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• We have been working towards significantly improving compile times in the Dyno effort

• We are also working towards supporting separate compilation and incremental compilation

• Both strategies may reduce the amount of time needed to compile a program

• The two strategies are related but not the same

• This presentation will discuss both and describe their status
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Separate and Incremental Compilation: Background



Separate Compilation



• In separate compilation, library files record information for use across multiple compilations
• a compiler takes some unit of source code and generates a library file
• a linker combines library files to create an executable program

• The user could initiate this process by telling the compiler to create a library file, e.g.,

chpl -c lib.chpl  # This could produce 'lib.chlib'

• The following slides show how library files are created with the ‘gcc’ C compiler
• Note the ‘gcc’ commands because they demonstrate a user interface
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What is Separate Compilation?
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What is Separate Compilation?

Library Code
lib.c

Compiler Command
gcc -c lib.c 

Compiler Command
gcc -c prg.c 

Library File
lib.o

Program 
Code
prg.c

Program 
Library File

prg.o

Separately Compiling in C

Header files are 
involved in this 
process, but are 
not illustrated here
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What is Separate Compilation?

Library File
lib.o

Program 
Library File

prg.o

Linking Separately Compiled Files in C

Linker Command
gcc lib.o prg.o -o prg

Executable
./prg
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What is Separate Compilation?

Separately Compiling in Chapel can be Similar (planned, exact details TBD)

Library Code
lib.chpl

Compiler Command
chpl -c lib.chpl

Compiler Command
chpl -c prg.chpl

Library File
lib.chlib

Program 
Code

prg.chpl

Program 
Library File

prg.chlib
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What is Separate Compilation?

Library File
lib.chlib

Program 
Library File

prg.chlib

Linking Separately Compiled Files in Chapel can be Similar (planned, details TBD)

Linker
chpl lib.chlib prg.chlib -o prg

Executable
./prg



• Chapel doesn't have an equivalent to C header files
• The Chapel compiler could generate a header file from source code if necessary
• However, library files themselves can store details needed to support separate compilation
• Some details work like a precompiled header file (.pch) does for C compilers

• Generic functions are a challenge
• Instantiation details for a generic function might not be known until link-time

– So, we need the ability to instantiate at link-time

• The current whole-program compiler must be adjusted to support separate compilation
• Adjustments are planned on a case-by-case basis for passes in the production compiler
• Several approaches can be considered for each pass:

– Compute the information the pass needs during link-time
– Or compute it during separate compilation, storing it in the library file for use at link-time
– Sometimes the pass can be rewritten so it is not whole-program
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Challenges to Separate Compilation for Chapel



Status:
• Can generate a library file with a prototype flag:

chpl --dyno-gen-lib lib.dyno lib.chpl

• Resulting 'lib.dyno' contains:
– Serialized uAST, which provides capabilities like a precompiled header in C
– LLVM IR for some non-generic functions

• Library files can be used when compiling a program:
chpl lib.dyno prog.chpl

• The compiler will skip parsing 'lib.chpl' and use the uAST stored in 'lib.dyno' instead
– Provides a modest speed improvement (around 0.1 seconds for the standard library)

• The compiler can skip code-generation for non-generic library functions
– Saves time spent code-generating
– However, resolution (the most expensive compilation phase) still occurs

Next Steps: Store more information in library files and identify more potentially redundant work
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Separate Compilation for Chapel: Status and Next Steps



Incremental Compilation



• In incremental compilation, the compiler transparently reuses information to save time
• The user doesn’t need to be aware of the process

• The compiler detects source code changes and can recompile only newly changed portions
• Recompilation can be finer-grained than e.g., 'gcc', which handles one source file at a time

• Some existing tools that leverage incremental compilation:
• Many implementations of the Language Server Protocol (LSP)
• The ‘ccache’ program
• The Rust compiler

• Incremental compilation information can be stored:
• Only in memory (typical for LSP implementations)
• In the filesystem ('ccache') 
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What is Incremental Compilation?



• The Chapel compiler launches a long-lived 'chpl' server that stores incremental compilation state
chpl program.chpl   # The first compiler invocation launches a compilation server and feeds it information

<edit program.chpl>

chpl program.chpl   # The second invocation uses info from the server to speed up compilation

• The Chapel language server runs continually and updates its state for live results
• The server provides end-to-end commands such as "compile and run"
• The updates are incremental to maximize responsiveness
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Planned Directions for Incremental Compilation in Chapel



• A fully incremental type and call resolver is available for a growing subset of Chapel

• Incremental resolution is up to 25x faster than initial resolution
• With a simple 'proc trace' experiment program containing one function and calling it:

– Initial type and call resolution = 0.5 s
– After changing the input = 0.02 s

• The Chapel language server currently leverages incremental compilation
• Allows for type and call resolution at interactive speeds:

– Notice that the type of 'result' is updated in real time as the right-hand side is edited
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Incremental Compilation for Chapel: Status and Impact



• The Dyno team will complete the incremental type and call resolver

• After that, investigate end-to-end incremental compilation
• Adjust passes that rely on whole-program info, similarly to incremental compilation
• Gauge interest in a 'chpl' server or end-to-end compilation support via the language server
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Incremental Compilation for Chapel: Next Steps



Editor Tooling



Background and This Effort

Background:
• the Language Server Protocol is an editor-agnostic way of adding code intelligence for programming languages
• language authors (or community) provide a server for a language, editors use the server for code intelligence

This Effort: provide two tools based on LSP
• chpl-language-server

– go-to-definition, renaming, hover information
– advanced features: type inference, param inlays, call graphs
– more!

• chplcheck
– detection of common errors that aren’t disallowed per se
– report unconventional capitalization for records, classes, etc.
– unused variables
– extraneous ‘do’ blocks 
– more!
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Editor Tooling: chpl-language-server and chplcheck

https://microsoft.github.io/language-server-protocol/


Background and This Effort

Background:
• VSCode requires a full extension to support an LSP client

This Effort: 
• Created a Chapel Language VSCode extension

– supports chpl-language-server and chplcheck
– improved syntax highlighting over previous community-contributed extensions
– added other user improvements (e.g., GUI breakpoints, autofill code snippets)

• Used the extension to create a 2-click Chapel demo in the browser 
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Editor Tooling: VSCode



Debugging Chapel Programs



Background

• Debugging Chapel programs has traditionally been fairly bare-bones
• The main approach has been to use a typical C-style command-line debugger on the generated code / binary:

$ chpl ––savec output –g myProg.chpl
$ ./myProg ––lldb  # or ––gdb
(lldb) b myProg.chpl:2
(lldb) run
* thread #2, stop reason = breakpoint 2.1
    frame #0: 0x100075d8c myProg`chpl__init_myProg (_ln…, _fn=…) at myProg.chpl:2
   1   for i in 1..10 {
-> 2     writeln("i is ", i);
   3   }
(lldb) p i
(long) $0 = 1

– Ease-of-use can vary by program, depending on the degree to which the code was transformed during compilation
– Additional flags and tips are available in https://chapel-lang.org/docs/usingchapel/debugging.html

• For multi-locale runs, we have had some success running a gdb session per locale or using HPE’s ‘gdb4hpc’ tool
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Debugging Chapel Programs

https://chapel-lang.org/docs/usingchapel/debugging.html


This Effort, Status, and Next Steps

This Effort:
• As our team has grown, so has the desire to provide better debugging experiences

– both for ourselves and for users

• During Chapel 1.33 and 2.0, we made some improvements:
– added a new ‘Debugger’ module providing a ‘breakpoint;’ pseudo-statement (see “Library Improvements” release notes)  
– improved portability of debugging when using the LLVM back-end on Mac OS X
– prototyped configuration files that enable debugging Chapel within VSCode, similar to the previous slide’s example

Status: Debugging support has improved in modest ways as a result of these efforts

Next Steps: Continue improving support for debugging Chapel programs:
• Improve preservation of user identifiers and code structures during compilation
• Teach debuggers more about Chapel-specific types
• Continue improving support for debugging with IDEs and tools of interest to users and developers
• Extend debugging support to include evaluation of Chapel expressions (e.g., ‘p [a in A] sqrt(a)’)
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Debugging Chapel Programs



Other Compiler and Tool Updates



For a more complete list of compiler and tool changes and improvements in the 1.33 and 2.0 
releases, refer to the following sections in the CHANGES.md file:

• Improvements to Compilation Times / Generated Code

• Tool Improvements
• Compiler Improvements
• Compiler Flags

• Bug Fixes for Tools
• Developer-oriented changes: Compiler Flags

• Developer-oriented changes: Compiler improvements / changes
• Developer-oriented changes: 'dyno' Compiler improvements / changes
• Developer-oriented changes: Tool Improvements

• Developer-oriented changes: Utilities
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Other Compiler and Tool Updates

https://github.com/chapel-lang/chapel/blob/release/2.0/CHANGES.md


Thank you
https://chapel-lang.org
@ChapelLanguage


