3
Hewlett Packard
Enterprise -

Chapel 1.33 / 2.0 Release¢
Runtime / Portability / F

Chapel Team
December 14, 202

o AWS Portability and Performance
 Other Improvements

Co-locales
Background

e Traditional Chapel multi-locale configuration:
e One locale per node

« Multithreading across cores in a locale
e One NIC per locale

e Modern hardware performs best with a process per socket or even NUMA domain
e High cost of getting NUMA affinity wrong
« Benefit of targeting multiple NICs using distinct processes

Generalized Co-locales
Background and This Effort

Background:

« Previously, supported only one co-locale configuration
— One locale per socket
— NICs must be in sockets

This Effort:

» Allow one locale per socket, NUMA domain, L3 cache, or core
- Also support simple partitioning of cores between the co-locales

o Automatically bind locales to architectural features
— Option “-nl 1x2” will run each co-locale in its own socket on a node with two sockets
— Option “-nl 1x8” will run each co-locale in its own NUMA domain on a node with eight NUMA domains
—Option “-nl 1x6” will run each co-locale on 1/6 of the cores if no architectural feature has six instances

—

Generalized Co-locales
Impact

Impact: Improved NUMA affinity
o Stream benchmark results (no communication)

Configuration GB/s Improvement Feature
-nl 2 357 N/A N/A
-nl 2x2 460 28.9% Socket
-nl 2x8 466 30.5% NUMA
-nl 2x16 470 31.7% L3 cache
“first touch” 470 31.7% N/A

e Measured on dual-socket node, Milan CPUs, 64 cores/CPU

—

Generalized NIC Selection
Background, This Effort, and Next Steps

Background: Previously, bound each co-locale to the NIC in its socket

This Effort:
« Bind an arbitrary number of co-locales to NICs, possibly not in sockets
e Greedy algorithm:
Repeat
Create distance matrix between all unbound co-locales and all NICs
Repeat
Bind co-locale and NIC with shortest distance
Until all co-locales are bound to a NIC, or there are no more NICs
Until all co-locales are bound to a NIC

Next Steps: Evaluate impact on communication-intensive programs

—

Explicit Binding to Architectural Features
Background and This Effort

Background:
« By default, co-locales are implicitly bound to architectural features of which there are the same number
-e.g, “-nl 2x2” will bind each co-locale 1o a socket on a dual-socket machine

This Effort:

« Added suffixes to explicitly force the binding to an architectural feature
-e.g., “-nl 2x6numa” will bind each co-locale to a NUMA domain, leaving any extra domains unused

e Primarily useful for testing and benchmarking, e.g. “-nl 2x1s” to run a locale in one socket

Explicit Binding to Architectural Features
Status

Status: -nl argument accepts an optional suffix that specifies the binding
e E.g., “-nl 2x8numa”

Binding Suffix

Socket s or socket

NUMA domain numa

L3 cache llc

Core C Oor core

Co-locales
Next Steps

e Evaluate impact of co-locales on large shared-memory systems like HPE Superdome Flex

e Shared-memory bypass
o Co-locales on the same node communicate using shared memory, instead of the network
« Requires moderate amount of coding
« Minimal benefit if there isn’t intra-node communication or caching

e Automatically determine ideal number of co-locales
« Requires extensive refactoring of the launchers

10

Row Challen

ion

One Billion Row Challenge

Background:

e The One Billion Row Challenge is a "fun exploration of how quickly 1B rows from a text file can be aggregated"”
— It became viral on social media; several implementations exist in various languages
— It avoids measuring 10 overhead by first preloading data onto a RAM disk

« For our purposes, we find it more interesting and practical to use for measuring and addressing 10 overhead

This Effort: create a Chapel implementation focused on readability and parallelism
o We use the 'ParallellO' and 'ConcurrentMap' package modules
e The implementation uses a simple ‘forall' loop as well as a custom aggregator and deserialization functions
e This is what the main loop looks like:

var stats = new ConcurrentMap (bytes, tempData)
forall ct in readDelimited(fileName, t = cityTemp) with (var token = stats.getToken())

stats.update(ct.city, new aggregator (ct.temp), token);
}

— |

{

12

https://github.com/gunnarmorling/1brc

One Billion Row Challenge

Impact: the concise Chapel code performs well on a 64-core (AMD EPYC 7513) machine

« A naive Python version takes 1390s (23m, 10s)
« A naive, serial Chapel version takes 755s (12m, 35s)
o The parallel version further improves performance:

One Billion Row Challenge in Chapel
using ParallellO and ConcurrentMap

—— time
@400
£
O | I | [| [| i -
24 8 16 32 64
Tasks
Next Steps:

o Create a multi-node (distributed) version
» Publish blog post about this (work-in-progress)

—

Tasks Time(s) Time

(m:ss)
1 588 9:48
2 292 4:52
4 147 2:27
8 90 1:30
16 51 0:51
32 34 0:34
64 24 0:24

13

ty and Perfor

AWS Portabili

AWS Portability
Background and This Effort

Background: Past uses of Chapel on AWS have been one-off efforts by heroic users or developers

This Effort:

« Evaluated Chapel correctness and performance with AWS ParallelCluster
— Allows users to create their own HPC-like clusters in the cloud

» Validated Arkouda correctness with AWS Parallel Cluster

« Refreshed Chapel AWS documentation
—Provided step-by-step guide to use Chapel and AWS ParallelCluster

o Compared performance of different AWS networks
— Ethernet (tcp)
— Elastic Fabric Adapter (efa)

—

15

AWS

Performance

Intel 8252C (m5zn.12xlarge)

stream
locales-per-node=1 threads-per-node=24

- tcp
1500 |- =% efa
Q -
m - =T
69 1000 /’_::/,,
500 ’_!;::—*"
.d"’ [| [| [|
1 2 4 8

Number of Nodes

16

8000

6000

4000

GB/s

2000

AWS Graviton3 (c7g.16xlarge)

stream
locales-per-node=1 threads-per-node=32
= top =R
| =% efa “‘,ﬁ
s==" §
- a2 =
,4‘. 8
="
- . o
‘f
.‘
“" 1 1 1 1
12 4 8 16 32

Number of Nodes

AWS

Performance

time

Intel 8252C (m5zn.12xlarge)

isx-hand-optimized
locales-per-node=1 threads-per-node=32

Cw tp e N
--)(- efa —”‘._ ——————
/’.———
‘ ’—'x _______ * _______________)(
,X

I

.I 1 1 | [
12 4 8 16 32

Number of Nodes

AWS Graviton3 (c7g.16xlarge)

isx-hand-optimized
locales-per-node=1 threads-per-node=24

-t == 4
- efa Y SEr b
- ,,I'
7’
’/
II M= T ¥———==="
-
7%
.' 1 1 1 |
1 2 4 8

Number of Nodes

17

AWS

Performance

Intel 8252C (m5zn.12xlarge)

ra-rmo
locales-per-node=1 threads-per-node=24
0.0020 | & top =™
- efa ’_,——’
g_) 0.0015 | /)‘,-—*
D -
0.0010 o
O T
*_—
0.0005F================————————----== -
el ==~~~ L. I
2 4 8 16

Number of Nodes

AWS Graviton3 (c7g.16xlarge)

ra-rmo
locales-per-node=1 threads-per-node=32
0.003 "= top
=% efa -
0.002 | - —aee=ZC
/’x’
0.001 *‘sx’ __________
—-'—‘__* _____
‘_.-_—.-'"" 1 1
2 4 8 16 32

Number of Nodes

AWS
Next Steps

e AWS Packaging
o Currently, the easiest way for users to use Chapel on AWS is to build from source

e Remove EFA memory restrictions
o EFA heap registration is currently limited to 96GB per node

19

Other Improvements

See the following sections in the CHANGES.md file for a full list of changes:
e Performance Optimizations / Improvements
e Runtime Library Changes
o Portability / Platform-specific Improvements
e Bug Fixes for the Runtime
e Launchers
e Developer-oriented changes: Platform-specific bug fixes
e Developer-oriented changes: Launcher Improvements

21

https://github.com/chapel-lang/chapel/blob/release/2.0/CHANGES.md

Thank you

I i
)

https://chapel-lang.org
@ChapelLanguage

