
June 27, 2024 / September 26, 2024
Chapel Team

Chapel 2.1 / 2.2 Release Notes:
Performance Status and Optimizations

Outline

• Activities Overview
• Scalability Since 1.32
• Regressions and Resolutions
• New Optimizations

Activities Overview

4

Overview of Activities for 2.1 and 2.2

Optimizations:
• Const domain localization
• Optimizing away array allocations for moves
• Array view elision
• Stencil distribution improvements

Nightly Testing:
• Added nightly perf testing for HPE Cray EX platform
• Added nightly co-locale perf testing
• Added public links to nightly Arkouda test results

– serial (Cray CS) and parallel (Cray XC)

Performance Regressions and Resolutions
• ISx HPE Cray EX hang introduced in 2.1; fixed in 2.2
• ra-rmo HPE Cray EX regression in 2.1; partial fix in 2.2
• ra-on HPE Cray EX regression in 2.1; to be fixed in 2.3

Other Activities:
• Scalability studies of core benchmarks on HPE Cray

EX (SS11), Apollo (IB), and CrayCS (Aries) platforms

Outreach:
• Blog posts on

– Navier-Stokes
– Billion row challenge

• Call for virtual pair-programming sessions w/ Python
Programmers who wish to improve speed/scalability

• Publications authored by Chapel users:
– Josh Milthorpe et al. “Performance Portability of the

Chapel Language on Heterogeneous Architectures"
Heterogeneity in Computing Workshop (HCW)

– Tiago Carneiro et al. “Investigating Portability in Chapel
for Tree-Based Optimizations on GPU-powered Clusters”
Europar 2024

Scalability Since 1.32

Background

• In 1.32 release notes we presented scalability results of “core” benchmarks in Chapl
• In our 1.33 and 2.0 release notes we did not present on the scalability of these benchmarks
• We want to ensure that since then our performance has been maintained or improved
• In these slides we show recent performance and compare it to our last reported historical performance (1.32)

• The systems we used to gather our data are:
• HPE Cray EX / SS11 hardware

– Dual-socket Milan (128 cores total)
– Single 200 Gbps NIC

• HPE Apollo / InfiniBand hardware
– Dual-socket Xeon 8360Y (72 cores total)
– Single 200 Gbps NIC

• In 1.32 release notes we also looked at historical Cray XC (Aries) hardware.
• Internally, we gathered Cray XC scalability results that showed maintaining performance
• We exclude those results from this deck since the hardware is older

6

Scalability Since 1.32

Background

• For comparison, we regathered 1.32 results because:
• We no longer have access to the InfiniBand-based machine we used for 1.32
• There have been various system software updates
• Many of the 1.32 release-note graphs were generated to study various configurations options

– which is tangential to the “have things regressed” comparison we’re aiming to answer with these slides

• Benchmarks we look at are:
• Stream: No communication aside from task startup/teardown, NUMA affinity sensitive
• ISx: Concurrent bulk communication over wide address range, NUMA affinity sensitive
• Bale Indexgather: Concurrent get-style communication

– for this benchmark we look at “fine grain” performance and performance when using Chapel aggregators
• RA: Concurrent random fine-grained updates over wide address range

– we have three different versions: get/put vs. active message vs. remote atomics
• Arkouda Argsort: aggregated movement of array indices in support of sorting

7

Scalability Since 1.32

Stream Performance

8

Scalability Since 1.32

• Linear scaling across nodes; similar scaling across Chapel versions

EX/SS11

Apollo/IB

1 locale-per-node 2 locales-per-node

ISx Performance

9

Scalability Since 1.32

• The benchmark uses weak scaling (so flat profile is desired); overall profile similar across releases

EX/SS11

Apollo/IB

1 locale-per-node 2 locales-per-node

Bale IndexGather – Fine-Grained Performance

10

Scalability Since 1.32

• Linear scaling across nodes; similar scaling across Chapel versions

EX/SS11

Apollo/IB

1 locale-per-node 2 locales-per-node

Bale IndexGather – Aggregated Performance

11

Scalability Since 1.32

• Similar scalability across versions

EX/SS11

Apollo/IB

1 locale-per-node 2 locales-per-node

RA Performance

12

Scalability Since 1.32

• We see performance regressions for this benchmark on HPE Cray EX/SS11 between 1.32 and 2.2
• (see the following section for details)

rmo on atomics

EX/SS11

Apollo/IB

Arkouda Argsort

• For Arkouda we only gathered results on the HPE Apollo / InfiniBand machine
• Performance has improved in 2.2 (0-13% higher GiB/s depending on node count)

13

Scalability Since 1.32

Performance Regressions and Resolutions

ra-rmo

Background:
• In Chapel 2.1, we incorrectly added a write-after-write

ordering requirement
– But compiler emits blocking PUTs
– Software cache uses non-blocking PUTs, but enforces

ordering to the same address

• Blocking PUTs were inadvertently non-blocking
– Could lead to hangs due to lack of progress
– Non-blocking PUTs implemented via blocking PUTs

This Effort:
• Removed write-after-write for 2.2

Next Steps:
• Improved non-blocking PUTs will be available in 2.3

15

Performance Regressions and Resolutions

ra-on

Background:
• After a blocking ‘on’, a flag is PUT to the sender

indicating that the ‘on’ is complete
• In Chapel 2.1, this PUT was inadvertently non-blocking

– Could lead to a hang

• Making it blocking reduced performance

Status:
• Resolution is a work-in-progress

Next Steps:
• AM handler must progress transmit endpoint
• Full-scale non-blocking PUT probably too complicated

and has too much overhead
• Should be fixed in Chapel 2.3

16

Performance Regressions and Resolutions

ISx

Background:
• In Chapel 2.1, ISx would hang at 64 nodes
• Caused by use of FI_DELIVERY_COMPLETE

– Required by libfabric to force visibility of previous PUTs

• ‘cxi’ provider (SS11) does not implement it

This Effort:
• Resolved hanging behavior in Chapel 2.2

– By removing use of FI_DELIVERY_COMPLETE

Next Steps:
• Need different mechanism to force visibility

– Probably cxi-specific
– Should be addressed in Chapel 2.3

17

Performance Regressions and Resolutions

New Optimizations

New Optimizations

• Domain Localization
• Optimizing Array Moves
• Array View Elision
• Optimizing Stencil Distributions

Domain Localization

Background

• Sometimes, it can be useful to make a local copy of a remote, single-locale array:
var A: [1..10] real = computeA();
on Locales[1] {
 const B = A;
 // compute with B here
}

• Intuitively, computations on ‘B’ should be completely local / free of communication
• However, in practice, computing with ‘B’ will communicate back to A’s locale to reference its domain

• This has been surprising and frustrating to end-users
• A common workaround is to also make a local copy of the domain (but this feels annoying):

var A: [1..10] real = computeA();
on Locales[1] {
 const D = A.domain,
 B: [D] A.eltType = A;
 // compute with B here
}

21

Domain Localization

Rationale for Status Quo

• Original example:
var A: [1..10] real = computeA();
on Locales[1] {
 const B = A;
 // compute with B here
}

• In general, this behavior is necessary in case the domain changes:
var D = {1..10, 1..10},
 A: [D] real = computeA();
on Locales[1] {
 var B = A; // B is also declared over ‘D’

 D = {1..20, 1..20}; // both ‘A’ and ‘B’ need to be re-allocated
 // computing with B requires knowing D’s bounds
}

• However, when the domain doesn’t change, communicating to read it for each op shouldn’t be necessary

22

Domain Localization

This Effort and Status

This Effort:
• When an array’s domain is sufficiently ‘const’, the compiler now localizes it along with the array:

– When the domain is anonymous or declared ‘const’, we know it cannot change
– When the array copy is ‘const’, we know the domain can’t change during the copy’s lifetime

– Note: our motivating example meets both conditions since A’s domain is anonymous and ‘B’ is declared ‘const’ (but either is sufficient)

 var A: [1..10] real = computeA();
 on Locales[1] {
 const B = A;

 // compute with B here
 }

Status:
• Optimization was available in Chapel 2.1, but off by default (enabled by compiling with ‘-slocalizeConstDomains’)
• Optimization was enabled by default in Chapel 2.2

23

Domain Localization

var A: [1..10] real = computeA();
 on Locales[1] {
 const D = A.domain,
 B: [D] A.eltType = A;
 // compute with B here
 }

optimized similarly to
the user-level rewrite

Impact

• Computation on localized arrays now incurs no array-driven communication, enabling ‘local’ block usage
• Degree of impact can be arbitrarily large depending on the number of ops performed on the array

var A: [1..n, 1..n] real;
on Locales[1] {
 const B = A;
 for i in 1..iters do
 B += 1.0;
}

• For the main kernel in a user-motivated primes sieve computation (problem size 50,000,000,000):
 unoptimized: optimized:

24

Domain Localization

unoptimized optimized

0 iters 100 iters 10,000 iters any # of iters

gets 25 1125 110,025 15

active messages 1 1 1 0

Next Steps

Next Steps:
• Look into reducing the amount of communication used to localize domains, to ensure it’s minimal

– Particularly for sparse domains which currently require O(nnz) remote gets to localize, but should be O(1)

• Consider array implementations that need fewer references to their domains
– e.g., for dense, rectangular cases, consider storing the bounds directly in the array’s descriptor?

• Explore opportunities to strengthen the optimization:
– Add compiler analysis to cover more cases where a domain is sufficiently invariant? (e.g., def-use analysis)
– When multiple arrays sharing a domain are localized, investigate sharing the localized domain as well?
 const D = {1..10};
 var A, B, C: [D] real;
 on Locales[1] {
 var X = A, // today, this will create a copy of ‘D’ per array, but one copy would suffice for X, Y, and Z
 Y = B,
 Z = C;
 }

25

Domain Localization

Optimizing Array Moves

Background

• Array types in Chapel include the domain as a runtime component to represent the array shape
var A: [1..n] int; // ‘[1..n] int’ is a type, even though ‘n’ can vary at runtime

// the above is shorthand for the following:
const MyDomain = {1..n};
var B: [MyDomain] int; // ‘[MyDomain] int’ is a type

• In this context, the specific domain variable is important, not just the index set
• Why? Because assigning to a domain can resize the arrays declared over it

• As a result, returning an array can result in an implicit conversion, to match a declared return type
config const n = 1_000_000;
var D = {1..n};
proc createArray(): [D] real {
 var MyArray: [1..n] real = ...;
 return MyArray; // here, compiler must convert from the type ‘[1..n] real’ to the type ‘[D] real’
}

• Historically, this pattern has led to allocating a new array to implement the implicit conversion
• Could even lead to out-of-memory errors when the arrays are sufficiently large

27

Optimizing Array Moves

This Effort

• Optimized the implementation of such array moves with equivalent but different domains
• For this initial effort, limited the optimization to a common case:

• Default rectangular arrays that aren’t arrays of arrays

• Avoids two array allocations in the below code:
proc createArray(): [D] real {
 var MyArray: [1..n] real = …; // note the difference from the declared return type

 return MyArray; // Array allocation for moving ‘[1..n] real’ to ‘[D] real’ is avoided
}

var OtherArray: [1..n] real = createArray(); // Array allocation for moving ‘[D] real’ to ‘[1..n] real’ is avoided

28

Optimizing Array Moves

Impact and Next Steps

Impact: Improved performance and reduced one source of out-of-memory errors

Next Steps:
• Implement the optimization for other array types, especially the distributed arrays Block, Cyclic, and Stencil
• Get the optimization working for arrays of arrays

29

Optimizing Array Moves

Array View Elision

Background

• Array views are a kind of array that refers to another array
• A common example is an array slice:

 var A: [1..10] int;
 ref ACenter = A[3..8];

• All arrays, including array views, have a consistent interface:

 writeln(ACenter.size); // prints "6"

 writeln(ACenter.domain); // prints "{3..8}"

 ACenter = 1; // sets all elements at the "center" of A to 1

• A common pattern in Chapel is to copy between chunks of two arrays
• This is implemented with array views:

 var A, B: [1..10] int;
 A[3..8] = B[3..8];

31

Array View Elision

Background

• The common pattern of copying between two slices had a lot of overhead

32

Array View Elision

var A, B: [1..10] int;

A[3..8] = B[3..8];

array record

array-view
class

=

The following are created for each slice:
• a record instance for the array interface
• a class instance for the array view
• a domain for the slicing expression

This results in:
• 4 dynamic allocations
• 4 domain/array initializations

Bulk data movement machinery

{3..8}

A B

A

array record

array-view
class

{3..8}

These costs can impact performance
with small transfers

Result:

This Effort

• With Chapel 2.2, the compiler detects this common pattern and optimizes it:

33

Array View Elision

var A, B: [1..10] int;

A[3..8] = B[3..8];

proto-slice
record

=

A “proto-slice” record stores:
• the original array's address
• a (tuple of) range(s)

This results in:
• no dynamic allocations
• much faster initialization

Bulk data movement machinery
(now capable of handling proto-slices)

&A // addr of A
3..8 // range(s)

A B

A

proto-slice
record

Significantly reduced overhead
for a common operation

Result:

&B // addr of B
3..8 // range(s)

0

1

2

3

10 100 1000 10000 10M

Re
la

ti
ve

 T
hr

ou
gh

pu
t

Number of 64-bit integers transferred

Throughput (Relative to 'for' loop)

Impact

34

Array View Elision

2.1: Slices are 30x slower than loop
w/ small data

2.1: Slices outperform loop
w/ large data

...

be
tt

er

‘for’ loop

Slices w/ 2.1
for i in 3..8 do A[i] = B[i];

A[3..8] = B[3..8];

Impact

35

Array View Elision

0

1

2

3

10 100 1000 10000 10M

Re
la

ti
ve

 T
hr

ou
gh

pu
t

Number of 64-bit integers transferred

Throughput (Relative to ‘for’ loop)

2.2: Slices are 30x faster than 2.1
w/ small data

2.2: Slice performance unchanged
w/ large data

2.2: Slices are 2.5x faster than 2.1
w/ medium data

...

‘for’ loop

Slices w/ 2.1
Slices w/ 2.2

for i in 3..8 do A[i] = B[i];

A[3..8] = B[3..8];

A[3..8] = B[3..8];

be
tt

er

Status and Next Steps

Status: Assignments between same types of views are supported. e.g.:

A[3..8] = B[3..8]; // 1D slice to slice

A[3..8, 3..8] = B[3..8, 3..8]; // Multi-dimensional slice to slice

A[1, ..] = B[3, ..]; // 1D rank-change to rank-change

A[..,4,..] = B[..,2,..]; // Multi-dimensional rank-change to rank-change

Next Steps: Array view elision can be expanded to cross-type assignments. e.g.:

A[3..8] = C; // array to slice

D = B[3, ..]; // rank-change to array

A[3..8] = E[4, 3..8]; // rank-change to slice

36

Array View Elision

Optimizing Stencil Distributions

Background: stencilDist’s performance has been worse than blockDist for some small stencil codes
This Effort:

• Minimized communication overhead in stencilDist's ‘updateFluff’ method
• Expanded auto-local-access optimization to optimize array accesses within stencilDist’s fluff region

forall i in Arr.domain.expand(-1) { // iterate over the inner portion of the array's domain

 Arr[i] = (Arr[i-1] + Arr[i] + Arr[i+1])/3;

38

Stencil Distribution Performance Improvements

Impact:
• Explicit ‘localAccess’ unneeded in most stencil codes
• Overall performance of fluff updates is improved
• See 2.2 release announcement for more details

Optimized since
Chapel 1.23

New optimization in
Chapel 2.2

https://chapel-lang.org/blog/posts/announcing-chapel-2.2/

Other Performance Improvements

For a more complete list of performance changes and improvements in the 2.1 and 2.2 releases,
refer to the following section in the CHANGES.md file:

• Performance Optimizations / Improvements

40

Other Performance Improvements

https://github.com/chapel-lang/chapel/blob/release/2.2/CHANGES.md

Thank you
https://chapel-lang.org
@ChapelLanguage

