Multilocale Performance Trends

Chapel Team, Cray Inc.
Chapel version 1.9 summary
April 17, 2014 (released) / May 2014 (documented)

\ (=N
(cHaPe=L
=

=/

Safe Harbor Statement

AN

KI'his presentation may contain forward-looking statements that are\
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

/

o
)
H

Copyright 2014 Cray Inc.

Caveats for this slide deck e

e As noted earlier, our recent focus has been primarily on
single-locale performance

e to date, we have not tracked multi-locale performance automatically
e thus, much of the data in this deck was generated for these slides
— an attempt to retroactively understand the past six months of progress

= not as much ongoing analysis and tracking effort as single-locale cases
— not all performance changes are understood at present

e Work is currently underway to enable multi-locale testing
e this should ease much of the above pain next time around

e Multi-locale performance has improved in v1.9 in spite of
lack of focused attention recently

S

.
)
N

1
H]

E STORE ANALY

e | ©)

Multilocale Performance on Cray XC

Benchmarks:
e HPC Challenge: Stream, RA, FFT, HPL, PTRANS
o NAS Parallel Benchmarks: EP
e SSCA#2

System: Cray-internal Cray XC “tiger”

e 44 compute nodes total, of various types
e here, 16 homogeneous nodes were used for performance studies
e Sandy Bridge processors, 16 cores, 2.7GHz, 32GB memory

e in most cases, reported the best of 6 or more tries

Runtime Layers:
e ugni (+ muxed): native runtime layer developed for Cray systems
o GASNet/aries (+ fifo): GASNet's conduit, tuned for Cray systems
e GASNet/mpi (+ fifo): GASNet's portability conduit

©

For each benchmark, we present major contributions to performance improvements.

Most graphs plot performance — bigger is better. Exceptions as indicated.

Note that the ungi + muxed option is only available within the Chapel module, not

part of the open-source release

Note that GASNet+mpi is not a combination that one would want to use for
performance reasons; it exists primarily as a robust but slow portability option. We
present results for it here simply as a point of comparison (the other options should

outperform it)

Two types of graphs in this presentation oo

1. Historical: .
e shows performance for each release, for the benchmark at that time
e in most cases, we've gathered these numbers retroactively and recently

e tracks improvements to both the benchmark and to Chapel
o these benchmarks are unchanging, so this is equivalent to the
release-over-release graphs from the single-locale runs

2. Timeline:
e shows performance relative to revision number
e was gathered via sampling, so may not tell the whole story

Note that, unlike the single-locale graphs previously,
these are generally performance graphs (higher is better)

OMPUTE STORE ANALYZE

o~ co S)R ()
Q:....k ight 2014 Cray Inc

HPCC STREAM EP:

400.00
350.00
300.00
250.00

@
o 200.00

o
150.00
100.00
50.00
0.00

=,

k\‘:ry

historical

STREAM Triad - EP

= ugni
= gn/mpi
« gn/aries

1.7 release 1.8 release 1.9 release

test/release/examples/benchmarks/hpcc/stream-ep.chpl

m=357,739,200 per node

S
\
HPCC STREAM EP: timeline (ugni) S
. \
\
STREAM EP — ugni
225
2 v
(3
3 215
c
3 21 “WK
@
8 205
£ 5 Count running tasks in the module
code, not the runtime tasking layers
1951
22200 22400 22600 22800 23000
STREAM EP ugni comparison — max over nodes
40 — avg over nodes
— min over nodes
35
30 —
o o [A 3
8 2 v / \ o~
< A R R SR]
@ 20
Q
2]
@ 15
[C]
10
5
0 1
22200 22400 22600 22800 23000
R e P g,
((emal ()
N\ N

The first graph: for each run, pick the performance of the slowest node. Then, take
the average over 6 runs. Shaded areas show the spread over 6 runs.

The improvement is: 23004 Count running tasks in the module code, not the runtime
tasking layers (Greg).

The second graph: for each run, pick the fastest node (highest line), average node
(middle line), slowest node (lowest line). We believe NUMA effects make individual
node performance very variable. We ignore the best-case performance because it is
not reproducible.

Yellow vertical bars indicate Releases 1.8 and 1.9. X axis shows revision numbers.

Count running tasks in the module code, not the runtime tasking layers: r23004.

HPCC STREAM Global: historical

STREAM Triad - Global

=ugni
- mgn/mpi
“gn/aries

T T -
1.7 release 1.8 release 1.9 release

\\'_’_
E=

test/release/examples/benchmarks/hpcc/stream.chpl
m=357,739,200 per node, 5.7G total

STREAM EP/Global: timeline (GASNet/aries) <"~ s«

STREAM EP — GN aries

Thread idle spin instead of spin or cond

Sync variable implementation: switch

between using condition variables and spin
waiting

min GB/s per node
=

23000 Count running tasks in the module
code, not the runtime tasking

layers
360

340/
320

300
Make the polling architecture
more symmetric and simple

GBis

280
260
240
2201

o 22200 22400 22600 22800 23000

&= ©

The first graph measures per-node performance — the slowest node in a run is taken.
The second graph measures the whole-system performance (16 nodes).

Yellow vertical bars indicate Releases 1.8 and 1.9. X axis shows revision numbers.

Sync variable implementation: switch between using condition variables and spin
waiting: r22137.

Thread idle spin instead of spin or cond: r22210.
Make the polling architecture more symmetric and simple: r22823.

Count running tasks in the module code, not the runtime tasking layers: r23004.

HPCC RA using atomics: historical oo

HPCC RA using atomics

=ugni, 10M updates
= gn/mpi, 1M updates

w gn/aries, 1M updates

log10(updates/s)

1.7 release 1.8 release 1.9 release

Qc}: O]

test/release/examples/benchmarks/hpcc/ra-atomics.chpl

n=8,589,934,592 (2733), 10M updates (ugni), 1M updates (GASNet/mpi,
GASNet/aries)

10

L]
\
HPCC RA using on: historical pisiyt
. \
\
\
HPCC RA using on
7.00
6.00
) 5.00
8
E 4.00 + =ugni, 10M updates
o "
§ 300 ~ =gn.mpi, 1M updates
-3 wgn.aries, 1M updates
2 2.00 -
1.00
0.00 + v T)l
1.7 release 1.8 release 1.9 release
B~ ©

test/release/examples/benchmarks/hpcc/ra.chpl useOn=true

n=8,589,934,592 (2733), 10M updates (ugni), 1M updates (GASNet/mpi,
GASNet/aries)

11

HPCC RA using remote memory ops: historical

HPCC RA using remote
memory operations
8.00
7.00 +
EG.OD i
€500 -
%
2400 -
=
S 3.00
o
2200
1.00

= ugni, 10M updates
= gn.mpi, 1M updates
= gn.aries, 1M updates

0.00

1.7 release 1.8 release 1.9 release

E==

\
ccRANY

A

\
\

o

test/release/examples/benchmarks/hpcc/ra.chpl useOn=false

n=8,589,934,592 (2733), 10M updates (ugni), 1M updates (GASNet/mpi,
GASNet/aries)

GASNet/aries was not available for 1.7
RA under GASNet/mpi times out for 1.7

RA under GASNet/aries crashes at run time for 1.9

12

HPCC RA: timeline (ugni) pisiyt
s \
Al
RA atomic - 10M updates — ugni
0.035
noe NN
0.025

GUPS

o

2
S

Make the runtime startup code

0.005| more symmetric across locales

22200 22400 22600 22800 23000

C= ®

Yellow vertical bars indicate Releases 1.8 and 1.9. X axis shows revision numbers.

Make the runtime startup code more symmetric across
locales: r22787, r22809, r22813.

HPCC FFT: historical

HPCC FFT

0.04

0.035
0.03 4
0.025
]
L 0.02
[C]
0.015 -

0.01

0.005 |
o N N

1.7 release 1.8 release 1.9 release

= ugni

test/release/examples/benchmarks/hpcc/fft.chpl
n=4,194,304 (2722)

14

HPCC HPL: historical (release version)

uses expensive high-level array/domain operations
¢ e.g. extensive use of slices

ugni status:

¢ v1.8 times out, v1.9 does not

e Improvements due to
e Making the runtime startup code more symmetric across locales
¢ Reducing the number of formal temps inserted by the compiler

GASNet/mpi status
e all versions time out

GASNet/aries
e 3x improvementv1.8 - v1.9
e Improvements due to:
o Hybrid sync variable implementation
e Switched to GASNet 1.22.0
e Reduce the number of formal temps inserted by the compiler

e
&=

test/release/examples/benchmarks/hpcc/hpl.chpl
n=1023, nb=32

The formal temp reduction change was r22900

15

HPCC HPL.: historical (HPCC’2012 version)
HPL - HPCC'2012

250

200

150 ‘
= ugni

GFis

= gn/mpi

100 = gn/aries

50

Al | Il,

1.7 release 1.8 release 1.9 release

e uses a low-level coding style

e ugni improvements due to:
e Making the runtime startup code more symmetric across locales
e Replacing trivial record assignments with verbatim copies

¢ GASNet/mpi improvements due to:
e Replacing trivial record assignments with verbatim copies
e Counting running tasks in the module code, not in the runtime

=,

k\‘:ry

test/studies/hpcc/HPL/vass/hpl.hpcc2012.chpl
n=31,999, nb=200

16

HPCC PTRANS: historical

HPCC PTRANS

0.0016
0.0014

0.0012

0.001 |)
=ugni

@ 00008

o

0.0006 +

~ sgn/mpi
= gn/aries
0.0004 +

0.0002

1.7release 1.8 release 1.9 release

e GASNet/aries improvements due to:
e Switching to GASNet 1.22.0

E=

test/release/examples/benchmarks/hpcc/ptrans.chpl
n=2,000; nb=100

17

SSCA#2: historical S S

SSCA#2

I :

1.7 release 1.8 release 1.9 release

L
o

w

Ind
[

Adjusted MTEPS

o
[

o

e GASNet/mpi, aries not reported due to execution time > 10 minutes

E= ®

test/release/examples/benchmarks/ssca2/SSCA2_main.chpl
scale=4,194,304 (2722), start verts=64 (2/6)
for v1.9, start verts=16

We also have performance data for toy problem sizes. We are not reporting them
here because they are not significant.

18

\
SSCA#2: timeline (ugni) pisiyt
L)
s \
1}
SSCA2 - scale 22 — ugni
4.00e+6
3.50e+6
© Prior to this revision, this scale
® 3.00e+6 of SSCA#2 timed out
B 2.50e+6
|—
E 2.00e+6 Make the runtime startup code more
3 1.50e+6 symmetric across locales
k)
® 1.00e+6
Count running tasks in the module code,
500000] not the runtime tasking layers
0
22200 22400 22600 22800 23000
&= ©

Yellow vertical bars indicate Releases 1.8 and 1.9. X axis shows revision numbers.

Make the runtime startup code more symmetric across locales: r22787, r22809,
r22813.

Count running tasks in the module code, not the runtime tasking layers: r23004.

NPB EP: historical

NAS EP-D

1.7 release 1.8 release 1.9 release

= ugni
= gn/mpi
«gn/aries

(Note: for this graph, lower bars are better)

o GASNet/aries improvements due to:
e Hybrid sync variable implementation

¢ GASNet/mpi improvements due to the above, plus:
o Reduced sublocale overheads at execution time for fifo tasks

test/npb/ep/mcahir/ep.chpl

Class D

20

\
NPB EP: timeline (ugni) oo
L]
s \
L}
EP - size D —ugni
Add abs function for real(64)
2000
— 1500
5 e
= 1000 Make the runtime startup code more
§° symmetric across locales
500 Count running tasks in the module code,
L not the runtime tasking layers
0

22200 22400 22600 22800 23000

(Note: for this graph, higher is better; measured using 8 nodes.)

&= @

Large spread makes precise analysis difficult.

Yellow vertical bars indicate Releases 1.8 and 1.9. X axis shows revision numbers.

Add abs function for real(64): r22102.

Make the runtime startup code more symmetric across locales: r22787, r22809,
r22813.

Count running tasks in the module code, not the runtime tasking layers: r23004.

Multilocale Performance Impacts (part 1) oo

The most influential commits, in chronological order.

r22137: Sync variable implementation
e STREAM (ep+g), HPL (r) — aries
e NPB EP — mpi, aries

r22150..r22160: switch to GASNet 1.22.0
e HPL (r), PTRANS - aries

r22210: Thread idle spin instead of spin|jcond
e slowdown STREAM (ep+g), HPL (r) — aries

r22787,r22809, r22813: Make the runtime startup code more
symmetric across locales
« STREAM (g), RA (a+o+r), FFT, HPL (r+hpcc12), SSCA#2 - ugni

=

&= @

22

Multilocale Performance Impacts (part 2) oo

r22845+r22846: replace trivial record assignments with

verbatim copies
¢ HPL (hpcec12) — ugni, mpi

r22900: Reduce the number of (unnecessary) formal temps

inserted by the compiler
e HPL (r) — ugni, aries

r23004: Count running tasks in the module code, not the

runtime tasking layers
e STREAM (ep+g) — ugni

e slowdown SSCA#2 (ugni)
e HPL (hpcc12) — mpi

e FFT - aries

&= @

23

Multilocale Next Steps pisiyt

e Enable regular (nightly/weekly) multilocale testing
e using a Cray module built against trunk/HEAD
e correctness testing
e performance testing
e goal: automatically generate historical record as in single-locale world
e possibly on a cluster as well (resources permitting)

¢ Track dynamic communications as performance tests
e benefit: more stable/reproducible than timings for most benchmarks
e currently only done via correctness testing
o makes it difficult to get long-term sense of how things are trending

JTE STORE ANALYZE

=

/rQ
L ?!@
®

ight 2014 Cray Inc

24

\
ccRANY

Legal Disclaimer

=

R,

«

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames Is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

ANALYZE

- Copyright 2014 Cray Inc

[y \

\

\

25

=

cRas
CcCHARPEL
=

=/

CRANY

THE SUPERCOMPUTER COMPANY

26

