
December 14, 2023 / March 21, 2024
Chapel Team

Chapel 1.33 / 2.0 Release Notes:
Runtime / Portability / Performance

Outline

• Co-locale Improvements
• One Billion Row Challenge
• AWS Portability and Performance
• Other Improvements

Co-locale Improvements

Background

• Traditional Chapel multi-locale configuration:
• One locale per node
• Multithreading across cores in a locale
• One NIC per locale

• Modern hardware performs best with a process per socket or even NUMA domain
• High cost of getting NUMA affinity wrong
• Benefit of targeting multiple NICs using distinct processes

4

Co-locales

Background and This Effort

Background:
• Previously, supported only one co-locale configuration

– One locale per socket
– NICs must be in sockets

This Effort:
• Allow one locale per socket, NUMA domain, L3 cache, or core

– Also support simple partitioning of cores between the co-locales

• Automatically bind locales to architectural features
– Option “-nl 1x2” will run each co-locale in its own socket on a node with two sockets
– Option “-nl 1x8” will run each co-locale in its own NUMA domain on a node with eight NUMA domains
– Option “-nl 1x6” will run each co-locale on 1/6 of the cores if no architectural feature has six instances

5

Generalized Co-locales

Impact

Impact: Improved NUMA affinity
• Stream benchmark results (no communication)

• Measured on dual-socket node, Milan CPUs, 64 cores/CPU

6

Generalized Co-locales

Configuration GB/s Improvement Feature

-nl 2 357 N/A N/A

-nl 2x2 460 28.9% Socket

-nl 2x8 466 30.5% NUMA

-nl 2x16 470 31.7% L3 cache

“first touch” 470 31.7% N/A

Background, This Effort, and Next Steps

Background: Previously, bound each co-locale to the NIC in its socket

This Effort:
• Bind an arbitrary number of co-locales to NICs, possibly not in sockets
• Greedy algorithm:

Repeat
 Create distance matrix between all unbound co-locales and all NICs
 Repeat
 Bind co-locale and NIC with shortest distance
 Until all co-locales are bound to a NIC, or there are no more NICs
Until all co-locales are bound to a NIC

Next Steps: Evaluate impact on communication-intensive programs

7

Generalized NIC Selection

Background and This Effort

Background:
• By default, co-locales are implicitly bound to architectural features of which there are the same number

– e.g., “-nl 2x2” will bind each co-locale to a socket on a dual-socket machine

This Effort:
• Added suffixes to explicitly force the binding to an architectural feature

– e.g., “-nl 2x6numa” will bind each co-locale to a NUMA domain, leaving any extra domains unused

• Primarily useful for testing and benchmarking, e.g. “-nl 2x1s” to run a locale in one socket

8

Explicit Binding to Architectural Features

Status

Status: -nl argument accepts an optional suffix that specifies the binding
• E.g., “-nl 2x8numa”

9

Explicit Binding to Architectural Features

Binding Suffix

Socket s or socket

NUMA domain numa

L3 cache llc

Core c or core

Next Steps

• Evaluate impact of co-locales on large shared-memory systems like HPE Superdome Flex

• Shared-memory bypass
• Co-locales on the same node communicate using shared memory, instead of the network
• Requires moderate amount of coding
• Minimal benefit if there isn’t intra-node communication or caching

• Automatically determine ideal number of co-locales
• Requires extensive refactoring of the launchers

10

Co-locales

One Billion Row Challenge

Background:
• The One Billion Row Challenge is a "fun exploration of how quickly 1B rows from a text file can be aggregated"

– It became viral on social media; several implementations exist in various languages
– It avoids measuring IO overhead by first preloading data onto a RAM disk

• For our purposes, we find it more interesting and practical to use for measuring and addressing IO overhead

This Effort: create a Chapel implementation focused on readability and parallelism
• We use the 'ParallelIO' and 'ConcurrentMap' package modules
• The implementation uses a simple 'forall' loop as well as a custom aggregator and deserialization functions
• This is what the main loop looks like:

var stats = new ConcurrentMap(bytes, tempData);
forall ct in readDelimited(fileName, t = cityTemp) with (var token = stats.getToken()) {
 stats.update(ct.city, new aggregator(ct.temp), token);
}

12

One Billion Row Challenge

https://github.com/gunnarmorling/1brc

Impact: the concise Chapel code performs well on a 64-core (AMD EPYC 7513) machine
• A naïve Python version takes 1390s (23m, 10s)
• A naïve, serial Chapel version takes 755s (12m, 35s)
• The parallel version further improves performance:

Next Steps:
• Create a multi-node (distributed) version
• Publish blog post about this (work-in-progress)

13

One Billion Row Challenge

Tasks Time (s) Time
(m:ss)

1 588 9:48

2 292 4:52

4 147 2:27

8 90 1:30

16 51 0:51

32 34 0:34

64 24 0:24

AWS Portability and Performance

Background: Past uses of Chapel on AWS have been one-off efforts by heroic users or developers

This Effort:
• Evaluated Chapel correctness and performance with AWS ParallelCluster

– Allows users to create their own HPC-like clusters in the cloud

• Validated Arkouda correctness with AWS Parallel Cluster

• Refreshed Chapel AWS documentation
– Provided step-by-step guide to use Chapel and AWS ParallelCluster

• Compared performance of different AWS networks
– Ethernet (tcp)
– Elastic Fabric Adapter (efa)

15

AWS Portability
Background and This Effort

Intel 8252C (m5zn.12xlarge)

16

AWS

AWS Graviton3 (c7g.16xlarge)

Performance

Intel 8252C (m5zn.12xlarge)

17

AWS

AWS Graviton3 (c7g.16xlarge)

Performance

Performance

Intel 8252C (m5zn.12xlarge)

18

AWS

AWS Graviton3 (c7g.16xlarge)

Next Steps

• AWS Packaging
• Currently, the easiest way for users to use Chapel on AWS is to build from source

• Remove EFA memory restrictions
• EFA heap registration is currently limited to 96GB per node

19

AWS

Other Improvements

See the following sections in the CHANGES.md file for a full list of changes:
• Performance Optimizations / Improvements

• Runtime Library Changes
• Portability / Platform-specific Improvements

• Bug Fixes for the Runtime
• Launchers
• Developer-oriented changes: Platform-specific bug fixes

• Developer-oriented changes: Launcher Improvements

21

Other Improvements

https://github.com/chapel-lang/chapel/blob/release/2.0/CHANGES.md

Thank you
https://chapel-lang.org
@ChapelLanguage

