Hewlett Packard
Enterprise

CHAPEL 1.31/1.32 RELEASE NOTES:
GPU SUPPORT

Chapel Team
June 22, 2023 / September 28, 2023



GPU SUPPORT
OUTLINE

Background
Features

Portability
e Performance

Next Steps




BACKGROUND



GPU SUPPORT
Background

e We are adding native GPU support to Chapel
« A highly desired feature, given the potential to be a clean and portable way of programming GPUs

e GPUs are more and more common in supercomputers
—Over 95% of the compute capability on Frontier (currently #1 on the top-500) comes from its GPUs

e |n earlier releases, we've...
..moved from an idea (1.23), fo a demo (1.24), to a user-accessible feature on NVIDIA GPUs (1.25), ...
..o being able to drive multiple GPUs on one locale (1.26), and then multiple locales (1.27).

» We started to focus on performance and portability during 1.29 / 1.30

e 1.31/1.32: continued push on performance and portability, responded to uptick in user requests
—-Performance: optimizations impacting many benchmarks, ability to use Chapel tasks with GPUs
—Portability: AMD/NVIDIA parity, initial support for CUDA 12/ROCm 5, new cpu-as-device mode
—Community: new users trying out GPU support, significant increase in GitHub interactions
—Also new features for users and capabilities for developers

—



GPU SUPPORT
GitHub Activity Summary

e GPU support has started to receive attention

e Before 1.30:
» 2 user-reported issues were opened

e Between 1.30 and 1.32:
e we had 21 user-reported issues

e During 1.31/1.32, we prioritized resolving user issues
o we closed 27 total issues,
o 14 of them were reported by users

e We also started to report issues publicly ourselves
« ... while migrating internal discussions to the public repo

—

Number of Issues

Issues Created

| ro.

non-user/open
non-user/closed
user/open
user/closed

<1.30 1.30-1.32
Chapel Versions



CRASH COURSE IN GPU
PROGRAMMING USING CHAPEL




GPU SUPPORT

Vector Increment Example: Basics

on here.gpus[0] { 'on' statement targets a GPU

array data will be allocated on the targeted GPU

var GpuVec: [1l..n] int;
GpuVec += 1;
writeln (GpuVec); data-parallel operations will launch as a GPU kernel




GPU SUPPORT

Vector Increment Example: Data Offload via Bulk Array Assignment

var CpuVec: [1l..n] int;

on here.gpus[0] {

host-to-device copy

var GpuVec = CpuVec;
GpuVec += 1;

CpuVec = GpuVec; )
device-to-host copy

writeln (CpuVec) ;

—



GPU SUPPORT

Vector Increment Example: Multiple GPUs via 'coforall’

var Cpuvec: [l..n] 1int; ‘coforall' creates a task per local GPU

coforall gpu in here.gpus do on gpu {

const myChunk = ...;

var GpuVec = CpuVec|[myChunk];
GpuVec += 1; a slice of the data is copied

CpuVec [myChunk] = GpuVec; between host and device

writeln (CpuVec) ;

—



GPU SUPPORT

Vector Increment Example: Multiple GPUs on Multiple Locales

var CpuVec: [l..n] int; ‘coforall' over all locales
coforall loc in Locales do on loc {

coforall gpu in here.gpus do on gpu {

const myChunk = ...;
var GpuVec = CpuVec|[myChunk];

GpuVec += 1;
CpuVec [myChunk] = GpuVec;

}

writeln (CpuVec) ;

—

10



GPU SUPPORT

Vector Increment Example: Multiple GPUs using Multiple Tasks on Multiple Locales

var CpuVec: [1l..n] int;
coforall loc in Locales do on loc {

coforall gpu in here.gpus do on gpu { '‘coforall' to create
coforall workerId in 0O..<numTasks { multiple tasks per GPU
const myChunk = ...;

var GpuVec = CpuVec [myChunk];
GpuVec += 1;
CpuVec [myChunk] = GpuVec;
This pattern has significantly
} improved performance in 1.32

) See the "Performance" part of this deck.

}

writeln (CpuVec) ;

—

11



GPU SUPPORT
Overview of Changes in 1.31 and 1.32

Performance:
o Faster array access in kernels

Faster Math library calls
Faster multitasking on GPUs

Turned the faster memory strategy on by default
Peer-to-peer access features and exploration

Portability:
o CPU-as-Device mode
« AMD/NVIDIA feature and performance parity

e Initial Intel exploration
« CUDA 12/ROCm 5 support

—

New Features and Capabilities:

Standalone atomic functions

'--report-gpu' compiler flag

Ability to compile for multiple NVIDIA architectures
Improved debugging features:

— Ability to inspect assembly for AMD GPUs

—Improved auto-generated kernels' names

—New loop attribute '@assertOnGpu’



FEATURES

Atomic Operations

'--report-gpu' flag
Assembly Inspection
‘@assertOnGpu' attribute

Multi-arch compilation
e Improved Kernel Naming




ATOMIC OPERATIONS ON GPU

Background: GPUs have support for atomic operations (add, compare-and-swap, etc.)

This Effort: Added the following procedures for atomic operations to the GPU module:

gpuAtomicAdd gpuAtomicMin gpuAtomicDec gpuAtomicXor
gpuAtomicSub gpuAtomicMax gpuAtomicAnd gpuAtomicCAS
gpuAtomicExch gpuAtomicInc gpulAtomicOr

Status: Almost all operations are supported on NVIDIA and AMD GPUs

« Caveat: 64-bit, signed, atomic 'min’ and 'max' operations do not work when compiling for AMD
— These operations are not supported in HIP version < 5.7 (we currently support 4.0-5.4)
—We produce a compile-time error if these are used and 'CHPL_GPU=amd' is set

Next Steps:
« Allow using variables with Chapel's 'atomic' type and have them lower to these calls as appropriate (#23619)
e Enable atomic min and max on AMD GPUs once we support HIP versions >= 5.7

: | 14


https://github.com/chapel-lang/chapel/issues/23619

--REPORT-GPU FLAG

Background: Chapel generates kernels for all GPU-eligible loops
« Users may want to know what loops are and are not GPU-eligible
« 'assertOnGpu' does a compile-time eligibility check, but needs to be applied manually to all loops

This Effort: Added '--report-gpu' to chpl to dump loop eligibility information
o We report on all loops that are order-independent and not already in a GPU kernel

Impact: The following code produces the following output when compiled with '--report-gpu*:

foreach i in 0..10 do A[i] = callToExtern(); GPU INELIGIBLE LOOPS:
foreach i in 0..10 do A[i] *=2; —oooomomom—m s
foreach 1 in 0..10 do A[1] += 2; foo.chpl:1

Next Steps: Consider increasing the verbosity for when we report GPU-ineligibility (#23620)

—

15


https://github.com/chapel-lang/chapel/issues/23620

EMITTING GPU ASSEMBLY WITH --SAVEC FLAG

Background: --savec dumps code that can help users gain performance insights
e When using the C backend, it saves C files

e When using LLVM, it saves various llvm-related intermediate files
— (the name "savec" needs to change, at least for LLVM, see #18602)

e When compiling for NVIDIA GPUs, it also stores a PTX assembly file
—but previously we did not do this for AMD

This Effort: Ensured --savec outputs GPU-related assembly for NVIDIA and AMD

Impact:

» Regardless of GPU target, we output a ‘chpl__gpu.s'
« In the generated assembly, kernels are named 'chpl_gpu_kernel_<fileName>_line_<num>

« We now documented this in the technote and intend to support it going forward

—

16


https://github.com/chapel-lang/chapel/issues/18602

ASSERT-ON-GPU ATTRIBUTE

Background:
« Ensuring that loops were GPU-eligible was handled by a special 'assertOnGpu()' function

o Calls to 'assertOnGpu( )" were either compile-time or run-time depending on its position, which was unusual
—If 'assertOnGpu( )’ was a top-level statement in an ineligible loop, compiler reported an error immediately

This Effort:
« Use recently-added loop attributes to introduce ‘@assertOnGpu’, which always performs a compile-time check
« Precludes the need for differentiating function behavior if it’s at the top level

dassertOnGpu
foreach a in A do a += 1;

Status:

o '@assertOnGpu' is the preferred way to check GPU eligibility
—the standalone 'assertOnGpu' function is deprecated

Next Steps:
« Investigate if a runtime-only assertion (like '‘assertOnGpuQ' not-at-top-level) is necessary

: | 17



MULTI-ARCHITECTURE GPU EXECUTABLES

Background:

e It’'s common for GPU-enabled programs to embed multiple GPU binaries for different architectures
— Enables a compiled program to run on devices with different GPU hardware
—e.g.,, a cluster with different GPU nodes, or a laptop with dedicated and integrated GPU

This Effort:
o Added prototypical support for multi-architecture executables to Chapel’s GPU functionality

Status:
o Initial support for multi-architecture executables for NVIDIA

— To access, pass comma-separated architectures to ‘--gpu-arch’
> chpl --gpu-arch sm 70,sm 80
o Current approach relies on using the lowest-common version of PTX for named architectures
—with additional effort, could specialize PTX per architecture

Next Steps:
« Investigate additional specialization for architectures and multi-vendor support (#22783)

—

18


https://github.com/chapel-lang/chapel/issues/22783

GPU KERNEL NAMING

Background:
» Chapel generates GPU kernels by translating loops into procedures (named ‘chpl_gpu_kernel’)

o If multiple kernels are present, the built-in mangling appended '_1','_2', and more
e However, 'chpl_gpu_kernel_1'isn't very descriptive, and doesn’t make for easy debugging

This Effort:
« Change the GPU kernel naming policy to include the filename and line number. e.g.,

chpl gpu kernel fileName line 13
chpl gpu kernel fileName line 37

Status:
» Kernel naming changes are available in 1.32

19



PORTABILITY

o AMD/NVIDIA Parity

e Intel Explorations
e CPU-as-Device mode

e CUDA 12/ROCm 5 support




GPU ARCHITECTURE FEATURE PARITY

Background: In 1.30, some Chapel code was not portable across AMD and NVIDIA GPUs
 Specifically, using the 64-bit versions of these functions caused compile-time failures when building for AMD:

acos acosh asin asinh atan atan?
atanh cbrt cosh erf erfc ldexp
lgamma loglp sinh tan tanh tgamma

This Effort: Fixed a bug causing us to erroneously link to the wrong version of these math functions

Status: We now support the same math functions for NVIDIA and AMD

21



GPU ARCHITECTURE PERFORMANCE PARITY

Background: In 1.30, HPCC-Stream was competitive with CUDA on NVIDIA but not with HIP on AMD
This Effort: Updated runtime to avoid calling a deprecated HIP API

Impact: Stream now performs competitively to C+HIP on AMD

Stream (using AMD Instinct MI100)

—% B =&
- 800
)
2 =600 s
@E )
3 = 400 1]
o0 - C+HIP =
ﬁ 200 -@- Chapel 1.31
-~ Chapel 1.30
O | [ | |

32 64 128
Number of Elements (M)



TARGETING INTEL GPUS

Background:

o Chapel supports targeting NVIDIA and AMD GPUs; but Intel GPUs are not supported, yet
- LLVM does not support targeting Intel GPUs

This Effort:

» We investigated Intel's LLVM-based 'dpc++' compiler
— Discovered that default builds may not be suitable for use as the system LLVM
—Headers and some fools are missing

Next Steps:

e Allow Chapel to be built with Intel's LLVM as the system LLVM
—Create documentation for it for advanced users

o Implement a runtime layer for Intel GPUs based on oneAPI Level Zero

—

23



CPU-AS-DEVICE MODE
Background and This Effort

Background:

o Chapel's GPU support required the runtime to be built with CUDA or HIP as a dependency
— This meant that even simple development must be done on a system with actual GPUs

« Being able to start HPC-oriented development on a personal computer is an important part of productivity
—e.g., Chapel also allows multilocale development on a personal computer

This Effort: Chapel now has a cpu-as-device mode for GPU programming without GPUs

« No CUDA/HIP dependencies, no need for actual GPUs
e To enable this mode:

> export CHPL LOCALE MODEL=gpu # required for GPU support in general
> export CHPL GPU=cpu # mandatory to enable cpu-as-device mode. i.e., will never be set automatically

—

24



CPU-AS-DEVICE MODE
Status

o Compiler works similarly, but the original loop will always execute
e Runtime's calls bump up diagnostic counters as appropriate, redirect to other parts of the runtime
e i.e,, GpuDiagnostics can be used normally in most cases
Runtime code:

foreach i in 1..n do _ void launch kernel
foo () if (on_gpu()) A num launches +=
launch kernel(...); .
— return;
Translates } }
into foreach 1 in 1..n do
foo ()

» '@assertOnGpu' on a loop generates:
o Compiler error: if the loop is not GPU-eligible

« Runtime warning: if the loop is run on a non-GPU locale
— The warning can be disabled by setting the 'CHPL_GPU_NO_CPU_MODE_WARNING' environment variable

—

(
1z

25



CPU-AS-DEVICE MODE
Next Steps

» We plan to address some behavior differences we observed
» Nested GPU-eligible loops cause GpuDiagnostics to register more kernel launches than expected

o Argument passing and outer variable usage details are not captured in this mode
—We were unable to reproduce some actual GPU bugs in this mode
o The generated kernel is discarded while generating the final code
— There's no generated kernel code that is very useful for advanced debugging during development

Runtime code:
foreach i in 1..n do void launch kernel(...) {
foo () if (on_gpu()) num launches += 1 c
launch kernel(...); for_(int threadIdx...
Will translate ) call kernel (kernel,
into else { //need 'else' now - threadIdx,
foreach 1 in 1..n do i
too () return;



CUDA 12.X SUPPORT

Background:
e Chapel supported CUDA 11.x and 10.x with some limitations

o CUDA 12.x was not supported before
—Main blocker: LLVM/Clang 15 (highest version Chapel supports) does not support CUDA 12.x

- Noted by multiple users
e LLVM/Clang 16 supports CUDA 12

This Effort:

» We patched our bundled LLVM (version 15) to support CUDA 12

» Unsupported versions generate an error while building Chapel
Status:

o« CUDA 12 is now supported only when using the bundled LLVM
Next Steps:

o Complete LLVM 16 upgrade to enable CUDA 12 support with system LLVM too
» Consider dropping CUDA 10.x support
—Should be a documentation change only: we do not maintain any code to support 10.x specifically

—

27



ROCM 5.X SUPPORT

Background:
e Chapel supported ROCm 4.x
« ROCm 5.x was not tested before
Status:
» Unsupported versions generate an error while building Chapel
e 5.0, 5.1: Fully supported
» 5.2-5.4: Supported, but deprecation warnings from clang are expected

— The way the compiler uses a clang tool to bundle device and host binaries is deprecated
—We plan to fix this soon
e 5.5+: Not supported
— These versions require LLVM 16
— There may be a way to use LLVM 15, or patch it similarly fo LLVM 16
—For now, we are waiting on the LLVM 16 upgrade

o 5.7+: Not supported, but required for 64-bit, signed 'gpuAtomicMax' and 'gpuAtomicMin' support
o See #23480 for the most up-to-date status of ROCm 5.x support

—

28


https://github.com/chapel-lang/chapel/issues/23480

PERFORMANCE

e Faster Array Access

o Peer-to-Peer Access

e Array-On-Device

o Task Parallelism with GPUs
e Faster Math Library Calls

» GPU Specialization




FASTER ARRAY ACCESS IN KERNELS
Background and This Effort

Background:
« Arrays have two layers of indirection to get to underlying data
e Loop Invariant Code Motion (LICM) is an optimization that moves code from inside to outside a loop
- Helps avoid repetitive computations that always have the same value (e.g., 1+1).
—Can be used to move array metadata access, t0o
o Chapel's LICM optimization is conservative; arrays passed by reference are not considered “constant”

proc copyArray(ref A: [?D] int, ref B: [D] int) ({
foreach 1 in A.domain do B[i] = A[1];

} #
Result:
4 metadata accesses per iteration!

This Effort:
« Arrays passed by reference to GPU kernels won’t be changed from outside
—Relax LICM rules to match

—

30



FASTER ARRAY ACCESS IN KERNELS

Impact

e Performance improvements across multiple benchmarks

proc copyArray(ref A: [?D] int, ref B: [D] int) {
foreach i in A.domain do B[i] = A[i];

} e —

4 metadata accesses total!

SHOC Sort - Bandwidth

SHOC Triad - Kernel Time - 64KB

0.25

2.1x faster

SHOC Triad kernel

1.25x faster

& 4 SHOC Sort kernel 0:2
O
< 3 0.15
el
=
S 2 0.1
@

1 - 0.05

0 0

Jul 2023 Aug 2023 18 Aug

20 Aug

22 Aug

24 Aug

26 Aug

28 Aug

30 Aug

31



PEER-TO-PEER ACCESS
Background and This Effort

Background:

e GPUs can communicate directly with one other
—Can be through PCle or communication links such as NVLink or Infinity Fabric
e Previously, Chapel's GPU runtime would not enable peer-to-peer communication

This Effort: Create a way to enable peer-to-peer communication

o Added the 'enableGpuP2P' config constant to 'GPU' module
—To use, run your Chapel program with '--enableGpuP2P=true'

32



PEER-TO-PEER ACCESS

Impact

Impact: On NVIDIA, we see close to 6x throughput improvement in GPU-to-GPU transfers
o Tables measure 8 GiB transfers on a system with 4 NVIDIA A100-SXM4 GPUs

e Row and column correspond to source and destination GPU
o Each transfer was performed individually

Throughput (GiB/s) Throughput (GiB/s)
enableGpuP2P=false enableGpuP2P=true
o 1 2 3 0 1 2 3
o 13.2 11.9 13.3 0o 86.2 86.3 86.3
1 13.2 13.4 13.5 1 86.1 86.4 86.3
2 13.2 13.3 13.5 2 86.6 86.5 86.1
3 3

13.2 13.2 13.4 86.6 86.5 86.5

33



PEER-TO-PEER ACCESS
Status and Next Steps

Status: While NVIDIA GPUs benefit from '--enableGpuP2P', AMD GPUs do not
o We have observed that AMD conducts peer-to-peer transfers by default
— On Frontier we see ~10-47 GiB/s transfers in our benchmark regardless of how '--enableGpuP2P' is set
e With AMD, setting 'HSA_ENABLE_SDMA=0' adjusts GPU-to-GPU transfers for higher throughput
- We observed up to 160 GiB/s transfer rates on Frontier with this setting

Next Steps:
« Find non-artificial benchmarks using peer-to-peer communication
o Further investigate peer-to-peer performance with AMD GPUs and Infinity Fabric
— Determine if we want Chapel to adjust 'HSA_ENABLE_SDMA'
« Determine if we should allow turning on/off peer-to-peer access on an individual GPU level (#23621)
— Or allow specifying peer-to-peer communication on an individual put/get basis

34


https://github.com/chapel-lang/chapel/issues/23621

ARRAY-ON-DEVICE

Background:
« 'array_on_device' is a memory strategy

—Faster data transfers and GPU array initialization
—-However, CPU array initialization was sub-optimal

This Effort:

o Significantly improved performance
—Implemented GPU-aware GET/PUT calls
— This will also help GPU-driven communication

Status:

e 'array_on_device' performs better
-1.2x - 14x improvements in nightly testing
o It is the default memory strategy as of 1.32

—

Significantly improved

CPU array initialization

var CpuArr:

[1..n]

on here.gpus[0] {

var GpuArr: [1..

GpuArr =
CpulArr =

__— 0.038 0.018

Time (s)
(RTX A2000)

Array on
Device

nj
Unified Array on
Memory Device
CpulArr; — 0.25 0.033
GpuArr; - 014 0.034




AVOIDING TASKSTARVATION
Background

e Communication and computation overlap is:
o An optimization to make use of different HW units
o An important technique in GPU programming

e Chapel tasks are a natural way to achieve overlap
« However, before 1.32 task starvation prevented that

This copy in 'begin' must wait b/c:
e it got scheduled behind the parent task
 current scheduler does not allow task stealing

... which will happen only when it hits sync variable read

Result: No Overlap

Task-private counter determines
the core on which child tasks will be scheduled

@ here.gpus[0] {

2

begin {
gpubDataZ2 = cpuDataZ;

dataZ2Copied.writeEF (true) ;

}

foreach d in gpuDatal do foo(d);

if dataZ2Copied.readFE () then
foreach d in gpuData?2 do bar (d);

\ >

N—

J

—{ Core O

pthread O

task queue

o

<will sched. child tasks on core 1:

<will sched. child tasks on core 0>




AVOIDING TASK STARVATION
This Effort

e With 1.32, a task yields right after launching a kernel
e In non-contentious cases, cost is not observable
o If tasks contend for a core, allows overlap

The parent task will yield after launching the kernel

Result: Overlap!

The copy in 'begin' can execute
a <will sched. child tasks on core 1>

The main task waits in the queue

while GPU kernel is executing

@ here.gpus[0] { \

begin {
gpubDataZ2 = cpuDataZ;
dataZ2Copied.writeEF (true); }

foreach d in gpuDatal do foo(d);

if dataZ2Copied.readFE () then
foreach d in gpuData?2 do bar (d);

L /

—Core O

pthread O

task queue

<will sched. child tasks on core 0>




TASK-PARALLEL GPU OPERATIONS
Background

 To overlap communication/computation on a GPU: ©on here.gpus[0] {
Data can be split into chunks coforall worker in O..#numWorkers {
[ ]

var DevIn, DevOut: [0O..#tSize] real;
o Multiple CUDA/HIP streams do copy+kernel launch
e GPU driver can interleave copies with launches while true {
—But they must come from different GPU streams // dynamically pick the next chunk
const myChunkId = curChunk.fetchAdd(1l):;
 One way of doing that in Chapel is: if myChunkId >= numChunks then break;
o Create multiple worker tasks per GPU
« Have each of them run a loop const myChunk = myChunkId*tSize..#tSize;
o While picking the next chunk dynamically ,
= DevIn = HostIn[myChunk]; // copy in
o Until all the chunks are processed kernel (DevIn, DevOut) : 1/ kernel
o Before 1.32, this would perform worse }HOStout LmyChunk] = DevOut; //copy out
e Non-overlapped version is faster )
e Regardless of per-task size and/or number of tasks }

[::::::] | 38



TASK-PARALLEL GPU OPERATIONS
Background

e Previously, Chapel used the default GPU stream on here.gpus[0] {

. . - coforall worker in O..#numWorkers
o i.e.,, GPU operations from parallel tasks got serialized {

var DevIn, DevOut: [0..#tSize] real;
Core O Default GPU Core 1 _
_| Stream while true |
worker=0 | copy out - kernel | worker=1 // dynamically pick the next chunk
cernel copy in const myChunkId = curChunk.fetchAdd (1) :;
if myChunkId >= numChunks then break;
copy in
H const myChunk = myChunkId*tSize..#tSize;

GPU Driver
DevIn = HostIn[myChunk]; // copy in
BEEL HostOut [myChunk] = DevOut; //copyout




TASK-PARALLEL GPU OPERATIONS
This Effort and Impact

This Effort: Per-task, per-device streams
o Each worker task will have its own GPU stream

Core 0 Per-task GPU Core 1
Streams -
worker=0 | copy out kernel worker=1
kernel o
: copy in
copy in :

v +

GPU Driver
Enables better overlap: time
—_—

out

out

kernel kernel

on here.gpus[0] {
coforall worker in O..#numWorkers {
var DevIn, DevOut: [0O..#tSize] real;

while true {

// dynamically pick the next chunk

const myChunkId = curChunk.fetchAdd(1l):;
if myChunkId >= numChunks then break;

const myChunk = myChunkId*tSize..#tSize;
DevIn = HostIn[myChunk]; // copy in

kernel (DevIn, DevOut):; // kernel
HostOut [myChunk] = DevOut; //copyout



FASTER MATH LIBRARY CALLS IN KERNELS

Background: Math library calls like 'sqrt' were unexpectedly slower compared to CUDA/HIP
e Reported by a user (#22112)

This Effort: The performance issue is fixed in 1.32
« The compiler was generating calls that were wrapped in some helper functions that should have been inlined
« The root issue was the ordering of device library linkage w.r.t. the LLVM optimization pipeline

Impact: Math library functions perform on-par with CUDA/HIP
e Two mini-applications benefitted from this optimization

DIA f »

DU 0
coral 1.80x 1.25x
miniBUDE* 1.82x 1.92x

* https://github.com/xianghao-wang/miniBUDE/tree/benchmark

41


https://github.com/chapel-lang/chapel/issues/22112

GPU SPECIALIZATION
Background

e GPU-eligible loops exhibit different behavior depending on if you are on a GPU locale or not
o Namely, if we are on a GPU locale then we do a kernel launch

e Checking to see if we are on a GPU adds overhead at every eligible loop
« Note the repeated execution of the 'if' statement in this example:

Original code: The compiler "lowers" this to:
on loc do on loc do onBody ()
for i in 0..<N do
foreach k in 0..<P do ... proc onBody () do

body of 'on' statement is outlined into a function for i in 0..<N do

if is gpu locale (here) then

since the 'foreach' loop is GPU-eligible, we insert a gpu kernel launch (extractedLoopFunc,
runtime check to see if we are on a GPU locale. If so, else

launch it as a kernel. foreach k in 0..<P do

42



GPU SPECIALIZATION
This Effort

e Clone functions reachable from 'on' statements into "GPU-specialized" and "non-GPU-specialized" copies
« Rewrite calls in GPU-specialized functions to call other specialized functions
o Perform a runtime check to see if you are on a GPU in the 'on' statement; if so, call the cloned function

on loc do m if is gpu locale(loc) on loc do onGpuBody () ;
for i in 0..<N do else on loc do onBody () ;
foreach k in 0..<P do

proc onGpuBody () do
for i in 0..<N do
gpu kernel launch (extractedLoopFunc, ...)

this specialization can avoid the runtime check

proc onBody () do
for i in 0..<N do
account for virtual function calls, if current sub locale >= 0 then
so we still do it here gpu kernel launch (extractedLoopFunc, ...)
else
foreach k in 0..<P do

in theory this could too, but we don't currently




GPU SPECIALIZATION

Impact and Status

Impact: Current limitations prevent us from improving performance
 In an unsafe version, we see a 3x performance improvement
— Unsafe because it does not rewrite virtual function calls in GPU-specialized functions to call GPU-specialized clones
 In our current safe version of the fransform, we do not see a performance improvement
— Safe because we do not remove 'if' statements from non-GPU-specialized functions
« Adding extra functions also increases compile time (~30% longer in some cases)

Status: The transform is considered experimental and may be beneficial in the future

e It can optionally be turned on by passing '--gpu-specialization' to ‘chpl’

« Aside from removing a per-eligible-loop runtime check, the transform may prove useful for other optimizations:
— specializing reductions on GPU locales
- less aggressive wide pointer usage

— |



GPU SPECIALIZATION
Next Steps

e Study more benchmarks, examining overhead from using the GPU locale model on non-GPU bound code
e Make the transform cognizant of virtual function calls

e Avoid overspecialization when unnecessary

e Explore other kinds of specialization that may not add as much compile-time overhead



SUMMARY & NEXT STEPS




GPU SUPPORT
Summary: Highlights from 1.31 and 1.32

Performance:

o Faster default memory strategy: 1.2x — 14x improvement on several benchmarks
o Faster array access in kernels: 1.1x — 2x improvement on several benchmarks

o Faster Math library calls: 1.3x — 1.9x improvement on two applications

o Can reach peak peer-to-peer bandwidth on Frontier

Portability:

« Feature and performance parity between NVIDIA and AMD targets
o CPU-as-Device mode

Features:

o Atomic operations
 Ability to compile for multiple NVIDIA architectures
 Increased introspection through: '--report-gpu’, '--savec' on AMD and improved kernel naming

—

47



GPU SUPPORT
Proposed Next Steps for 1.33 and 1.34

Features:

« Foreach intents and better shadowing

o Warp-/wavefront-level functions
—warp-synchronization
—data shuffle

o Initial support for basic whole-array reductions

 Prototype syntax for advanced forall features

Performance:
o Continue investigating low-performance cases
« Investigate non-GPU execution performance
o Outer-loop vectorization for CPU

—

Portability:
e Improve cpu-as-device behavior parity
e Improve CUDA 12/ROCm 5 support with LLVM 16

Explorations:

e Try using dpc++ as the system LLVM for Intel GPUs

« Start working on GPU-driven communication
« Investigate launching multidimensional grids
o Start improving CPU/GPU portability

48



OTHER GPU IMPROVEMENTS




OTHER GPU IMPROVEMENTS

For a more complete list of GPU support changes and improvements in the 1.31 and 1.32 releases,
refer to the following sections in the CHANGES.md file:

e ‘GPU Computing’

e ‘Bug Fixes for GPU Computing’


https://github.com/chapel-lang/chapel/blob/release/1.32/CHANGES.md
https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

THANK YOU *‘

https://chapel-lang.org
@ChapelLanguage




