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Co-locale Improvements



Background

• Traditional Chapel multi-locale configuration:
• One locale per node
• Multithreading across cores in a locale
• One NIC per locale

• Modern hardware performs best with a process per socket or even NUMA domain
• High cost of getting NUMA affinity wrong
• Benefit of targeting multiple NICs using distinct processes
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Co-locales



Background and This Effort

Background:
• Previously, supported only one co-locale configuration

–  One locale per socket
–  NICs must be in sockets

This Effort:
• Allow one locale per socket, NUMA domain, L3 cache, or core

– Also support simple partitioning of cores between the co-locales

• Automatically bind locales to architectural features
– Option “-nl 1x2” will run each co-locale in its own socket on a node with two sockets
– Option “-nl 1x8” will run each co-locale in its own NUMA domain on a node with eight NUMA domains
– Option “-nl 1x6” will run each co-locale on 1/6 of the cores if no architectural feature has six instances

5

Generalized Co-locales



Impact

Impact: Improved NUMA affinity
• Stream benchmark results (no communication)

• Measured on dual-socket node, Milan CPUs, 64 cores/CPU
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Generalized Co-locales

Configuration GB/s Improvement Feature

-nl 2 357 N/A N/A

-nl 2x2 460 28.9% Socket

-nl 2x8 466 30.5% NUMA

-nl 2x16 470 31.7% L3 cache

“first touch” 470 31.7% N/A



Background, This Effort, and Next Steps

Background: Previously, bound each co-locale to the NIC in its socket

This Effort:
• Bind an arbitrary number of co-locales to NICs, possibly not in sockets
• Greedy algorithm:

Repeat
 Create distance matrix between all unbound co-locales and all NICs
 Repeat
       Bind co-locale and NIC with shortest distance
 Until all co-locales are bound to a NIC, or there are no more NICs
Until all co-locales are bound to a NIC

Next Steps: Evaluate impact on communication-intensive programs
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Generalized NIC Selection



Background and This Effort

Background:
• By default, co-locales are implicitly bound to architectural features of which there are the same number

– e.g., “-nl 2x2” will bind each co-locale to a socket on a dual-socket machine

This Effort:
• Added suffixes to explicitly force the binding to an architectural feature

– e.g., “-nl 2x6numa” will bind each co-locale to a NUMA domain, leaving any extra domains unused

• Primarily useful for testing and benchmarking, e.g. “-nl 2x1s” to run a locale in one socket
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Explicit Binding to Architectural Features



Status

Status: -nl argument accepts an optional suffix that specifies the binding
• E.g., “-nl 2x8numa”
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Explicit Binding to Architectural Features

Binding Suffix

Socket s or socket

NUMA domain numa

L3 cache llc

Core c or core



Next Steps

• Evaluate impact of co-locales on large shared-memory systems like HPE Superdome Flex

• Shared-memory bypass
• Co-locales on the same node communicate using shared memory, instead of the network
• Requires moderate amount of coding
• Minimal benefit if there isn’t intra-node communication or caching

• Automatically determine ideal number of co-locales
• Requires extensive refactoring of the launchers
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Co-locales



One Billion Row Challenge



Background:
• The One Billion Row Challenge is a "fun exploration of how quickly 1B rows from a text file can be aggregated"

– It became viral on social media; several implementations exist in various languages
– It avoids measuring IO overhead by first preloading data onto a RAM disk

• For our purposes, we find it more interesting and practical to use for measuring and addressing IO overhead

This Effort: create a Chapel implementation focused on readability and parallelism
• We use the 'ParallelIO' and 'ConcurrentMap' package modules
• The implementation uses a simple 'forall' loop as well as a custom aggregator and deserialization functions
• This is what the main loop looks like:

var stats = new ConcurrentMap(bytes, tempData);
forall ct in readDelimited(fileName, t = cityTemp) with (var token = stats.getToken()) {
  stats.update(ct.city, new aggregator(ct.temp), token);
}
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One Billion Row Challenge

https://github.com/gunnarmorling/1brc


Impact: the concise Chapel code performs well on a 64-core (AMD EPYC 7513) machine
• A naïve Python version takes 1390s (23m, 10s)
• A naïve, serial Chapel version takes 755s (12m, 35s)
• The parallel version further improves performance:

Next Steps:
• Create a multi-node (distributed) version
• Publish blog post about this (work-in-progress)
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One Billion Row Challenge

Tasks Time (s) Time 
(m:ss)

1 588 9:48

2 292 4:52

4 147 2:27

8 90 1:30

16 51 0:51

32 34 0:34

64 24 0:24



AWS Portability and Performance



Background: Past uses of Chapel on AWS have been one-off efforts by heroic users or developers

This Effort:
• Evaluated Chapel correctness and performance with AWS ParallelCluster

– Allows users to create their own HPC-like clusters in the cloud

• Validated Arkouda correctness with AWS Parallel Cluster

• Refreshed Chapel AWS documentation
– Provided step-by-step guide to use Chapel and AWS ParallelCluster

• Compared performance of different AWS networks
– Ethernet (tcp)
– Elastic Fabric Adapter (efa)
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AWS Portability
Background and This Effort



Intel 8252C (m5zn.12xlarge)
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AWS

AWS Graviton3 (c7g.16xlarge)

Performance



Intel 8252C (m5zn.12xlarge)
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AWS

AWS Graviton3 (c7g.16xlarge)

Performance



Performance

Intel 8252C (m5zn.12xlarge)
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AWS

AWS Graviton3 (c7g.16xlarge)



Next Steps

• AWS Packaging
• Currently, the easiest way for users to use Chapel on AWS is to build from source

• Remove EFA memory restrictions
• EFA heap registration is currently limited to 96GB per node
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AWS



Other Improvements



See the following sections in the CHANGES.md file for a full list of changes:
• Performance Optimizations / Improvements

• Runtime Library Changes
• Portability / Platform-specific Improvements

• Bug Fixes for the Runtime
• Launchers
• Developer-oriented changes: Platform-specific bug fixes

• Developer-oriented changes: Launcher Improvements
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Other Improvements

https://github.com/chapel-lang/chapel/blob/release/2.0/CHANGES.md


Thank you
https://chapel-lang.org
@ChapelLanguage


