
December 14, 2023 / March 21, 2024
Chapel Team

Chapel 1.33 / 2.0 Release Notes:
Language Improvements

Outline

• Chapel 2.0 Stabilization
• Array Default Task Intents
• “Static” Variables
• Appending to ‘bytes’/‘string’

Chapel 2.0 Stabilization

Background

• Have been driving towards 2.0 milestone
• Core language and library features are considered stable

– Any future changes made to these features will be backward-compatible
– (Or, would trigger bumping the version number to Chapel 3.0)

• Some features are noted as unstable in the documentation and trigger warnings when using '--warn-unstable'

• Chapel 1.32 was the first 2.0 Release Candidate
• 35 modules stabilized
• Various adjustments to core language features
• Users were encouraged to give feedback if anything needed tweaking

– Any changes made based on this feedback would get incorporated into the official 2.0 release

4

Chapel 2.0 Stabilization

This Effort

• The Spring 2024 release is the official 2.0 release! (see announcement post on blog)
• Additional features were stabilized since 1.32 (see overview post on blog)

– 'Random' module
– Default task intent for arrays
– Casting to 'unmanaged'
– Associative domains when 'parSafe=false'

• Adjustments were made to the 'IO' module
– to the binary format (based on user feedback)
– to the locking behavior of 'fileReader' and 'fileWriter'

• Documentation was improved
– Added missing documentation to stable modules
– Adjusted the placement of deprecation/unstable warnings

– Now more obviously associated with the impacted symbol

Chapel 2.0 Stabilization

Before:

After:

5

https://chapel-lang.org/blog/posts/announcing-chapel-2.0/
https://chapel-lang.org/blog/posts/changes-since-2.0-rc1/

This Effort

• Additional warnings/errors were added
• Comparison operators ('>', '<=', etc.) are no longer chainable without parentheses

if a < b < c then … // was allowed, now a syntax error

• Indirectly modified arguments that were inferred to be 'const ref' will now generate an unstable warning
 var globalRec = new myRecord(15);
 foo(globalRec);

proc foo(const r: myRecord) {
 globalRec.x = 3; // indirectly modifies 'r'
}

• Fixed a bug preventing some deprecation/unstable warnings from firing
• You may see additional warnings for 'owned' and 'shared' because of this fix, e.g.

var o: owned MyClass? = new owned MyClass(4);
var s: shared = o; // now properly generates "warning: assigning owned class to shared class is deprecated."

6

Chapel 2.0 Stabilization

Impact

• Programs that use only stable features shouldn’t require updates in future releases
• And it's easier than ever to write such programs

• It's also easier to determine which features are stable and which are unstable
• Via documentation:

• Via compiling with '--warn-unstable':
$ chpl --warn-unstable callErf.chpl
callErf.chpl:3: warning: 'erf' is unstable and may be renamed or moved to a different
module in the future

7

Chapel 2.0 Stabilization

Next Steps

• Continue to respond to user feedback about what to stabilize next

• Ensure new features get reviewed with stabilization in mind
• To reduce the need for future changes

• Continue stabilizing unstable features
• 'foreach'
• 'dmapped' keyword
• 'Sort' module

• Create a process for reviewing changes going forward (breaking or non-)
• E.g., new keywords, “obviously” broken features
• Create a board of users to guide the language’s evolution?

• Consider generating unstable warnings by default as more features are stabilized

8

Chapel 2.0 Stabilization

Default Task Intents for Arrays

Background

• In 1.32, the default array argument and task intent changed
• default array argument intent became ‘const’
• default array task intent for other parallel constructs (i.e. ‘coforall’, ‘begin’, and ‘cobegin’) became ‘const’
• default array task intent for ‘forall’ loops remained ref-if-modified

• It was unfortunate that default array task intents on ‘forall’ loops differed
• yet, users also considered unifying on ‘const’ to be too intrusive on common code idioms

10

Default Task Intents for Arrays

proc myFunc(ref A:[], B:[]) do
 A = B;

begin with (ref A)
 A = B;

forall i in A.domain /* with (ref A) */ do
 A[i] = i;

This Effort

• Default array intents for all parallel constructs are now unified to a new approach:
• the default intent is now inferred from the outer variable
• i.e., if the array is modifiable outside the loop, it is modifiable inside the loop

11

Default Task Intents for Arrays

var A: [1..10] int;
const B: [1..10] int;

[i in 1..10] A[i] = i; // ref intent for A inferred from 'var A' variable

forall i in 1..10 with (ref B) do
 B[i] = i; // error: cannot assign to const variable

proc myFunc(ref A:[], const B:[]) {
 forall i in B.domain do
 B[i] = i; // error: cannot assign to const variable
 begin // ref intent for A inferred from 'ref A' formal argument
 A = B;
}

Impact

• Reinstated promoted array indexing, adhering to the new default intent rule
• previously, this feature had relied upon ref-if-modified
• to alleviate concerns that this code pattern was unsafe, added ‘--warn-potential-races’

• New rules seem to achieve the right mix of convenience and safety
• user idioms remain cleaner, as requested
• consistency has been reinstated across parallel constructs
• safety is encouraged via the ‘const’ default argument intent and its propagation into parallel contexts

12

Default Task Intents for Arrays

const B = [2, 4, 4, 7];
var A: [1..10] int;

A[B] += 1;

> chpl main.chpl --warn-potential-races
main.chpl:4: warning: modifying the result of a promoted index expression is a potential
race condition

Static Variables

Background and This Effort

Background:
• C and C++ have variables that persist across invocations of a function

void f() {
 static int x = 10;
}

• Can be used for mutable data (e.g., counters) between invocations
• Or, to avoid re-running expensive computations multiple times (e.g., computing lookup tables)

This Effort:
• Added prototype support for static local variables to Chapel

proc f() {
 @functionStatic
 var x = 10;
}

14

Static Variables

Impact

Impact: Supports caching computations local to a routine
• particularly useful within generic routines, where a module-scope variable can’t be used as a workaround

proc computeExpensiveFibonacciTable(param tableSize: int, type t): c_array(t, tableSize) {
 writeln("Computing expensive table");
 // computes and returns a C array of Fibonacci numbers, represented as type ‘t’...
}

proc getNthElement(x: int, type t=int): t {
 @functionStatic
 const table = computeExpensiveFibonacciTable(94, t);
 return table[x];
}

writeln(getNthElement(0)); // prints ‘Computing expensive table’ then ‘1’
writeln(getNthElement(1)); // prints ‘1’
writeln(getNthElement(2)); // prints ‘2’
writeln(getNthElement(3)); // prints ‘3’

writeln(getNthElement(4)); // prints ‘5’

15

Static Variables

Status, and Next Steps

Status:
• An initial prototype is in the Chapel 2.0 release, but is unstable
• Static variables are synchronized using Chapel’s atomic types out of the box
• Static variables support multi-locale execution (stored on first locale to initialize the variable)
• There are some limitations:

– variable must be initialized directly and only once (i.e., no split initialization, default initialization)
– arrays and domains not supported due to their runtime type information (example uses ‘c_array’)
– no support for replication across locales, yet

Next Steps:
• Investigate support for replication strategies (e.g., precomputed value is replicated across all locales)
• Investigate proper language-level support (e.g., keyword rather than attribute)
• Investigate support for static variables with runtime types
• Optimize implementation for ‘var’/‘const’ declarations

16

Static Variables

Appending Numeric Values to
bytes/string

Background

• Historically, appending a numeric byte value to a 'bytes' has been awkward and slow
• Comes up when writing something like 'toHex' to create a hexadecimal representation of a 'bytes':

• Could append a 'bytes' created with 'bytes.format':
for byte in myBytes { asHex += b"%02xu".format(byte); }

• Or, could use 'openMemFile', use 'writef' to output hex-formatted values, and then use 'readAll(bytes)':
var f = IO.openMemFile();
{
 var w = f.writer();
 for byte in myBytes { w.writef("%02xu", byte); }
}
var asHex = f.reader().readAll(bytes);

• Both have high overhead as compared to computing an ASCII value and appending that byte
• Overhead comes from interactions with the I/O system and allocation overhead

– Note: 'string.format' and 'bytes.format' are implemented through the I/O system

• Led to performance problems when using 'toHexString' from the Crypto package module

18

Appending to 'bytes' / 'string'

This Effort

• Added unstable methods to append any number of codepoints or numeric bytes to 'bytes'/'string':
proc ref string.appendCodepointValues(codepoints: int ...): void
proc ref bytes.appendByteValues(x: uint(8) ...): void

• Here is an example using these:
var myString: string, myBytes: bytes;
myString.appendCodepointValues(0x48, 0x69); // appends "Hi"
myBytes.appendByteValues(0x54, 0x68, 0x65, 0x72, 0x65); // appends "There"
writeln(myString, " ", myBytes); // outputs "Hi There”

• Also, added a method to convert a 'bytes' to hexadecimal since this is a common case
proc bytes.toHexadecimal(uppercase: bool = false, type resultType = bytes): resultType

19

Appending to 'bytes' / 'string'

Impact and Next Steps

Impact:
• 4,000x speedup in a 'toHex' benchmark
• 13x speedup in a user's application once 'Crypto.toHexString' was updated to use these

Next Steps: Make these methods stable & reduce the overhead of 'string.format'

20

Appending to 'bytes' / 'string'

Other Language Improvements

For a more complete list of language changes and improvements in the 1.33 and 2.0 releases, refer
to the following sections in the CHANGES.md file:

• New Language Features

• Language Feature Improvements
• Semantic Changes / Changes to the Chapel Language
• Deprecated / Unstable / Removed Language Features

• Language Specification Improvements
• Bug Fixes

22

Other Language Improvements

https://github.com/chapel-lang/chapel/blob/release/2.0/CHANGES.md

Thank you
https://chapel-lang.org
@ChapelLanguage

