- Rt

Hewlett Packard
—_Enterprise

77—\~ p

Chapel 2.1 /2,2 ﬁelease Notes: [
Language / Library Improvements

e

June 27,2024 / Sepremberzb 2024

-

Outline

Remote Variable Declarations
Background

e Variables are stored on the locale where their declaration executes

e ‘on’ statements are used to fransfer task execution to a different locale
e A common pattern is to allocate an array on one locale, but continue execution on another locale
 Historically, this has required two nested ‘on’ statements, since each block creates a new scope

writeln("on initial locale");
on here.gpus[0] {
var GpuA = foreach 1 in 1..128 do i*i;
on Locales[0] {
var CpuB = GpuA;
writeln ("copied array back onto CPU, its wvalue 1is ", CpuB);

}
}

» Specification describes “remote variable declarations”, which do not introduce new scopes like ‘on’ does
on here.gpus[0] war GpuA = foreach 1 in 1..128 do i*i;

e Yet these had never been implemented

— |

Remote Variable Declarations
This Effort

In Chapel 2.1:
« Added support for remote declarations of single variables
e Only when the initialization expression was a loop or promoted expression, was it executed on the target locale
« The type/initialization were restricted to be of a matching type

writeln("on initial locale");
on here.gpus[0] war GpuA = foreach 1 in 1..128 do i*i;

var CpuB = GpuA;
writeln ("copied array back onto CPU, its wvalue is ", CpuB);

In Chapel 2.2;

e Ensured that initialization expressions are always executed on the target locale
o Added support for multi-declarations and type coercions

on Locales.last var A: [1..10] int = 2,
B = foreach i in 1..10 do i*1i;

— |

Remote Variable Declarations
Status and Next Steps

Status:
« Remote variables are operational
e They are currently marked as unstable
o Some minor performance and semantic issues remain
- Remotely allocating classes causes two allocations (one for remote variable storage), but could use only one
— Multi-variable remote declarations invoke a remote task for each variable
—Remote variables are not supported as fields of records or classes

Next Steps:
o Stabilize remote variables

« Resolve the semantic issues listed above
— Multi-variable declarations are of particular interest to allocate efficiently, avoiding remote execution overhead

—

‘Sort’ Module Stabilization
Background and This Effort

Background:

« ‘Sort’ module was one of the higher priority unstable modules
- Sorting is faught in basic programming courses
— Generally useful for a wide variety of applications

This Effort:

» Reviewed and stabilized most of the documented interface
—Deprecated ‘reverseComparator’ and ‘defaultComparator’ module-scoped variables
—Cleaned up the argument lists for ‘sort()’, ‘isSorted()’ and ‘iter sorted()’
- Replaced ‘list.sort()’ with ‘sort(x: list)’, for consistency
—Removed many undocumented submodules

‘Sort’ Module Stabilization
This Effort (New Features)

e Defined ‘keyComparator’/‘’keyPartComparator’/‘relativeComparator’ interfaces for defining comparators

record myComparator: keyComparator record myType {
proc key(x) do return x.fieldA; var fieldA: int;
} :
}
var arr: [0..9] myType = ..;

sort (arr, new myComparator());

e Enabled support for stable-value sorting via ‘sort(..., stable=true)

e Added support for sorting with a region argument

var arr = [-2, 6, 11, 1, 5, =5, 8, 7];
sort (arr, new DefaultComparator (), 2..7); //farr=[-26,-5 1,578 11]

— | 5

‘Sort’ Module Stabilization
Impact and Next Steps

Impact:

e Most of ‘Sort’ module interface is now stable!
—Users don’t need to worry about ‘isSorted(), ‘sorted()’ or most versions of ‘sort()’ changing underneath them
—‘sort()’ with a region argument, the new interfaces, & the names for ‘DefaultfComparator’/’/ReverseComparator’ are unstable

o Users now have clearer blueprint for writing their own comparators
 ‘use Sort’ adds less clutter to the user’'s namespace due to undocumented Sort submodules
 Sorting is more unified across types

Next Steps:

o Rename ‘DefaultComparator’ and ‘ReverseComparator’ types
—To match Standard Module Style Guide for records
—Wasn’t possible earlier due to module-scoped instances using the intended name

e Enable ‘sort()’ on distributed arrays

: | 10

€ Imprdc

‘Random’ Modul

‘Random’ Module Improvements

This Effort:
« implemented weighted random sampling

writeln (sample([1l, 2, 3], n=10, weights=[0.1, 0.1, 0.8], withReplacement=true)) ;
//prints:3133133233

o added multi-dimensional support to several procedures
—‘shuffle(), ‘permute()’, ‘choose()’, ‘sample()

const x = reshape([1l, 2, 3, 4, 5, 61, {1..2, 1..3});
writeln (permute (x));

// prints: 3 6 4
215

Impact:
« new features were useful for aligning Arkouda's random module with NumPy

—

12

Sparse Improvements
Background: Local Domains

e CSR/CSC are common 2D sparse matrix representations, supported by Chapel’s ‘LayoutCS’ module
const D = {l..n, 1..n},
SD: sparse subdomain (D) dmapped new dmap (new CS (compressRows=true)) = ..;

Do

’ row indices: 1..8
col indices: 1..8

SD:

rowstarts: §1 2 3 6 8 10 11 12 13
colindices: 12 8 34 61 2 1 5 6 6 4

KPR XX X X X
KPS KX XX X X XK
KPR XX X X XK
KPP XX X X XK
KPR XX X X X
KPR XX X X X
K XXX X X X o

Sparse Improvements
Background: Distributed Domains

e CSR/CSC can also be combined with Block-distributed sparse arrays to specify a per-locale sparse layout
const D = {l..n, 1..n},
BD = D dmapped new blockDist (D, sparselayoutType=CS (compressRows=true)),

SBD: sparse subdomain (BD) = ..; -
rows: 1..4 = rows: 1

.. 4
cols: 1..470 cols: 5..8
BD: 1 . n=8 SBD: 1 i n=8 BD: lllIllllllll!lllllllllllll

i rows: 5..8 " rows: 5..8
11X X X XX X X X 1 . cols: 1..4 s cols: 5..8
X X X X=sX X X X . .
XXXX:XXXX . rowstarts: 1 2 2 4 6=J1 1 2 3 3
X X X xix X X X ’ o
"Iy Yy x x'xxxx¥1"" " colindices: 2 3 4 1 2 :
x x x xEx x X X E SBD: IIIIIIIIIIIIIIII?IIIIIIIIIIIIIII
X X X XsX X X X : rowstarts: 1 2 2 2 321 2 3 4 4
=8 |X X X XI1X X X X n=8 i :
; - col indices: 15 6 6

Sparse Improvements
More Background and This Effort

Background:

o Chapel’s sparse features are unstable and in need of improvement
— For example, the declarations shown previously should be simplified to improve readability / comprehension
—In other cases, capabilities are missing, preventing the expression of important patterns

This Effort:

« Implemented some of these missing capabilities:
—Methods for traversing CSR/CSC arrays
—Procedures for getting or setting a locale’s sub-domain/sub-array of a block-distributed sparse domain/array
—Support for querying a sparse array’s target locales
—Support for copying between sparse arrays

16

Sparse Improvements
This Effort: Iteration Improvements

e Added ‘.rows()/‘.cols() queries to get the dense rows/columns of a CSR/CSC domain or array
« These are essentially 2D-specific sugar for .dim(0)’/.dim(1)

e Added serial iterators to yield the indices and values of a CSR/CSC array in a given row/col
for (col, wval) in MySpsArr.colsAndVals (row) do .. //yieldscolumn indices and values for CSR arrays
for (row, val) in MySpsArr.rowsAndVals (col) do .. //yieldsrow indices and values for CSC arrays

e This example uses both methods to traverse a CSR array in parallel:
const D = {l..n, 1..n},
SD: sparse subdomain (D) dmapped new dmap (new CS (compressRows=true)) = ..;

var A: [SD] real = ..;
forall r in A.rows () do

for (¢, a) in A.colsAndVals(r) do
Writeln("A["/ (r,c), "1 =", a);

—

17

Sparse Improvements
This Effort: Local Block-Sparse Setters/Getters

o Added the ability to query and set the local indices/elements of a sparse, block-distributed domain/array
« Permits an algorithm to query and/or replace a locale’s local block of sparse indices / elements

var localSparseDomain = ..
localSparseArray: [localSparseDomain] real;

MyBlockSparseDomain.setLocalSubdomain (localSparseDomain) ;
MyBlockSparseArray.setLocalSubarray (localSparseArray) ;

const localInds = MyBlockSparseDomainOrArray.localSubdomain (), //pre-existing query
localData = MyBlockSparseDomain.getLocalSubarray(targetLocRow, targetLocCol);

: | 18

Sparse Improvements
This Effort: Orthogonality Improvements

» Added features which are already standard for dense domains / arrays:
e The ability to copy between sparse arrays with distinct-but-equivalent domains:

const D = MySpsArr.domain,
A: [D] MySpsArr.eltType = MySpsArr; //was:an error about being unable to zip arbitrary sparse arrays
// now: works

« The ability to query the target locales over which a block-sparse array is distributed:

coforall loc in MyBlockSparseArray.targetLocales () do
on loc do
writeln("locale ", loc, " owns: ", MyBlockSparseArray.localSubdomain()):;

19

Sparse Improvements
Impact and Status

Impact:

o With current features, a CSC x CSR matrix-matrix multiplication algorithm can now be written cleanly
—Local or block-distributed versions

Status:
« Sparse domains and arrays are much improved as of Chapel 2.1

20

Sparse Improvements
Next Steps

e Update implementation and naming of CSR/CSC layouts:

o Convert ‘CS’ from a class to a record, as standard distributions were in Chapel 1.32

« Split into two layout types for clarity: ‘csrLayout’/‘cscLayout’

e Rename module for clarity and consistency with distributions
e Continue improving sparse iterators

o Parallelize row/col + val iterators

o Extend CSR/CSC row-/col-specific iterators fo domains

e Support whole-domain / array parallel iterators

o Consider supporting ‘sparseRows()'/‘sparseCols()’ iterators that only yield non-empty row/column indices
e Improve naming and symmeftry in block-sparse per-locale set/get procedures
e Continue to improve sparse features

o Study and tune performance

o Continue to identify other missing methods and features

o Work toward stabilizing sparse domains and arrays

—

21

Custom Allocators
Background

e Heap objects are allocated semi-transparently in Chapel
« Explicit allocation occurs with ‘new’ on classes
« A user may be unaware that heap allocation occurs with some types (e.g. arrays, domains, strings, etc.)

e Users have some control over where in the program these allocations occur

class MyClass { wvar field: int; }
var x = new unmanaged MyClass (1l); //xisa pointerto the heap

var arr = [1, 2, 3, 4, 5]; // arr is on the heap

delete x; //xisunmanaged and must be deleted to free the memory
// arr’s memory is managed automatically

—

23

Custom Allocators
This Effort

e Added support for defining custom allocators

use Allocators, CTypes;

record myPool: allocator { //‘allocator’is an interface
var memoryChunk: c ptr(void);
proc ref allocate(n: int): c ptr(void) { .. }
proc ref deallocate(p: c ptr(void)) { .. }

}

e Users can use custom memory allocators to create classes

var pool = new myPool () ;

class MyClass { wvar field: int; }

var x = newWithAllocator (pool, unmanaged MyClass, 1);

deleteWithAllocator (x) ;

—

// allocate memory for x using ‘pool.allocate()’

// deallocate x’s memory using ‘pool.deallocate()’

24

Custom Allocators
Impact and Next Steps

Impact:

» Gives users finer control over memory allocations for performance-critical situations
o 2Xx—-4x improvement on binary-trees benchmark (system-dependent)

— The benchmark allocates and deallocates large binary trees

— Performance gained by using a bump allocator to perform bulk memory operations

binary-trees version Time(s) Speedup (Cumulative)
Previous fastest June 2024 3.65 N/A
Inner loop parallel 1.88 1.94x
Inner loop parallel with bump allocator 0.85 4.29x
Next Steps:

« Expand support for allocators to include other heap objects (e.g., arrays)
« Add first-class language support for using allocators

—

1/0 Improvements

This Effort:
o Added parallel & distributed versions of the ‘fileReader.lines()' iterator
forall line in openReader ("data.txt").lines(targetLocales=Locales)
do write("on locale ", here.id, " read: ", line);

— Also added multi-locale support to iterators in 'ParallellO' module

« Added a default value of ‘false’ o the 'locking' argument in 'openReader()' and '‘openWriter()'
—Makes the common, higher-performance mode the default
—'stdin’, 'stdout' and 'stderr’ still lock to facilitate safe accesses from multiple threads

« Added 'toJson()' and ‘fromJson()' helpers for (de)serializing 'string' values in JSON format
use JSON, List;

record R { var x: real; var y: list(int); }

const myR = fromJdson('{"x": 3.14, "y": [1, 2, 3]}', R);
writeln (todson (myR)); //prints:{"x"3.140000e+00, "y"[1, 2, 3]}

—

27

1/0 Improvements

This Effort:

« Added new ‘precisionSerializer’ for specifying padding and precision of all numerical values
use PrecisionSerilalizer;
const arr = [1.123456789, 2.123456789, 3.123456789, 4.123456789],
fourPaddedDigits = new precisionSerializer (precision=3, padding=9);

stdout.withSerializer (fourPaddedDigits) .writeln (arr);
// prints:" 1123 2123 3.123 4.123"

* Significantly improved the performance of procedures that read data into ‘string’ or ‘bytes’:

* ‘readAll(), ‘readString()’, ‘readBytes()’, ‘readBinary()’

« Optimized away string copies in the ‘regex.replace()’ method
* Observed a 20%—25% performance improvement for the ‘regex-redux’ benchmarks

28

‘image’ Module
This Effort

e Added an unstable ‘ilmage’ module

e Supports reading and writing PNG, JPEG, and BMP images

e Some support for creating MP4 videos
e The ‘mediaPipe’ type provides a nice wrapper around ‘ffmpeg’

e Provides some utilities for converting data into concrete pixel values

// enable unqualified access to the constants in enum ‘imageType’

use imageType;

// read image as a 2D Chapel array

var 1mg = readlmage (myImageFile, Jpg);

// process the image

/...

// write a scaled-up version out to a file

writeImage ("outImage.png", png, scale(img, 2));

—

30

‘image’ Module
Impact and Next Steps

Impact: Able to create basic visualizations in native Chapel

111

Conway’s Game of Life 2D Discrete Heat Diffusion

Next Steps:

« Provide higher-level abstractions for image manipulation
- Drawing shapes on a ‘canvas’
- Plotting data

—

Other Language/Library Improvements

For a more complete list of language and library changes and improvements in the 2.1 and 2.2
releases, refer to the following sections in the CHANGES.md file:

e New Language Features

e Language Feature Improvements

« Semantic Changes / Changes to the Language Definition
« Syntactic / Naming Changes

« Deprecated / Unstable / Removed Language Features
o New Standard Library Features

« New Package Module Features

« Changes / Feature Improvements in Standard Libraries
« Changes / Feature Improvements in Package Modules
« Standard Layouts and Distributions

« Name Changes in Libraries

« Deprecated / Unstable / Removed Library Features

o Documentation Improvements

—

Language Specification Improvements
Technical Note Improvements
Documentation Improvements for Libraries
Error Messages / Semantic Checks

Bug Fixes

Bug Fixes for Libraries

Developer-oriented changes: Documentation

Developer-oriented changes: Module changes

33

https://github.com/chapel-lang/chapel/blob/release/2.2/CHANGES.md

//chapel-lang.org

https:

