
CHAPEL 1.31/1.32 RELEASE NOTES:
GPU SUPPORT

Chapel Team
June 22, 2023 / September 28, 2023

GPU SUPPORT
OUTLINE

• Background
• Features
• Portability
• Performance
• Next Steps

BACKGROUND

Background

• We are adding native GPU support to Chapel
• A highly desired feature, given the potential to be a clean and portable way of programming GPUs
• GPUs are more and more common in supercomputers

– Over 95% of the compute capability on Frontier (currently #1 on the top-500) comes from its GPUs

• In earlier releases, we’ve…
…moved from an idea (1.23), to a demo (1.24), to a user-accessible feature on NVIDIA GPUs (1.25), …
…to being able to drive multiple GPUs on one locale (1.26), and then multiple locales (1.27).

• We started to focus on performance and portability during 1.29 / 1.30

• 1.31 / 1.32: continued push on performance and portability, responded to uptick in user requests
–Performance: optimizations impacting many benchmarks, ability to use Chapel tasks with GPUs
–Portability: AMD/NVIDIA parity, initial support for CUDA 12/ROCm 5, new cpu-as-device mode
–Community: new users trying out GPU support, significant increase in GitHub interactions
–Also new features for users and capabilities for developers

4

GPU SUPPORT

GitHub Activity Summary

• GPU support has started to receive attention

• Before 1.30:
• 2 user-reported issues were opened

• Between 1.30 and 1.32:
• we had 21 user-reported issues

• During 1.31/1.32, we prioritized resolving user issues
• we closed 27 total issues,
• 14 of them were reported by users

• We also started to report issues publicly ourselves
• ... while migrating internal discussions to the public repo

5

GPU SUPPORT

CRASH COURSE IN GPU
PROGRAMMING USING CHAPEL

Vector Increment Example: Basics

 on here.gpus[0] {

 var GpuVec: [1..n] int;
 GpuVec += 1;
 writeln(GpuVec);

 }

7

GPU SUPPORT

'on' statement targets a GPU

array data will be allocated on the targeted GPU

data-parallel operations will launch as a GPU kernel

Vector Increment Example: Data Offload via Bulk Array Assignment

var CpuVec: [1..n] int;

 on here.gpus[0] {

 var GpuVec = CpuVec;
 GpuVec += 1;
 CpuVec = GpuVec;

 }

writeln(CpuVec);

8

GPU SUPPORT

host-to-device copy

device-to-host copy

Vector Increment Example: Multiple GPUs via 'coforall'

var CpuVec: [1..n] int;

 coforall gpu in here.gpus do on gpu {

 const myChunk = ...;

 var GpuVec = CpuVec[myChunk];
 GpuVec += 1;
 CpuVec[myChunk] = GpuVec;

 }

writeln(CpuVec);

9

GPU SUPPORT

'coforall' creates a task per local GPU

a slice of the data is copied
between host and device

Vector Increment Example: Multiple GPUs on Multiple Locales

var CpuVec: [1..n] int;
coforall loc in Locales do on loc {
 coforall gpu in here.gpus do on gpu {

 const myChunk = ...;

 var GpuVec = CpuVec[myChunk];
 GpuVec += 1;
 CpuVec[myChunk] = GpuVec;

 }
}
writeln(CpuVec);

10

GPU SUPPORT

'coforall' over all locales

Vector Increment Example: Multiple GPUs using Multiple Tasks on Multiple Locales

var CpuVec: [1..n] int;
coforall loc in Locales do on loc {
 coforall gpu in here.gpus do on gpu {
 coforall workerId in 0..<numTasks {

 const myChunk = ...;

 var GpuVec = CpuVec[myChunk];
 GpuVec += 1;
 CpuVec[myChunk] = GpuVec;

 }
 }
}
writeln(CpuVec);

11

GPU SUPPORT

'coforall' to create
multiple tasks per GPU

This pattern has significantly
improved performance in 1.32
See the "Performance" part of this deck.

Overview of Changes in 1.31 and 1.32

Performance:
• Faster array access in kernels
• Faster Math library calls
• Faster multitasking on GPUs
• Turned the faster memory strategy on by default
• Peer-to-peer access features and exploration

Portability:
• CPU-as-Device mode
• AMD/NVIDIA feature and performance parity
• Initial Intel exploration
• CUDA 12/ROCm 5 support

12

GPU SUPPORT

New Features and Capabilities:
• Standalone atomic functions
• '--report-gpu' compiler flag
• Ability to compile for multiple NVIDIA architectures
• Improved debugging features:

– Ability to inspect assembly for AMD GPUs
– Improved auto-generated kernels' names
– New loop attribute '@assertOnGpu'

FEATURES

• Atomic Operations
• '--report-gpu' flag
• Assembly Inspection
• '@assertOnGpu' attribute
• Multi-arch compilation
• Improved Kernel Naming

Background: GPUs have support for atomic operations (add, compare-and-swap, etc.)

This Effort: Added the following procedures for atomic operations to the GPU module:
gpuAtomicAdd gpuAtomicMin gpuAtomicDec gpuAtomicXor
gpuAtomicSub gpuAtomicMax gpuAtomicAnd gpuAtomicCAS
gpuAtomicExch gpuAtomicInc gpuAtomicOr

Status: Almost all operations are supported on NVIDIA and AMD GPUs
• Caveat: 64-bit, signed, atomic 'min' and 'max' operations do not work when compiling for AMD

– These operations are not supported in HIP version < 5.7 (we currently support 4.0–5.4)
– We produce a compile-time error if these are used and 'CHPL_GPU=amd' is set

Next Steps:
• Allow using variables with Chapel's 'atomic' type and have them lower to these calls as appropriate (#23619)
• Enable atomic min and max on AMD GPUs once we support HIP versions >= 5.7

14

ATOMIC OPERATIONS ON GPU

https://github.com/chapel-lang/chapel/issues/23619

Background: Chapel generates kernels for all GPU-eligible loops
• Users may want to know what loops are and are not GPU-eligible
• 'assertOnGpu' does a compile-time eligibility check, but needs to be applied manually to all loops

This Effort: Added '--report-gpu' to chpl to dump loop eligibility information
• We report on all loops that are order-independent and not already in a GPU kernel

Impact: The following code produces the following output when compiled with '--report-gpu':

15

--REPORT-GPU FLAG

foreach i in 0..10 do A[i] = callToExtern();
foreach i in 0..10 do A[i] *= 2;
foreach i in 0..10 do A[i] += 2;

GPU INELIGIBLE LOOPS:

foo.chpl:1

GPU ELIGIBLE LOOPS:

foo.chpl:2
foo.chpl:3

Next Steps: Consider increasing the verbosity for when we report GPU-ineligibility (#23620)

https://github.com/chapel-lang/chapel/issues/23620

Background: --savec dumps code that can help users gain performance insights
• When using the C backend, it saves C files
• When using LLVM, it saves various llvm-related intermediate files

– (the name "savec" needs to change, at least for LLVM, see #18602)

• When compiling for NVIDIA GPUs, it also stores a PTX assembly file
– but previously we did not do this for AMD

This Effort: Ensured --savec outputs GPU-related assembly for NVIDIA and AMD

Impact:
• Regardless of GPU target, we output a 'chpl__gpu.s'
• In the generated assembly, kernels are named 'chpl_gpu_kernel_<fileName>_line_<num>'
• We now documented this in the technote and intend to support it going forward

16

EMITTING GPU ASSEMBLY WITH --SAVEC FLAG

https://github.com/chapel-lang/chapel/issues/18602

Background:
• Ensuring that loops were GPU-eligible was handled by a special 'assertOnGpu()' function
• Calls to 'assertOnGpu()' were either compile-time or run-time depending on its position, which was unusual

– If 'assertOnGpu()' was a top-level statement in an ineligible loop, compiler reported an error immediately

This Effort:
• Use recently-added loop attributes to introduce '@assertOnGpu', which always performs a compile-time check
• Precludes the need for differentiating function behavior if it’s at the top level

@assertOnGpu
foreach a in A do a += 1;

Status:
• '@assertOnGpu' is the preferred way to check GPU eligibility

– the standalone 'assertOnGpu' function is deprecated

Next Steps:
• Investigate if a runtime-only assertion (like 'assertOnGpu()' not-at-top-level) is necessary

17

ASSERT-ON-GPU ATTRIBUTE

Background:
• It’s common for GPU-enabled programs to embed multiple GPU binaries for different architectures

– Enables a compiled program to run on devices with different GPU hardware
– e.g., a cluster with different GPU nodes, or a laptop with dedicated and integrated GPU

This Effort:
• Added prototypical support for multi-architecture executables to Chapel’s GPU functionality

Status:
• Initial support for multi-architecture executables for NVIDIA

– To access, pass comma-separated architectures to ‘--gpu-arch’
 > chpl --gpu-arch sm_70,sm_80

• Current approach relies on using the lowest-common version of PTX for named architectures
– with additional effort, could specialize PTX per architecture

Next Steps:
• Investigate additional specialization for architectures and multi-vendor support (#22783)

18

MULTI-ARCHITECTURE GPU EXECUTABLES

https://github.com/chapel-lang/chapel/issues/22783

Background:
• Chapel generates GPU kernels by translating loops into procedures (named 'chpl_gpu_kernel')
• If multiple kernels are present, the built-in mangling appended '_1', '_2', and more
• However, 'chpl_gpu_kernel_1' isn’t very descriptive, and doesn’t make for easy debugging

This Effort:
• Change the GPU kernel naming policy to include the filename and line number. e.g.,

chpl_gpu_kernel_fileName_line_13
chpl_gpu_kernel_fileName_line_37

Status:
• Kernel naming changes are available in 1.32

19

GPU KERNEL NAMING

PORTABILITY

• AMD/NVIDIA Parity
• Intel Explorations
• CPU-as-Device mode
• CUDA 12/ROCm 5 support

Background: In 1.30, some Chapel code was not portable across AMD and NVIDIA GPUs
• Specifically, using the 64-bit versions of these functions caused compile-time failures when building for AMD:

acos acosh asin asinh atan atan2
atanh cbrt cosh erf erfc ldexp
lgamma log1p sinh tan tanh tgamma

This Effort: Fixed a bug causing us to erroneously link to the wrong version of these math functions

Status: We now support the same math functions for NVIDIA and AMD

21

GPU ARCHITECTURE FEATURE PARITY

22

GPU ARCHITECTURE PERFORMANCE PARITY

Background: In 1.30, HPCC-Stream was competitive with CUDA on NVIDIA but not with HIP on AMD

This Effort: Updated runtime to avoid calling a deprecated HIP API

Impact: Stream now performs competitively to C+HIP on AMD

Background:
• Chapel supports targeting NVIDIA and AMD GPUs; but Intel GPUs are not supported, yet

– LLVM does not support targeting Intel GPUs

This Effort:
• We investigated Intel's LLVM-based 'dpc++' compiler

– Discovered that default builds may not be suitable for use as the system LLVM
– Headers and some tools are missing

Next Steps:
• Allow Chapel to be built with Intel's LLVM as the system LLVM

–Create documentation for it for advanced users

• Implement a runtime layer for Intel GPUs based on oneAPI Level Zero

23

TARGETING INTEL GPUS

Background and This Effort

Background:
• Chapel's GPU support required the runtime to be built with CUDA or HIP as a dependency

– This meant that even simple development must be done on a system with actual GPUs

• Being able to start HPC-oriented development on a personal computer is an important part of productivity
– e.g., Chapel also allows multilocale development on a personal computer

This Effort: Chapel now has a cpu-as-device mode for GPU programming without GPUs
• No CUDA/HIP dependencies, no need for actual GPUs
• To enable this mode:

> export CHPL_LOCALE_MODEL=gpu # required for GPU support in general
> export CHPL_GPU=cpu # mandatory to enable cpu-as-device mode. i.e., will never be set automatically

24

CPU-AS-DEVICE MODE

Status

• Compiler works similarly, but the original loop will always execute
• Runtime's calls bump up diagnostic counters as appropriate, redirect to other parts of the runtime

• i.e., GpuDiagnostics can be used normally in most cases

• '@assertOnGpu' on a loop generates:
• Compiler error: if the loop is not GPU-eligible
• Runtime warning: if the loop is run on a non-GPU locale

– The warning can be disabled by setting the 'CHPL_GPU_NO_CPU_MODE_WARNING' environment variable

25

CPU-AS-DEVICE MODE

if (on_gpu()) {
 launch_kernel(...);
}
foreach i in 1..n do
 foo();

foreach i in 1..n do
 foo()

Translates
into

Runtime code:
void launch_kernel(...) {
 num_launches += 1;
 return;
}

Next Steps

• We plan to address some behavior differences we observed
• Nested GPU-eligible loops cause GpuDiagnostics to register more kernel launches than expected
• Argument passing and outer variable usage details are not captured in this mode

– We were unable to reproduce some actual GPU bugs in this mode

• The generated kernel is discarded while generating the final code
– There's no generated kernel code that is very useful for advanced debugging during development

26

CPU-AS-DEVICE MODE

if (on_gpu()) {
 launch_kernel(...);
}
else { // need 'else' now

 foreach i in 1..n do
 foo();
}

foreach i in 1..n do
 foo()

Will translate
into

Runtime code:
void launch_kernel(...) {
 num_launches += 1;
 for (int threadIdx...
 call_kernel(kernel,
 threadIdx,
 ...);
 return;
}

Background:
• Chapel supported CUDA 11.x and 10.x with some limitations
• CUDA 12.x was not supported before

– Main blocker: LLVM/Clang 15 (highest version Chapel supports) does not support CUDA 12.x
– Noted by multiple users

• LLVM/Clang 16 supports CUDA 12
This Effort:

• We patched our bundled LLVM (version 15) to support CUDA 12
• Unsupported versions generate an error while building Chapel

Status:
• CUDA 12 is now supported only when using the bundled LLVM

Next Steps:
• Complete LLVM 16 upgrade to enable CUDA 12 support with system LLVM too
• Consider dropping CUDA 10.x support

– Should be a documentation change only: we do not maintain any code to support 10.x specifically

27

CUDA 12.X SUPPORT

Background:
• Chapel supported ROCm 4.x
• ROCm 5.x was not tested before

Status:
• Unsupported versions generate an error while building Chapel
• 5.0, 5.1: Fully supported
• 5.2-5.4: Supported, but deprecation warnings from clang are expected

– The way the compiler uses a clang tool to bundle device and host binaries is deprecated
– We plan to fix this soon

• 5.5+: Not supported
– These versions require LLVM 16
– There may be a way to use LLVM 15, or patch it similarly to LLVM 16
– For now, we are waiting on the LLVM 16 upgrade

• 5.7+: Not supported, but required for 64-bit, signed 'gpuAtomicMax' and 'gpuAtomicMin' support
• See #23480 for the most up-to-date status of ROCm 5.x support

28

ROCM 5.X SUPPORT

https://github.com/chapel-lang/chapel/issues/23480

PERFORMANCE

• Faster Array Access
• Peer-to-Peer Access
• Array-On-Device
• Task Parallelism with GPUs
• Faster Math Library Calls
• GPU Specialization

Background and This Effort

Background:
• Arrays have two layers of indirection to get to underlying data
• Loop Invariant Code Motion (LICM) is an optimization that moves code from inside to outside a loop

– Helps avoid repetitive computations that always have the same value (e.g., 1+1).
– Can be used to move array metadata access, too

• Chapel’s LICM optimization is conservative; arrays passed by reference are not considered “constant”

proc copyArray(ref A: [?D] int, ref B: [D] int) {
 foreach i in A.domain do B[i] = A[i];
}

This Effort:
• Arrays passed by reference to GPU kernels won’t be changed from outside

– Relax LICM rules to match

30

FASTER ARRAY ACCESS IN KERNELS

Result:
4 metadata accesses per iteration!

Impact

• Performance improvements across multiple benchmarks

31

FASTER ARRAY ACCESS IN KERNELS

4 metadata accesses total!

proc copyArray(ref A: [?D] int, ref B: [D] int) {
 foreach i in A.domain do B[i] = A[i];
}

2.1x faster
SHOC Triad kernel

1.25x faster
SHOC Sort kernel

Background and This Effort

Background:
• GPUs can communicate directly with one other

– Can be through PCIe or communication links such as NVLink or Infinity Fabric

• Previously, Chapel's GPU runtime would not enable peer-to-peer communication

This Effort: Create a way to enable peer-to-peer communication
• Added the 'enableGpuP2P' config constant to 'GPU' module

– To use, run your Chapel program with '--enableGpuP2P=true'

32

PEER-TO-PEER ACCESS

Impact

33

PEER-TO-PEER ACCESS

0 1 2 3

0 13.2 11.9 13.3

1 13.2 13.4 13.5

2 13.2 13.3 13.5

3 13.2 13.2 13.4

Throughput (GiB/s)
enableGpuP2P=false

0 1 2 3

0 86.2 86.3 86.3

1 86.1 86.4 86.3

2 86.6 86.5 86.1

3 86.6 86.5 86.5

Impact: On NVIDIA, we see close to 6x throughput improvement in GPU-to-GPU transfers
• Tables measure 8 GiB transfers on a system with 4 NVIDIA A100-SXM4 GPUs
• Row and column correspond to source and destination GPU
• Each transfer was performed individually

Throughput (GiB/s)
enableGpuP2P=true

Status and Next Steps

Status: While NVIDIA GPUs benefit from '--enableGpuP2P', AMD GPUs do not
• We have observed that AMD conducts peer-to-peer transfers by default

– On Frontier we see ~10–47 GiB/s transfers in our benchmark regardless of how '--enableGpuP2P' is set

• With AMD, setting 'HSA_ENABLE_SDMA=0' adjusts GPU-to-GPU transfers for higher throughput
– We observed up to 160 GiB/s transfer rates on Frontier with this setting

Next Steps:
• Find non-artificial benchmarks using peer-to-peer communication
• Further investigate peer-to-peer performance with AMD GPUs and Infinity Fabric

– Determine if we want Chapel to adjust 'HSA_ENABLE_SDMA'

• Determine if we should allow turning on/off peer-to-peer access on an individual GPU level (#23621)
– Or allow specifying peer-to-peer communication on an individual put/get basis

34

PEER-TO-PEER ACCESS

https://github.com/chapel-lang/chapel/issues/23621

35

ARRAY-ON-DEVICE

Unified
Memory

Array on
Device

0.12 0.18

0.038 0.018

18.16

Significantly improved
CPU array initialization

Unified
Memory

Array on
Device

0.25 0.033

0.14 0.034

var CpuArr: [1..n] int;

on here.gpus[0] {
 var GpuArr: [1..n] int;

 GpuArr = CpuArr;
 CpuArr = GpuArr;
}

Time (s)
(RTX A2000)

Background:
• 'array_on_device' is a memory strategy

– Faster data transfers and GPU array initialization
– However, CPU array initialization was sub-optimal

This Effort:
• Significantly improved performance

– Implemented GPU-aware GET/PUT calls
– This will also help GPU-driven communication

Status:
• 'array_on_device' performs better

– 1.2x – 14x improvements in nightly testing

• It is the default memory strategy as of 1.32

Performance in previous
release was lacking

on here.gpus[0] {
 begin {
 gpuData2 = cpuData2;
 data2Copied.writeEF(true); }

 foreach d in gpuData1 do foo(d);

 if data2Copied.readFE() then
 foreach d in gpuData2 do bar(d);
}

Background

• Communication and computation overlap is:
• An optimization to make use of different HW units
• An important technique in GPU programming

• Chapel tasks are a natural way to achieve overlap
• However, before 1.32 task starvation prevented that

36

AVOIDING TASK STARVATION

Core 0

pthread 0
task queue

<will sched. child tasks on core 0>

<will sched. child tasks on core 0>

<will sched. child tasks on core 1>

Task-private counter determines
the core on which child tasks will be scheduled

... which will happen only when it hits sync variable read

Result: No Overlap

This copy in 'begin' must wait b/c:
• it got scheduled behind the parent task
• current scheduler does not allow task stealing

<will sched. child tasks on core 1>

on here.gpus[0] {
 begin {
 gpuData2 = cpuData2;
 data2Copied.writeEF(true); }

 foreach d in gpuData1 do foo(d);

 if data2Copied.readFE() then
 foreach d in gpuData2 do bar(d);
}

This Effort

• With 1.32, a task yields right after launching a kernel
• In non-contentious cases, cost is not observable
• If tasks contend for a core, allows overlap

37

AVOIDING TASK STARVATION

Core 0

pthread 0
task queue

<will sched. child tasks on core 0>

The parent task will yield after launching the kernel

Result: Overlap!

The copy in 'begin' can execute

The main task waits in the queue
while GPU kernel is executing

on here.gpus[0] {
 coforall worker in 0..#numWorkers {
 var DevIn, DevOut: [0..#tSize] real;

 while true {
 // dynamically pick the next chunk
 const myChunkId = curChunk.fetchAdd(1);
 if myChunkId >= numChunks then break;

 const myChunk = myChunkId*tSize..#tSize;

 DevIn = HostIn[myChunk]; // copy in
 kernel(DevIn, DevOut); // kernel
 HostOut[myChunk] = DevOut; // copy out
 }
 }
}

• To overlap communication/computation on a GPU:
• Data can be split into chunks
• Multiple CUDA/HIP streams do copy+kernel launch
• GPU driver can interleave copies with launches

– But they must come from different GPU streams

• One way of doing that in Chapel is:
• Create multiple worker tasks per GPU
• Have each of them run a loop
• While picking the next chunk dynamically
• Until all the chunks are processed

• Before 1.32, this would perform worse
• Non-overlapped version is faster
• Regardless of per-task size and/or number of tasks

Background

38

TASK-PARALLEL GPU OPERATIONS

Results in completely sequential order:

• Previously, Chapel used the default GPU stream
• i.e., GPU operations from parallel tasks got serialized

Background

on here.gpus[0] {
 coforall worker in 0..#numWorkers {
 var DevIn, DevOut: [0..#tSize] real;

 while true {
 // dynamically pick the next chunk
 const myChunkId = curChunk.fetchAdd(1);
 if myChunkId >= numChunks then break;

 const myChunk = myChunkId*tSize..#tSize;

 DevIn = HostIn[myChunk]; // copy in
 kernel(DevIn, DevOut); // kernel
 HostOut[myChunk] = DevOut; // copy out
 }
 }
}

39

TASK-PARALLEL GPU OPERATIONS

Core 0

worker=0

Core 1

worker=1

ops t0 t1 t2 t3 t4 t5

xfer in in out out

exec kernel kernel

time

Default GPU
Stream

copy in

copy in

copy out
kernel

kernel

GPU Driver

This Effort: Per-task, per-device streams
• Each worker task will have its own GPU stream

This Effort and Impact

on here.gpus[0] {
 coforall worker in 0..#numWorkers {
 var DevIn, DevOut: [0..#tSize] real;

 while true {
 // dynamically pick the next chunk
 const myChunkId = curChunk.fetchAdd(1);
 if myChunkId >= numChunks then break;

 const myChunk = myChunkId*tSize..#tSize;

 DevIn = HostIn[myChunk]; // copy in
 kernel(DevIn, DevOut); // kernel
 HostOut[myChunk] = DevOut; // copy out
 }
 }
}

40

TASK-PARALLEL GPU OPERATIONS

Per-task GPU
Streams

ops t0 t1 t2 t3 t4 t5

xfer in in out out

exec kernel kernel

Enables better overlap: time

GPU Driver

copy in
copy in

kernel

kernelcopy out

Core 0

worker=0

Core 1

worker=1

Background: Math library calls like 'sqrt' were unexpectedly slower compared to CUDA/HIP
• Reported by a user (#22112)

This Effort: The performance issue is fixed in 1.32
• The compiler was generating calls that were wrapped in some helper functions that should have been inlined
• The root issue was the ordering of device library linkage w.r.t. the LLVM optimization pipeline

Impact: Math library functions perform on-par with CUDA/HIP
• Two mini-applications benefitted from this optimization

41

FASTER MATH LIBRARY CALLS IN KERNELS

Speedup

NVIDIA
A100

AMD
MI250X

coral 1.80x 1.25x

miniBUDE* 1.82x 1.92x

* https://github.com/xianghao-wang/miniBUDE/tree/benchmark

https://github.com/chapel-lang/chapel/issues/22112

• GPU-eligible loops exhibit different behavior depending on if you are on a GPU locale or not
• Namely, if we are on a GPU locale then we do a kernel launch

• Checking to see if we are on a GPU adds overhead at every eligible loop
• Note the repeated execution of the 'if' statement in this example:

42

GPU SPECIALIZATION

on loc do
 for i in 0..<N do
 foreach k in 0..<P do ...

on loc do onBody()

proc onBody() do

 for i in 0..<N do

 if is_gpu_locale(here) then
 gpu_kernel_launch(extractedLoopFunc, ...)
 else
 foreach k in 0..<P do ...

The compiler "lowers" this to:Original code:

Background

body of 'on' statement is outlined into a function

since the 'foreach' loop is GPU-eligible, we insert a
runtime check to see if we are on a GPU locale. If so,

launch it as a kernel.

This Effort

• Clone functions reachable from 'on' statements into ”GPU-specialized" and "non-GPU-specialized" copies
• Rewrite calls in GPU-specialized functions to call other specialized functions
• Perform a runtime check to see if you are on a GPU in the 'on' statement; if so, call the cloned function

43

GPU SPECIALIZATION

on loc do
 for i in 0..<N do
 foreach k in 0..<P do ...

if is_gpu_locale(loc) on loc do onGpuBody();
else on loc do onBody();

proc onGpuBody() do
 for i in 0..<N do
 gpu_kernel_launch(extractedLoopFunc, ...)

proc onBody() do
 for i in 0..<N do
 if current_sub_locale >= 0 then
 gpu_kernel_launch(extractedLoopFunc, ...)
 else
 foreach k in 0..<P do ...

Lowers to

this specialization can avoid the runtime check

in theory this could too, but we don't currently
account for virtual function calls,

so we still do it here

Impact and Status

Impact: Current limitations prevent us from improving performance
• In an unsafe version, we see a 3x performance improvement

– Unsafe because it does not rewrite virtual function calls in GPU-specialized functions to call GPU-specialized clones

• In our current safe version of the transform, we do not see a performance improvement
– Safe because we do not remove 'if' statements from non-GPU-specialized functions

• Adding extra functions also increases compile time (~30% longer in some cases)

Status: The transform is considered experimental and may be beneficial in the future
• It can optionally be turned on by passing '--gpu-specialization' to 'chpl'
• Aside from removing a per-eligible-loop runtime check, the transform may prove useful for other optimizations:

– specializing reductions on GPU locales
– less aggressive wide pointer usage

44

GPU SPECIALIZATION

Next Steps

• Study more benchmarks, examining overhead from using the GPU locale model on non-GPU bound code
• Make the transform cognizant of virtual function calls
• Avoid overspecialization when unnecessary
• Explore other kinds of specialization that may not add as much compile-time overhead

45

GPU SPECIALIZATION

SUMMARY & NEXT STEPS

Summary: Highlights from 1.31 and 1.32

Performance:
• Faster default memory strategy: 1.2x – 14x improvement on several benchmarks
• Faster array access in kernels: 1.1x – 2x improvement on several benchmarks
• Faster Math library calls: 1.3x – 1.9x improvement on two applications
• Can reach peak peer-to-peer bandwidth on Frontier

Portability:
• Feature and performance parity between NVIDIA and AMD targets
• CPU-as-Device mode

Features:
• Atomic operations
• Ability to compile for multiple NVIDIA architectures
• Increased introspection through: '--report-gpu', '--savec' on AMD and improved kernel naming

47

GPU SUPPORT

Proposed Next Steps for 1.33 and 1.34

Portability:
• Improve cpu-as-device behavior parity
• Improve CUDA 12/ROCm 5 support with LLVM 16

Explorations:
• Try using dpc++ as the system LLVM for Intel GPUs
• Start working on GPU-driven communication
• Investigate launching multidimensional grids
• Start improving CPU/GPU portability

48

GPU SUPPORT

Features:
• Foreach intents and better shadowing
• Warp-/wavefront-level functions

– warp-synchronization
– data shuffle

• Initial support for basic whole-array reductions
• Prototype syntax for advanced forall features

Performance:
• Continue investigating low-performance cases
• Investigate non-GPU execution performance
• Outer-loop vectorization for CPU

OTHER GPU IMPROVEMENTS

For a more complete list of GPU support changes and improvements in the 1.31 and 1.32 releases,
refer to the following sections in the CHANGES.md file:

• ‘GPU Computing’

• ‘Bug Fixes for GPU Computing’

50

OTHER GPU IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.32/CHANGES.md
https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

