Improved Support for Locale Models

Chapel Team, Cray Inc.
Chapel version 1.9 summary
April 17, 2014 (released) / May 2014 (documented)

\ (=N
(cHaPe=L
=

=/

Safe Harbor Statement

AN

KI'his presentation may contain forward-looking statements that are\
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

/

o
)
H

Copyright 2014 Cray Inc.

Overview of Locale Model Improvements

e Performance improvements
¢ No sublocale overhead for ‘flat’ locale model

e Support for reuse of default parallel iterators
o Forwarding of Block distribution iterators to default iterators

e Restructuring and bug fixes

=

&=

\

(e — P\

No sublocale overhead for ‘flat’ locale model Sool
L] \

\

Background: The ‘flat’ locale model does not use sublocales \
e Initial locale model approach added a sublocale id to all locale models

This Effort: Remove all sublocale overhead when not required
o Remove the sublocale id field from flat locale models
¢ Remove runtime overhead of storing/retrieving locale ids from task
private data

C= ®

No sublocale overhead for flat (continued) pisiyt

Impact: Accesses to locale ids without sublocales pay no penalty .
e Nightly performance benchmarks compiled with --no-local show benefit

25

20

15 - = with subloc id
® no subloc id
mwith runtime overhead

10
mno runtime overhead

LULESH LULESH miniMD miniMD miniMD
dense sparse simple stencil explicit

= ©

* All multilocale execution would see benefit from these changes, but we currently
do not do nightly multilocale performance testing. Single locale performance tests
compiled with the —no-local flag give a sense of the penalties paid for multilocale
execution.

* The bars correspond to execution time before and after each of the two changes
described in the previous slide.

* The lulesh versions use block distribution (dense and sparse). The miniMD
versions use the block distribution.

Support for reuse of default parallel iterators SR

s \
\

Background: Default parallel iterators implement single locale \

parallelism policies
¢ lterations are divided amongst tasks (e.g., cores) and/or sublocales
(e.g., numa domains) as defined by the locale model

This Effort: Enable control of the iterator on a per-loop basis

e Local control of data parallelism without having to write a new iterator
forall i in D._value.these (maxTasks, ignoreRunning, minlInds) do

o Reuse via iterator forwarding
iter mylter (..)
for i in D. value.these(.., offset)
// do something
yield i;

= _)

-

* Prior to this change, parallel iteration was controlled by the global configuration
variables (dataParTasksPerLocale, dataParignoreRunning, and
dataParMinGranularity) and could not be changed on a per loop basis. Adding
these control knobs as well as a base offset as optional arguments to the iterator’s
signature enabled the ability to reuse the default iterators.

* lterator forwarding is a way for an iterators that yield the same or similar values as
an existing iterator forward to the original iterator, enabling reuse.

Support for reuse of default parallel iterators SR

s \
\

Impact: Domain maps using default domains/arrays need not \

re-implement parallel iterators with locale-model-specific logic
o Block distribution’s iterators are now forwarded to the default iterators

Next Steps: More general use and support for iterator forwarding
e Forward default iterators for Cyclic and other distributions
e Add similar support for default range, associative and sparse
e Improved or new syntax for iterator forwarding
e Improved naming for referring to default iterators

= ©

* Inthe Block distribution’s iterators, we now simply call out to the default iterators.
Prior to this change, the logic in the default iterator was replicated (and not
precisely maintained, so improvements to the default case were not automatically
propagated to / inherited by Block).

* The point about improved naming refers to the need to reference D._value.these
on the previous slide in order to forward

Restructuring and bug fixes pisiyt

Restructuring .
e Remove all knowledge of locale id structure from the compiler
e maintained completely in the modules and runtime
¢ Avoid calling into the runtime when not needed
e impacts performance but probably negligible for now
e Remove constant representing the current sublocale and add one
representing no sublocale (none)
e current was never used, but none was occasionally useful

Bug Fixes
e Always correctly migrate tasks to the correct sublocale
e Fix gthreads build w.r.t. number of sublocales for the flat locale model
e caused in part by storing gthreads tasking asymmetrically w.r.t. other layers

= ©

* As we gained more experience with locale models, we were able to fix or improve
some of our earlier design choices.

* The asymmetric storage issue relates to the fact that, for historical reasons, the
Chapel runtime interface for Qthreads lives in the third-party directory rather than
in the runtime directory as a sibling to fifo, massivethreads, etc. Contributor
agreement issues have prevented us from fixing this to date, but moving to the
Apache contributor agreement should alleviate this.

Next Steps pisiyt

e Sublocale-aware task counting .

e Pragma-annotated loops for accelerators and vector ops
e Support for OpenACC, OpenMP 4.0

e ‘noinit’ for arrays to enable better “first touch” allocation

¢ Reduce/eliminate wide pointer overheads within NUMA

sublocales
o Compiler solutions for reducing the use of wide pointers should also
improve performance for multilocale

e Composable Locale Models

&= ©

\
ccRANY

Legal Disclaimer

=

R,

«

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames Is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICEZ2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.. CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

ANALYZE

- Copyright 2014 Cray Inc

[y \

\

\

10

CRANY

THE SUPERCOMPUTER COMPANY

11

