
1 



2 



Note that though most of this work was motivated by preparing Qthreads to become 
the default tasking layer, the solutions were about making behavior consistent across 
tasking layers, regardless of which one was the default. 

3 



4 



5 



6 



7 



8 



“Behavior” (last bullet) in the sense of what happened there and why. For example, if 
you noticed that on locale 0 you were seeing interference between Active Message 
handling and Chapel tasks, you could not deduce that that was also happening on 
other locales. 

9 



• Cannot configure tasking layers to behave the same on all locales 

• Hard to reason about behavior on non-0 locales based on measurements taken on 
locale 0 and vice-versa 

10 



11 



• Tasking layers behave the same on all locales 

• Knowledge gained about behavior on one locale applies to other locales also 

 

12 



13 



14 



15 



Here’s a picture of how tasking is implemented. 

From top to bottom, how far down do we want users to be thinking about this? 

16 



● Tasks are the Chapel abstraction of 

execution 
● Behave as described in the Chapel 

Language Specification 

● Parallelism and synchronization is 

expressed in terms of tasks 

● Want programmers to reason on this 

level 
 

17 



● Threads are an underlying software 
abstraction by which tasking layers 
make use of hardware processors 
● Defined and used differently by each 

tasking layer 
● For fifo, a thread is a Linux (UNIX) pthread 

and a Chapel task is bound to a single thread 
throughout its existence 

● For qthreads, a thread is a worker qthread 
and a Chapel task may shared its thread with 
other threads and/or change host threads 
during its life 

● Etc. 
● Don’t really have anything to do with 

Chapel programming 
● Do not want programmers to be burdened 

with this level of detail 
 

18 



19 



20 



21 



22 



• We’re time-sharing execution vehicles at two levels here: Chapel tasks on 
Qthreads worker pthreads, and pthreads of various kinds on the CPU. 

23 



• Since we’re yielding the pthread on the CPU instead of the task on the worker, we 
never go back into the Qthreads code to do a task switch to task B. 

• Note that adding resources (more worker pthreads or more CPUs) doesn’t solve 
the basic problem, it just changes how many things you need going on for it to 
happen. 

24 



25 



26 



• “Fairly mature”: qthreads itself is quite mature, but the qthreads-based Chapel 
tasking layer is less so. It was at least being minimally tested in nightly testing, 
though, which was/is not the case for either muxed or massivethreads. 

27 



28 



Note that the bulk of the time here is actually compilation, but it still gives an 
indication that we’re in the ballpark. 

29 



30 



31 


