
1

2

Note that the vast majority of graphs in this slide deck are reporting execution times,
so lower is better. The primary outliers are the HPC Challenge benchmark results
near the end, which typically use performance metrics like GB/s. These cases are
called out in their notes sections.

3

4

5

6

Each of the 10 pieces is a unique shape that can be rotated and flipped before being
placed on the board. Every piece must be used in the solution.

7

These versions are known as meteor-parallel and meteor-parallel-alt inside of the
test/studies/shootout/meteor/kbrady/ directory.

8

On this graph, the previously mentioned meteor is marked as ‘release/meteor-
parallel’ and meteor-fast is ‘meteor-parallel-alt’.

The series meteor and meteor-implicit-domain are single threaded versions of
meteor-parallel. The gap between them is caused by a large number of copies that
occur when array type is fully specified for formal arguments.

9

10

The noise in this graph is puzzling. For the Oct 13 and Apr 14 data points, the first of
the three trials got an unexplainable timing of 1.x seconds compared to the norm
which is a tiny fraction of a second (as seen in the Apr 13 timings and the nightly
graph shown earlier. We’re including this graph here for completeness rather than
because it’s particularly useful. The historical graph of the previous slide is essentially
the same information (since it’s all retroactively gathered) and far more indicative of
the performance we typically see. It seems likely that there is some artifact in our
testing system that is causing the overhead for the first run of these release-over-
release timings.

11

Meteor-fast was very close to being in the 1.9 release, but was held back due to
portability issues. The BitOps module committed after the 1.9 release will let us fix
that easily.

12

13

The benchmark takes every permutation of {1,…,n} and performs a few steps over
them:

1. Take the first element, X

2. Reverse the first X elements of the sequence

3. Repeat until the first element is 1

14

15

16

‘Brad compact version’ is noisy due to the use of a reduction

17

Without a parallel version we will not stack-up against other versions in the multi-
core tests.

In analyzing the final optimized assembly I noticed that the C compilers (gcc 4.8 /
clang) were turning one of the loops in the reference C version into a memcpy, but
not in ours. Getting our loops into a form where the backend compiler will perform
this optimization would be a small performance win.

18

19

Conjugate transpose is the transposition (A(i,j) => A(j,i)) of a conjugate matrix, where
the conjugate of a complex number a + bi is a – bi.

Eigenvalues are a special set of scalars associated with a linear system of equations .

20

21

22

• these results were gathered on chap03,
a 2-core workstation

• ‘Blockdist’ and ‘barrier’ were the
original versions, written by Albert
Sidelnik

• The line labeled “spectralnorm” (in light
blue, visible on the second set of lines
from the top) was an initial cleaned up
version, which did not use block

distributions or a barrier.

• The two lines labeled “two-at-a-time”
and “two-at-a-time-barrier” were based
on the gcc #4 reference version, where
tasks were created every two iterations
instead of every single iteration.

23

The fastest version shown here involved manually removing nested parallelism. This
was motivated by observations related to different task creation policies on small-
core-count machines (shown on the next slide). The impact of this result led us to
examine – and eventually flip-- the default value of dataParIgnoreRunningTasks. This
improved most of the remaining versions which relied on nested parallelism
(specifically, a reduction within a forall loop).

The “brad” version squashes the reduction’s parallelism using ‘serial’ statements (and
it also included other style changes, including different writes, division instead of bit
shifts, formal argument domain query syntax, and alternate methods of array access).
This version’s performance improved when we reduced the number of tasks used for
data parallel constructs within serial statements.

24

25

26

27

28

29

• The ‘complex’ and ‘dist’ versions were the original Chapel Mandelbrot versions
written by Jacob Nelson. They were very slow, 19x – 40x slower than the reference
version and are shown here to emphasize the improvement made by all
subsequent versions. ‘dist’ used a Block distribution, setting it up for distributed
memory execution, but adding overhead for the shared-memory shootout
competition. The ‘complex’ version uses complex types and math rather than
scalar floating point values.

• The ‘no-dist’ version is based on a version named ‘mandelbrot-fancy’, also
developed by Jacob, but which ran out of memory

30

The original versions of the benchmark did
not make use of Chapel I/O

The ‘blc’ version is essentially a cleaned-up
version of mandelbrot-unzipped.

Not shown is the no-local improvement
generated by using the bulk array write

32

33

The stylistic improvements alluded to include removing redundancy while simplifying
the code, moving the ownership of certain procedures, and converting some
variables to constants.

34

35

Note: nightlies show nearly no change between 1.8-9

36

37

Note: data has been smoothed to increase
clarity of actual trends However, due to
the high variability of data in these
versions, some trends are visible without
necessarily meaning anything. The
envelopes provided overlap almost
completely, indicating that while a test
may on average be faster than others, it
will not necessarily be the fastest each
night. The only notable exception is the
new version of chameneos. The gentle

slope seen for the red line hides the sharp
drop experienced when the release
version was converted to adopt code from
chameneos-blc.

38

39

40

This is the only real change to the fasta code since the last release – both in terms of
benchmark code changes and performance code changes.

41

42

43

44

The fact that Chapel has traditionally beat the top C versions in our comparisons
seemed suspicious, but we hadn’t taken the chance to investigate until now (see
following slides)

45

46

The C versions weren’t measured against the hand-built GMP versions mostly out of
laziness – it’s slightly painful to override the system version of GMP and the trends
were pretty clear from these measurements.

47

These timings are from a different machine than the previous slide; that’s why the
numerical values don’t match.

48

These timings are from a different machine than the previous slide; that’s why the
numerical values don’t match.

49

50

51

Not ideal because if, to use GMP, you have to use C types everywhere, what does that
imply for your Chapel code?

The primary alternative would be to have Chapel’s GMP routines downcast its int
arguments to the appropriate C types; but at what cost/risk? Could, for example,
have a safer but more expensive vs. cheaper and more risky mode which is guided by
a --fast-controlled flag.

52

More specifically, what we might want/need to support this are:

• promotion of initialization assignments to a language-level concept

• and/or the ability to define a defaultInitialize() function on a specific type when its
initializer isn’t present

• and the promotion of user-defined casts to a language-level concept

In the cast case, there’s also a challenge related to the desire to take the mpz_t that
I’m imagining would be created and returned by the cast function and steal it for use
by ‘numer’ rather than requiring a copy from one mpz_t to another

53

The challenges alluded to in the final bullet here relate to the fact that to use GMP
best, you’d really want to recognize and match against multi-expression templates.

Failure to do so requires extra temporary variables that would either have to be
reference counted or leaked.

But how to support such multi-expression templates for external types that the
compiler doesn’t know about or know how to reason about?

54

Why are mpz_t overloads ambiguous with existing operators? Because mpz_t types
are 1-element arrays in C and for that reason are represented as 1-tuples in Chapel,
conflicting with our tuple overloads.

The compiler-introduced temps bullet refers not only to the fact that the compiler’s
inserting such temps (which we probably don’t want), but also to the fact that such
temps are not l-values, yet most GMP functions currently take their arguments by ref.
This could potentially be resolved by changing such read-only GMP arguments to take
their arguments by const ref – I haven’t tried that yet.

55

56

Note that if we went directly to this approach, it would allow us to dodge several of
the previous challenges.

Yet, the downside to doing so is that other user-defined external types would not
enjoy these benefits.

57

58

59

60

Most of the historical timings time out for the four different versions. One of the
three runs of the Oct12 execution happened to not time out which is why there is
one line with two data points. This graph primarily shows that the versions have
gone from (typically) timing out to completing in version 1.9.

61

Using begin statements within a coforall loop is still the fastest way to implement this
program, although the other methods are not as far behind as they used to be. It was
theorized that leftover threads were being repurposed instead of initializing new
ones, leading to the timing difference. Testing prior to the sync variable change
seemed to confirm that theory, although no tests were performed after that change
and the change back to the old thread-waiting version.

62

63

64

From this point out, less and less has been done with the benchmarks themselves, so
we report less on work done and simply present the performance graphs and key
changes.

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Note that the previous slide showed –local timings only. The –no-local cases got
better during this release cycle.

81

We haven’t had the chance to check what the final performance regression in LULESH
is due to. The most likely candidates are:

• we started using the –static flag for these performance tests

• we moved the task counting from the runtime to the module

• we changed some ‘inout’ intents to ‘ref’ intents in the module code (but primarily
for I/O which seems unlikely to be the cause here)

82

83

84

85

86

87

88

89

Note that this is a performance slide, and that therefore higher is better.

90

91

Note that these are performance slides and that higher is better.

92

Note that on this slide, higher is better

93

Note that on this slide, higher is better

94

Note that on this slide, higher is better

95

Note that on this slide, higher is better

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

