Runtime Improvements

Chapel Team, Cray Inc.
Chapel version 1.9 summary
April 17!, 2014 (released) / May 2014 (documented)

=

cResr
CcCHAPEL
=

J/

Safe Harbor Statement

AN

KI'his presentation may contain forward-looking statements that are\
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

/

o
)
H

Copyright 2014 Cray Inc.

Runtime Improvements oo

e Accurate running task counts .
e Symmetry in multilocale execution

¢ Tasking-layer-independent default stack size

e Hide the threading layer

e Remove ‘none’ tasking layer

e Qthreads status

e Bug fixes and other changes
e Progress towards making gthreads the default tasking layer

= ©

Note that though most of this work was motivated by preparing Qthreads to become
the default tasking layer, the solutions were about making behavior consistent across
tasking layers, regardless of which one was the default.

Accurate Running Task Counts

If we want to fully utilize the hardware,
how many tasks should we create?

forall a in A {

} o Answer: #CPUs - #active tasks

Chapel Chapel
task task

CPU CPU CPU CPU

CPU

CPU

(o=

o

Accurate Running Task Counts

If we want to fully utilize the hardware,
how many tasks should we create?

We were getting this wrong.

forall a in A {

} T Answer: #CPUs -

Chapel Chapel
task task

CPU CPU CPU CPU CPU CPU

Accurate Running Task Counts oo

Background: .
e New default in 1.9: dataParlgnoreRunningTasks=false
¢ When deciding how many tasks to create for a forall-stmt, take into
account how many are already running
e Our running-task counting was inaccurate

Why Is This a Problem?
e Not enough tasks: under-perform due to not using available CPUs
e Too many tasks: under-perform due to increased overhead

&= ©

Accurate Running Task Counts oo

fifo

massivethreads

muxed

gthreads

22,

&=

What a mess!

Decrement on task termination late and not synchronized
with end of parallel statement; sometimes not done before
next parallel statement encountered.

Intermittently over-counted tasks, under-utilized CPUs.

Did not maintain running task count at all, always said 0.
Under-counted tasks, over-utilized CPUs.

Decrement on task termination late and not synchronized
with end of parallel statement; sometimes not done before
next parallel statement encountered.

Intermittently over-counted tasks, under-utilized CPUs.

Only counted running tasks on current shepherd. But often
we have more than one shepherd.
Under-counted tasks, over-utilized CPUs.

E STORE ANALYZE

I. ht 21 .H . 1y Inc @

Accurate Running Task Counts oo

Solution: Moved running task count into the modules \
e Reduces duplicate code
e Gets the right answer!
(for all tasking implementations)

Next Step:

e Remove little bit of remnant task counting code from runtime

A =
&= ®

Symmetry in Multilocale Execution oo

Background: Asymmetric execution scheme across locales \
e 0 and non-0 locales differed in what they used the locale process for,
and where they did Active Message handling
e Asymmetry led to more complicated start up code in the runtime
e Behavior on locale 0 differed from that of other locales

= ©

“Behavior” (last bullet) in the sense of what happened there and why. For example, if
you noticed that on locale 0 you were seeing interference between Active Message
handling and Chapel tasks, you could not deduce that that was also happening on
other locales.

Symmetry in Multilocale Execution oo

v1.8 and before

Locale == Locale =0
processes

(9] >
z 8 2 9 = o 9
= 5] D D T D o
= i T O 3 T T
) = @ @ @ @
g @ e 2 2 e 2
Qo o D D @ D
D e s % s %
=€ threads >

—

C=

* Cannot configure tasking layers to behave the same on all locales
* Hard to reason about behavior on non-0 locales based on measurements taken on
locale 0 and vice-versa

Symmetry in Multilocale Execution oo

This Effort: Make execution scheme symmetric across locales \
e All locales have the initial process waiting for completion
e Start the AM handler as a separate thread/task on all locales

&= ©
e

Symmetry in Multilocale Execution
v1.9
Locale == any
Py COMPUTE STORE |
@-—H Copyright 2014 Cray Inc

Locale == any

ANALYZE

* Tasking layers behave the same on all locales

* Knowledge gained about behavior on one locale applies to other locales also

12

Symmetry in Multilocale Execution oo

Impact: :
e Hides knowledge of comm layer AM handling inside comm layers
e Still have locale 0/non-0 asymmetry
e Okay, because inherent to Chapel's execution model
e Improves ability to reason about overall behavior from observations or
measurements done on one locale

Next Steps:
e Further simplification of runtime start up code

&= ©

13

<
]
ccRANY

Tasking Layer Independent Default Stack Size pisiyt

Problem: .
e Tasking implementations set default call stack sizes themselves
¢ Duplicated effort without duplicating results
e Led to surprises when switching from one implementation to another

Solution:
o Moved default call stack size selection into common code

Benefits:
e Less code to maintain
e Fewer surprises; more dependability

&= ©

Hide the Threading Layer oo

Background: .
o For some time, we've had both tasks and threads as 1st-class entities:
[gbtBhost]$ printchplenv

CHPL_COMM: none
CHPL_TASKS: fifo

CHPL THREADS: pthreads
CHPL_LAUNCHER: none

e But this is unnecessarily complicated

e

15

Hide the Threading Layer oo

Tasking Interface

Il

none fifo muxed Bl ﬁzf:ai‘:les-
(serial) (Sandia) (U Tokyo)
Threading
—
. soft-
minimal pthreads threads
POSIX
Threads
(== ®

Here’s a picture of how tasking is implemented.

From top to bottom, how far down do we want users to be thinking about this?

16

ccRAaNY

Hide the Threading Layer oo
. \
\
want users to think about this, at most
N
1
r Tasking Interface
] fifo muxed Bl n'l'!la'::all‘:les-
(serial) (Sandia) (U Tokyo)
_
Threading
minimal pthreads thsrzztc-is
POSIX
Threads
R ANALYZE
&= ©

\
N

e Tasks are the Chapel abstraction of

execution
e Behave as described in the Chapel
Language Specification
e Parallelism and synchronization is
expressed in terms of tasks
e Want programmers to reason on this

level

17

Hide the Threading Layer

do not want users to think about this

Tasking Interface \

Massive-
Threads
(!

none . Qthreads
(serial) fifo muxed (Sandia)

minimal pthreads

Threads
.

COMPUTE STORE ANALYZE

&=

e Threads are an underlying software

abstraction by which tasking layers

make use of hardware processors
e Defined and used differently by each
tasking layer
e For fifo, a thread is a Linux (UNIX) pthread
and a Chapel task is bound to a single thread
throughout its existence
e For gthreads, a thread is a worker gthread
and a Chapel task may shared its thread with
other threads and/or change host threads
during its life
o Eftc.
e Don’t really have anything to do with
Chapel programming
e Do not want programmers to be burdened
with this level of detall

18

Hide the Threading Layer .

Result:
e printchplenv doesn’t show CHPL_THREADS any more:

[gbt@host]$ printchplenv

CHPL_COMM: none
CHPL_TASKS: fifo
CHPL_LAUNCHER: none

e |If CHPL_THREADS is set, an error message results
e The notion of threading still exists, but only deep in the implementation

(and will likely fade away over time)

."‘—-...
&\:_:...k

19

Remove ‘none’ Tasking Layer

Tasking Interface

none

. fifo muxed
(serial)

+ Minimalist tasking implementation

* Not regularly tested

* Not used

+ Had a small but non-zero maintenance cost
+ Gotrid of it

Noma

S

Qthreads
(Sandia)

Massive-
Threads
(U Tokyo)

©

20

Qthreads Status SO

¢ Bug fixes and other changes
¢ Better multilocale integration
o Other optimization and tuning

¢ Progress towards making qthreads the default tasking
layer

&= ®

21

Better Multilocale Integration for gthreads oo

Background: Multilocale gqthreads program were hanging

intermittently
e Tasks were being starved

= ®

22

Better Multilocale Integration for gthreads

This works well: the nested yields ensure that

everything eventually gets a chance to run. Chapel Chapel

task |jmem task
A B

chpl_task_yield()

Qthreads
worker
pthread

sched yield()

CPU

Noma

* We're time-sharing execution vehicles at two levels here: Chapel tasks on

Qthreads worker pthreads, and pthreads of various kinds on the CPU.

23

Better Multilocale Integration for gthreads oo

This works well: the nested yields ensure that

everything eventually gets a chance to run. Chapel Chapel

But if A and B have a synchronization ta:k ta;k
dependence and we yield the CPU
instead of the task while waiting for that, B never
we no longer run both. gets to run.

Qthreads

worker
pthread
CPU
= @

* Since we’re yielding the pthread on the CPU instead of the task on the worker, we
never go back into the Qthreads code to do a task switch to task B.

* Note that adding resources (more worker pthreads or more CPUs) doesn’t solve

the basic problem, it just changes how many things you need going on for it to
happen.

Better Multilocale Integration for gthreads oo

This works well: the nested yields ensure that
everything eventually gets a chance to run.

Chapel
task
B

B never
gets to run.

Qthreads
worker
pthread

But if A and B have a synchronization
dependence and we yield the CPU
instead of the task while waiting for that,
we no longer run both.

We did this in the GASNet
comm layer, while waiting
for remote task completion.
Result: hang.

Solution: yield the task while
waiting in the comm layer CPU
instead.

&= ®

25

Qthreads Optimization and Tuning SO

Done In v1.9: Optimize :
¢ Inline several small, frequently used utility functions
¢ Build with oversubscription enabled to support multilocale testing
e Configure and enable guard pages by default for functional testing,
but publicize how to disable for performance testing

Done After v1.9: Tune the defaults
e Assign worker pthreads to cores
(was assigning workers to hyperthreads, when those were present)
e Default number of workers = number of cores
(was = number of hyperthreads, due to a bug)

COMPUTE STORE ANALYZE

4
L El’;
®

26

Background
e Current default FIFO tasking has flaws:
e No support for NUMA or other node hierarchy
e Sync variable synchronization slow (requires kernel intervention)
e 3 candidate tasking layers to replace FIFO:
e Muxed: lacks NUMA, not open source (Cray specific)
e Massivethreads: lacks NUMA, immature
e Qthreads: has NUMA, fairly mature

Qthreads benefits
e NUMA support (with hwloc)
e Fast sync variable synchronization (done at user level)
e Open source and fairly mature
e Most mature as a Chapel tasking layer

(==

Qthreads as the Default Tasking Layer .

@

“Fairly mature”: qthreads itself is quite mature, but the gthreads-based Chapel

tasking layer is less so. It was at least being minimally tested in nightly testing,

though, which was/is not the case for either muxed or massivethreads.

27

Qthreads as the Default Tasking Layer

Status:
¢ With comm=none
e Passes same nightly tests as fifo tasking, and in 7.5 hr vs.
e With comm=gasnet
o Passes multilocale tests in nightly testing

Next Steps:
e Expand to full nightly testing
e Characterize performance
e Fix any problems
e Switch!
e Longer term:
e Tie Chapel sync vars more directly to gthreads sync vars

8.5 hr

28

Seconds to complete entire suite

=

&=

4000
3500
3000
2500
2000
1500
1000

500

Qthreads as Default Tasking

Performance on the examples suite

1.8 release 1.9 release r23409 (5/16)

® none, fifo

W none, gthreads
gasnet, fifo

® gasnet, gthreads

O)

Note that the bulk of the time here is actually compilation, but it still gives an

indication that we’re in the ballpark.

29

\
ccRANY

Legal Disclaimer

=

R,

«

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames Is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

ANALYZE

- Copyright 2014 Cray Inc

[y \

\

\

30

=

cRas
CcCHARPEL
=

=/

CRANY

THE SUPERCOMPUTER COMPANY

31

