

and a call to this function written
foo[(/1, 2, 3/), (/4, 5, 6/)];

then the outputis“141516242526343536".

18.9 Sequence Operators

Any operator that can be applied to the leaf element type afquence can be applied to the sequence
according to the rules of zipper promotion.

Example Given two sequences of integers
var sl = (/1, 2, 3, 4, 5/);
var s2 = (/5, 4, 3, 2, 1/);

the sequence that is returned by applying the equality ¢gpei@the sequences is a sequence of
bool values. The code

writeln(sl == s2);

produces the output “false false true false false.”

18.10 Sequences in Logical Contexts

When a sequence expression is used as a top-level exprastiiercondition of a while statement, a do-while
statement or an if statement, the sequence is promoted tguarsee of bool values following the implicit
statement bool conversion rul§L8) applied to the leaf element type of the sequence.

The sequence of bool values is then implicitly reduced utieg& operator to produce a single bool value.
Reductions are defined {Z4.

Implementation note Neither the implicit conversion nor the implicit reduatiés currently
implemented.

Sequences 101

18.10.1 Sequences in Select Statements

When a sequence expression is used as a top-level expras#iecondition of a select statement, there are
two interpretations. If the condition in the when expressmitself a sequence, the equality operator is used
to compare the sequences and then an img@igiteduction is applied to produce a single bool value. If the
condition in the when expression is a scalar, the equaligyatpr is used to compare the sequences and then
an implicit|| reduction is applied to produce a single bool value.

Implementation note The implicit reduction is currently not implemented. Seqoes cannot
be used in the condition of a select statement or in the whpreesion.

18.11 Filtering Predicates

An if expression that is immediately enclosed by a forallresgion does not require an else part. The result
of the forall expression is a sequence of rank one.

Example The following expression returns every other element iaguence starting with the
first:

[i in l.s.length] if i % 2==1 then s()

18.12 Methods and Functions on Sequences

18.12.1 Theength Method

def seq.length

The length method requires no parentheses and returnsithigenwf elements in a sequence.

18.12.2 ThereverseMethod

def segq.reverse(dim: int =1)

The reverse method returns the elements of a sequence mseaweler. An optional second argument is an
int. If the value of this argument i, then the rank of the first argument must be at Idastvhend is one,
then the sequence is reversed. WHes greater than one, the express#everse(d) is equivalent to

[e in s] ereverse(d-1)

Implementation note Thedim argument is not implemented.

102 Chapel Language Specification

18.12.3 ThespreadFunction
def spread(s: seq, length: int, dm: int = 1)
The spread function takes a sequence of raakd returns a new sequence of rank 1. Whendim is equal

to 1, the result is a sequence where every element is equalTtbe length of this sequence is specified by
length . Whendim is greater than one, we generate the sequence:

[e in s] spread(e, length, dim-1)

Implementation note The spread function is not implemented.

18.12.4 Thetranspose-unction

def transpose(s: seq, dims = (2,1))

The transpose function will reorder both the values and gbahe shape of the sequence. The optional
dims argument is a tuple that corresponds to a permutation ofaheesl..p wherep is less than or equal
to the rank of the input sequence. This list defines a perioutaf the subscripts such that the following
relationship holds between the input and output sequences:

s (@, i) = s(in, ...y ik)
where

1’ otherwise

j =
J

There is a somewhat complex requirement in the shape of the 8equence so that this relation is well-
defined. In the simple case of a rank-2 input, we require thai@ments of the sequence have the same
length. In the general case we require all sequences sglegtaq-tuple to have the same length whenever
an index positiory is less tham.

Implementation note The transpose function is not implemented.

18.12.5 ThereshapeFunction

reshape(s: seq, shape, fill)

This reshape function returns a sequence whose leaveseasartie as the first argument, in the same order
but whose shape matches thasbépe . Theshape argument might be a sequence or it might be a tuple of
ints. When it is a sequence, the output will conform to thajusmce. When the shape is a tuple, then the
shape of the output conforms to the shape of the arithmetexiset that would be determined byshape

If present, thdill argument specifies a value to be used to pad the sequenceiirtizer of leaf values in
that sequence is too few to conform witmape . If the input sequence has too many values, it is truncated.

Implementation note The reshape function is not implemented.

Sequences 103

18.13 Arithmetic Sequences

Arithmetic sequences contain an ordered set of values@fiiat type that can be specified with a low bound
[, a high bound:, and a stride. If the stride is negative, the values contained by the iugtfic sequence are
h,h—s,h—2s,h—3s,...such that all of the values in the sequence are greatei thighe stride is positive,
the values contained by the arithmetic sequencé, are s, + 25,1+ 3s, ... such that all of the values in the
sequence are less than

An arithmetic sequence is specified by the syntax

arithmetic- sequenceliteral :
expression .. expression

The first expression is taken to be the lower bound, the seexmeission is taken to be the upper bound. The
stride of the arithmetic sequence is 1 and can be modifiedtithy operator.

The element type of the arithmetic sequence type is detexhby the type of the low and high bound. It is
eitherint , uint , int(64) , oruinté4 . The type is determined by conceptually adding the low ad hi
bounds together.

All operations supported over sequences are supportecaotiemetic sequences. So arithmetic sequences
can, for example, sequence promote functions and be iteoatr. The result of the sequence promotionis a
sequence but not an arithmetic sequence.

18.13.1 Strided Arithmetic Sequences

The by operator can be applied to any arithmetic sequence to ceeataded arithmetic sequence. It is
predefined over an arithmetic sequence and an integer t giebw arithmetic sequence that is strided by
the integer. Striding of strided sequences is accompliblgedultiplying the strides.

18.13.2 Querying the Bounds and Stride of an Arithmetic Segence

def arithmetic sequence.low: elt_type
def arithmetic sequence.high: elt_type
def arithmetic sequence.stride: int

These routines respectively return the low bound, the higind, and the stride of the arithmetic
sequence. The type of the returned low and high bound is #meezit type of the arithmetic sequence.

18.13.3 Indefinite Sequences

An indefinite arithmetic sequence is specified by the syntax

indefinite- arithmetic- sequence literal:
expression ..
expression

Indefinite arithmetic sequences can be iterated over wjgpetiiteration and their shape conforms to the
shape of the sequences they are being iterated over.

104 Chapel Language Specification

Example The code

for i in (1.5, 3.) do
write(i);

produces the output “(1, 3)(2, 4)(3, 5)(4, 6)(5, 7)".
Itis an error to zip an indefinite arithmetic sequence witlaathmetic sequence that does not have the same
sign stride.
Indefinite arithmetic sequences can be used to index irtttnagttic sequences, sequences, arrays, and strings.

In thesse cases, the elided bound conforms to the exprdssiog indexed.

Implementation note Indexing by indefinite arithmetic sequences is not yet sutegl.

18.14 Conversions Between Sequences and Tuples

A value of homogenous tuple type can be converted to a sequBnapplying a cast to the keywosdq .
The elements in the tuple become the elements in the seqaedabe sequence’s length is the size of the
tuple.

A value of sequence type can be converted to a homogenedagypp by applying a cast to a parameter of
type int. If the parameter has valighen the tuple is of sizé and the firstt elements in the sequence are
the elements in the tuple.

Domains and Arrays 105

19 Domains and Arrays

A domainis a description of a collection of names for data. These isanereferred to as thiedicesof the
domain. All indices for a particular domain are values withn® common type. Valid types for indices are
primitive types and class references or unions, tuplesaards whose fields are valid types for indices. This
excludes sequences, domains, and arrays. Like sequemeesaind have a rank and a total order on their
elements. Ararray is generically a function that maps fromdamainto a collection of variables. Chapel
supports a variety of kinds of domains and arrays definedtbese domains as well as a mechanism to allow
application specific implementations of arrays.

Arrays abstract mappings from sets of values to variabléss Rey use of data structures coupled with the
generic syntactic support for array usage increases saftsgasability. By separating the sets of values into
their own abstraction, domains, distributions can be aatext with sets rather than variables. This enables
the orthogonality of data distributions. Distributiong aliscussed if23.

19.1 Domains

Domains are first-class ordered sets of indices. There a&ifiels of domains:

Arithmetic domains are rectilinear sets of Cartesian iaedithat can have an arbitrary rank.

Sparse domains are subsets of indices in arithmetic domains

Indefinite domains are sets of indices where the type of thexins some type that is not an array,
domain, or sequence. Indefinite domains define dictionamiesssociative arrays implemented via
hash tables.

Opague domains are sets of anonymous indices. Opaque dodadine graphs and unspecified sets.

Enumerated domains are sets of constants defined by somemtathtype.

19.1.1 Domain Types

Domain types vary based on the kind of the domain. The typeafrgthmetic domain is parameterized by
the rank of the domain and the integral type of the indice® fibe of a sparse domain is parameterized by
the type of the arithmetic domain that defines the supersit ofdices. The type of an indefinite domain is
parameterized by the type of the index. The type of an opagmath is unique. The type of an enumerated
domain is parameterized by the enumerated type.

Example Inthe code

var D: domai n(2) = [1.n, 1l.n];

Dis defined as a two-dimensional arithmetic domain and iglised to contain the set of indices
(i,7)foralliandj suchthat € 1,2,...,nandj € 1,2,...,n.

106 Chapel Language Specification

19.1.2 Index Types

Each domain has a correspondingextype which is the type of the domain’s indices qualified bysttstus
as an index. Variables of this type can be declared usingotfeing syntax:

index- type:
int (domain expression)

If the type of the indices of the domainiig , then the index type can be converted into this type.
A value with a type that is the same as the type of the indicesdomain but is not the index type can be

converted into the index type using a special “method” ciHdex .

Example Inthe code

var j = D. index(i);

the type of the variablg is the index type of domaib. The variable , which must have the
same type as the underlying type of the indice®ois verified to be in domaib before it is
assigned tg .

Values of index type are known to be valid and may have speedlepresentations to facilitate accessing
arrays defined for that domain. It may therefore be less esipeto access arrays using values of appropriate
index type rather than values of the more general type theadois defined over.

Implementation note In the current implementation, the index type is not dgtished from
the underlying type of the indices. The index method is notry@lemented.

19.1.3 Domain Assignment

Domain assignmentis by value. If arrays are declared ovensaih, domain assignmentimpacts these arrays
as discussed ifff9.8, but the arrays remain associated with the same doegandless of the assignment.

19.1.4 Formal Arguments of Domain Type

Domains are passed to functions by reference. Formal angsrtiet receive domains are aliases of the actual
arguments. It is a compile-time error to pass a domain toradbargument that has a non-blank intent.

19.1.5 lteration over Domains

All domains support iteration via forall and for loops ovketindices in the set that the domain defines. The
type of the indices returned by iterating over a domain idrtdex type of the domain.

Domains and Arrays 107

19.1.6 Domain Promotion of Scalar Functions

Domain promotion of a scalar function is defined over the damype and the type of the indices of the
domain (not the index type). Domain promotion has the sammagséics as sequence promotion where the
scalar type is the indices of the domain and the promotioe igphe domain type.

Example Given an arrayA with element typent declared over a one-dimensional domain
D with integral typeint , then the array can be assigned the values given by the smulidae
domain by writing

A = D;

19.2 Arrays

Arrays associate variables or elements with the sets ofé@sdin a domain. Arrays must be declared over
domains and have a specified element type.

19.2.1 Array Types

The type of an array is parameterized by the type of the dothairnit is declared over and the element type
of the array. Array types are given by the following syntax:

array- type:
[domain expression] type

domain expression
expression

The domain expressionmust specify a domain that the array can be declared oves CEm be a domain
literal. If it is a domain literal, the square brackets ardtime domain literal can be omitted.

Example Inthe code
var A: [D] real;

Ais declared to be an array over domaiwith elements of typeeal .

Implementation note Arrays of arrays are not currently supported.

108 Chapel Language Specification

19.2.2 Array Indexing

Arrays can be indexed by indices in the domain they are dettlaver. The indexing results in an access of
the element that is mapped by this index.

Example If Ais an array with element typeal declared over a one-dimensional arithmetic
domain[1..n] , then the first element iA can be accessed via the expres#i@) and set to
zero via the assignmena(l) = 0.0

Indexing into an array with a domain is call array slicing andiscussed in the next section.

Arithmetic arrays also support indexing over the compasehtheir indices for multidimensional arithmetic
domains (where the indices are tuples), as describ§HaE.5.

19.2.3 Array Slicing

An array can be indexed by a domain that has the same type desrtiegn which the array was declared over.
Indexing in this manner has the effect of array slicing. Téwuit is a new array declared over the indexing
domain where the elements in the array alias the elemeritg iartay being indexed.

Example Given the definitions

var OuterD: domai n(2) = [0..n+1, 0..n+1];
var InnerD: dommin(2) = [1..n, 1..n];
var A, B: [OuterD] real ;

the assignment given by

A(lnnerD) = B(InnerD);

assigns the elements in the interior&ito the elements in the interior af

Arithmetic arrays also support slicing by indexing intorthwith arithmetic sequences or tuples of arithmetic
sequences as describedfi2.3.6.

19.2.4 Array Assignment

Array assignment is by value. Arrays can be assigned arsagsiences, or domains Afs an lvalue of array
type andB is an expression of either array, sequence, or domain tgpe,the assignment

A = B;

is equivalent to

forall (ie) in (A. domai n,B) do
A)) = e;

Domains and Arrays 109

If the zipper iteration is illegal, then the assignmentlsgal. Notice that the assignment is implemented with
the semantics of forall loop.

Arrays can also be assigned single values of their elemest tin this case, each element in the array is
assigned this value. H is an expression of the element type of the array or a typectdratoe implicitly
converted to the element type of the array, then the assighme

A = e;

is equivalent to

forall i in A .donmain do
Al) = e;

19.2.5 Formal Arguments of Array Type

Arrays are passed to functions by reference. Formal argtatleat receive arrays are aliases of the actual
arguments. The ordinary rule that disallows assignmentmél arguments of blank intent does not apply
to arrays.

When a formal argument has array type, the element type airttag can be omitted and/or the domain of
the array can be queried or omitted. In such cases, the argusmgeneric and is discussedJBL.1L6.

If a non-queried domain is specified in the array type of a fdrargument, the domain must match the
domain of the actual argument. This is verified at runtimesréhs an exception if the domain is an arithmetic
domain; it is described ifTT3.1.

19.2.6 lteration over Arrays

All arrays support iteration via forall and for loops oveethlements mapped to by the indices in the array’s
domain.

19.2.7 Array Promotion of Scalar Functions

Array promotion of a scalar function is defined over the atygne and the element type of the array. Array
promotion has the same semantics as sequence promotioa thieescalar type is the element type of the
array and the promotion type is the array type. The only difiee between sequence promotion and array
promotion is that if a function returns a value, the promdtetttion returns an array of those values rather
than a sequence of those values. The array is defined ovartedomain as the array that was passed to the
function. In the event of zipper promotion over multipleays or both arrays and sequences, the promoted
function returns a value based on the first argument to thetitmthat enables promotion.

Implementation note In the current implementation, promotion always retuetgugnces.

Example Whole array operations is a special case of array promofisoalar functions. In the
code

A =B + C;

if A, B, andCare arrays, this code assigns each elementhie element-wise sum of the elements
in BandcC.

110 Chapel Language Specification

19.2.8 Array Initialization

By default, the elements in an array are initialized to thiaudk values associated with the element type of
the array. There is an expectation that this default int#ion can be overridden for performance reasons by
explicitly marking the array type or variable.

The initialization expression in the declaration of an grran be based on the indices in the domain using
special array declaration syntax that replaces both theedpgl initialization specifications of the declaration:

special array- declaration:
identifier- list indexed array- type- part initialization- part

indexed array- type- part:
array- type- forall- expression type

array- type- forall- expression
[identifier in domain expression]

initialization- part:
= expression

Inthis code, therray- type- forall- expressionis syntactic sugar for surrounding theitialization- part
with this basic forall-expression.

Given a domain expressidp an element type, an expressior that is of typet or that can be implicitly
converted to type, then the declaration of arraygiven by

var A [i inD]t=e;

is equivalent to
var A: [D]t =i in D] e;

The scope of the forall expression is as in the rewritten parthe expressioa can include references to
indexi .

19.3 Arithmetic Domains and Arrays

An arithmetic domain is a rectilinear set of Cartesian iedicArithmetic domains are specified as a tuple of
arithmetic sequences enclosed in square brackets.

19.3.1 Arithmetic Domain Literals

An arithmetic domain literal is specified by the followingnsx:

arithmetic- domain literal :
[arithmetic- sequenceexpression list]

arithmetic- sequence expression list:
arithmetic- sequenceexpression
arithmetic- sequenceexpression , arithmetic- sequenceexpression list

arithmetic- sequence expression
expression

Domains and Arrays 111

Example The expressioft..5, 1..5] defines & x 5 arithmetic domain with the indices
(1,1),(1,2),...,(5,5).

19.3.2 Arithmetic Domain Types

The type of an arithmetic domain is determined from the rahkhe arithmetic domain (the number of
arithmetic sequences that define it) and by an underlyirggeral type called thdimensional index type
which must be identical to each of the integral element tygfethe arithmetic sequences that define the
arithmetic domain. By default, the dimensional index typamarithmetic domain ist .

The arithmetic domain type is specified by the syntax of ationacall to the keywordiomain that takes
at least an argument callednk that is a parameter of typiet and optionally an integral type named
dim_type .

Example The expressiofl..5, 1..5] defines an arithmetic domain with typemain(2,int)

19.3.3 Strided Arithmetic Domains

If the arithmetic sequences that define an arithmetic doma&strided, then the arithmetic domain is said to
be strided.

Theby operator can be applied to any arithmetic domain to credtéded arithmetic domain. Itis predefined
over an arithmetic domain and an integer or a tuple of intederthe integer case, the arithmetic sequences
in each dimension are strided by the integer. In the tuplatebiers case, the size of the tuple must match the
rank of the domain; the integers stride each dimension ofitineain. If the arithmetic sequences are already
strided, the strides applied by the operator are multiplied to the strides of the arithmetioseges.

19.3.4 Arithmetic Domain Indexing

Arithmetic domains support indexing by a value of type that is at least one and no more than the rank of
the array. Indexing into an arithmetic domain returns tlithiaretic sequence associated with that dimension.

Example Inthe code

for i in D(1) do
for j in D@2) do
writeln(A(i,j));

domainD is iterated over by two nested loops. The first dimensiob o iterated over in the
outer loop. The second dimension is iterated over in theriloog.

112 Chapel Language Specification

19.3.5 Arithmetic Array Indexing

In addition to being indexed by indices defined by their anigtic domains, arithmetic arrays can be indexed
directly by values of the dimensional index type where theber of values is equal to the rank of the array.
This has the semantics of first moving the values into a tuptkthen indexing into the array.

Example Given the definition

var ij = (i,j);

the indexing expressionij) andA(,j) are equivalent.

19.3.6 Arithmetic Array Slicing

In addition to slicing an arithmetic array by an arithmetanthain, arithmetic arrays also support slicing by
arithmetic sequences directly. If each dimension is inddxean arithmetic sequence, this is equivalent to
slicing the domain by an arithmetic domain defined by thoghraetic sequences.

Implementation note It is currently required that each dimension be indexedrbgrithmetic
sequence. There is an expectation that indexing some diomsndirectly by values of integral
type will result in an array slice of a different rank.

19.3.7 Formal Arguments of Arithmetic Array Type

Formal arguments of arithmetic array type allow an arithoxddmain to be specified that does not match the
arithmetic domain of the actual arithmetic array that issealso the formal argument. In this case, the shape
(size in each dimension and rank) of the domain of the actwalanust match the shape of the domain of
the formal array. The indices are translated in the fornralyamhich is a reference to the actual array.

Example Inthe code

def foo(X: [1..5] int) { ...}
var A: [1.10 by 2] int;
foo(A);

the arrayA is strided and its elements can be indexed by the odd integéneen one and nine.
In the functionfoo , the arrayX references arra and the same elements can be indexed by the
integers between one and five.

19.4 Sparse Domains and Arrays

Implementation note Sparse domains are not yet implemented.

A sparse domain type is given by the syntax

Domains and Arrays 113

sparse domain type:
sparse domain (domain expression)

domain expression
expression

A sparse domain is a domain that contains a subset of thesimtithe domain specified by themain expression
sometimes called tHease domain

Arrays declared over sparse domains can be indexed by &ledhtices in the base domain. If the index is
not part of the sparse domain, the element returned is dhiérdhrepresented elementis an error to assign

a value to the unrepresented element by indexing into tles amd assigning it a value. The unrepresented
element can be set to any value but by default contains tteitie@flue associated with the element type of
the array.

19.4.1 Changing the Indices in Sparse Domains

Indices can be added to or removed from sparse domains. éSghamsains support a methadd that takes
an index and adds this index to the sparse domain. All arragkackd over this sparse domain can now be
assigned values corresponding to this index.

Sparse domains support a methedove thattakes anindex and removes this index from the sparsaidom
The values in the arrays indexed by the removed index are lost

The operators= and-= have special semantics for sparse domains; they are iatetpas calls to thadd
andremove methods respectively. The statement

D += i

is equivalent to
D.add(i);

Similarly, the statement
D =i

is equivalent to

D.remove(i);

19.5 Indefinite Domains and Arrays

An indefinite domain type can be defined over any scalar typdsagiven by the following syntax:

sparse domain type:
domain (scalar-type)

scalar- type:
type

A scalar type is any primitive type, tuple of scalar types;lass, record, or union where all of the fields have
scalar types. Enumerated types are scalar types but dohectered over enumerated types are described
in §I9.1. Arrays declared over indefinite domains are dicti@sanapping from values to variables.

114 Chapel Language Specification
19.5.1 Changing the Indices in Indefinite Domains

Like with sparse domains, indices can be added or removed&ginite domains. Indefinite domains support
a methodhdd that takes an index and adds this index to the indefinite don#di arrays declared over this
indefinite domain can now access elements correspondihgstotiex.

Indefinite domains support a methaanove that takes an index and removes this index from the indefinite
domain. The values in the arrays indexed by the removed iacelost.

The operators= and-= have special semantics for indefinite domains; they aregregd as calls to the
add andremove methods respectively. The statement

D += i

is equivalent to
D.add(i);

Similarly, the statement
D =i

is equivalent to

D.remove(i);

19.5.2 Testing Membership in Indefinite Domains

An indefinite domain supportsraember? method that can test whether a particular value is part ofithex
set. It returngrue if the index is in the indefinite domain and otherwise retuaiese

19.6 Opaque Domains and Arrays

Implementation note Opaque domains are not yet implemented.

An opaque domain is a form of indefinite domain where ther@ialgebra on the types of the indices. The
indices are, in essence, opaque. The opaque domain typersig the following syntax:

opaque domain:
opaque domain

New index values for opaque domains are explicitly requesta a method calledew. Indices can be
removed by a method calledmove .

Opaque domains permit more efficient implementations thdefinite domains under the assumption that
creation of new domain index values is rare.

Domains and Arrays 115

19.7 Enumerated Domains and Arrays

Implementation note Enumerated domains are not yet implemented.

Enumerated domains are a special case of indefinite dom&iesevthe indices are the constants defined by
an enumerated type. Enumerated domains do not suppatither remove methods. All of the constants
defined by the enumerated type are indices into the enundetateain.

An enumerated domain is specified as an indefinite domaindioeilexcept the type is an enumerated type
rather than some other scalar type.

19.8 Association of Arrays to Domains

When an array is declared, it is linked during execution ® domain over which it was declared. This
linkage is constant and cannot be changed.

When indices are added or removed from a domain, the champeisithe arrays declared over this particular
domain. In the case of adding an index, an element is adddgtartay and initialized to the default value
associated with the element type. In the case of removingaexi the element in the array is removed.

When a domain is reassigned a new value, the array is alsactethavalues that could be indexed by both

the old domain and the new domain are preserved in the aredye¥that could only be indexed by the old

domain are lost. Values that can only be indexed by the newaifohrave elements added to the new array
and initialized to the default value associated with thget

For performance reasons, there is an expectation that aochettl be added to domains to allow non-
preserving assignmerite., all values in the arrays associated with the assigned dowilibe lost.

19.9 Subdomains

Implementation note Subdomains are not yet implemented.

A subdomain is a domain whose indices are indices base domain A subdomain is specified by the
following syntax:

subdomain type:
domain (domain expression)

The ordering of the indices in the subdomain is consistettit thie ordering of the indices in the base domain.

Subdomains are verified during execution even as domain®assigned. The indices in a subdomain are
known to be indices in a domain, allowing for fast boundsetiirey.

In the case of arithmetic domains, the subdomain literal beagyomposed of indefinite arithmetic sequences.
In such cases, the omitted bounds of the indefinite arittisetjuences are taken from the bounds of the base
domain.

116 Chapel Language Specification

19.10 Predefined Functions and Methods on Domains

There is an expectation that this list of predefined funatiand methods will grow.

def Domain.numindices: dim_type

Returns the number of indices in the domain.

19.11 Predefined Functions and Methods on Arrays

There is an expectation that this list of predefined fundtiand methods will grow.

def Array.numElements: this. domai n.dim_type

Returns the number of elements in the array.

Iterators 117

20 Iterators

An iterator is a function that conceptually returns a segeest values rather than simply a single value.
Classes can be viewed as iterators if they implement a gtaldterator interface.

20.1 lterator Functions

The syntax of a function declaration is identical to that fifrection declaration except that the keywded is
replaced with the keyworiterator . The body of the iterator may include yield statements asaiegreturn
statements. When a yield is encountered, the value is edubut the iterator is not finished evaluating. It
will continue from the point after the yield and can yield eturn more values. When a return is encountered,
the value is returned and the iterator finishes. An iterdsar @ompletes after the last statement in the iterator
function is executed.

20.2 The Yield Statement

Yield statement can only appear in iterators. The syntak@f/teld statement is given by

yield- statement
yield expression ;

20.3 lterator Calls

Iterator functions can be called within for or forall loojis,which case they are executed in an interleaved
manner with the body of the loop, or can be called in any exgivescontext, in which case they evaluate to
a sequence of values.

20.3.1 Iteratorsin For and Forall Loops

When an iterator is accessed via a for or forall loop, thattaris evaluated alongside the loop body in an
interleaved manner. For each iteration, the iterator gialgalue and the body is executed.

20.3.2 Iterators as Sequences

If an iterator function is accessed outside of the contex f@dr or forall loop iterator expression, then the
iterator is iterated over in total and the expression etalitb a sequence that contains the values returned
by the iterator on each iteration.

Example Given an iterator

i terator squares(n: int): int {
for i in 1l.n do
yield i = i

}

the expressionquares(5) evaluates to the sequengg 4, 9, 16, 25/)

118 Chapel Language Specification

20.4 The Structural Iterator Interface

There is a structural interface that allows a class or rettohgk treated as if it were an iterator. The iterator
interface is important for user-defined distributions.

Implementation note This section describes the current structural iteratimrface. This does
not yet support optimized iteration for rank greater thar.ofs such, this iterator interface is
incomplete.

The iterator interface defines iteration over a class orreby a cursor of some type, called the cursor type.
The values returned by the iterator are of a possibly diffetgpe, called the value type. A class or record
classType supports the iterator interface if it defines the followingétions for cursor typeursorType

and value typealueType

def classType.getHeadCursor(): cursorType

def classType.getNextCursor(cursor: cursorType): cursorTy pe
def classType.getValue(cursor: cursorType): valueType;

def classType.isValidCursor?(cursor: cursorType): bool

Iteration over a class or reco@bf typeclassType defined by

for i in Cdo
/1 body of |oop

is equivalent to the following loop:

var cursor = C.getHeadCursor();
whi | e C.isValidCursor?(cursor) {
var i = C.getValue(cursor);
; /1 body of |oop
cursor = C.getNextCursor(cursor);

}

Generics 119

21 Generics

Chapel supports generic functions and types that are psedarable over both types and parameters. The
generic functions and types look similar to non-genericfioms and types already discussed.

21.1 Generic Functions

A function is generic if any of the following conditions hold

e Some formal argument is specified with an intentypk or param.

Some formal argument has no specified type and no defauk valu

Some formal argument is specified with a queried type.

The type of some formal argument is a generic type, seqg.,

The type of some formal argument is an array type where ditizeelement type is queried or omitted
or the domain is queried or omitted.

These conditions are discussed in the next sections.

21.1.1 Formal Type Arguments

If a formal argument is specified with intetype , then a type must be passed to the function at the call site.
A copy of the function is instantiated for each unique typat i passed to this function at a call site. The
formal argument has the semantics of a type alias.

Example The following code defines a function that takes two typdbeatall site and returns
a 2-tuple of sequences where the element types of the twesegsi are defined by the two type
arguments:

def buildTupleOfSeqs(type t, type t)
return (seq(t), seq(tt));

This function is instantiated with “normal” function caljistax where the arguments are types:
var tupleOfSeqs = buildTupleOfSeqs(int, string);

tupleOfSeqs(1l) #= 1;
tupleOfSeqgs(2) #= "hello";

120 Chapel Language Specification

21.1.2 Formal Parameter Arguments

If a formal argument is specified with inteparam, then a parameter must be passed to the function at the
call site. A copy of the function is instantiated for eachguré parameter that is passed to this function at a
call site. The formal argument is a parameter.

Example The following code defines a function that takes an integeaimetep at the call site
as well as a regular actual argument of integer typ€he function returns a homogeneous tuple
of sizep where each component in the tuple has the value of
def fillTuple(paramp: int, x2 int) {
var result p *int;
for parami in 1.p do
result(i) = x;
return result

}

The function calfillTuple(3, 3) returns a 3-tuple where each component contains the value
3.

21.1.3 Formal Arguments without Types

If the type of a formal argument is omitted, the type of thenfat argument is taken to be the type of the
actual argument passed to the function at the call site. A& offhe function is instantiated for each unique
actual type.

Example The example from the previous section can be extended teterig on a parameter
as well as the actual argument that is passed to it by omittiadype of the formal argument
x. The following code defines a function that returns a homegan tuple of size where each
componentin the tuple is initialized ta
def fillTuple(param p: int, x) {
var result: p *Xx. type;
for parami in 1.p do
result(i) = x;
return result;

}

In this function, the type of the tuple is taken to be the typ¢he actual argument. The call
fillTuple(3, 3.14) returns a 3-tuple of real valug8.14, 3.14, 3.14) . The return
type is(real, real, real)

21.1.4 Formal Arguments with Queried Types

If the type of a formal argument is specified as a queried tietype of the formal argument is taken to be
the type of the actual argument passed to the function atahsite. A copy of the function is instantiated
for each unique actual type. The queried type has the sersanita type alias.

Example The example from the previous section can be rewritten éoaugueried type for
clarity:

Generics 121

def fillTuple(paramp: int, x: ?t) {
var result: p *t;
for parami in 1.p do
result(i) = x;
return result;

}

21.1.5 Formal Arguments of Generic Type

If the type of a formal argument is a generic type, the typehefformal argument is taken to be the type
of the actual argument passed to the function at the callsttethe constraint that the type of the actual
argument is an instantiation of the generic type. A copy efftinction is instantiated for each unique actual

type.

Example The following code defines a function that takes an actgplment that is a sequence
and outputs the elements in a sequence without any spacedsetie elements. The function is
generic on the element type of the sequence.

def output(s: seq) {
for e in s do
write(e);

The generic typeimtegral andnumeric are generic types that can only be instantiated with, resedg
the signed and unsigned integeral types and all of the nertyges.

21.1.6 Formal Arguments of Generic Array Types

If the type of a formal argument is an array where either thaaia or the element type is queried or omitted,
the type of the formal argument is taken to be the type of thesh@rgument passed to the function at the
call site. If the domain is omitted, the domain of the form@anent is taken to be the domain of the actual
argument.

21.2 Function Visibility in Generic Functions

Function visibility in generic functions is altered depémglon the instantiation. When resolving function
calls made within visible functions, the visible functicare taken from any call site at which the function is
instantiated for each particular instantiation.

21.3 Generic Types
A class or record is generic if any of the following conditidmold:

e The class contains a specified or unspecified type alias.

122

Chapel Language Specification

e The class contains a field that is a parameter.

e The class contains a field that has no type and no initiatinagkpression.

e The class contains a field where the type of the field is generic

21.3.1 Type Aliases in Generic Types

Type aliases defined in a class or a record can be unspecifiedliases; type aliases that are not bound to a
type. If a class or record contains an unspecified type ahasaliased type must be specified whenever the
type is used.

A type alias defined in a class or record is accessed as if & wdield. Moreover, it becomes an argument
with intenttype to the default constructor for that class or record. Thisesdke default constructor generic.
When the default constructor is instantiated, the typestaintiated where the type bound to the type alias is
set to be the type passed to the default constructor.

Example The following code defines a class callgdde that implements a linked list data
structure. It is generic over the type of the element coethin the linked list.

cl ass Node {

type elt_type;
var data: elt_type;
var next: Node(elt_type);

}

The callNode(real, 3.14) creates a node in the linked list that contains the valu¢ . The
next field is set to nil. The type specifiétode is a generic type and cannot be used to define
a variable. The type specifidlode(real) denotes the type of theode class instantiated over
real . Note that the type of theext field is specified aBslode(elt_type) ; the type ofext is

the same type as the type of the object that it is a field of.

21.3.2 Parametersin Generic Types

Parameters defined in a class or record do not require aalirétiion expression. If they do not have an
initialization expression, the parameter must be specifieenever the type is used.

A parameter defined in a class or record is accessed as if & avéeld. This access returns a parameter.
Parameters defined in classes or records become arguménistentparam to the default constructor for
that class or record. This makes the default constructagnieniVhen the default constructor is instantiated,
the type is instantiated where the parameter is bound toatenpeter passed to the default constructor.

Example The following code defines a class calletegerTuple that is generic over an
integer parameter which defines the number of componenteialass.
cl ass IntegerTuple {
param size: int;
var data: size =*int;

}

The callintegerTuple(3) creates an instance of theegerTuple class that is instantiated
over paramete8. The fielddata becomes a 3-tuple of integers. The type of this class instanc
is IntegerTuple(3) . The type specified bintegerTuple is a generic type.

Generics 123

21.3.3 Fields without Types

If a field in a class or record has no specified type or init&#lan expression, the class or record is generic
over the type of that field. The field must be specified when thssoor record is constructed or specified.
The field becomes an argument to the default constructohttsao specified type and no default value. This
makes the default constructor generic. When the defaulitoactor is instantiated, the type is instantiated
where the type of the field becomes the type of the actual aegtipassed to the default constructor.

Example The following code defines another class caledie that implements a linked list
data structure. It is generic over the type of the elementatoed in the linked list. This code
does not specify the element type directly in the class ap@adlias but rather leaves omits the
type from thedata field.

cl ass Node {
var data;
var next: Node(data) = nil;

}
A node with integer element type can be defined in the calleéactnstructor. The caNode(1)
defines a node with the value The code

var list = Node(1);

list.next = Node(2);

defines a two-element list with nodes containing the valuasd?.

21.3.4 Fields of Generic Types

If a field in a class or record is specified to have a generic,tihmn the class or record is generic over the
type of this field and the type of the field is constrained to bénatantiation of the field’s specified generic

type.

21.3.5 Generic Methods

All methods bound to generic classes or records are genegictioe implicitthis argument and any other
argument that is generic.

21.3.6 Theelt typeType

The common idiom of parameterizing a collection-orientathdype by a single element type has special
syntactic support given by

of- type:
type of type

This syntax is a short-hand for passing the second type by rétmype as the only argument to the
first type. Given the definition dfiode in the example iZ1.3.1, one can specify the typede(real) or
Node(elt_type=real) by writing Node of real

124 Chapel Language Specification

21.4 Where Expressions

The instantiation of a generic function can be constraingadtiere clausesA where clause is specified in the
definition of a function fI3:1). When a function is instantiated, the expressionénihere clause must be
a parameter expression and must evaluate to eitleer or false . If it evaluates tdalse , the instantiation
is rejected and the function is not a possible candidateunctfon resolution. Otherwise, the function is
instantiated.

Example Given two overloaded function definitions

def foo(x) where x.type ==int { ...}
def foo(x) where x.type ==real { ...}

the call foo(3) resolves to the first definition because whersecond function is instantiated the
where clause evaluates to false.

21.5 Example: A Generic Stack

cl ass MyNode {

type itemType; /1 type of item

var item: itemType; // itemin node

var next: MyNode(itemType); /1 reference to next node (sane type)
}
record Stack {

type itemType; Il type of itens

var top: MyNode(itemType); /1 top node on stack linked |ist

def push(item: itemType) {
top = MyNode(itemType, item, top);

def pop() {
i f isEmpty? then
halt("attempt to pop an item off an empty stack");
var oldTop = top;
top = top.next;
return oldTop.item;

}

def isEmpty? return top == nil;

Parallelism and Synchronization 125
22 Parallelism and Synchronization

Chapel is an explicitly parallel programming language altelism is introduced into a program by the user
with the following three constructgorall , cobegin , andbegin . In addition, some operations on arrays,
domains, and sequences are executed in parallel. Synzhtiami is provided witlsynchronization variables
andatomicstatements. To avoid any unintended implications, the s@omputatiorandsub-computation
will be used to refer to distinct, concurrently executingtfmms of the program.

22.1 The Forall Loop

The forall loop is a variant of the for loop that allows for tbencurrent execution of the loop body. The for
loop is described ifIT.8. The syntax for the forall loop is given by

forall- statement
forall index- expressionin iterator- expressiondo statement
forall index- expressionin iterator- expression blocklevel- statement

The forall loop evaluates the loop body once for each eleinghé sequence returned by theérator- expression
Each instance of the forall loop’s statement may be exeagardurrently with each other, but this is not guar-
anteed. The compiler and runtime determine the actual cogroey based on the specification of the iterator
of the loop. The keywordrdered , described iffZZ1.2, can be used to constrain the parallelism to give a
partial order on the sequence returned by an iterator.

Control continues with the statement following the foralbp only after each iteration has been completely
evaluated. Control transfers out of a loop bodyhrigak , continue , andreturn are not permitted. Control
can be transferred out of the loop vigiald statement.

Example Inthe code

forall i in 1.N do
a(i) = b(i);
the user has stated that the element-wise assignments eamexoncurrently. This loop may

be performed serially, with maximum concurrency where daop body iteration instance is
executed in a separate computation, or somewhere in between

Implementation note The forall loop is currently executed serially.

22.1.1 Alternative Forall Loop Syntax

The forall loop may be alternatively specified with a moreasa syntax given by:

alternative- forall- statement
[index- expressionin iterator- expressiorl statement

The semantics are unchanged.

Example The previougorall example can be alternatively written as:
[in 1.N] a(i) = b);

126 Chapel Language Specification

22.1.2 The Ordered Forall Loop

By default a forall loop allows complete concurrent evaluabf the iterator expression and among the loop
instances. The keyworaldered can be used to constrain the general parallelism amongiceseof the
loop to that expressed by an iterator. This allows an itetatboth define a sequence of values and to impose
a partial order on that sequence. If the iterator expressiarsequence value, there is no effect. This has the
same semantics as with the ordered expression which isiegdlm §22.3. The syntax is:

ordered forall- statement

ordered forall index- expressionin iterator- expressiondo statement
ordered forall index- expressionin iterator- expression blocklevel- statement

Example Inthe code

ordered forall i in walk(root) do
work(i);

i terator walk(n: node) {
yield n;
forall c¢ in 0.n.numOfChildren {
yi el d n.child[c];
}

}

there is a contraint on the parallel execution such thatuhetfonwork is evaluated on a node
before any of its immediate children nodes. The work onsghtiodes can be executed concur-
rently.

Implementation note The ordered forall loop is currently executed serially.

22.2 The Forall Expression

With syntax similar to the alternative forall loop staterhenforall expression can be used to enable concur-
rent evaluation of sub-expressions. The sub-expressiensvaluated once for each element in the iterator
expression. The syntax of a forall expression is given by

forall- expression
[index- expressionin iterator- expression expression

The semantics of the forall expression are that a sequentieecéxpression is evaluated. However, for
efficiency, a sequence may not be generated if the semargitiseasame.

Example
[in S] f();

The functionf is evaluated for each index Band the result of this expression is a sequence
containing the evaluated expressions.

Implementation note Forall expressions are evaluated serially.

Parallelism and Synchronization 127
22.3 The Cobegin Statement

The cobegin statement is used to create parallelism amategregnts within a block statement. Tdubegin
statement syntax is

cobegin statement
cobegin block- statement

Each statement within the block statement is executed coemtily and is considered a separate computation.
Control continues after all of the statements within thecklstatement have been evaluated.

As with the forall loop, control transfers are not permitegtther into or out of the cobegin’s block statement.
Similarly, yield statements are allowed.

Variables declared in the cobegin statementsamgle variablesdescribed ifZZ.7.1.

22.4 The Begin Statement

The begin statement spawns a computation to execute a statte@ontrol continues simultaneously with
the statement following the begin statement. The begirmstant is an unstructured way to create a new
computation that is executed only for its side-effects. 3ymax for the begin statement is given by

begin statement
begin statement

The following statements cannot be contained in begirestants: break-statements, continue-statements,
yield-statements, and return-statements.

22.5 The Ordered Expression

Implementation note The ordered expression is not yet implemented.

Theordered keyword can be used as an unary operator to suppress pasaition among instances of
an expression that can involve side-effects to memory. oftiered keyword does not inhibit parallelism
within the sub-expression. The syntax is:

ordered expression
ordered expression

Example Inthe code
ordered [i in S] f(i)

f is a function ands is a sequence. Each instance(@f is executed once for each valueSn
and in sequence order. Thalered constraint does not propagate to inhibit parallelism waithi
f.

128 Chapel Language Specification

22.6 The Serial Statement

Implementation note The serial statement is not yet implemented.

Theserial statement can be used to dynamically control the degreerali@iésm. The syntax is:

serial- statement
serial expression blocklevel- statement

where the expression evaluates to a bool type. Indepenflémtovalue, the block-level statement is eval-
uated. If the expression is true, any dynamically encoewtéorall loop or cobegin statement is executed
serially within the current computation. Any dynamicallyoeuntered begin-statement is executed serially
with the current computation; no new computation is spawahtrol continues to the statement following
the begin-statement after the begin-statement finishes.

Example Inthe code

ordered forall i in walk(root) do
work(i);

i terator walk(n: node) {
yield n;
serial n.depth >4 forall c in 0.n.numOfChildren {
yi el d n.child[c];
}

}

the serial statement inhibits concurrent execution onréefor nodes that are deeper than four
levels in the tree.

There is an expectation that functions that may be execntedérial context are cloned to avoid the overhead
of testing and suppressing parallelism.

22.7 Synchronization Variables

Synchronization variablesre used to coordinate computations that share data. Thef ase assignment to
these variables implicitly controls the execution ordethaf computation. There are two kinds of synchro-
nization variablessingleandsyncvariables. A single variable can only be assigned once ditsrifetime.

A sync variable can be assigned multiple times during itdilifie.

The normal use of and assignment to a synchronization Jarialwell suited for producer-consumer data
sharing. Additional functions on synchronization vareahbte provided such that other traditional synchro-
nization primitives, such as semaphores and mutexes, caorieicted.

Parallelism and Synchronization 129

22.7.1 Single Variables

A single (assignment) variable can only be assigned ondeglits lifetime. A use of a single variable before
it is assigned causes the computation’s execution to beeadspl until the variable is assigned. Otherwise,
the use proceeds as with normal variables and the computadittinues. After a single assigment variable
is assigned, all computations with pending uses resumeumgpecified order. A single variable is specified
with a single type given by the following syntax:

single- type:
single type

Example Inthe code

class Tree {

var is_leaf : bool ;
var left : Tree;
var right : Tree;
var value ©ooint;
def sum() {

if (is_leaf) t hen
return value;

var x : single int;
begin x = left.sum();
var y = right.sum();
return x+y;

}
}

the single variable is assigned by an asynchronous computation created withethia state-
ment. The computation returning the sum waits on the reasfirguntil it has been assigned.

While acobegin might be a more suitable formulation, this fragment createasynchronous
computation to compute the sum of the left sub-tree whilenthén computation continues with
the right sub-tree. The final reference to variable x will ledagted until the assignment to x
completes and that value will be used as a summand.

When a single variable has an initializer, the evaluatiothaf initializer is implicitly performed as an asyn-
chronous computation.

Example The code

var x: single int = left.sum;

is equivalent to

var x: single int;
x = left.sum;

Any variable declaration within a cobegin statement is igifly treated as a single variable for references in
other statements of the cobegin statement.

Example Inthe code

130 Chapel Language Specification

def sum() {

i f (is_leaf) t hen
return value;

var z;

cobegin {
var x
var y
Z = Xty;

}

return z;

}

left.sum();
right.sum();

the computation with assignmentzavaits for the other computations to assigm tandy before
it references andy in order to assign ta. The variables andy are impliclty single.

22.7.2 Sync Variables

A sync variable generalizes the single assignment vartalppermit multiple assignments to the variable. A
sync variable is logically eithdull orempty When it is empty, computations that attempt to read thahibe
are suspended until the variable becomes full by the neigrasent to it, which atomically changes the state
to full. When the variable is full, a read of that variable sames the value and atomically transitions the
state to empty. If there is more than one computation waiiimg sync variable, one is non-deterministically
selected to use the variable and resume execution. The odingoutations continue to wait for the next
assignment.

If a computation attempts to assign to a sync variable thiatllisthe computation is suspended and the as-
signment is delayed. When the sync variable becomes erhptgpimputation is resumed and the assignment
proceeds, transistioning the state back to full. If theeeraultiple computations attempting such an assign-
ment, one is non-deterministically selected to proceedthadther assignments continue to wait until the

sync variable is emptied again.

A sync variable is specified with a sync type given by the fwifg syntax:

sync type:
sync

22.7.3 Additional Synchronization Variable Functions

Synchronization variables support additional methodsdha be used to bypass their semantics to provide
new ones. For sync variabde the following functions are defined:

writeFE(s, V) /1 wait for full, assign s=v, and | eave empty
writeXF(s, V) /1 no wait, assign s=v, and | eave full

writeXE(s, V) // no wait, assign s=v, and | eave enpty

readFF(s) /'l wait for full, leave full, and return s's val ue
readXF(s) /1 no wait, leave full, and return s's val ue

readXX(s) /1 no wait, |eave F/E unchanged, and return s’s val ue

For single variables only readFF is defined.

Parallelism and Synchronization 131

22.7.4 Synchronization Variables of Record and Class Types

A variable of record or class type can be a single or sync brid he semantics of single and sync variables
are applied only to the variable and not to accesses of ihdialifields. A record or class type may have
sychronization variable fields to get synchronization seima on individual field accesses.

22.8 Memory Consistency Model

This section is forthcoming.

22.9 Atomic Statement

Implementation note Atomic statements are not yet implemented.

The atomic statement creates an atomic transaction ofarstat. The statement is executed with transaction
semantics in that the statement executes entirely, thenstait appears to have completed in a single order
and serially with respect to other atomic statements, andariable assignment is visible until the statement
has completely executed.

This definition of an atomic statement is sometimes caltezhg atomicitypecause the semantics are atomic
to the entire programWeak atomicitys defined so that an atomic statement is atomic only witheetsip
other atomic statements. If the performance implicatidrgrong atomicity are not tolerable, the semantics
of atomic transactions may be revisited, and could beconaere

The syntax for the atomic statement is given by:

atomic- statement
atomic statement

Example The following code illustrates one possible use of atortsitesnents:

var found = fal se;
atom c {
if head == obj {
found = true;
head = obj.next;
} else {

var last = head;
whi | e last != null {

i f last.next == obj {
found = true;
last.next = object.next;
br eak;

}

last = last.next;

132 Chapel Language Specification

Inside the atomic statement is a sequential implementatieseamoving a particular object de-
noted byobj from a singly linked list. This is an operation that is weéifthed, assuming only
one computation is attempting it at a time. The atomic statégrensures that, for example, the
value ofhead does not change after it is first in the first comparison andegbently read to
initialize last . The variables eventually owned by this computationfewed , head, obj , and
the variousext fields on examined objects.

The effect of an atomic statement is dynamic.

Example If there is a method associated with a list that removes g@tglihat method may not
be parallel safe, but could be invoked safely inside an atatatement:

at om ¢ found = head.remove(obj);

Locality and Distribution 133

23 Locality and Distribution

Implementation note Programs can currently only run on a single locale. Theratisbns
described here are not yet implemented.

Chapel provides high-level abstractions that allow progreers to exploit locality by defining the affinity of
data and computation. This is accomplished by associatittydata objects and computations with abstract
locales To provide a higher-level mechanism, Chapel allows a mapfriom domains to locales to be
specified. This mapping is calleddastribution and it guides that placement of variables associated with
arrays and the placement of subcomputations defined oveothain.

Throughout this section, the termcal refers to data that is associated with the locale that a ctatipa is
running on andemoterefers to data that is not. We assume that there is some @xecwerhead associated
with accessing data that may be remote compared to data kiodvenlocal.

23.1 Locales

A locale abstracts a processor or node in a parallel compystem, or the basic component in the computer
system where local memory can be accessed uniformly.

23.1.1 The Locale Type

The identifierlocale is a primitive type that abstracts a locale as describedei®oth data and computa-
tions can be associated with a value of locale type. The opéyaiors defined over locales are the equality
and inequality comparison operators.

23.1.2 Predefined Locales Array

A predefined configuration variable defines thescution environmerfior a program. This environment is
defined by the following definitions:

config const numlLocales: int;
const Locales: [1..numLocales] | ocal e;
const Global: |ocal e;

The environment consists of constants which are fixed whemptbgram begins execution. The variable
Global holds a special value dfcale type that can be distinct from the values storetlanales . This
value is used to denote an object or computation that hasfiredeffinity.

When a program starts, a single computation is executirig riinning on the locale given hycales(1)

134 Chapel Language Specification

23.1.3 Querying the Locale of a Variable

Every variables is associated with some locale which can be queried usinfptioging syntax:

locale- access
expression . locale

When theexpressionis a class type, the locale is where the objectis locate@rétian where thexpression
may be located.

23.2 Specifying Locales for Computation

When execution is proceeding on some locale, a computagioive associated with a different locale in two
ways: via distributions as discussedEB.3 or with anon- statementas discussed below.

23.2.1 On

The on statement controls on which locale a computation ta sfaould be placed. The syntax of the on
statement is given by

on- statement
on expressiondo statement
on expression blocklevel- statement

If the expressionis a value oflocale type, thestatementor block- level- statementis executed on the
locale specified directly by the expression. Otherwise ekgression must be a variable and the locale is
taken to be the locale where the variable is located. Exaguwontinues after then-statement after
execution of thestatementor block- level- statementcompletes.

If the locale that theexpressionrefers to is equal tGlobal , then the locale is unspecified and is determined
by the runtime and/or compiler.

Example A common idiom is to usen in conjunction withforall ~ to access an array decom-
posed over multiple locales. The code

forall i in D do on A() {
/'l some conputation

}

executes each iteration of the forall loop on the locale whiee element ofi(i) is located.

By default, when new variables and data objects are crefiteygl are created in the locale where the compu-
tation is running. This locale can be changed by usingth&eyword. Variables can be defined within an
on- statementto define them on a particular locale.

Locality and Distribution 135

23.2.2 On and lterators

When a loop iterates over a sequence specified by an itesat@tatements inside the iterator control where
the corresponding loop body is executed.

Example An iterator over a distributed tree might include an iteratver the nodes as defined
in the following code:
class Tree {
var left, right: Tree;
iterator nodes {
on this yield this;
if left then
forall t in leftnodes do
yield t
if right then
forall t in rightnodes do
yield t;
}
}

Given this code and a binary tree of typeee stored in variablaeree , then we can use the
nodes iterator to iterate over the tree with the followingeo

forall t in tree.nodes {
/'l body executed on t as specified in nodes
}

Here, each instance of the body of tleall loop is executed on the locale where the corre-
sponding object is located. This is specified in thedes iterator where then keyword is
used. In the case of zipper or tensor product iteration,dbation of execution is taken from
the first iterator. This can be overridden by explictly usorgin the body of the loop or by
reordering the product of iteration.

23.3 Distributions

A mapping from domain index values to locales is callatistribution

23.3.1 Distributed Domains

A domain for which a distribution is specified is referred wadistributed domain A domain supports a
methodJocale , that maps index values in the domain to locales that cooressfo the domain’s distribution.

Iteration over a distributed domain implicitly executes gontrol computation in the domain of the associ-
ated locale. Similarly, when iterating over the elementamfarray defined over a distributed domain, the
controlled computations are determined by the distrilbutitthe domain. If there are conflicting distributions
in product iterations, the locale of the computation is teteebe the first component in the product.

Example If Dis a distributed domain, then in the code

forall din D {
/1 body
}

the body of the loop is executed in the locale where the intdevaps to by the distribution db.

136 Chapel Language Specification

23.3.2 Distributed Arrays

Arrays defined over a distributed domain will have the eletwaniables stored on the locale determined by
the distribution. Thus, ifi is an index of distributed domaibandA is an array defined over that domain,
thenA(d).locale is the locale to whichl maps to according tb.

23.3.3 Undistributed Domains and Arrays

If a domain or an array does not have a distributed part, theedloor array is not distributed and exists only
on the locale on which it is defined.

23.4 Standard Distributions

Standard distributions include the following:

e The block distributiorBlock
e The cyclic distributiorCyclic
e The block-cyclic distributiomBlockCyclic

e The cut distributiorCut

A design goal is that all standard distributions are defingk the same mechanisms that user-defined distri-
butions (23.3) are defined with.

23.5 User-Defined Distributions

This section is forthcoming.

Reductions and Scans 137

24 Reductions and Scans

Chapel provides a set of built-in reductions and scans véthlfel semantics, a mechanism for defining more
reductions and scans with efficient implementations, amiesy support to make reductions and scans easy
to use.

24.1 Reduction Expressions

The syntax for a reduction expression is given by:

reduce expression
reduce operator reduce expression
type reduce expression

reduce scan operator: one of
+ % & || & | © min max

The expression on the right-hand side of the reduction caof lamy type that can be iterated overg, a
sequence or array.

The built-in reductions are defined iaduce scan operator. These include, in order, sum, product, logical
and, logical or, bitwise and, bitwise or, bitwise exclusireminimum, and maximum.

User-defined reductions are specified by preceding the keywduce by the class type that implements
the reduction interface as describedZL3.

24.2 Scan Expressions

The syntax for a scan expression is given by:

scan expression
reduce scan operator scan expression
type scan expression

The expression on the right-hand side of the scan can be dfpayhat can be iterated overg, a sequence
or array.

The built-in scans are defined irduce scan operator. These are identical to the built-in reductions and
are described ig24.].

User-defined scans are specified by preceding the keyseard by the class type that implements the scan
interface as described {24.3.

138 Chapel Language Specification

24.3 User-Defined Reductions and Scans

User-defined reductions and scans are supported via clisgidias where the class implements a structural
interface. The definition of this structural interface isth@oming. The following paper sketched out such an
interface:

S. J. Deitz, D. Callahan, B. L. Chamberlain, and L. Sny@dobal-view abstractions for user-
defined reductions and scansin Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming006.

Input and Output 139

25 Input and Output

Chapel provides a built-ifle type to handle input and output to files using functions anthods called
read , write , andwriteln

25.1 Thefile type

The file type contains the following fields:

Thefilename field is astring that contains the name of the file.

Thepath field is astring that contains the path of the file.

Themodefield is astring that indicates whether the file is being read or written.

Thestyle field can be settext orbinary to specify that reading from or writing to the file should
be done with text or binary formats.

These fields can be modified any time that the file is closed.

Themode field supports the following strings:

e 't The file can be read.

e "w" The file can be written.

Implementation note Thestyle field is not yet implemented. All input and output is done in
text mode. All files must be text files.

There is an expectation that there will be more styles torobtite default reading and writing
methods.

The file type supports the following methods:

Theopen method opens the file for reading and/or writing.

Theclose method closes the file for reading and/or writing.

TheisOpen method returns true if the file is open for reading and/oringitand otherwise returns
false.

Theflush() method flushes the file, finishing outstanding reading antingri

Additionally, the file type supports the methadad , write , andwriteln for input and output as discussed

in 5.4 andfZ5.8.

140 Chapel Language Specification

25.2 Standard filesstdout stdin, and stderr

The filesstdout , stdin , andstderr are predefined and map to standard output, standard inglistan-
dard error as implemented in a platform dependent fashion.

25.3 Thewrite, writeln, and readfunctions

The built-in functionwrite can take an arbitrary number of arguments and writes eadte@frguments out
in turn tostdout . The built-in functionwriteln ~ has the same semanticsvaite but outputs arend-of-
line character after writing out the arguments. The built-inction read can take an arbitrary number of
arguments and reads each of the arguments in turndgtdim .

These functions are wrappers for the methods on files destribxt.

Example Thewriteln wrapper function allows for a simple implementation of thello-
World program:

writeln("Hello, World!");

25.4 Thewrite and writeln method on files

Thefile type supports methodgrite andwriteln for output. These methods are defined to take an
arbitrary number of arguments. Each argument is writtemiin by calling thewrite method bound to that
type. Defaulwrite methods are bound to any type that the user does not expticithte one for.

A lock is used to ensure that output is serialized acrossipheitomputations.

25.5 Thereadmethod on files

Thefile type supports a methadad that takes an arbitrary number of arguments. Each argurmeead
in turn by calling a method also bound to tiile type that takes a single argument of that type.

25.6 User-Definedeadand write methods

To define the output for a given type, the user must define aodethlledwrite on that type that takes a
single argument of file type. If such a method does not exidefault method is created.

Input and Output 141

25.7 Defaultreadand write methods

Defaultwrite methods are created for all types for which a ugéte method is not defined. They have
the following semantics:

e arrays Outputs the elements of the array in row-major order whensrare separated by line-feeds
and blank lines are used to separate other dimensions.

e domainsOutputs the dimensions of the domain enclosefl and] .

e sequence®utputs the elements of the sequence in order delimiteddogejuence delimitets and
/) and separated by commas.

e arithmetic sequencesOutputs the lower bound of the sequence followed byollowed by the upper
bound of the sequence. If the stride of the sequence is notlmaeutput is additionally followed by
the wordby followed by the stride of the sequence.

¢ tuples Outputs the components of the tuple in order delimited layd) , and separated by commas.

e classesOutputs the values within the fields of the class prefixed l®yrtame of the field and the
character. Each field is separated by a comma. The output is delimitgddnd} .

e records Outputs the values within the fields of the class prefixed keyrthme of the field and the
character. Each field is separated by a comma. The output is delimitgddnd) .

Defaultread methods are created for all types for which a used method is not defined. The default
read methods are defined to read in the output of the defaithk method.

142 Chapel Language Specification

Standard Modules 143

26 Standard Modules

This section describes predefined functions that are dlait® any Chapel program as well as a set of
standard modules that, when used, define a set of functiah$ypes available to Chapel programs. The
standard modules include the following:

BitOps Bit manipulation routines

Math (used by defaultMath routines

Random Random number generation routines

Standard (used by defau)tBasic routines

Time Types and routines related to time

Types (used by defaultRoutines related to primitive types

There is an expectation that each of these modules will lended and that more standard modules will be
defined.

26.1 BitOps

The moduleBitOps defines routines that manipulate the bits of values of irtegpes.
def bitPop(i: integral): int

Returns the number of bits set to one in the integral arguinent
def bitMatMultOr(i: ui nt (64), j: ui nt (64)): ui nt (64)

Returns the bitwise matrix multiplication ofandj where the values afint(64) type are treated as
8 x 8 bit matrices and the combinator function is bitwise or.

def bitRotLeft(i: integral, shift: integral): i. type

Returns the value of the integral argumerdfter rotating the bits to the lehift number of times.

def bitRotRight(i: integral, shift: integral): i. type

Returns the value of the integral argumerafter rotating the bits to the rigkhift number of times.

26.2 Math

The modulemath defines routines for mathematical computations. This meidulsed by default; there is no
need to explictly used this module. The Math module definasnes that are derived from and implemented
via the standard C routines definechiath.h .

def abs(i: int(?w)): int(w)
def abs(i: ui nt (?w)): ui nt (w)
def abs(x: real): real

def abs(x: conplex): real

144 Chapel Language Specification

Returns the absolute value of the argument.
def acos(x: real): real

Returns the arc cosine of the argument. It is an ermpiigfless than-1 or greater than.
def acosh(x: real): real

Returns the inverse hyperbolic cosine of the argument.anisrror ifx is less thar.
def asin(x: real): real

Returns the arc sine of the argument. It is an errariff less than-1 or greater than.
def asinh(x: real): real

Returns the inverse hyperbolic sine of the argument.
def atan(x: real): real

Returns the arc tangent of the argument.
def atan2(y: real, x: real): real

Returns the arc tangent of the two arguments. This is eqanivab the arc tangent of / x except
that the signs of andx are used to determine the quadrant of the result.

def atanh(x: real): real

Returns the inverse hyperbolic tangent of the argumergt.ahierror ifx is less than-1 or greater than
1.

def cbrt(x: real): real

Returns the cube root of the argument.

def ceil(x: real): real

Returns the value of the argument rounded up to the neategein
def conjg(a: conpl ex(?w)): conpl ex(w)

Returns the conjugate af

def cos(x: real): real

Returns the cosine of the argument.

def cosh(x: real): real

Returns the hyperbolic cosine of the argument.

def erf(x: real): real

Standard Modules 145

def

def

def

def

def

def

def

def

def

def
def
def

def

Returns the error function of the argument defined as

2 /w e
— e " dt
VT Jo

for the argument.

erfc(x: real): real

Returns the complementary error function of the argumelmis iE equivalent td.0 - erf(x)
exp(x: real): real

Returns the value af raised to the power of the argument.
exp2(x: real): real

Returns the value df raised to the power of the argument.
expml(x: real): real

Returns one less than the valuecahised to the power of the argument.
floor(x: real): real

Returns the value of the argument rounded down to the neateger.
lgamma(x: real): real

Returns the natural logarithm of the absolute value of threrga function of the argument.
log(x: real): real

Returns the natural logarithm of the argument. It is an eifrtite argument is less than or equal to
zero.

log10(x: real): real

Returns the base 10 logarithm of the argument. It is an eftbeiargument is less than or equal to
zero.

loglp(x: real): real
Returns the natural logarithm gf1.

log2(i: int(?w)): int(w)
log2(i: ui nt (?w)): ui nt (w)
log2(x: real): real

Returns the base 2 logarithm of the argument. It is an ertbeifrgument is less than or equal to zero.

nearbyint(x: real). real

146 Chapel Language Specification

Returns the rounded integral value of the argument detemttiy the current rouding direction.
def rint(x: real): real

Returns the rounded integral value of the argument detemitiy the current rouding direction.
def round(x: real): real

Returns the rounded integral value of the argument. Cadésayabetween two integral values are
rounded towards zero.

def sin(x: real): real

Returns the sine of the argument.
def sinh(x: real): real

Returns the hyperbolic sine of the argument.
def sqrt(x: real): real

Returns the square root of the argument. It is an error if tharaent is less than zero.
def tan(x: real): real

Returns the tangent of the argument.
def tanh(x: real): real

Returns the hyperbolic tangent of the argument.
def tgamma(x: real): real

Returns the gamma function of the argument defined as

)
/ t" e tdt
0

for the argument:.

def trunc(x: real): real

Returns the nearest integral value to the argument that iamger than the argumentin absolute value.

Standard Modules 147

26.3 Random

The moduleRandom supports the generation of pseudo-random values and streBwalues. The current
interface is minimal and should be expected to grow and evoler time.

cl ass RandomStream

Implements a pseudo-random stream of values. Our currgdmentation generates the values using
a linear congruential generator. In future versions of tiglule, the RandomStream class will offer a
wider variety of algorithms for generating pseudo-randatogs.

const RandomStream.seed: i nt (64)

The seed value for the random stream. If no seed is specifid inonstructor, the millisecond value
of the current time is used. The seed value must be an odceintdgan even integer is supplied, the
class constructor will increment it to obtain an odd integer

def RandomStream.fillRandom(x:[?D] real)

Fill the argument array, with the next|D| values of the pseudo-random stream. Arrays of arbitrary
rank can be passed to this routine, causing the 1D streaniugfs/tb be mapped to the array elements
according to the array’s default iteration order. Once oyslementation supports distributed arrays,

this routine is intended to fill the array’s values in paralle

def RandomStream.fillRandom(x:[?D] conpl ex)

Similar to the previous routine, but for use with arrays ofngdex values. The elements are filled
in the same order as above except that pairs of values fromsttb@m are assigned to each element,
the first to the real component, the second to the imaginasyth&s module matures, we will support
fillRandom for arrays of other element types as well.

SeedGenerator
A symbol that can be used to generate seed values for the Ré&tdesam class.
SeedGenerator.clockMS

Generates a seed value using the milliseconds value frorouttient time. As this module matures,
SeedGenerator will support additional mechanisms for generating seedesl

def fillRandom(x:[], initseed: i nt (64))

A routine provided for convenience to support filling an grrawith pseudo-random values without
explicitly constructing an instance of tlRandomStream class, useful for filling a single array or
multiple arrays which require no coherence between thene.infilseed parameter corresponds to
theseed member of th&RandomStream class and will default to the milliseconds value of the caotre
time if no seed value is provided.

148 Chapel Language Specification

26.4 Standard

def ascii(s: string): int
Returns the ASCII code number of the first letter in the argurse
def assert(test: bool) {

Exits the program ifest is false and prints to standard error the location in the @hepde of the
calltoassert . If test is true, no action is taken.

def assert(test: bool , args ...?numArgs) {

Exits the program ifest is false and prints to standard error the location in the €hapde of the
call toassert as well as the rest of the arguments to the calledf is true, no action is taken.

def conpl ex.re: real

Returns the real component of the complex number.

def conpl ex.im: real

Returns the imaginary component of the complex number.

def conpl ex.=re(f: real)

Sets the real component of the complex numbér. to

def conpl ex.=im(f: real)

Sets the imaginary component of the complex numbér to

def exit(status: int)

Exits the program with codstatus

def halt() {
Exits the program and prints to standard error the locatiotiné Chapel code of the call tmlt as
well as the rest of the arguments to the call.

def halt(args ...?numArgs) {
Exits the program and prints to standard error the locatiotné Chapel code of the call talt as
well as the rest of the arguments to the call.

def length(s: string): int

Returns the number of characters in the argument

def max(x, y...?k)
Returns the maximum of the arguments when compared usirigteater-than” operator. The return
type is inferred from the types of the arguments as alloweitipyicit coercions.

def min(x, y...?k)
Returns the minimum of the arguments when compared usirigethan” operator. The return type
is inferred from the types of the arguments as allowed by ititgoercions.

def stri ng.substring(x): string

Returns a value of string type that is a substring of the bapgeession. I is i, a value of typeént ,
then the result is théh character. Ik is an arithmetic sequence, the result is the substring where
characters in the substring are given by the values in tienagtic sequence.

Standard Modules 149

26.5 Time

The moduleTime defines routines that query the system time and a reTiarer that is useful for timing
portions of code.
record Timer

A timer is used to time portions of code. Its semantics ardéairto a stopwatch.

enum TimeUnits { microseconds, milliseconds, seconds, minutes , hours };

The enumeration TimeUnits defines units of time. These wats be supplied to routines in this
module to specify the desired time units.

def getCurrentDate(): (int, int, int)

Returns the year, month, and day of the month as integersyddrds the year since 0. The month is
in the range 1 to 12. The day is in the range 1 to 31.

def getCurrentTime(unit: TimeUnits = seconds): real

Returns the elapsed time since midnight in the units spdcifie
def Timer.clear()

Clears the elapsed time stored in the Timer.

def Timer.elapsed(unit: TimeUnits = seconds): real

Returns the cumulative elapsed time, in the units specifietlyeen calls tatart andstop . If the
timer is running, the elapsed time since the last cadtaat is added to the return value.

def Timer.start()
Start the timer. It is an error to start a timer that is alreadyning.
def Timer.stop()

Stops the timer. It is an error to stop a timer that is not ragni

def sleep(t: ui nt)

Delays the computation far seconds.

26.6 Types

def numBits(type t): int
Returns the number of bits used to store the values ofttypéis is implemented for all numeric types
andbool .

def max(type t): t
Returns the maximum value that can be stored in typEhis is implemented for all numeric types.
def min(type t): t

Returns the minimum value that can be stored in typ€his is implemented for all numeric types.

150 Chapel Language Specification

Index

&,
&&,68
&&=,
&=,

«=,[62
+,[50,[59

+ (unary)[49®
+=,62

-,[B0

- (unary)[4®
=62

/1,4

/= ,[62

<,[64

<<, 23

<<=, 64
<=8

=,[62

-=,58

>, 51

>=,[58

>> [B9

>>= |64
2,24,[2%
#,69,[98

#=, 104

% B3

%=[62

~, B4

B

=, [

124

X

argv ,[7d
arithmetic sequencds, 103
indefinite [TOB
integral element typ&_ID3
literals,[10B
strided [I0B
arrays[TNT05.7T07
association to domairs,J22
slicing,[1%
arithmetic[TID

arithmetic, strided, 111
as formal argument§ 8109, 112
assignmenf 14108
association to domains. 15
distributed[136
enumerated, T15
indefinite [TT1B
indexing [I0B
initialization,[ITT0
opaque 114
predefined function§ 116
promotion[10P
slice [112
slicing,[T4[10B
sparse 112
types[I0F
assignmenf 82
tuples[@B
atomic ,[I33
atomic transactiong_IB1
automatic memory managemeni] 88

begin ,20,[12Y

block,[&1

block level statemenf_$2
bool ,[31

by,

case sensitivitf, 27

casts[4l7

class ,B3

classed A7 83
assignmenf 33
constructord, 86
declarationd, 83
fields[B3B
generic[I21
getters[86
indexing[8b
inheritancel 87
methods 84
methods without parenthesEs] 85
nested 88
promotion[88
setters] 86

cobegin ,[I21

command-line argumenis,]J70

commentd A7

151

152

compiler errors
user-defined. 29
complex
casts from tuple§, 27
complex ,[32
conditional
expressior 80
statemen{_d3
conditional statement
dangling elsd, 83
config ,[I4,[40
configuration variable§_P1
const ,[39
constants
compile-time[3P
runtime[39
conversions
bool [22
class[Z4P[43
enumeratiol 41432
explicit,[42
implicit, &1
numeric[Z1L[ZP
parametef, 42
record[ZP[43

def ,[73

default valued 15

distributions[I3b

domains[ZINTd5
arithmetic[THLTTIO
arithmetic literals[_T70
arithmetic, strided, 111
as formal argumentg,_TI06
assignmenf 106
association to arrayg, 1115
distributed[(I3b
enumerated_I15
indefinite [TTB
index types[106
opaquel 114
predefined function§_TIL6
promotion IO
sparsel 112
subdomaing. T15
types[TL[T05

dynamic dispatci, 87

else ,[60,[63
elt_type 023
enumerated typeg, 18134

Chapel Language Specification

execution environmerf_IB3
exploratory programmin@, 0
expression

as a statemerff, b2
expression statemeff162

fields
generic type$_123
without types[I23
file type [139
methods[139
standard filed,_ T30
for ,[63,[66
for loops[6h
parameter§, 66
forall 128
forall expression§, 126
forall loops[12b
alternative syntaX_I25
ordered 126
formal argument§,_T4
arithmetic array$, 112
array typed, 141
defaults[7b
domains[_I06
generic typed, 121
naming[Zb
queried typed. 120
tuples[9b
without types[ZT20
function calls[4614
functions[Ib[73
as Ivalued 44,17
candidate€. 18
generic[IB 119
most specifid_19
nested 80
overloading[ZTH. 47
setters 77
syntax[7B

variable number of argumenfs]80

visibile,[78
with class arguments, 178

generics
function visibility,[I21
functions[IB[I19
methods[123
types[I2IL

Global ,[I33[134

high ,[I03

Standard Modules

identifiers[2F
if ,[60,[63
imaginary ,[34
in ,[74
indexing [46
inheritancel 87
inout ,[74
int ,[Z1
integral 21
intents[7b
in ,[74
inout ,[78
out ,[7G
param , 120
type ,[I19
iterator ,[I17
iterators[CIH_117
and sequencds, 117
on, 133
structural interfacd._118

Jacobi method
example[Th

keywords[ZB

length

on sequenceB, 101
let ,lod
literals

primitive type [38
local [13B
locale ,[I33[1341
Locales ,[I33
locales[I3B
low ,[103
Ivalue [4T

main ,[69
member accesk. 6,184
memory consistency modg[131
module ,[69
modules[_TH_89
and files[7L
nested 71
using [G6[7D
multiple inheritanced, 98

named arguments. 175
numeric ,[IZ1
numLocales ,[I133

on,[132

operators
arithmetic[ZP
associativity[4B
bitwise [53
logical [56
overloading[ZA7
precedenc& 38
relational[B¥

ordered ,[I28[12V¥

out ,[7d

param, [39,[66

parameter§,_39
configuration[20
in classes or records_122

read[TZ2D
default method§. 131
on files[14D

read ,[140

readFF ,[130

readXF ,[130

readXX ,[130

real ,[32

record[2P

record ,[B9

records[8P
assignmenf 90
differences with class€els, 189
equality[3D
generic[I21
inequality[90
inheritancel -89

reductions 15

remote[I3B

reserved word§. 28

reshape ,[102

return ,[74

reverse ,[I01

scalar promotior.99
tensor product iteratiof,_IDO
zipper iteration[99

select ,[18,[63

seq, 91

sequences
and conditional expressiois, 101
and conditional statemenfs,_100
and select statemenfs_101
and while statement§, 100
arithmetic[TOB

153

154

assignmenf 37
cast to tupled 47
casts from tuple§_T04
indexing [98[9P
iteration[98
literals,[OY
promotion[9D
rank [9T
types[9¥

serial ,[IZ8

single ,[IZ29

spread ,[102

statemen{_81

stride ,[I03

string ,23

strings
format string cast§. 37

subdomaing. 115

sync ,[130

synchronization variablelS, 10,128
built-in functions on[ZT30
implicit in cobegin ,[I29
of class typd 131
of record typel 131
single ,[IZ29
sync ,[130

tensor product iteratdf, b5
then ,[60,[63
this ,[B3,[B3
transpose ,[102
tuples[IBH[9B
assignmenf 93
cast to sequencds]]47
casts from sequencés, 104
destructurind_94
homogeneouE, 94
indexing [9%
types[9B
variable declarationE. P4
type aliased, 2235
in classes or records, 1122
type inferencd 1438
type select statemenls,]166
types
primitive,[31

uint ,[Z1
union ,[@1
unions[21L

assignmenf 91

Chapel Language Specification

fields,[91
type select 91

use, 68

variables
configuration[{40
declarationd 37
default initialization[3B
global [38
local,[38

when, [63
where ,[124
while ,[64
while loops[GHh
white spacd, 27
write,[TZ0
default method§ £ TH1
on files[14D
write ,[I40
writeFE ,[130
writeln ,[14,[1Z0
writeXE ,[130
writeXF ,[130

yield [T

zipper iteration[85

	Scope
	Notation
	Organization
	Acknowledgments
	Language Overview
	Motivating Principles
	Getting Started
	Example Chapel Programs
	Jacobi Method
	Matrix and Vector Norms
	Simple Producer-Consumer Program
	Generic Stack Implementations

	Lexical Structure
	Comments
	White Space
	Case Sensitivity
	Tokens
	Identifiers
	Keywords
	Literals
	Operators and Punctuation
	Grouping Tokens

	User-Defined Compiler Errors

	Types
	Primitive Types
	The Bool Type
	Signed and Unsigned Integral Types
	Real Types
	Complex Types
	Imaginary Types
	The String Type
	Primitive Type Literals

	Enumerated Types
	Class Types
	Record Types
	Union Types
	Tuple Types
	Sequence Types
	Domain and Array Types
	Type Aliases

	Variables
	Variable Declarations
	Default Initialization
	Local Type Inference

	Global Variables
	Local Variables
	Constants
	Compile-Time Constants
	Runtime Constants

	Configuration Variables

	Conversions
	Implicit Conversions
	Implicit Numeric Conversions
	Implicit Enumeration Conversions
	Implicit Class Conversions
	Implicit Record Conversions
	Implicit Compile-Time Constant Conversions
	Implicit Statement Bool Conversions

	Explicit Conversions
	Explicit Numeric Conversions
	Explicit Enumeration Conversions
	Explicit Class Conversions
	Explicit Record Conversions

	Expressions
	Literal Expressions
	Variable Expressions
	Call Expressions
	Indexing Expressions
	Member Access Expressions

	The Query Expression
	Casts
	LValue Expressions
	Operator Precedence and Associativity
	Operator Expressions
	Arithmetic Operators
	Unary Plus Operators
	Unary Minus Operators
	Addition Operators
	Subtraction Operators
	Multiplication Operators
	Division Operators
	Modulus Operators
	Exponentiation Operators

	Bitwise Operators
	Bitwise Complement Operators
	Bitwise And Operators
	Bitwise Or Operators
	Bitwise Xor Operators

	Shift Operators
	Logical Operators
	The Logical Negation Operator
	The Logical And Operator
	The Logical Or Operator

	Relational Operators
	Ordered Comparison Operators
	Equality Comparison Operators

	Miscellaneous Operators
	The String Concatenation Operator
	The Sequence Concatenation Operator
	The Arithmetic Domain By Operator
	The Arithmetic Sequence By Operator

	Let Expressions
	Conditional Expressions

	Statements
	Blocks
	Block Level Statements
	Expression Statements
	Assignment Statements
	The Conditional Statement
	The Select Statement
	The While and Do While Loops
	The For Loop
	Zipper Iteration
	Tensor Product Iteration
	Parameter For Loops

	The Use Statement
	The Type Select Statement
	The Empty Statement

	Modules
	Module Definitions
	Program Execution
	The main Function
	Command-Line Arguments
	Module Execution
	Programs with a Single Module

	Using Modules
	Explicit Naming

	Nested Modules
	Implicit Modules

	Functions
	Function Definitions
	The Return Statement
	Function Calls
	Formal Arguments
	Named Arguments
	Default Values

	Intents
	The Blank Intent
	The In Intent
	The Out Intent
	The Inout Intent

	Variable Functions
	Explicit Setter Functions

	Function Overloading
	Function Resolution
	Identifying Visible Functions
	Determining Candidate Functions
	Determining More Specific Functions

	Nested Functions
	Accessing Outer Variables

	Variable Length Argument Lists

	Classes
	Class Declarations
	Class Assignment
	Class Fields
	Class Field Accesses

	Class Methods
	Class Method Declarations
	Class Method Calls
	The this Reference
	Class Methods without Parentheses
	The this Method

	Class Constructors
	The Default Constructor

	Getters and Setters
	Inheritance
	Accessing Base Class Fields
	Derived Class Constructors
	Shadowing Base Class Fields
	Overriding Base Class Methods
	Inheriting from Multiple Classes

	Class Promotion of Scalar Functions
	Nested Classes
	Automatic Memory Management

	Records
	Record Declarations
	Class and Record Differences
	Records as Value Classes
	Record Inheritance
	Record Assignment

	Default Comparison Operators on Records

	Unions
	Union Declarations
	Union Fields

	Union Assignment
	The Type Select Statement and Unions

	Tuples
	Tuple Expressions
	Tuple Type Definitions
	Tuple Assignment
	Tuple Destructuring
	Variable Declarations in a Tuple
	Ignoring Values with Underscore

	Homogeneous Tuples
	Declaring Homogeneous Tuples

	Tuple Indexing
	Formal Arguments of Tuple Type
	Formal Argument Declarations in a Tuple

	Sequences
	Sequence Literals
	Sequence Type Definitions
	Sequence Rank
	Sequence Assignment
	Iteration over Sequences
	Sequence Concatenation
	Sequence Indexing
	Sequence Indexing by Integers
	Sequence Indexing by Tuples

	Sequence Promotion of Scalar Functions
	Zipper Promotion
	Tensor Product Promotion

	Sequence Operators
	Sequences in Logical Contexts
	Sequences in Select Statements

	Filtering Predicates
	Methods and Functions on Sequences
	The length Method
	The reverse Method
	The spread Function
	The transpose Function
	The reshape Function

	Arithmetic Sequences
	Strided Arithmetic Sequences
	Querying the Bounds and Stride of an Arithmetic Sequence
	Indefinite Sequences

	Conversions Between Sequences and Tuples

	Domains and Arrays
	Domains
	Domain Types
	Index Types
	Domain Assignment
	Formal Arguments of Domain Type
	Iteration over Domains
	Domain Promotion of Scalar Functions

	Arrays
	Array Types
	Array Indexing
	Array Slicing
	Array Assignment
	Formal Arguments of Array Type
	Iteration over Arrays
	Array Promotion of Scalar Functions
	Array Initialization

	Arithmetic Domains and Arrays
	Arithmetic Domain Literals
	Arithmetic Domain Types
	Strided Arithmetic Domains
	Arithmetic Domain Indexing
	Arithmetic Array Indexing
	Arithmetic Array Slicing
	Formal Arguments of Arithmetic Array Type

	Sparse Domains and Arrays
	Changing the Indices in Sparse Domains

	Indefinite Domains and Arrays
	Changing the Indices in Indefinite Domains
	Testing Membership in Indefinite Domains

	Opaque Domains and Arrays
	Enumerated Domains and Arrays
	Association of Arrays to Domains
	Subdomains
	Predefined Functions and Methods on Domains
	Predefined Functions and Methods on Arrays

	Iterators
	Iterator Functions
	The Yield Statement
	Iterator Calls
	Iterators in For and Forall Loops
	Iterators as Sequences

	The Structural Iterator Interface

	Generics
	Generic Functions
	Formal Type Arguments
	Formal Parameter Arguments
	Formal Arguments without Types
	Formal Arguments with Queried Types
	Formal Arguments of Generic Type
	Formal Arguments of Generic Array Types

	Function Visibility in Generic Functions
	Generic Types
	Type Aliases in Generic Types
	Parameters in Generic Types
	Fields without Types
	Fields of Generic Types
	Generic Methods
	The elt_type Type

	Where Expressions
	Example: A Generic Stack

	Parallelism and Synchronization
	The Forall Loop
	Alternative Forall Loop Syntax
	The Ordered Forall Loop

	The Forall Expression
	The Cobegin Statement
	The Begin Statement
	The Ordered Expression
	The Serial Statement
	Synchronization Variables
	Single Variables
	Sync Variables
	Additional Synchronization Variable Functions
	Synchronization Variables of Record and Class Types

	Memory Consistency Model
	Atomic Statement

	Locality and Distribution
	Locales
	The Locale Type
	Predefined Locales Array
	Querying the Locale of a Variable

	Specifying Locales for Computation
	On
	On and Iterators

	Distributions
	Distributed Domains
	Distributed Arrays
	Undistributed Domains and Arrays

	Standard Distributions
	User-Defined Distributions

	Reductions and Scans
	Reduction Expressions
	Scan Expressions
	User-Defined Reductions and Scans

	Input and Output
	The file type
	Standard files stdout, stdin, and stderr
	The write, writeln, and read functions
	The write and writeln method on files
	The read method on files
	User-Defined read and write methods
	Default read and write methods

	Standard Modules
	BitOps
	Math
	Random
	Standard
	Time
	Types

