Benchmark Improvements

Chapel Team, Cray Inc.
Chapel version 1.9
April 17t 2014 (released) / May 2014 (documented)

=

cResr
CcCHAPEL
=

J/

Safe Harbor Statement

AN

KI'his presentation may contain forward-looking statements that are\
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

/

o
)
H

Copyright 2014 Cray Inc.

Three types of graphs in this presentation oo

1. Historical: .

e shows performance for each release, for the benchmark at that time
o for a few new benchmarks, we've gathered this retroactively
¢ tracks improvements to both the benchmark and to Chapel

2. Nightly:
o shows the automated results we gather on a nightly basis
» can be viewed at http://chapel.sourceforge.net/perf/chap04/

3. Release-over-release:
e measures today’'s benchmark code using prior releases
o factors out changes to the benchmark itself
¢ not to mention changes to OS, back-end compiler versions, etc.
e in some cases, today's code doesn't compile with older versions
e can be viewed at: http://chapel.sourceforge.net/perfichap04/releaseOverRelease/

Unless noted otherwise, performance is for an 8-core workstation (chap04)

A =
&= O

Note that the vast majority of graphs in this slide deck are reporting execution times,
so lower is better. The primary outliers are the HPC Challenge benchmark results
near the end, which typically use performance metrics like GB/s. These cases are
called out in their notes sections.

\
Outline

e Computer Language Benchmark Game (“shootout”) Codes .
o New benchmarks
o Meteor
e Fannkuch-redux
o Revised benchmarks
e Spectral-norm
« Mandelbrot
¢ Chameneos-redux
o Fasta
o Performance changes in stable benchmarks
« Pidigits
e Thread-ring
. N-bOd!
e Binary-trees

e Other Notable Single-Locale Benchmark Results

Computer Language Benchmarks Game SR

Contest’s Goal:

e see how languages compete over 13 modestly sized benchmarks
e performance: serial or multicore, timing complete program execution
e code size: as measured by the code’s compressed size

o for more information: http://benchmarksgame.alioth.debian.org/

Our Goal:

e assemble an entry that is competitive with C in performance
¢ use this to raise awareness of Chapel in mainstream/open-source
e use this as a forcing function for looking at serial performance
¢ the effort has had a positive impact on multi-locale cases as well

2 COMPUTE STORE ANALYZE
(S

ight 2014 Cray Inc

Meteor

Meteor SO08

Overview: .
e searches for every solution to a shape packing puzzle
e unlike most shootout benchmarks, any algorithm may be used

(== O]

Each of the 10 pieces is a unique shape that can be rotated and flipped before being
placed on the board. Every piece must be used in the solution.

Meteor SO08

¢ We have two primary versions of meteor: \

1. meteor
o Fairly competitive performance
e Easy to understand
e Inthe 1.9 release

2. meteor-fast

e Very good performance

o QOutperforms the reference version in some configurations
Not entirely portable due to reliance on compiler intrinsics
Fairly incomprehensible from an algorithm standpoint
Will be in the next release

- @

These versions are known as meteor-parallel and meteor-parallel-alt inside of the
test/studies/shootout/meteor/kbrady/ directory.

]
R [emd — P i
Meteor: nightly oo
L]
i \
\
Meteor Shootout Benchmark (n=2098) — meteor
4 — meteor-implicit-domain
— meteor-parallel
M Mt A AV -"‘v'“"a ety _,_‘M_."r-‘,,ﬂ‘_,‘k mat — release version
08 . ¥ v .\" - ~ — meteor-parallel-alt
| |
) [
°
c 06
8
8 A AN W T ey
Y 04 t
£
= W\M
02
0 1 R
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
Test-code improvement: using
implicit domains
(o= o

On this graph, the previously mentioned meteor is marked as ‘release/meteor-
parallel’ and meteor-fast is ‘meteor-parallel-alt’.

The series meteor and meteor-implicit-domain are single threaded versions of
meteor-parallel. The gap between them is caused by a large number of copies that
occur when array type is fully specified for formal arguments.

Meteor: historical (gathered retroactively)

.G%“_..”
k\%fy 3

0.04
0.035

003 +

0.025
0.02
0.015
0.01

0.005 +

0

Meteor

1.7 release

1.8 release

1.9 release

= Chapel
——Reference

]
ccRANY
[y \
s \
\

10

Meteor: release-over-release

Meteor Shootout Benchmark (n=2098)

— meteor-parallel-alt

Time (seconds)

Jul12 Oct12 Jan 13 Apr13 Jul 13 Oct 13 Jan 14 Apr 14

The noise in this graph is puzzling. For the Oct 13 and Apr 14 data points, the first of
the three trials got an unexplainable timing of 1.x seconds compared to the norm
which is a tiny fraction of a second (as seen in the Apr 13 timings and the nightly
graph shown earlier. We're including this graph here for completeness rather than
because it’s particularly useful. The historical graph of the previous slide is essentially
the same information (since it’s all retroactively gathered) and far more indicative of
the performance we typically see. It seems likely that there is some artifact in our

testing system that is causing the overhead for the first run of these release-over-
release timings.

Meteor SO08

Next steps: .

e meteor-fast
e Its intrinsics can be made portable using the new BitOps module

o Promote into the release

e Remove penalty for fully-specified formal arguments

var A: [l..n] real;

proc foo(A: [1..n] real) /{
proc bar (A] real) {

proc baz(A: [?D] real) { ..}

e Of these three routines, the first is more expensive by far
¢ the reason: this syntax reindexes the actual to match the formal’s domain
e the common case of the domains being the same is not optimized
e The language, compiler, and/or modules should be updated to remove

this penalty
O,

|\'\=:.—k

Meteor-fast was very close to being in the 1.9 release, but was held back due to
portability issues. The BitOps module committed after the 1.9 release will let us fix

that easily.

Fannkuch-Redux

13

Fannkuch-Redux s

Overview: ;
o repeatedly swap elements within small arrays

e Two example iterations of the benchmark:

[3]2]4]1]
[4]2]3]1]
[s]2]4

&= ©
e

The benchmark takes every permutation of {1,...,n} and performs a few steps over
them:

1. Take the first element, X
2. Reverse the first X elements of the sequence

3. Repeat until the first element is 1

14

Fannkuch-redux: historical (gathered retroactively)

Fannkuch-redux
70.00

60.00 +

50.00

40.00
s Chapel

30.00 ——Reference

20.00

10.00

0.00
1.7 release 1.8 release 1.9 release

]
ccRANY
[y \
s \
\

15

Fannkuch-redux: release-over-release

Fannkuch-Redux (n=12)

100

80

o~ =
5=
(=4
8 60
Q
2
(]
£ 40
=
20
Ul
Jul 12 Oct 12 Jan13 Apri3 Jul 13 Oct 13 Jan 14 Apr 14

— Brad compact version
— Brad int8 version
— Kyle version

— Release version
— Brad version

16

Fannkuch-redux: nightly

Fannkuch-Redux (n=12)

Time (seconds)

20|

Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

N

— Brad compact version
— Brad int8 version

— Kyle version

— Release version

— Brad version

‘Brad compact version’ is noisy due to the use of a reduction

17

Fannkuch-redux

Status:
e The 1.9 release includes a serial version of Fannkuch-redux
¢ |t performs similarly to most single-threaded reference versions
e Only a hand-coded SIMD version and multi-threaded versions beat it
e Not surprisingly, it loses to multi-threaded reference versions

Next Steps:
e Implement a parallel version of the benchmark
e Simplify our generated code to reduce overheads
o reference temps seem to be a particular problem
¢ Investigate how one would write the SIMD version in Chapel

O

Without a parallel version we will not stack-up against other versions in the multi-

core tests.

In analyzing the final optimized assembly | noticed that the C compilers (gcc 4.8 /
clang) were turning one of the loops in the reference C version into a memcpy, but
not in ours. Getting our loops into a form where the backend compiler will perform

this optimization would be a small performance win.

18

Spectral-norm

19

Spectral-norm Ry

Overview: \
e Calculates the spectral norm of an infinite matrix
¢ the square root of the maximum eigenvalue of a square matrix multiplied by
its conjugate transpose
¢ repeat this computation many times
e Emphasizes the performance of parallel constructs

(o= O

Conjugate transpose is the transposition (A(i,j) => A(j,i)) of a conjugate matrix, where
the conjugate of a complex number a + bi is a — bi.

Eigenvalues are a special set of scalars associated with a linear system of equations.

Spectral-norm: historical

.G%“_..”
k\%fy 3

seconds
O 2N W R e N ® ©

Spectral-Norm

1.7 release

1.8 release

1.9 release

mmm Chapel
——C reference

]
ccRANY
[y \
s \
\

21

Spectral-norm: release-over-release

Spectral Norm Shootout Benchmark

10|
|
m
=}
c
3 5
(7]
2
[}] 4|
E
£
2.
0 1
Jul 12 Oct 12 Jan 13 Apr13 Jul 13 Oct 13 Jan 14 Apr 14

— blockdist

— barrier

— two-at-a-time-barrier
— spectralnorm

— two-at-a-time

— brad version

— release

— no-reduction

22

®
\
Spectral-norm: nightly (on a 2-core machine) Faio
L) 3 \
Spectral Norm Shootout Benchmark — blockdist
60 — spectralnorm
— barrier
50 — two-at-a-time-barrier
— two-at-a-timi
a0 — brad version
—release
30 — no-reduction
|
20| A I e o A A
I T A
10
A
ol! l
Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
Work began on this shootout with
improvements occurring only on smaller
core-count machines

* these results were gathered on chap03,
a 2-core workstation

 ‘Blockdist’ and ‘barrier’ were the
original versions, written by Albert
Sidelnik

* The line labeled “spectralnorm” (in light
blue, visible on the second set of lines
from the top) was an initial cleaned up
version, which did not use block

distributions or a barrier.

The two lines labeled “two-at-a-time”
and “two-at-a-time-barrier” were based
on the gcc #4 reference version, where
tasks were created every two iterations
instead of every single iteration.

23

Spectral-norm: nightly so

Spectral Norm Shootout Benchmark — blockdist
— barrier
— two-at-a-time-barrier|
— spectralnorm
— two-at-a-time
— brad version

@
©
g Flipped dataParlgnoreRunningTasks
Z)
o - A
E
-
A
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

hybrid sync var implementation
and later bug fix

single data parallel task within serial

&= ®

The fastest version shown here involved manually removing nested parallelism. This
was motivated by observations related to different task creation policies on small-
core-count machines (shown on the next slide). The impact of this result led us to
examine — and eventually flip-- the default value of dataParignoreRunningTasks. This
improved most of the remaining versions which relied on nested parallelism
(specifically, a reduction within a forall loop).

The “brad” version squashes the reduction’s parallelism using ‘serial’ statements (and
it also included other style changes, including different writes, division instead of bit

shifts, formal argument domain query syntax, and alternate methods of array access).

This version’s performance improved when we reduced the number of tasks used for
data parallel constructs within serial statements.

24

Spectral-norm pisiyt

Next Steps: :
e The benchmark itself is in very good shape

e Remaining performance gap likely due to general Chapel overheads
e e.g., make Chapel's reduction more competitive with the hand-coded one

A =
&= @

25

Mandelbrot

26

Mandelbrot oo

Overview: ‘
e Computes & plots the Mandelbrot set [-1.5-i, 0.5+i] on an n x n bitmap
e Emphasizes small unsigned integers, multidimensional arrays, and
binary output, as well as some bit operations

27

Mandelbrot: historical

Mandelbrot
25
20
w 15
%
2
5
2
w 10
5
! |
1.7 release 1.8 release 1.9 release

.G%“_..”
k\%fy 3

e Chapel
——C reference

]
ccRANY
[y \
s \
\

28

Time (seconds)

80|
70|
60|
50|

40

30/
20|

=

Mandelbrot: release-over-release

Mandelbrot variations

Oct 12 Jan 13 Apr 13 Jul13 Oct 13

Apr 14

— mandelbrot-complex
— mandelbrot-dist

— mandelbrot-ferguson-putchar
— mandelbrot-ferguson-stdout
— mandelbrot-no-dist

— mandelbrot-blc

— release

— mandelbrot-unzipped

29

Mandelbrot: nightly

Mandelbrot variations

60 - - . / -

40|

Time (seconds)

20—
0 1 } : \ A

Oct13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

Test-code improvement: using a

non-locking writer

Noma

— mandelbrot-complex
— mandelbrot-dist

— mandelbrot-ferguson-putchary
— mandelbrot-ferguson-stdout
— mandelbrot-no-dist

— mandelbrot-blc

— release

— mandelbrot-unzipped

O

* The ‘complex’ and ‘dist’ versions were the original Chapel Mandelbrot versions
written by Jacob Nelson. They were very slow, 19x — 40x slower than the reference
version and are shown here to emphasize the improvement made by all
subsequent versions. ‘dist’ used a Block distribution, setting it up for distributed
memory execution, but adding overhead for the shared-memory shootout
competition. The ‘complex’ version uses complex types and math rather than

scalar floating point values.

* The ‘no-dist’ version is based on a version named ‘mandelbrot-fancy’, also

developed by Jacob, but which ran out of memory

30

Mandelbrot: nightly (zoomed in) RS R

\
Bulk 1/0 Optimization

— mandelbrot-complex
— mandelbrot-dist
— mandelbrot-ferguson-putc
— mandelbrot-ferguson-stdo
— mandelbrot-no-dist

~— = mandelbrot-blc

— mandelbrot-unzipped

\

Switched to whole-array write
for elegance

an Mar
Replaces zippering a domain and
the array contents with a traversal These three versions are

of the range now virtually identical

Changed to lock-free I/0

=

The original versions of the benchmark did
not make use of Chapel I/0

The ‘blc’ version is essentially a cleaned-up
version of mandelbrot-unzipped.

Not shown is the no-local improvement
generated by using the bulk array write

Mandelbrot

Next Steps:
e Determine the cause of remaining ~3.5x performance gap
e Consider strength reduction for divisions by powers of two
¢ or ensure that the C compiler will do this for us

Future Work:

e Explore use of complex types/operations rather than uints
e What optimizations would be required to minimize differences?

({ =T

S

32

Chameneos-redux

33

Chameneos-redux Sool

Overview:
e Simulates meetings between differently colored “chameneos”
o Pairs of creatures change colors based on their current colors
e Emphasizes our enums, atomics, and parallel tasking

e Latest version contains some revisions/fixes:
e Color computations now uses control flow instead of math
e required by benchmark rules
e Removed some code that had been added for internal testing only
o Removed unnecessary/illegal halt when meeting with self
¢ the benchmark handles such cases as part of its accounting
o Other stylistic changes and code clean-ups

&= ®

The stylistic improvements alluded to include removing redundancy while simplifying
the code, moving the ownership of certain procedures, and converting some
variables to constants.

Chameneos-redux: historical

seconds

Chameneos

1.7 release

1.8 release

1.9 release

wm Chapel
——C reference

]
ccRANY
[y \
s \
\

35

Chameneos-redux: release-over-release

Chameneos Redux Shootout Benchmark (n=6,000,000)

— chameneos-cas
— chameneos-blc
. 4 — release
8
c
8 3
i}
2
Q 2
E
—
1
olt

— chameneos-spin-loop
— chameneos-yield-loop
— chameneos-waitFor

Jul 12 Oct 12 Jan 13 Apr 13 Jul 13 Oct 13 Jan 14

\\'_’_
E=

Apr 14

Note: nightlies show nearly no change between 1.8-9

36

Chameneos-redux: nightly

Chameneos Redux Shootout Benchmark (n=6,000,000)

Time (seconds)

oct13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14

E==

S

Apr 11{

— chameneos-spin-loop
— chameneos-yield-loop
— chameneos-waitFor
— chameneos-cas

— chameneos-blc

— release

37

Chameneos-redux: nightly (smoothed) Doy

Chameneos Redux Shootout Benchmark (n=6,000,000) — chameneos-waitFor
— chameneos-spin-loop
— chameneos-yield-loop
— chameneos-cas

e — chameneos-blc
N —release

Jan 14 Feb 14 Mar 14 Aprid

Note: data has been smoothed to increase
clarity of actual trends However, due to
the high variability of data in these
versions, some trends are visible without
necessarily meaning anything. The
envelopes provided overlap almost
completely, indicating that while a test
may on average be faster than others, it
will not necessarily be the fastest each
night. The only notable exception is the
new version of chameneos. The gentle

slope seen for the red line hides the sharp
drop experienced when the release
version was converted to adopt code from
chameneos-blc.

38

Chameneos-redux Sool

Next Steps:
o Make Qthreads tasking the default and check impact on performance
e Find and optimize overheads in the scalar code paths

- ®

39

Fasta

40

L]
]
Fasta: nightly oo
L] i \
Fasta Shootout Benchmark (n=25,000,000) - ;aS:a-lineS
— fTasta
— fasta-printf
)
c
8
8
@
E
=
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
Test-code improvement: using a
non-locking writer
.\-\':_.:.—:.-1 O

This is the only real change to the fasta code since the last release — both in terms of
benchmark code changes and performance code changes.

41

Fasta: historical

seconds

120

100

80

60

40

1.7 release

Fasta

1.8 release

1.9 release

s Chapel
——C reference

]
ccRANY
(Y \

L]
\

42

Fasta: release-over-release SO08

Fasta Shootout Benchmark (n=25,000,000)
25 — fasta-printf

20|

Time (seconds)

Jul12 Oct 12 Jan 13 Apr 13 Jul 13 Oct 13 Jan 14 Apr 14

s (32)

= (=)

Pidigits

44

Pidigits Updates

Background: From the Computer Language Benchmark Game

e serial benchmark that computes r to n digits
e makes use of the GMP module (Gnu Multiple Precision math library)

Previously:
e Ported to Chapel in Feb 2011
e Has not been testing nightly, as GMP is off by default

e In previous comparisons, Chapel has beaten top C versions

Now:
e Reviewed and cleaned up code

e Promoted to the 1.9 release
e Enabled GMP in nightly testing, so tracking correctness/performance

e revealed a 32- vs. 64-bit portability bug related to C (now fixed)

®

=

&=

The fact that Chapel has traditionally beat the top C versions in our comparisons
seemed suspicious, but we hadn’t taken the chance to investigate until now (see

following slides)

Pidigits: historical RS,

¢ Traditionally, pidigits in Chapel has been surprisingly fast: .

pidigits
3
25
2
@
=
515 e Chapel
8
& —C reference
1
0
1.7 release 1.8 releass 1.8 release
.\‘____,
= ®

46

Pidigits: Chapel Performance Mystery pisiyt

e It turns out that the difference is the version of GMP used .
o reference codes use the version installed on our system
e version4.2.3
e Chapel uses the version bundled with Chapel
e historically, version 5.0.1
¢ now, version 6.0.0

¢ Unifying GMP versions removes this difference:

Chapel’s System’s Hand-built
GMP 6.0.0 GMP 4.2.3 GMP 4.2.3

pidigits.gcc (#1) 1.09 sec 2.73 sec (did not measure)

pidigits.gcc (#4) 1.16 sec 2.89 sec (did not measure)
pidigits.chpl (#1) 1.08 sec 2.73 sec 2.72 sec
pidigits.chpl (#4) 1.16 sec 2.88 sec 2.89 sec

(and happily, Chapel doesn’t add overheads relative to C)

== ®

The C versions weren’t measured against the hand-built GMP versions mostly out of
laziness — it’s slightly painful to override the system version of GMP and the trends
were pretty clear from these measurements.

Pidigits: Historical Performance

Pi digits variations

GMP 4.2.3 performance

GMP 5.0.0+ performance

2012/08/20:
pidigits-blc: 2.85
pidigits-iter: 2.86

" pidigits (release) 2.85

Time (seconds)
Py

Jui 11 Jan 12 Jui12 Jan 13

Noma

Jui13

Jan 14

®

These timings are from a different machine than the previous slide; that’s why the

numerical values don’t match.

48

Pidigits: Historical Performance oo

¢ This also explains our long-term historical pidigits data: \

Initially, used system GMP for testing

itched to bundled version;
this didn’t build everywhere, so
turned it off
2012/08/20:
pidigits-blc: 2.85
pidigits-iter: 2.86
pidigits (release) 2.85

Then, switched back to system
version, but not all platforms had it, Today, we've turned bundled
so turned it back off version on for most platforms

Jui 11 Jan 12 Jui12 Jan 13 Jui13 Jan 14

&= ®

N

These timings are from a different machine than the previous slide; that’s why the
numerical values don’t match.

Pidigits Next Steps: defaults in releases pisiyt

¢ Decide whether to build GMP by default

e Possible proposal:
e try to build, ignoring failures
e current CHPL_GMP logic will default to bundled version if build worked
e main downside: won't default to using system version (same as today)

e Decide whether to switch to bundled version for Crays
o today we're using the system version on Crays by default
e this turns out to be 4.2.3
e s0, bundled version could be better

&= ®

50

Pidigits Next Steps: reduce reliance on C types SR

e The aforementioned 32- vs. 64-bit portability bug: \

var k: uint;

do {
do {
k += 1;

const y2 = 2N + 1; Problem: mpz*_ui routines
/R

mpz_mul_ui (accumy, accum, y2);

mpz_mul ui (numer, \pumer, k);

mpz mul ui(denom, d{nom, yZ2);

} while (..);

Chapel’s uint type is 64 bits

} while (..); i
and not guaranteed to fitin a
C unsigned long
= COMPUTE STORE | ANALYZE
Q:‘— Copyright 2014 Cray Inc @

51

[
\
. gu_m . (el — PP\
Pidigits Next Steps: reduce reliance on C types pisiyt
L) \\
e The aforementioned 32- vs. 64-bit portability bug: \
var k: c_ulong;
do {
do { The quick fix is to use a C type here;
k += 1; but this is not ideal.
const y2 = Z2*k + 1;
mpz_mul ui(accum, accum, yZ2);
mpz_mul ui (numer, numer, k);
mpz mul ui(denom, denom, vZ2);
} while (..);
} while (..);
B ®

Not ideal because if, to use GMP, you have to use C types everywhere, what does that
imply for your Chapel code?

The primary alternative would be to have Chapel’s GMP routines downcast its int
arguments to the appropriate C types; but at what cost/risk? Could, for example,
have a safer but more expensive vs. cheaper and more risky mode which is guided by
a --fast-controlled flag.

More specifically, what we might want/need to support this are:

In the cast case, there’s also a challenge related to the desire to take the mpz_t that
I’'m imagining would be created and returned by the cast function and steal it for use

Pidigits Next Steps: cleaner initializations

¢ Improved support for initializing external types

¢ Instead of:

var nume
mpz init se
mpz init se
mpz init s
mpz_ init
mpz init

...it would be nice to be able to write:
var numer.

denom: mpz t 1

tmpl

r, accum,

et ui(den
tmpl) ;

tmp2) ;

mpz t =

n: mpz t =

’

or even:

var I

o ompz €,
;o mpz t,
: mpz_t,

2 mpz_t;

e requires ability to specify initializations, casts for external types

E==

promotion of initialization assignments to a language-level concept

and the promotion of user-defined casts to a language-level concept

by ‘numer’ rather than requiring a copy from one mpz_t to another

and/or the ability to define a defaultInitialize() function on a specific type when its
initializer isn’t present

53

Pidigits Next Steps: operator overloads (?) SR

e Replace mpz_*() calls with operator overloads (?)
e Instead of:
wpgimu,i;*”;-:fqt,, numer, 1);
mpz add({accum, accum, tmpl);

mpz mul ui(accum, accum,

...it would be nice to be able to write: or even:
mpl = numer * 2;

iccum += tmpl;

\ccum = vzg

o Some of these cases are reasonably straightforward:

proc ref

o Others are more difficult to do, at least efficiently..

fon
N

The challenges alluded to in the final bullet here relate to the fact that to use GMP

best, you’d really want to recognize and match against multi-expression templates.

Failure to do so requires extra temporary variables that would either have to be
reference counted or leaked.

But how to support such multi-expression templates for external types that the
compiler doesn’t know about or know how to reason about?

54

Pidigits Next Steps: op overload challenges Qi

¢ efficiency and memory management concerns \
e operators other than assignments need to store results somewhere
proc *(x: mpz t, y: mp z t)
var res: mp
mpz_init(res); // need to initialize the result for each op
mpz mul (res y
return res; # who's going to clean up this memory?
} / plus, we want to avoid copies back at the callsite. ..

e need some means of doing multi-expression optimization/overloads?

e many operators have multiple implementations in GMP
¢ how to decide which flavor to use?

¢ also, some challenges in today’s implementation

e ambiguities with existing operators for some overloads:
inline proc (ref lhs: mpz t, ref rhs: mpz t) |

e challenges with compiler-introduced temps

= ©

Why are mpz_t overloads ambiguous with existing operators? Because mpz_t types
are 1-element arrays in C and for that reason are represented as 1-tuples in Chapel,
conflicting with our tuple overloads.

The compiler-introduced temps bullet refers not only to the fact that the compiler’s
inserting such temps (which we probably don’t want), but also to the fact that such
temps are not I-values, yet most GMP functions currently take their arguments by ref.
This could potentially be resolved by changing such read-only GMP arguments to take
their arguments by const ref — | haven’t tried that yet.

55

Pidigits Next Steps: op overloading promise SR

¢ Despite the challenges, the potential is tantalizing: \

var numer

1om, twpl, tWp2:

er, a m,

t_set_ui (numer,

t_ui(accu

do
do |
numer, 17 VS.
; cum + * 2
mpz_mul_ui (accum, accum, y2)7 accum *= y
mpz_mul_ui (numer, numer, k: numer *= k;
mpz_mul_ui (denem, denom, y2); =
) while owp (rumer, 0) while (numer > accum
_mul_Zexp(tmpl, numer, 1); tmpl = numer * 2;
add(tmpl, tmpl, numer); tmpl += numer;

ditmpl, tmpl, acc tmpl += accum;

tmpl, tmp2, tmg (tmpl, tm = enom
tmpZ, numer); tmp2 += m
W} = 0):) while (tmp2 >=
et const d = tmpl: c
d) accum = | -

56

Pidigits Next Steps: multi-precision types? pisiyt

e At which point, maybe we’d want to promote arbitrary- \
width types to the language?

instead of... use...
var numer = 1 npz_t, l: real(*),
ccum = wpz_t, : real(*),
lenom 1 wpz_t, lenom 1: real(™*),

tmpl 1 1 t tmpl, tmpZ2: real(*);

O)

E==

Note that if we went directly to this approach, it would allow us to dodge several of
the previous challenges.

Yet, the downside to doing so is that other user-defined external types would not
enjoy these benefits.

Thread-ring

58

Thread-ring

Overview:
e Passes a token n times among nthreads threads
e prints the thread that ends up holding the token
e Problem Size: n = 50,000,000, nthreads = 503
e Emphasizes tasking and synchronization variables

=

&=

59

Thread-ring: historical

800.00
700.00
600.00

w 500.00

2

S 400.00

o

@

' 300.00
200.00
100.00

0.00

=

&=

1.8 release

Thread-Ring

1.9 release

mmm Chapel
——C reference

]
ccRANY
[y \
s \
\

60

Thread-ring: release-over-release N
4 \
Thread Ring Shootout Benchmark (n=50,000,000)
350 ~
T . — coforall-begin
300| ~— \
™ 250 l\“\.\
g .
= T~
8 200| T
b3 T~
o 150 T~
E “‘
= 100|

50|

Ji12 Oct12 Jani13 Apr13 Jul13 Oct13 Janid Apri4

Most of the historical timings time out for the four different versions. One of the
three runs of the Oct12 execution happened to not time out which is why there is
one line with two data points. This graph primarily shows that the versions have
gone from (typically) timing out to completing in version 1.9.

Thread-ring: nightly e
L) i \
Thread Ring Shootout Benchmark (n=50,000,000) — release
— for-begin
1000 — coforall
— coforall-begin
g
8
8
<]
£
=
Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
Revert thread-waiting change
Hybrid sync variable implementation
C= ®

Using begin statements within a coforall loop is still the fastest way to implement this
program, although the other methods are not as far behind as they used to be. It was
theorized that leftover threads were being repurposed instead of initializing new
ones, leading to the timing difference. Testing prior to the sync variable change
seemed to confirm that theory, although no tests were performed after that change
and the change back to the old thread-waiting version.

Thread-ring oo

Next Steps:
e Work on making Qthreads the default to get lower tasking overheads
¢ Map sync vars to Qthreads’ full-empty variables
e ldentify and fix remaining performance gaps compared to references
o Consider additional optimizations to ‘fifo’ tasking and sync vars

&= ©

63

N-body

64

N-Body: Historical oo

N-Body

mmm Chapel

seconds
=

B — C reference

1.7 release 1.8 release 1.9 release

- ®

From this point out, less and less has been done with the benchmarks themselves, so
we report less on work done and simply present the performance graphs and key
changes.

N-Body: all versions

N-body variations

(==

100 e e—

80
m
°
c
8 60
o}
L2
o 40
£
=

20 —_——

0 1
Jul 12 Oct 12 Jan 13 Apr 13 Jul 13 Oct 13 Jan 14 Apr 14

— slice-based blc version
— forloop

— record domain

— zip-based blc version
— original

— release version

— record

— blc version

66

]
. [l — P
N-Body: Nightly results oo
. \
\
N-body variations — slice-based blc version
— forloop
| — record domain
200 — zip-based blc version
— original
= 150 — release version
o — record
g — blc version
fni 100 pAorcoi=sAinge A | = ——
[}
E hi'
[S [
= 50
M
of! -
Oct13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

Removed extra formal temps

e COMPUTE STORE ANALYZE

Q:‘—k ight 2014 Cray Inc @

N-Body: best versions

N-body variations

Time (seconds)

Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

Removed extra formal temps

o COMPUTE STORE
Q:....k ight 2014 Cray Inc

— slice-based blc version
— forloop

— record domain

— zip-based blc version
— original

— release version

— record

— blc version

68

Binary-trees

69

Binary-trees: historical

seconds

Binary-trees

1.7 release

1.8 release

1.9 release

mmm Chapel
——C reference

70

Binary-trees: release-over-release

Binary Trees Shootout Benchmark (n=20)

80} e ~
©
° 60|
8
)
= 40/
E
IS

A e

Jul 12 Oct 12 Jan 13 Apr 13 Jul 13 Oct 13

N

Jan 14

Apr 14

— binary-trees_iter

— binarytrees

— binary-trees

— binary-trees-freeWhileAdding

71

Binary-trees: nightly

Binary Trees Shootout Benchmark (n=20)

70 N 1
60 "\ M \/ A\ ",”‘ "
{ \ \
2 50
c
8 40
[
A
= 30
£
B

Oct 13 Nov 13 Dec 13 Jan 14 Feb 14

(==

Mar 14

Apr 14

— binary-trees_iter

— binarytrees

— binary-trees

— binary-trees-freeWhileAdding

72

Shootout Summary

73

Shootout Performance Summary (v1.8)

Chapel x worse than best reference

20.00
18.00
16.00
14.00
12.00
@ !
§ 1000
E
>
8.00
6.00
400
2.00
0.00 . . : . : . . . - :
S S 2 & & & 53 & & & &
ssﬁ\d‘-‘f" fﬁé’ﬁé(\»&@“#’f\x‘@f”
& ‘é’g S & & s < & & §
& & « & s «
5@‘@ B &
N COMPUTE STORE SANALYZE

R
@;—k Copyright 2014 Cray Inc

= Chapel 1.8

74

Shootout Performance Summary (v1.9)

Chapel x worse than best reference

20.00

18.00

16.00 +

14.00

12.00

10.00

X worse

8.00

6.00

4.00 +

A \ﬁ& P A & &
oy o & & & B & & Y, 0&
& &~ & & o & §
& 6@&" & & & ¢ L & «
& o < &

=

&=

0.00 - - - . - . : : .
. e & .
& < J

= Chapel 1.9

75

Shootout Performance Summary (v1.8-v1.9)

Chapel x worse than best reference

20.00

]
ccRANY
\
\‘ \
\

18.00

16.00

14.00

12.00

10.00

X worse

8.00

6.00

4.00

2.00

COWN STOR
Q:‘—k Copyright 2014 Cray Inc

= Chapel 1.8
= Chapel 1.9

76

Outline S o0N

e Computer Language Benchmark Game (“shootout”) Codes

e Other Notable Single-Locale Benchmark Results
e LULESH
o MiniMD
o SSCA#2
e HPC Challenge Benchmarks
e NAS Parallel Benchmarks

&= @
e

77

Other Notable Benchmark Results s

¢ The following benchmarks are important to us, yet have \

not received much attention in the 1.9 release cycle
o we've focused on the shootouts to fix serial performance issues
e these will be more compelling for HPC users than the shootouts

e graphs show that they've generally improved in spite of this
e though there are a few performance slips as well

e These are all multi-locale benchmarks
¢ the test results here represent single-locale executions
e some cases were compiled --no-local to track multi-locale code overheads

E T E NALYZE

LULESH

()
=)

79

LULESH: historical

=,

Time (seconds)

120.00

100.00

LULESH

80.00 -

60.00 -+

40.00 4

20.00

0.00 -

1.7 release

COMPUTE

W Chapel (dense materials)
i Chapel (sparse materials)
—— reference

1.8 release 1.9 release

STORE | ANALYZE

Copyright 2014 Cray Inc

]
cRANYT
[y \
. \
\

80

\
CRAaNry
LULESH Release: release-over-release oo
L) i \
LULESH (release) — dense (no-local)
— sparse (no-local)
6 — sparse (local)
— dense (local)
5 A
g .
3
3 3
ry
E 2
[
; -
0 1
Jul 12 Oct 12 Jan 13 Apr13 Jul13 Oct13 Jan 14 Apr 14
\J:‘_';:; C)

Note that the previous slide showed —local timings only. The —no-local cases got
better during this release cycle.

81

LULESH Release: nightly cRasy

remove sublocale IDs for ‘flat’ N !
locale model

optimize sublocale support for
‘fifo’ tasking model \

LULESH (release) — dense (no-local)

— sparse (no-local)
7 — sparse (local)
6 — dense (local)
g
g
8
[}
E
e
Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
Flipped dataParlgnoreRunningTasks
hybrid sync var implementation
and later bug fix fix #tasksl crgate_d by Block
distribution
P E STORE ANALYZE
(\i—; ight 2014 Cray Inc @

We haven’t had the chance to check what the final performance regression in LULESH
is due to. The most likely candidates are:

* we started using the —static flag for these performance tests
* we moved the task counting from the runtime to the module

we changed some ‘inout’ intents to ‘ref’ intents in the module code (but primarily
for 1/0 which seems unlikely to be the cause here)

82

LULESH Study: release-over-release

Time (seconds)

C=

LULESH (bradc study version)

/\

Jul 12 Oct 12 Jan 13 Apr13 Jul 13 Oct 13 Jan 14 Apr 14

— release version
— dense (no-local)

®

83

Time (seconds)

LULESH Study: nightly

LULESH (bradc study version)

Jan 14

Flipped dataParlgnoreRunningTasks

hybrid sync var implementation
and later bug fix

Feb 14

Candidate pair removal

— release version
— dense (no-local)

84

miniMD

85

miniMD: historical

250.00

200.00

150.00

100.00

Time (seconds)

2
2

0.00

miniMD

= Chapel

1.8 release 1.9 release

86

.. Cl:AY"
miniMD: release-over-release SO08
L] i \
miniMD LJ (--size=10) Time — simple block nolocal

— stencil nolocal

50 — simple nolocal

— simple
40 — old
w
2
S 30
(5]
(]
A
] 20
E
[

o \

Jul 12 Oct 12 Jan 13 Apr 13 Jul 13 Oct 13 Jan 14 Apr 14

miniMD: nightly

miniMD LJ (-size=10) Time

]
cRANYT
[y \
. \
\

— stencil nolocal
— explicit nolocal
— simple block nolocal
— simple nolocal

— simple
—_ — old
[}
o
(=
8
L)
@
£
=
Nov 13 Jan 14 Feb 14 Mar 14 Apr 14
Nested parallelism Improved -snoRefCount
. COMPUTE STORE ANALYZE
Qj—k Copyright 2014 Cray Inc

88

SSCA#2

()
=/

89

\
. [eed — P2
SSCA#2 Kernel 4: nightly pisiyt
L] i \
SSCA#2 Kernel 4 TEPS (SCALE=8) — TEPS)
3.000+6]| — edge count adjusted TEPS
2.50e+6 | .
& Moved task counting to the modules
& 2.00e+6|
=
8 150046
£
5 1.00e+6|
g
A 500000
D‘l gy - 7
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

Flipped dataParlgnoreRunningTasks

E STORE NALYZE

K\i—:}:‘t o ight 2014 Cray In O

Note that this is a performance slide, and that therefore higher is better.

90

HPC Challenge Benchmarks

=)

91

L
\
- cCcR=RAY
HPCC Stream-EP: nightly
HPCC STREAM-EP Performance (GB/s) — max =
—avg=
—min=
20 ﬂ &(J“l
Q3 | |
8 - W [
3 J B | e e e |
] 10
g
G~
& 5
oL,)) |
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
EP STREAM (fragmented) (GB/s) — STREAM-local
2 — STREAM
20
@
)
() 15
g
g 10
2
& 5
0 1
oct13 Nov13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
B

Note that these are performance slides and that higher is better.

Global STREAM: Nightly
Global STREAM Performance (GB/s)
25
. 20
Q
[s1]
2 15
@
=
E 10
2
e 5|
0 1
Qct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

— Performance (GB/s) =

Note that on this slide, higher is better

93

HPCC RA: nightly

HPCC RA Performance (GUPS)

0.2
A N A
A M s r"’\ﬁ/j‘w‘f‘ \
— [“"l‘."“‘ \’U“wl /J.IVJV_/\/’I‘ /ﬂ‘
% | \
o 015V HY i - L
=] ml‘
Q L’ﬂ'f “
§ 0.1 |
©
£ LM AT e\ T ST Y
S
5 0.05
o
ol
QOct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

ey

—RA
— RA w/atomics

Note that on this slide, higher is better

94

Performance (Gflop/s)

E==

HPCC FFT: nightly

HPCC FFT Performance (Gflop/s)

0.08

\f\‘;\r"\\fﬁ'.,.
0.06 |
0.04
0.02|
ol!
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

Note that on this slide, higher is better

95

L]
\
. [emd — P i
HPCC HPL: nightly pisiyt
4 \
HPCC HPL Performance (Gflop/s) — hpl
0.04
T
0.035
e 0.03
o]
B 0.025
o 0.02
=
g o015
€ o0t
@
o
0.005
0 1
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
(== ®

Note that on this slide, higher is better

96

NAS Parallel Benchmarks

97

NAS Parallel EP-D: historical

NAS EP-D

600
500

400 s Chapel

seconds

——C reference
300

200

100

1.7 release 1.8 release 1.9 release

R COMPUTE STORE ANALYZE
Q:‘—k Copyright 2014 Cray Inc

NAS Parallel EP-B: release-over-release SO08

NAS Parallel Benchmarks: EP timings - size B — runtime - B
12

10 ——

Jul 12 Oct 12 Jan 13 Apr 13 Jul 13 Oct 13 Jan 14 Apr 14

\J:‘_';:; _)

\
. [eed — P2
NAS Parallel EP-B: nightly sk
- i \
NAS Parallel Benchmarks: EP timings - size B — runtime - B
TA
/
8
6
4
1
2 Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14

Nested parallelism

o COMPUTE

Flipped dataParlgnoreRunningTasks

Improved constness and remote

value forwarding
STORE ANALYZE

Copyright 2014 Cray Inc @

100

NAS Parallel CG-A: historical RS,

seconds

©

@ - o

NAS CG-A

mmm Chapel
——C reference

1.7 release 1.8 release 1.8 release

COMPUTE STORE ANALYZE

opyright 2014 Cray Inc ®

101

NAS Parallel CG-A: release-over-release

NAS Parallel Benchmarks: CG timings - size A

8 /\

Jul 12 Oct 12 Jan 13 Apr13 Jul 13 Oct 13 Jan 14 Apr 14

Noma

— runtime - A

o

102

\
5 cCcR=RAY
NAS Parallel CG-A: nightly S
LY A \
NAS Parallel Benchmarks: CG timings - size A — runtime - A
10
8
6
4
2
0 1
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
]\Q%Z;L O

103

NAS Parallel FT-A: historical RS,
NAS FT-A

mmm Chapel

seconds
@
=)
=

——C reference

1.8 release 1.9 release

= COMPUTE STORI ANALYZE

@—’T—T ||.r_'-ul:-;_| Inc ®

104

\
NAS Parallel FT-A: nightly pisiyt
L) i \
NAS Parallel Benchmarks: FT timings - size A — runtime - A
25
20 [,\,l
18] ‘
|MM—_J__M_N\A.___‘WA
10
5
0 1
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
hybrid sync var implementation
and later bug fix
(S 8

105

NAS Parallel IS-A

«

725,

=

seconds

180

1.60

1.40

120

1.00

0.80

060

040

020

0.00

. . CQAY’!

: historical e’
L] \

\

1.8 release

COMPUTE

NAS IS-A

s Chapel
——C reference

1.9 release

106

NAS Parallel IS-S: release-over-release

NAS Parallel Benchmarks: IS timings - size S

25

Jul12 Oct 12 Jan 13

L
ey

Apr13

Jul13

Oct 13

Jan 14

Apr 14

— setup time - S
— key sort time - S
— total time - S

— verify time - S

o

107

L]
\
NAS Parallel IS-S: nightly pisiyt
L) i \
NAS Parallel Benchmarks: IS timings - size S — setup time - 8
— key sort time - §
— total time - S
3 ‘|| — verify time - S
25/ - [V A e A e A —
/ M ;'—\J‘
2 \
15
1
0.5
o 1
Oct 13 Nov 13 Dec 13 Jan 14 Feb 14 Mar 14 Apr 14
oria d ple e allOo
ana 1ater pug
E=)

108

\
ccRANY

Legal Disclaimer

=

R,

«

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames Is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

ANALYZE

- Copyright 2014 Cray Inc

[y \

\

\

109

=

cRas
CcCHARPEL
=

=/

CRANY

THE SUPERCOMPUTER COMPANY

110

