Hewlett Packard
Enterprise

CHAPEL 1.29.0/1.30.0 RELEASE NOTES:
LANGUAGE IMPROVEMENTS

Chapel Team
December 15, 2022 / March 23, 2023

LANGUAGE CHANGES IN CHAPEL 1.29 AND 1.30
Background and This Effort

Background: Chapel 2.0

e Goal is to provide a version of the language that is stable
— Features that are documented as being unstable may change in future minor releases
- New non-breaking changes can still be made
—Major changes to features declared stable will trigger a new major version of the language

This Effort:
o Implemented new features requested by users or aiding with stabilization

o Address other issues in need of attention
—User questions have led to some clarifications/simplifications
—Dyno/compiler rework of type/call resolution has uncovered some rough edges

STATUS OF LANGUAGE STABILIZATION
Stabilized in 1.29 or 1.30, and Next Steps

Stabilized in 1.29 or 1.30:

o Added initial support for throwing initializers, sufficient for supporting standard module use cases
Stabilized the '.find() method on arrays

Improved range slicing behaviors

Stabilized zipped serial loops over unbounded ranges

Made overload resolution for generic vs. typed arguments consistent

Added support for single statement routines and removed the exception for ‘return’ statements
Removed support for unary negation on 'uint(w)’
Deprecated 'bool(w)'

Next Steps:
« Generics: handling of generic records/classes and partial instantiation
o Approach for special method naming
o Consider removing support for default ‘ref-maybe-const’ intents
o Make sure tuple semantics are appropriate w.r.t. ‘ref’ vs. ‘const’ behavior

—

3

OUTLINE

o Attributes

e Throwing Initializers

e Changes to Yielding Tuples

e ‘fransmute() Method

e Array and Range Features

e Class Management Updates
e Untyped vs. Generic Formals
e Single-Statement Routines

e Unary Negation of ‘uint’s

e Deprecation of ‘bool(wY’

ATTRIBUTES
Background

e For some time, Chapel users and developers have been interested in support for attributes

e Purpose: a means of communicating information to the compiler, or other tools, without language changes

// sample attributes:

@Qattributel
proc bar() { .. }

@attribute2 (argl="value", arg2=1, arg3=1.0,

argd=true, argb=1..10)
proc foo() { .. }

 In the meantime, Chapel has been making use of pragmas, and occasionally keywords, for such purposes
« These approaches were not as flexible or attractive

« Pragmas were never intended to be a user-facing feature

ATTRIBUTES
This Effort

e Implemented a generalized attribute feature
» Developed syntax to support attributes in more places than pragmas had been (e.g., loops)
o Added support for multiple (optionally named) arguments

« Defined the notion of tool namespaces
-e.g., ‘@chpldoc.nodoc’ is an attribute specific to the ‘chpldoc’ tool

e Implemented some initial attributes: ‘@unstable’, ‘@deprecated’, and ‘@chpldoc.nodoc”

@deprecated (since="1.30", notes="foo is deprecated", suggestion="use newFoo instead")

proc foo() { .. }

@unstable (category="experimental", 1issue="1234", reason="testing a new feature")

proc bar() { .. }

@chpldoc.nodoc
proc baz () { .. }

 Removed the developer-oriented ‘deprecated’ keyword

—

ATTRIBUTES
Status and Next Steps

Status:
o Added attribute support in 1.30.0
o The tool names ‘chpl’ and ‘chpldoc’ are reserved for use by the Chapel team

« Flags can be used to control how the compiler reacts to tool names
—Ignore all fool names by passing ‘--no-warn-unknown-attribute-toolname’ to ‘chpl’
—Ignore a specific fool name by passing ‘--using-attribute-toolname=<toolname>’ to ‘chpl’

Next Steps:
o Implement additional attributes according to our needs and user requests, for example:
— Control memory alignment, e.g., ‘@chpl.align(n)
—Indicate a loop should always be unrolled, e.g., ‘@chpl.unroli(n)
o Continue to refine our philosophy about what should be supported as an atftribute vs. a language feature
e Remove the “no doc” pragma

—

THROWING INITIALIZERS
Background and This Effort

Background: Initializers could not be declared with ‘throws'
o Only supported 'try!" without catch blocks

proc init (..) { // Couldn't declare with 'throws'
this.x = try! someThrowingFunc() ; // Will halt if an error is thrown

This Effort: Added initial support for throwing initializers
e Throwing calls can now be made after all fields are initialized

class Foo {

proc init(..) throws {
this.complete(); // Guarantees all fields are initialized
someThrowingProc () ; // Any thrown error will be propagated out of ‘init'

}

—

10

THROWING INITIALIZERS
Impact and Next Steps

Impact:

o Throwing initializers are used by types in the ‘Biginteger’, ‘10’, and ‘Regex’ modules
-‘Regex’ can now be stabilized for 2.0

Next Steps:
o Expand support for other throwing patterns:
- Support 'throw' statements in initializer bodies
—Support ‘try!'/'try' with ‘catch' blocks
« Explore supporting throwing code before field initialization is complete

11

YIELDING TUPLES
Background and This Effort

Background: tuples are intended to behave like a collection of individual variables

 Specifically, w.r.t. carrying a value vs. a reference
-e.g., fC(mylnt, myArray))’ passes ‘mylnt’ by ‘const in” and ‘myArray’ by ‘ref’ if ‘f's formal has default intent

o Default yield intent was “by value” for almost all types
—except it was “by reference” for tuple components that are arrays, records, or similar
— due to an oversight in specification and implementation
—vyielding by value was chosen to match returning by value for default return intent

This Effort:
« Reconciled the behavior of yielding tuples with yielding individual values
- “by value” default yield intent now includes tuple components of all types

13

YIELDING TUPLES

Impact

» Record-like types are now yielded by value by default, whether in a tfuple or standalone
- e.g., consider the following statements in a procedure or iterator with the default return/yield intent:

return myRecord; // returns ‘myRecord’ by value, as before
return (myRecord, O0); // ditto

yield myRecord; // vields ‘myRecord’ by value, as before
yield (myRecord, 0); // now yields ‘myRecord’ by value, too

e Some adjustments were required to accommodate this change:
- StencilDist’s ‘boundaries’ iterator is now annotated with a pragma to retain the “yield by reference” behavior
- ‘boundaries’ yields (element, index) pairs and allows updating ‘element’ in the loop body
—DistributedFFT code now needs to distinguish between owning and borrowing ‘fftw_plan’ pointers

forall (plan, myzRange) in yPlan.batch() {
// within loop body, 'plan'is now a copy of a Chapel record wrapping a long-lived ‘fftw_plan’
} // when a loop iteration finishes, ‘plan'is now deinitialized, however the wrapped ‘fftw_plan’ should not be destroyed

e Yielding behavior for the default intent is now explicitly defined in the language specification

—

14

YIELDING TUPLES
Next Steps

e Finalize the default yielding behavior: should it be by value or by default argument intent? [#21888]

o yield by value:
—analogous to returning: passing something back to the outside of the function
—suifs iterators that create new records for the purpose of yielding them

—the current default
o yield by default intent
—arrays, string, records, record-like types will be yielded by reference
—analogous fo argument passing: treats a loop iteration like a (shorter lived) function call
—more suitable for iterators that yield records external to the iterator
- currently, no user-facing way to achieve this when yielding records within tuples

e Provide a means for users to specify value/reference behavior of each component explicitly

iter map.items () { ... // e.g., we want an iterator over ‘(key, value)’ pairs in a map
yield (const entry.key, ref entry.value); //toyieldkeys by ‘const’intent (value or ref) and values by ‘ref’

}

— .

https://github.com/chapel-lang/chapel/issues/21888

‘*‘TRANSMUTE’ METHOD
Background and This Effort

Background:
« Chapel’s type conversions typically attempt to preserve logical values when possible
..1: real.. // results in 1.0

..2.3: int.. //resultsin 2, a necessary loss of precision due to the types involved
o Sometimes, it is useful to convert between types in a way that preserves bits rather than logical values
-e.g., ‘9218868437227405312’ == ‘Ox7ffO000000000000’ == ‘inf’ when bits are interpreted as a floating-point value
—-yet ‘9218868437227405312: real’ ==‘9.21887e+18’

This Effort:

o Added a new ‘.tfransmute() method that can convert between types of matching width, preserving bit patterns
..9218868437227405312.transmute (real).. //resultsin a’real’ with the value ‘inf
o Currently, only supports conversions between ‘real(64)” and ‘uint(64) as well as ‘real(32) and ‘uint(32)’
—Supports both compile-time (‘param’) and execution-time transmutations

— .

‘‘ TRANSMUTE’ METHOD
Impact, Status, and Next Steps

Impact:
« Addresses a longstanding user request

Status:

e Implemented in 1.30.0
o Currently considered unstable because design did not receive much attention prior to the release

Next Steps:
 Finalize interface design and stabilize
« Consider adding support for other types of matching width
-e.g., transmute from an ‘imag’ to a ‘uint’, ‘int’, or ‘real”?
» Consider extending to richer types:
-e.g., transmute a 1024-element array of ‘real(32) into a 512-element array of ‘uint(64)?
-e.g., transmute a 4-tuple of uint(8) into an ‘int(32)"?

—

18

ARRAY AND RANGE
IMPROVEMENTS

o ‘fullldxType’ Query

e ‘find() Method on Arrays

e Array Literal Type Inference
e Range Slicing Improvements
e Unbounded ranges:

o Serial Zipped Loops
e with ‘enum’/’bool’ Indices

ARRAYS: ‘.FULLIDXTYPFE’ QUERY

Background:

« Chapel arrays have long supported an “.idxType’ query for the per-dimension index type
—matches the ‘idxType’ argument used when declaring range and domain types

var A: [1..100] real; LAL1dxType.. //evaluates to ‘int’ since A’s only dimension is indexed by ‘int’s
var B: [1..100, 1..100] real; ..B.1dxType.. //evaluates to ‘int’since each dimension is indexed by ‘int’s
var C = ["hi" => 1, "bye" => 2]; ..C.1idxType.. //evaluates to ‘string’since strings are used to index ‘C’

« Have also desired some way of referring to the complete index type used by multidimensional arrays in practice

—can think of this query as indicating “what type would a loop over this array’s domain yield?”

var A: [1..100] real; DAL // would evaluate to ‘int’

var B: [1..100, 1..100] real; LBL2272.. // would evaluate to 2*int’

var C = ["hi" => 1, "bye" => 2]; ..C.2722. // would evaluate to ‘string’
This Effort:

» Decided to name this query “fullldxType’ and implemented it for Chapel 1.30
e Used it in the new 1-argument ‘array.find()’ routine (see next section)

Next Steps:
« Explore whether Chapel could/should support implicit conversions between scalars of type ‘t" and ‘1*t’ tuples

—

21

ARRAYS: ‘.FIND’ METHOD
Background and This Effort

Background:

o Chapel arrays have supported a “.find() method for quite some time
o However, its return type has not matched that of “.find()’ on ‘bytes’ or ‘string’ values

bytes.find(..) : int; // returns =1’ if the pattern was not found
string.find(..) : byteIndex; // returns =1’ if the pattern was not found
[array] .find(..) : (bool, index(this.domain)) //returns whether or not the value was found + the index if it was

- Traditional rationale for difference: No obvious sentinel index to return since arrays can have arbitrary indices
« In addition, its implementation has been serial
- Not ideal for a parallel language, particularly when using it on distributed arrays

This Effort:

o Deprecated previous “find() on arrays and introduced two new overloads (enabled with ‘-suseNewArrayFind’):
— First overload is only supported on rectangular arrays

proc [array].find(val: eltType): fullldxType; // returns ‘domain.lowBound - 1’ if ‘val’ is not found
proc [array].find(val: eltType, ref idx: fullIdxType): bool; //returns ‘true’& location in ‘idx’; or ‘false’

» Parallelized these new implementations

— .

ARRAYS: ‘.FIND’ METHOD

Impact

Impact: Parallelization helps at modest problem sizes (here, a local 64k-element array of 8-bit ints)

Reverse-complement Shootout Benchmark]] .
. Find-based implementation of reverse-complement,

parallelized on this date

2

1.5

1

Time (seconds)

0.5

0

26 Feb 05 Mar 12 Mar 19 Mar

« Improvements for distributed arrays can be massive, due to properly aligning iterations with their array elements
- E.g., communication counts for a find() on a 1,000,000-element array distributed across 4 locales:

active non-blocking

- Old serial version: locale gets New parallel version: '°¢3le gets s active msgs
0 750,021 B - 5 3

1 0 1 0 2 0

2 0 2 0 2 0

3 0 3 0 2 0

— .

ARRAYS: ‘.FIND’ METHOD
Status and Next Steps

Status:
e The interface and implementation of “.find()’ on arrays is now much improved

Next Steps:

o Optimize implementation for additional cases:
—Make use of ‘memchr() when searching for 8-bit values?
—Squash parallelism for smaller arrays?
« Consider adding an ‘indices’ argument to restrict searches, as with ‘string/bytes.find()?
—Not as crucial for arrays since they support O(1) slicing, unlike ‘string’/’bytes’
- Yet, could be more efficient than slicing
« Make serial loops over distributed domains/arrays execute with proper affinity to indices/elements?

25

ARRAY LITERAL TYPE INFERENCE
Background and This Effort

Background:

o Traditionally, Chapel has inferred an array literal’s element type based on its first element:

[1.2, 3 1 //inferred to be an array of ‘real’ due to ‘1.2’ since ‘3’ can coerce to ‘real’, this is OK
[1, 2 .31 //inferred to be an array of ‘int’ due to ‘1’; since 2.3’ can’t coerce to ‘int’, this was an error

This Effort:

o Improved array literal inference to consider all elements
—Implemented using return type inference for procedures, so has similar capabilities and limitations
—Similarly improved ‘LinearAlgebra’ module’s inference of ‘Matrix’ types based on input arrays

e Accelerated the compilation times of homogeneous array literals
— Compilation times for 5060-element arrays:

expr types previously with PR
int-only 0:24 01N

int/real error 0:27

—

27

ARRAY LITERAL TYPE INFERENCE
Impact, Status, and Next Steps

Impact:
o Arrays with mixed, yet compatible, element types are now supported
[1.2, 3 1 //stillinferred to be an array of ‘real’
(1, 2 .31 // now inferred to be an array of ‘real’

« Improves productivity of users working with arrays and matrices

Status: Implemented in Chapel 1.29.0

Next Steps:
« Move inference logic from module code to compiler code to further accelerate compilation of array literals
o Add language support for multidimensional array literals

28

RANGES: SLICING IMPROVEMENTS
Background and This Effort

Background: range slicing ‘rangel[range2] is an intersection of index sequences: rangel N range2
« Array and domain slicing perform per-dimension range slicing

This Effort: updated some slicing behavior to match intuition about how array slicing should behave

var A: [1..9] real; // the following comments show (intuition) — (updated behavior)

for a in A[1..9 by -1] do // reverse the traversal order — writes A[9], .., A[1]

writeln (a) ;

writeln(A[..6 by 2]); // pick every 2" index that is s6 — writes A[1..6 by 2] i.e, A[1], A[3], A[5]

o Updates for unaligned ranges
(1..7by -1)[..4 by 2] // intersect the bounds, apply the stride — 1..4 by -2
(1..7 by -2)[..4 by 2] // “impose” ‘align 1’ on 2" range to match 15 range — 1.4 by -2 align 1

(1..7 by -3)[..5 by 2] // copy alignment from 1° range into 2" range — 1.5 by -6 align 1
// using ‘align 4’ would be just as valid — issue unstable warning
(..5by 2)[1..7 by -3] // we expect that users will not need to slice an unaligned range — disallow it for now

—

30

RANGES: SLICING IMPROVEMENTS
Impact, Status, and Next Steps

Impact:
« Range slicing behavior now follows our intuition

Status:
« Enabled new slicing behavior with negative strides when compiling with ‘-snewSliceRule’
- by default, the previous behavior is preserved, with a deprecation warning
« Enabled new slicing behavior with unaligned ranges by default
—this change affects only rare corner cases
o While there, added a warning when creating arrays and slices with negative strides
—enabled by default

Next Steps:
e Enable new slicing behavior with negative strides by default

 Finalize behaviors for arrays and array slices of negative strides
— Ensure correct implementation of array slices with negative strides

—

31

PED Lo¢|=

UNBOUNDED RANGES: ZIPPED SERIAL LOOPS
Background and This Effort

Background:

o A parallel zipped loop in Chapel is governed by its leader expression, which determines the policy for the loop
forall (a, b) in zip (A, B) .. //‘A’isthe leader of this loop, so its parallel iterator determines how this loop will be run

« Unbounded ranges have special “follower” behavior when they are zipped with finite leaders
forall (i, j) in zip(lo..hi, 1..) .. //though ‘1. is conceptually infinite, it will conform to the size of ‘lo..hi’

« To date, unbounded ranges have not supported the leader role in parallel loops
forall (i, j) in zip(l.., lo..hi) .. //‘error:parallel iteration is not supported over unbounded ranges’

« However, they have been legal as leader expressions of serial zipped loops, and conformed to their follower(s)
for (i, j) in zip(l.., lo..hi) .. //ranforlo-hi+1 iterations, as though ‘lo.hi’ was the leader

— This felt inconsistent, while also posing challenges for plans to support serial leader/follower iterators in the future

This Effort:
« Considered this a bug and decided to freat such loops as conceptually infinite, similar to ‘foriin 1..do ..’
for (i, j) in zip(l.., lo..hi) .. //nowresultsin asize mismatch if it doesn’t ‘break’, ‘return’, or ‘exit’ before j == hi+1

« Added a compile-time warning for such cases to inform users of the change in behavior

— .

UNBOUNDED RANGES: ZIPPED SERIAL LOOPS
Impact, Status, and Next Steps

Impact:
« Updated user codes in which serial loops were led by an unbounded range
—Found more cases of this than we had anticipated
o Language now feels more consistent

Status: Implemented in Chapel 1.29.0

Next Steps:
o Develop plan for serial leader-follower iterators

o Permit users to write “unbounded, but willing to conform” iterators, similar to unbounded ranges
-E.g., a serial iterator generating random numbers that conforms to its leader’s size/rank

« Improve general approach used for defining iterator families on a type (“leader-follower 2.0”)

o Add support for unbounded ranges to lead parallel loops?

—

34

UNBOUNDED RANGES: ENUM / BOOL
Background, This Effort, and Status

Background:
o Chapel 1.27 improved support for looping over unbounded ranges with ‘enum’ and ‘bool’ indices

enum color { red, orange, yellow, green, blue, indigo, violet };
use color;
for ¢ in (blue..) do .. // loops over ‘blue’, ‘indigo’, ‘violet’, then stops
o However, a few cases were still not implemented correctly:
for ¢ in (blue.. by -1) do .. //shouldloop over ‘violet’, ‘indigo’, ‘blue’
// instead, got ‘error: halt reached - iteration over range that has no first index’

This Effort:
« Added support for cases that were not working before:
for ¢ in (blue.. by -1) do .. //nowloopsover ‘violet’, ‘indigo’, ‘blue’

Status: Unbounded ranges of ‘enum’ and ‘bool’ now support iteration more consistently

—

36

UNBOUNDED RANGES: ENUM / BOOL
Next Steps

Next Steps: Determine how other ops on unbounded ranges of ‘enum’ or ‘bool’ should behave [#20896]

 ‘(blue.).last”.
—‘violet’ because that’s the last value iteration would reach?
— Or undefined because it’s unbounded?
e ‘(blue.).high”
—‘violet”: because that’s its high bound when iterating?
— Or undefined because it’s unbounded?
e ‘(blue.) == (blue..violet)
—‘true’ because they describe the same indices when iterating?
- Or false, because they are not identical range values?

37

https://github.com/chapel-lang/chapel/issues/20896

CLASS MANAGEMENT UPDATES
Background

e Chapel supports multiple ways to create and convert objects with different management strategies

var obj] = owned.create (new unmanaged A()) ;
var s: shared A?;

s.retain (obj.release()); //objisnow dead
obj = new A();
s = shared.create(obj); // obj is now dead

e Managed objects’ lifetimes can be manually controlled

obj.clear(); // obj is now dead
delete obj.release(); // same as ‘obj.clear()’

e This usage of methods vs. type methods...
e is inconsistent
» provides multiple ways to do the same thing

—

39

CLASS MANAGEMENT UPDATES
This Effort and Next Steps

This Effort:

« Added three additional experimental type methods intended to replace the previous API

-‘owned.adopt()’, ‘owned.release(), and ‘shared.adopt()’
- One way to control object lifetime and convert management strategies

var obj = owned.adopt (new unmanaged A()); //instead of ‘owned.create(..)’
var s = shared.adopt (owned.release (obj)); //instead of ‘s.retain(o.release())’
obj = new A();

s = shared.adopt (obj); // instead of ‘shared.create(o)’

delete owned.release (obj); //instead of ‘o.clear() or ‘o.release()’

Next Steps:
o Deprecate ‘create()’, ‘retain()’, ‘clear()’, and ‘release()

« Allow assignment to ‘nil’ as a safer way to cut a lifetime short
obj = nil; //objis now dead
e Improve the interoperability between managed and unmanaged classes

—

40

IT CONV R) o]

ORMALS

UNTYPED FORMALS
Background

 Implicit conversion and instantiation are two ways an actual might not precisely match a formal:

proc converts(arg: real) { .. }
converts (1) ; // implicitly converts the ‘int’ value 1 into the ‘real’ value 1.0 and calls ‘converts(1.0)’
proc instantiates (arg) { .. }

instantiates (1) ; //instantiates the ‘arg’ formal with ‘int’ to generate ‘proc instantiates(arg: int)’ and calls that

42

UNTYPED FORMALS
Background

e Yet, what happens when the compiler needs to choose between these two for a single call?

o Chapel has preferred to do implicit conversion rather than instantiate an untyped formal

— For example, the call to ‘g(1)’ below would use implicit conversion to call the ‘real’ version:
proc g(arg) { .. } /] #1
proc g(arg: real) { .. } /J/#2
g(1l); //called the ‘real’ version, #2

« In contrast, when the formal had an explicit generic type, Chapel preferred to instantiate:
proc h(arg: integral) { .. } //#3
proc h(arg: real) { .. }. /] #4
h(l); //called the ‘integral’ version, #3

« This differed from the C++ and C# behaviors in addition to being inconsistent between the ‘g()’ and ‘h()’ cases

—

43

UNTYPED FORMALS
This Effort and Impact

This Effort: Adjusted resolution rules to remove the special behavior for untyped formals
« Now the genericity of formals is only considered when the formals have the same type after instantiation
« Causes the example on the previous slide to behave more similarly to the ‘integral’ version:

proc g(arg) { .. } /] #1
proc g(arg: real) { .. } /J/#2
g (1) ; //calls the generic version, #1

Impact:
e Chapel behavior in this regard is now more similar to C++ and C#
e In rare cases, code that assumed the previous behavior needs to be adjusted. For example:

proc category(arqg) { return "anything"; }
proc category(arg: real) { return "convertible to real"; }
// can be changed into:
proc category(arqg) { return "anything"; }
proc category(arqg)
where 1sCoercible (arg.type, real) { return "convertible to real"; }

— »

SINGLE-STATEMENT SUBROUTINES
Background

Background:
« Since Chapel’s inception, it has supported single-statement subroutines if the statement was a ‘return’

proc computeAnswer ()
return 42;

« However, it has not supported other single-statement subroutines due to the potential for syntactic ambiguities

proc writeDebugMsg (msqg)
writeln ("Debug: ", msqg); //syntaxerror:near 'writeln’

o Meanwhile, other syntactic constructs support single-statement forms via keywords like ‘do’ and ‘then’:

for i in 1..10 do if verbose then
writeln (i) ; writeln ("Blah blah blah");

e These asymmetries felt unsettling going into Chapel 2.0
—Should ‘return’ get special treatment?
- Should we support other single-statement subroutines?

— .

SINGLE-STATEMENT SUBROUTINES
This Effort and Status

This Effort: Decided to resolve these inconsistencies
« Deprecated the special-case for single-statement routines that are returns

proc computeAnswer () //now resultsin: warning: Single-statement ‘return’ routines are deprecated;
return 42; // please insert 'do’ before the ‘return' or wrap the statement in curly brackets

« Added the ability o define single-statement subroutines using ‘do”.

proc writeDebugMsg (msg) do
writeln ("Debug: ", msqg);

o Updated existing uses of the ‘return’ exception to use ‘do’ instead:

proc computeAnswer () do
return 42;

Status: Implemented in 1.30.0

—

47

UNARY NEGATION

Background:
 Historically, the result of unary negation on an unsigned integer depended on its width:

Unsigned Integer Type Result of Unary Negation

unt(64), uint compilation error
uint(32) int(64)
uint(16) int(32)
uint(8) int(16)

» Potentially surprising to have arithmetic on 32-bit unsigned integers result in 64-bit signed integers
This Effort: Changed unary negation to result in a compilation error for any unsigned integer

Impact:
o Now easier to compute with a particular bit width of unsigned integers
o The error helps users catch unintentional mistakes in their code
« The error allows further adjustments as non-breaking changes

— .

DEPRECATION OF ‘BOOL(W)’

Background:

o Chapel has supported fixed-width ‘bool’ values for years: ‘bool(8), ‘bool(16)’, ‘bool(32), ‘bool(64)

— Rationale:
- The width of Chapel’s default ‘bool’ is implementation-defined
- These variations gave programmers a means of specifying the bit-width of a specific bool’s representation

e This approach has had some downsides:
— One of the few sources of cycles in the graph of Chapel’s implicit conversions
- ‘bool(8) implicitly converts to ‘bool(64) which implicitly converts to ‘bool(8)
—Has felt confusing to users, and often like overkill
- “bool’ only requires one bit, so why do all these variations exist?”

o Meanwhile, have also wanted more control over the memory layout of other types
—e.g., the ability o cache-align and/or pad an ‘atomic int(32) value

This Effort: Decided to deprecate ‘bool(w)’ and rely on forthcoming memory attributes to control layout
Status: Implemented in Chapel 1.30

Next Steps: Develop and implement attributes for memory alignment and/or padding

— |

51

OTHER LANGUAGE IMPROVEMENTS

For a more complete list of language changes and improvements in the 1.29.0 and 1.30.0 releases,
refer to the following sections in the CHANGES.md file:

e New [Language] Features

e Feature Improvements

« Semantic Changes/Changes to the Chapel Language
e Syntactic/Naming Changes

e Deprecated/Unstable/Removed Language Features
e Bug Fixes

— .

https://github.com/chapel-lang/chapel/blob/release/1.30/CHANGES.md

