
June 27, 2024 / September 26, 2024
Chapel Team

Chapel 2.1 / 2.2 Release Notes:
Implementation, Tools, and Portability

Outline

• New Incremental Resolver
• Language Tooling
• GPU-Based Reductions
• GPU Eligibility Attributes
• GPU Attributes on Variables
• Other GPU Updates
• AWS Portability Improvements
• Other Tools and Implementation

Improvements

New Incremental Resolver

Background and This Effort

Background:
• Dyno is an ongoing effort to address problems with the Chapel compiler
• Focused on improving:

– Speed
– Error Messages
– Compiler architecture and program representation
– Compiler development

• This effort led to the development of the compiler frontend library
• A recent focus is creating a new incremental type and call resolver for the compiler frontend library
• This new resolver can be used from Visual Studio Code as an experimental feature

This Effort:
• Significantly improved the incremental resolver
• Improved the stability of using resolver-based features in Visual Studio Code

4

Incremental Resolver

Status and Next Steps

Status:
• Can now resolve “Hello World”

– Not as trivial as it sounds due to the amount of internal and standard module code involved

• Can now resolve about 65% of the examples from the language specification

Next Steps:
• Complete the new incremental resolver
• Use the incremental resolver in the production compiler
• Continue working towards separate and incremental compilation

5

New Incremental Resolver

Language Tooling

Background and This Effort

Background:
• Several editor support tools have been available to developers since 2.0:

– The Chapel Language Server (CLS) provides go-to-definition, hover information, and much more
– The ‘chplcheck’ linter detects common stylistic problems in user code
– A Chapel extension integrates these language tools with Visual Studio Code
– The tools are powered by the Dyno compiler frontend library and ‘chapel-py’, a Python interface to it

This Effort:
• Extended CLS with additional functionality, including autocompletion
• Improved the ergonomics of ‘chplcheck’, including optionally bundling it with CLS
• Added additional rules for ‘chplcheck’
• Made it easier to build and install Python-based tools

7

Language Tooling

This Effort: CLS Improvements

• Added support for autocompletion from globally visible scopes
• Includes ‘use’d modules and keeps track of renaming and transitive uses
• Skips explicitly undocumented symbols and built-in functions unless in internal module code

• Started displaying extended error messages as part of editor errors
• The detailed error messages can provide additional locations and suggestions

• Added more inlay types
• End markers for ‘select’ and ‘when’
• Function argument name for complex literals

8

Language Tooling

This Effort: ‘chplcheck’ linter

Ergonomics:
• ‘chplcheck’ can now be optionally executed as part of CLS

– Improves support on systems where only one language server can run at a time

• Various Python API improvements to make it easier to write custom rules that can be auto-fixed
– Built-in rules benefit from this, getting auto-fixes

New Linter Rules:
• Unneeded pattern matching in declarations (‘(_, _)’ should be ‘_’ since both components are ignored)
• Unnecessary control flow parentheses (‘if (expr)’ should be ‘if expr’)
• Complex literal ordering (‘2i + 1’ should be ‘1 + 2i’)
• Incorrect indentation (pictured)

9

Language Tooling

This Effort: Building and Packaging Tooling

Packaging:
• ‘chpl-language-server’ and ‘chplcheck’ are now bundled in Homebrew installations

Build Improvements:
• Recently, ‘chapel-py’ was also used as part of Arkouda’s message registration revamp

– This required building it on more systems and in more situations

• ‘chapel-py’ can now be built without ‘CHPL_HOME’ set
• Python-based tools issue better errors for version mismatches between ‘chapel-py’ and system Python

– ‘chapel-py’ uses the CPython API and must be rebuilt against updated Python interpreters
– Previously, errors caused by not rebuilding were very difficult to interpret

• Python bindings now use the same C/C++ compiler as Chapel to build, avoiding portability issues

10

Language Tooling

Next Steps

• Continue to expand CLS and ‘chplcheck’ rules and functionality
• For ‘chplcheck’, a good approach seems to be implementing rules based on user experiences
• For CLS, most additional functionality will come with the Dyno resolver coming online
• Improving the location information captured by the parser can greatly help with auto-fixes and error messages

• Bring editor integration to more users
• Publishing VSCode extension to OpenVSX can make it usable in other derived editors like VSCodium

• Improve graphical execution and debugging in VSCode extension

11

Language Tooling

GPU-Based Reductions

Background

• The GPU module provided preliminary support for GPU-based reductions using subroutines, e.g.:
proc gpuSumReduce(arr: []);

• This approach helped us address user requests quickly, however:
• Chapel supports reductions at the language-level with 'reduce' expressions and 'reduce' intents
• Standalone functions are significantly more limited in capability:

– Arbitrary expressions like A+B cannot be reduced with gpuSumReduce , which only supports single arrays
– TeaLeaf could be implemented more efficiently with 'reduce' intents

13

GPU-Based Reductions

This Effort

• Introduced GPU support for most common 'reduce' operations

• The compiler and the runtime use CUB (NVIDIA) and hipCUB (AMD) to implement a 2-level reduction
• Level 1: among threads within block; this happens inside the compiler-generated kernel
• Level 2: among blocks across grid; this happens right after the kernel finishes executing

14

GPU-Based Reductions

Status and Next Steps

Status: '+', 'min' and 'max' reduce expressions and intents are now supported on GPU:

on here.gpus[0] {
 var Arr: [1..n] real = 1; // create an array of 'n' reals, and set elements to 1 on GPU
 writeln(+ reduce Arr); // compute the sum of the elements on GPU (this will launch a kernel)

 var sum: real;
 forall elem in Arr with (+ reduce sum) { // this will launch a GPU kernel
 elem = sin(elem); // compute each element of the array
 sum += elem; // also, sum their values within the same kernel
 }
 writeln(sum);
}

Next steps: Support user-defined reductions to cover other reduction kinds

15

GPU-Based Reductions

GPU Eligibility Attributes

Background

• Chapel’s GPU support makes use of attributes applied to loops to control their execution
• The ‘@assertOnGpu’ attribute is used to ensure code executes as a GPU kernel

@assertOnGpu
foreach i in 1..128 do ineligibleFunction(); // compilation error: call makes loop unable to run on GPU

• At compile-time, this attribute can report why code is not GPU-eligible
• At execution-time, the attribute halts if the code isn’t executing on the GPU despite its eligibility

• No way to assert that code is eligible for the GPU without requiring it to run there
• Causes problems for code intended to run on both GPU and CPU

17

GPU Attribute Improvements

This Effort, Impact, and Next Steps

This Effort:
• Added a new ‘@gpu.assertEligible’ attribute which is like ‘@assertOnGpu’, but without a runtime check
• Ensured GPU attributes do not cause errors when not using the GPU locale model

Impact:
• Patterns of writing GPU-and-CPU code can be greatly simplified
• The same code can be used for both CPU and GPU, while still ensuring it remains GPU-eligible

// Before
if onGpu then
 @assertOnGpu foreach i in 1..128 { … }
else
 foreach i in 1..128 { … }

Next Steps:
• Consider deprecating ‘@assertOnGpu’ in favor of ‘@gpu.assertEligible’

18

GPU Attribute Improvements

// After
@gpu.assertEligible foreach i in 1..128 { … }

GPU Attributes on Variables

Background

• To apply GPU attributes to other GPU-eligible constructs, attributes can be attached to variables
• For example, the attribute below applies to the loop expression:

@assertOnGpu
var A = foreach i in 1..128 do i;

• This worked for explicit loop expressions but not for promoted expressions
• The implementation had some difficulty with multiple loop expressions in a single variable

20

GPU Attributes on Variables

This Effort

• Allowed applying GPU attributes to promoted expressions in variable declarations
• Allowed multiple expression-level GPU loops in a single variable declaration
• Everything in the variable declaration is checked for GPU-eligibility

• The following program now works as expected:

@assertOnGpu
@gpu.blockSize(128)
var B = (foreach i in 1..256 do i*i) + // the foreach loop expression is checked for eligibility
 (2 * A + 10); // these promoted function calls are also checked

21

GPU Attributes on Variables

Other GPU Updates

• Added support for ROCm 6
• Requires using the bundled LLVM to work around upstream LLVM issues

• Added GPU support to co-locales
• GPUs are partitioned evenly among co-locales
• Each co-locale uses the GPU(s) closest to it
 > ./hello -nl 1x4 # on an 8-GPU node, assigns 2 GPUs to each co-locale

• Fixed behavior for ‘ref’ intent when a scalar is modified in a loop when it is executed as a kernel, e.g.:
 var x = 1;
 on here.gpus[0] do
 foreach i in 0..0 with (ref x) do x = 100;
 writeln(x); // Now prints 100; in 2.1 printed 1

23

Other GPU Updates

AWS Portability Improvements

Background

• Running on AWS (Amazon Web Services) with EFA (Elastic Fabric Adapter) had some limitations:
• Limited to 96 GB of memory on each node
• Programs using non-blocking operations could occasionally hang
• Required building Chapel from source

• The 96 GB memory limit comes from a fundamental hardware limitation of EFA:
• The number of memory pages that can registered per process is limited
• However, more than 96 GB can be allocated using Transparent Hugepages (THP)

25

AWS Portability Improvements

This Effort and Impact

This Effort:
• Added Transparent Hugepages (THP) support to register more memory

– The Chapel runtime provides an explicit hint to the OS to use hugepages
– THP support can be used with other networks that use libfabric

• Fixed hangs with non-blocking operations
– Caused by incorrect injection logic for EFA
– Impacted the scale at which larger applications could run, especially with atomics

• Expanded package support for AWS
– Getting Chapel installed on a cloud cluster only takes 2 commands

Impact:
• More than 96GB can now be registered
• Using Chapel at scale on AWS is easier to do and more robust
• Large, memory intensive applications can be used more freely with EFA

26

AWS Portability Improvements

Other Tools and Implementation
Improvements

For a more complete list of tool and implementation changes and improvements in the 2.1 and 2.2
releases, refer to the following sections in the CHANGES.md file:

• GPU Computing

• Tool Improvements
• Documentation Improvements for Tools
• Configuration / Build Changes

• Portability / Platform-specific Improvements
• Compiler Improvements

• Compiler Flags
• Bug Fixes for GPU Computing
• Bug Fixes for Tools

• Bug Fixes for Build Issues
• Bug Fixes for the Runtime

28

Other Tools and Implementation Improvements

https://github.com/chapel-lang/chapel/blob/release/2.2/CHANGES.md

Thank you
https://chapel-lang.org
@ChapelLanguage

