
December 14, 2023 / March 21, 2024
Chapel Team

Chapel 1.33 / 2.0 Release Notes:
Library Improvements

Outline

• IO Standard Library
• Parallel IO Library
• Zarr I/O Library
• Debugger.breakpoint
• Other Library Improvements

IO Standard Library

IO Standard Library

• Stabilization Changes
• Other IO Improvements

Background & This Effort

Background:
• The IO library has been the subject of many deprecations and changes in the march towards 2.0
• In the 1.32 release, the last of the major changes were finished

– E.g., the serialization framework, formatted I/O improvements, and many deprecations

This Effort:
• Made some additional breaking changes after further consideration
• Fixed a handful of bugs
• Improved documentation
• Removed most deprecated features
• Added some unstable features

5

IO Stabilization

IO Stabilization Changes

Background, This Effort, and Next Steps

Background:
• The ‘locking’ property of fileReader/Writer defaulted to ‘true’ to provide parallel safety “out of the box”
• Over time, we found that users were surprised by this, and sometimes encountered performance issues

This Effort:
• Deprecated ‘locking’ default in 'file.reader' and 'file.writer' factory methods

– Requires users to be explicit about what they want

• Deprecated ‘locking=true’ in favor of ‘false’ default in 'openReader' and 'openWriter'
– Warns users that this value will change in an upcoming release
– Can use '-sOpen[Reader|Writer]LockingDefault=false' to get future behavior

• Note: stdin/stdout/stderr remain locking by default

Next Steps:
• Remove deprecated defaults, and change to using ‘false’ in 'openReader'/'openWriter’
• Consider having ‘file.reader’/‘file.writer’ default to ‘locking=false’ as well

7

Locking Default

Background, This Effort, and Impact

Background:
• The 'binary[De]Serializer' types were initially implemented to use a “structured” binary format

– Specifically, included a length integer for strings and a nil-byte for classes

• The intent was to make it easier to read serialized binary data compared to the old 'iokind' implementation
• Without a "raw" format it was difficult to use files generated by 'iokind' or external sources

This Effort:
• Changed the 'binary[De]Serializer' types to be “unstructured” by default in 1.33

– Motivated by concerns over stability of the “structured” format

• Moved “structured” implementation into unstable 'ObjectSerialization' package module
– Intended as a package that could eventually support more robust “pickling” of data, but very much a prototype today

Impact:
• Easier to port deprecated 'iokind' code to use 'binary[De]Serializer’ and to ingest unformatted data files

8

Changes to Binary Serializer

Background, This Effort, and Impact

Background:
• The 'ioendian' enum was used in various methods to indicate the desired endianness in binary I/O
• Most other types with an 'io' prefix were renamed as part of module stabilization

This Effort:
• Deprecated 'ioendian' and renamed to 'endianness'

Impact:
• Improved consistency across the IO standard library’s naming

9

Renaming 'ioendian'

Other IO Improvements

This Effort

• Made fixes to remote I/O
• Correctly handle remote strings in 'readTo', 'readThrough', and 'readLine'
• Fixed a bug with the 'seek' method on remote files
• Fixed a bug when writing arrays in binary across locales

• Binary bugs
• Correctly throw an 'UnexpectedEofError' for 'readBinary'
• Correctly return 'false' from 'fileReader.read' when using 'binary[De]Serializer'
• Improved read/writeBinary performance for little and big endian

11

IO Stabilization — Bug Fixes

Background, This Effort, and Impact

Background:
• The size of the IO library and recent rate of change has occasionally led to gaps in documentation quality
• Some useful documentation was also unintuitively split into the ChapelIO module

This Effort:
• Performed a full pass over the IO and FormattedIO modules with dozens of improvements
• Merged the ChapelIO documentation into the IO module’s documentation

Impact:
• Documentation is clearer and more accurate than ever
• Users don't need to look at separate documentation page (i.e., ChapelIO) to find things like top-level 'writeln'

12

IO Stabilization — Documentation Improvements

Background and This Effort

Background:
• Numerous features have been deprecated in past releases as a part of the IO stabilization effort

This Effort:
• Identified and removed many features that have been deprecated for at least two releases
• Formatted IO: '%t', '%jt', '%ht' generic specifiers
• On both fileReader/Writer:

– The '.binary' and '.writing' properties
– The 'advancePastBytes' method

• Removed the 'file.lines' method
• Removed the 'iostyle' and 'iokind' types, along with corresponding ‘style’ and ‘kind’ arguments to methods
• Removed support for readThis/writeThis methods
• See CHANGES.md for a full list

13

IO Stabilization — Removed Features

This Effort

• Added unstable 'openStringReader’ routine to enable reading from a string:
var r = openStringReader("hello world!\nI'm a string!");
writeln(r.readLine()); // hello world!
writeln(r.readLine()); // I'm a string!

• Added unstable 'getFile' method to 'fileReader' and 'fileWriter'
• Returns the underlying 'file'

• Added 'IOSkipBufferingForLargeOps' config param to control dynamic buffering optimization
• On by default; compile with '-sIOSkipBufferingForLargeOps=false' to disable

14

IO Stabilization — New Unstable Features

Parallel IO Library

Background and This Effort

Background:
• The IO library has the necessary building blocks for implementing parallel and distributed I/O operations

– however, it didn't have higher-level abstractions for parallel IO

• Reading files with variable-length items in parallel is tricky
– users may not want to implement this kind of thing on their own

This Effort:
• Created a 'ParallelIO' package module with several abstractions for reading files in parallel

– parallel iteration over lines (or delimited items):
 forall line in readLines("file.txt") {
 ...
 }

– reading lines or delimited items into an array (default or block-distributed):
 var arr = readDelimitedAsArray("data.csv", t=myDataType, delim="\n");

16

Parallel IO Library

Impact

17

Parallel IO Library

• The module provides scalable distributed reads and significant speedups over reading serially
• Speedup for reading a 100M-row CSV file into an array of records (takes 10 seconds serially):

collected on a Cray XC: 48-core Cascade Lake CPUs, Lustre filesystem, Aries network

Next Steps

• Improve iterator support:
• add leader/follower versions for zippered iteration
• add multi-locale versions

• Improve error handling:
• fall back to serial IO if parallelization isn't possible

• Investigate updating Arkouda’s CSV support to use ParallelIO
• Consider moving some ParallelIO functionality into the standard IO library

• planning to move at least the 'readLines' iterator to IO
• Add support for writing files in parallel

18

Parallel IO Library

Zarr I/O Library

Background

• The Zarr File Format
• Multi-dimensional data, broken into chunks, compressed, and stored separately
• Commonly used for geospatial data with a time dimension

• Support was requested by users
• [C]Worthy is a startup doing ocean modeling to support carbon sequestration
• They are developing a Chapel application that is bottlenecked by reading/writing different Zarr stores

20

Zarr I/O Library

Arr

Chunk (2x4) and
store separately

Arr/0.0 Arr/0.1 Arr/0.2 Arr/0.3

Arr/1.0 Arr/1.1 Arr/1.2 Arr/1.3

This Effort

• Added an unstable Chapel library for distributed parallel Zarr I/O
• Supports reading/writing stores on a local file system, e.g.,

use Zarr;

// Read a Zarr array from the specified location, indicating the array's element type and dimension
var arr = readZarrArray("path/to/zarr/store", int, dimCount=2);

// Write an array into the Zarr format, specifying the location to write it to, and the shape of the chunk to write
// Since this is a 2-dimensional array, we need to specify 2 dimensions for the chunk shape
writeZarrArray("path/to/intended/dest", arr, chunkShape=(dim1, dim2));

21

Zarr I/O Library

Status and Next Steps

Status:
• [C]Worthy team integrating library into their modeling code

Next Steps:
• Continue development of library based on [C]Worthy user needs

– Support cloud-based Zarr stores (S3, Google Cloud, Azure), where important climate datasets are stored
– Support array “groups”, which are used to combine multiple arrays into a single dataset

• User request: Integrate into Arkouda using emerging multi-dimensional array support

22

Zarr I/O Library

Debugger.breakpoint

This Effort:
• Added a new unstable library, ‘Debugger’
• Supports users writing explicit breakpoints in code

• This pauses execution when running within GDB or LLDB
– works exactly like a user-defined breakpoint in the debugger
– only enabled when compiled with ‘-g’
– implemented with debugger interrupts

Next Steps: stabilize the library

24

Debugger.breakpoint

import Debugger;

for i in 1..10 {
 writeln("i is ", i);
 Debugger.breakpoint;
}

Other Library Improvements

For a more complete list of library changes and improvements in the 1.33 and 2.0 releases, refer to
the following sections in the CHANGES.md file:

• New Standard Library Features (2.0) / Standard Library Modules (1.33)

• New Package Module Features (2.0) / Package Modules (1.33)
• Changes/Feature Improvements in Libraries
• Name Changes in Libraries

• Deprecated/Unstable/Removed Library Features
• Performance Optimizations / Improvements

• Documentation Improvements
• Bug Fixes for Libraries
• Developer-oriented changes: Module changes

• Developer-oriented changes: Testing System

26

Other Library Improvements

https://github.com/chapel-lang/chapel/blob/release/2.0/CHANGES.md

Thank you
https://chapel-lang.org
@ChapelLanguage

