
June 27, 2024 / September 26, 2024
Chapel Team

Chapel 2.1 / 2.2 Release Notes:
Language / Library Improvements

Outline

• Remote Variable Declarations
• Sort Module Stabilization
• Random Module

Improvements
• Sparse Improvements
• Custom Allocators
• I/O Improvements
• Image Module
• Other Language/Library

Improvements

Remote Variable Declarations

Background

• Variables are stored on the locale where their declaration executes
• ‘on’ statements are used to transfer task execution to a different locale
• A common pattern is to allocate an array on one locale, but continue execution on another locale

• Historically, this has required two nested ‘on’ statements, since each block creates a new scope

writeln("on initial locale");
on here.gpus[0] {
 var GpuA = foreach i in 1..128 do i*i;
 on Locales[0] {
 var CpuB = GpuA;
 writeln("copied array back onto CPU, its value is ", CpuB);
 }
}

• Specification describes “remote variable declarations”, which do not introduce new scopes like ‘on’ does
on here.gpus[0] var GpuA = foreach i in 1..128 do i*i;

• Yet these had never been implemented

4

Remote Variable Declarations

This Effort

In Chapel 2.1:
• Added support for remote declarations of single variables
• Only when the initialization expression was a loop or promoted expression, was it executed on the target locale
• The type/initialization were restricted to be of a matching type

writeln("on initial locale");
on here.gpus[0] var GpuA = foreach i in 1..128 do i*i;
var CpuB = GpuA;
writeln("copied array back onto CPU, its value is ", CpuB);

In Chapel 2.2:
• Ensured that initialization expressions are always executed on the target locale
• Added support for multi-declarations and type coercions

on Locales.last var A: [1..10] int = 2,
 B = foreach i in 1..10 do i*i;

5

Remote Variable Declarations

Status and Next Steps

Status:
• Remote variables are operational
• They are currently marked as unstable
• Some minor performance and semantic issues remain

– Remotely allocating classes causes two allocations (one for remote variable storage), but could use only one
– Multi-variable remote declarations invoke a remote task for each variable
– Remote variables are not supported as fields of records or classes

Next Steps:
• Stabilize remote variables
• Resolve the semantic issues listed above

– Multi-variable declarations are of particular interest to allocate efficiently, avoiding remote execution overhead

6

Remote Variable Declarations

‘Sort’ Module Stabilization

Background and This Effort

Background:
• ‘Sort’ module was one of the higher priority unstable modules

– Sorting is taught in basic programming courses
– Generally useful for a wide variety of applications

This Effort:
• Reviewed and stabilized most of the documented interface

– Deprecated ‘reverseComparator’ and ‘defaultComparator’ module-scoped variables
– Cleaned up the argument lists for ‘sort()’, ‘isSorted()’ and ‘iter sorted()’
– Replaced ‘list.sort()’ with ‘sort(x: list)’, for consistency
– Removed many undocumented submodules

8

‘Sort’ Module Stabilization

This Effort (New Features)

• Defined ‘keyComparator’/‘keyPartComparator’/‘relativeComparator’ interfaces for defining comparators
record myComparator: keyComparator {
 proc key(x) do return x.fieldA;
}

var arr: [0..9] myType = …;
sort(arr, new myComparator());

• Enabled support for stable-value sorting via ‘sort(…, stable=true)’

• Added support for sorting with a region argument
var arr = [-2, 6, 11, 1, 5, -5, 8, 7];
sort(arr, new DefaultComparator(), 2..7); // arr = [-2, 6, -5, 1, 5, 7, 8, 11]

9

‘Sort’ Module Stabilization

record myType {
 var fieldA: int;
 …
}

Impact and Next Steps

Impact:
• Most of ‘Sort’ module interface is now stable!

– Users don’t need to worry about ‘isSorted()’, ‘sorted()’ or most versions of ‘sort()’ changing underneath them
– ‘sort()’ with a region argument, the new interfaces, & the names for ‘DefaultComparator’/’ReverseComparator’ are unstable

• Users now have clearer blueprint for writing their own comparators
• ‘use Sort’ adds less clutter to the user’s namespace due to undocumented Sort submodules
• Sorting is more unified across types

Next Steps:
• Rename ‘DefaultComparator’ and ‘ReverseComparator’ types

– To match Standard Module Style Guide for records
– Wasn’t possible earlier due to module-scoped instances using the intended name

• Enable ‘sort()’ on distributed arrays

10

‘Sort’ Module Stabilization

‘Random’ Module Improvements

This Effort:
• implemented weighted random sampling

 writeln(sample([1, 2, 3], n=10, weights=[0.1, 0.1, 0.8], withReplacement=true));
 // prints: 3 1 3 3 1 3 3 2 3 3

• added multi-dimensional support to several procedures
– ‘shuffle()’, ‘permute()’, ‘choose()’, ‘sample()’

 const x = reshape([1, 2, 3, 4, 5, 6], {1..2, 1..3});
 writeln(permute(x));
 // prints: 3 6 4
 2 1 5

Impact:
• new features were useful for aligning Arkouda's random module with NumPy

12

‘Random’ Module Improvements

Sparse Improvements

Background: Local Domains

• CSR/CSC are common 2D sparse matrix representations, supported by Chapel’s ‘LayoutCS’ module
const D = {1..n, 1..n},
 SD: sparse subdomain(D) dmapped new dmap(new CS(compressRows=true)) = …;

14

Sparse Improvements

. X

. X

. . X X . X . .
X X
X . . . X . . .
. X . .
. X . .
. . . X

1

n=8

SD: 1 n=8

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

1

n=8

D: 1 n=8

1 2 3 6 8 10 11 12 13

2 8 3 4 6 1 2 1 5 6 6 4

row starts:

col indices:

row indices:
col indices:

1..8
1..8

D:

SD:

Background: Distributed Domains

• CSR/CSC can also be combined with Block-distributed sparse arrays to specify a per-locale sparse layout
const D = {1..n, 1..n},
 BD = D dmapped new blockDist(D, sparseLayoutType=CS(compressRows=true)),
 SBD: sparse subdomain(BD) = …;

15

Sparse Improvements

. X

. X

. . X X . X . .
X X
X . . . X . . .
. X . .
. X . .
. . . X

1

n=8

SBD: 1 n=8

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X

1

n=8

BD: 1 n=8

1 2 2 4 6

2 3 4 1 2

row starts:

col indices:

rows:
cols:

1..4
1..4

BD:

SBD:

rows:
cols:

1..4
5..8

rows:
cols:

5..8
5..8

rows:
cols:

5..8
1..4

1 1 2 3 3

8 6

1 2 2 2 3

1 4

row starts:

col indices:

1 2 3 4 4

5 6 6

More Background and This Effort

Background:
• Chapel’s sparse features are unstable and in need of improvement

– For example, the declarations shown previously should be simplified to improve readability / comprehension
– In other cases, capabilities are missing, preventing the expression of important patterns

This Effort:
• Implemented some of these missing capabilities:

– Methods for traversing CSR/CSC arrays
– Procedures for getting or setting a locale’s sub-domain/sub-array of a block-distributed sparse domain/array
– Support for querying a sparse array’s target locales
– Support for copying between sparse arrays

16

Sparse Improvements

This Effort: Iteration Improvements

• Added ‘.rows()’/‘.cols()’ queries to get the dense rows/columns of a CSR/CSC domain or array
• These are essentially 2D-specific sugar for ‘.dim(0)’/‘.dim(1)’

• Added serial iterators to yield the indices and values of a CSR/CSC array in a given row/col
for (col, val) in MySpsArr.colsAndVals(row) do … // yields column indices and values for CSR arrays
for (row, val) in MySpsArr.rowsAndVals(col) do … // yields row indices and values for CSC arrays

• This example uses both methods to traverse a CSR array in parallel:
const D = {1..n, 1..n},
 SD: sparse subdomain(D) dmapped new dmap(new CS(compressRows=true)) = …;

var A: [SD] real = …;

forall r in A.rows() do
 for (c, a) in A.colsAndVals(r) do
 writeln("A[", (r,c), "] = ", a);

17

Sparse Improvements

This Effort: Local Block-Sparse Setters/Getters

• Added the ability to query and set the local indices/elements of a sparse, block-distributed domain/array
• Permits an algorithm to query and/or replace a locale’s local block of sparse indices / elements

var localSparseDomain = …
 localSparseArray: [localSparseDomain] real;

MyBlockSparseDomain.setLocalSubdomain(localSparseDomain);
MyBlockSparseArray.setLocalSubarray(localSparseArray);

…

const localInds = MyBlockSparseDomainOrArray.localSubdomain(), // pre-existing query
 localData = MyBlockSparseDomain.getLocalSubarray(targetLocRow, targetLocCol);

18

Sparse Improvements

This Effort: Orthogonality Improvements

• Added features which are already standard for dense domains / arrays:
• The ability to copy between sparse arrays with distinct-but-equivalent domains:

const D = MySpsArr.domain,
 A: [D] MySpsArr.eltType = MySpsArr; // was: an error about being unable to zip arbitrary sparse arrays
 // now: works

• The ability to query the target locales over which a block-sparse array is distributed:

coforall loc in MyBlockSparseArray.targetLocales() do
 on loc do
 writeln("locale ", loc, " owns: ", MyBlockSparseArray.localSubdomain());

19

Sparse Improvements

Impact and Status

Impact:
• With current features, a CSC x CSR matrix-matrix multiplication algorithm can now be written cleanly

– Local or block-distributed versions

Status:
• Sparse domains and arrays are much improved as of Chapel 2.1

20

Sparse Improvements

Next Steps

• Update implementation and naming of CSR/CSC layouts:
• Convert ‘CS’ from a class to a record, as standard distributions were in Chapel 1.32
• Split into two layout types for clarity: ‘csrLayout’/‘cscLayout’
• Rename module for clarity and consistency with distributions

• Continue improving sparse iterators
• Parallelize row/col + val iterators
• Extend CSR/CSC row-/col-specific iterators to domains
• Support whole-domain / array parallel iterators
• Consider supporting ‘sparseRows()’/‘sparseCols()’ iterators that only yield non-empty row/column indices

• Improve naming and symmetry in block-sparse per-locale set/get procedures
• Continue to improve sparse features

• Study and tune performance
• Continue to identify other missing methods and features
• Work toward stabilizing sparse domains and arrays

21

Sparse Improvements

Custom Allocators

Background

• Heap objects are allocated semi-transparently in Chapel
• Explicit allocation occurs with ‘new’ on classes
• A user may be unaware that heap allocation occurs with some types (e.g. arrays, domains, strings, etc.)

• Users have some control over where in the program these allocations occur

23

Custom Allocators

class MyClass { var field: int; }
var x = new unmanaged MyClass(1); // x is a pointer to the heap

var arr = [1, 2, 3, 4, 5]; // arr is on the heap

...

delete x; // x is unmanaged and must be deleted to free the memory

 // arr’s memory is managed automatically

This Effort

• Added support for defining custom allocators

• Users can use custom memory allocators to create classes

24

Custom Allocators

var pool = new myPool();

class MyClass { var field: int; }
var x = newWithAllocator(pool, unmanaged MyClass, 1); // allocate memory for x using ‘pool.allocate()’
...
deleteWithAllocator(x); // deallocate x’s memory using ‘pool.deallocate()’

use Allocators, CTypes;
record myPool: allocator { // ‘allocator’ is an interface
 var memoryChunk: c_ptr(void);
 proc ref allocate(n: int): c_ptr(void) { … }
 proc ref deallocate(p: c_ptr(void)) { … }
}

Impact and Next Steps

Impact:
• Gives users finer control over memory allocations for performance-critical situations
• 2x–4x improvement on binary-trees benchmark (system-dependent)

– The benchmark allocates and deallocates large binary trees
– Performance gained by using a bump allocator to perform bulk memory operations

Next Steps:
• Expand support for allocators to include other heap objects (e.g., arrays)
• Add first-class language support for using allocators

25

Custom Allocators

binary-trees version Time (s) Speedup (Cumulative)

Previous fastest June 2024 3.65 N/A

Inner loop parallel 1.88 1.94x

Inner loop parallel with bump allocator 0.85 4.29x

I/O Improvements

This Effort:
• Added parallel & distributed versions of the 'fileReader.lines()' iterator

forall line in openReader("data.txt").lines(targetLocales=Locales)
 do write("on locale ", here.id, " read: ", line);

– Also added multi-locale support to iterators in 'ParallelIO' module

• Added a default value of ‘false’ to the 'locking' argument in 'openReader()' and 'openWriter()'
– Makes the common, higher-performance mode the default
– 'stdin', 'stdout' and 'stderr' still lock to facilitate safe accesses from multiple threads

• Added 'toJson()' and 'fromJson()' helpers for (de)serializing 'string' values in JSON format
use JSON, List;
record R { var x: real; var y: list(int); }

const myR = fromJson('{"x": 3.14, "y": [1, 2, 3]}', R);
writeln(toJson(myR)); // prints: {"x":3.140000e+00, "y":[1, 2, 3]}

27

I/O Improvements

This Effort:
• Added new ‘precisionSerializer’ for specifying padding and precision of all numerical values

use PrecisionSerializer;
const arr = [1.123456789, 2.123456789, 3.123456789, 4.123456789],
 fourPaddedDigits = new precisionSerializer(precision=3, padding=9);

stdout.withSerializer(fourPaddedDigits).writeln(arr);

// prints: " 1.123 2.123 3.123 4.123"

• Significantly improved the performance of procedures that read data into ‘string’ or ‘bytes’:
• ‘readAll()’, ‘readString()’, ‘readBytes()’, ‘readBinary()’

• Optimized away string copies in the ‘regex.replace()’ method
• Observed a 20%–25% performance improvement for the ‘regex-redux’ benchmarks

28

I/O Improvements

‘Image’ Module

• Added an unstable ‘Image’ module

• Supports reading and writing PNG, JPEG, and BMP images
• Some support for creating MP4 videos

• The ‘mediaPipe’ type provides a nice wrapper around ‘ffmpeg’

• Provides some utilities for converting data into concrete pixel values

This Effort

30

‘Image’ Module

// enable unqualified access to the constants in enum ‘imageType’
use imageType;
// read image as a 2D Chapel array
var img = readImage(myImageFile, jpg);
// process the image
// ...
// write a scaled-up version out to a file
writeImage("outImage.png", png, scale(img, 2));

Impact and Next Steps

Impact: Able to create basic visualizations in native Chapel

Next Steps:
• Provide higher-level abstractions for image manipulation

– Drawing shapes on a ‘canvas’
– Plotting data

31

‘Image’ Module

Conway’s Game of Life 2D Discrete Heat Diffusion

Other Language/Library
Improvements

For a more complete list of language and library changes and improvements in the 2.1 and 2.2
releases, refer to the following sections in the CHANGES.md file:

33

Other Language/Library Improvements

• New Language Features

• Language Feature Improvements

• Semantic Changes / Changes to the Language Definition

• Syntactic / Naming Changes

• Deprecated / Unstable / Removed Language Features

• New Standard Library Features

• New Package Module Features

• Changes / Feature Improvements in Standard Libraries

• Changes / Feature Improvements in Package Modules

• Standard Layouts and Distributions

• Name Changes in Libraries

• Deprecated / Unstable / Removed Library Features

• Documentation Improvements

• Language Specification Improvements

• Technical Note Improvements

• Documentation Improvements for Libraries

• Error Messages / Semantic Checks

• Bug Fixes

• Bug Fixes for Libraries

• Developer-oriented changes: Documentation

• Developer-oriented changes: Module changes

https://github.com/chapel-lang/chapel/blob/release/2.2/CHANGES.md

Thank you
https://chapel-lang.org
@ChapelLanguage

