
June 30, 2022 / September 15, 2022
Chapel Team

CHAPEL 1.27.0/1.28.0 RELEASE NOTES:
ONGOING EFFORTS—GPU SUPPORT

Background

• We are adding native GPU support to Chapel
• A highly desired feature, given the potential to be a clean and portable way of programming GPUs
• GPUs are more and more common in supercomputers

– Over 95% of the compute capability on Frontier (currently #1 on the top-500) comes from its GPUs

• Chapel is not yet able to directly use the GPUs on a system like Frontier, but that's our goal
– today, such GPUs are only accessible in Chapel via its interoperability features

• In recent releases, we’ve…
…moved from an idea (1.23), …
…to a demo (1.24), …
…to a user-accessible feature (1.25), …
…to being able to drive multiple GPUs on one locale (1.26).

• 1.27: Adds support across multiple locales, and improves diagnostics
• 1.28: Includes exploratory work on vendor portability (AMD), memory management, and benchmarking

2

GPU SUPPORT

This Effort: Overview of Changes in 1.27 and 1.28

New Features and Capabilities:
• Multi-locale support
• Expanded loop eligibility
• Diagnostics and utility modules
• Internal-facing work (primitives and pragmas)
• Support for LLVM 14

Bug Fixes:
• Fixed a bug preventing the use of CUDA 10.1
• Fixed a bug preventing associative domain iteration
• No more "unresolved extern" warning
• No more "unknown CUDA version" warning
• Fixed bugs for 'locale.name'/'.numPUs' returning bad

values on parent locales

3

GPU SUPPORT

Explorations:
• Vendor portability, specifically for AMD GPUs
• Memory strategies
• SHOC benchmarks (Triad and Sort)
• Performance tracking infrastructure

Outreach:
• Collaborations with Arkouda and ORNL
• Talk at CHIUW 2022

GPU SUPPORT

• New Features and Capabilities
• Multi-locale Support
• Newly GPU Eligible Loops
• Diagnostics and Utilities

• Explorations
• Status Summary and Proposed Priorities

NEW FEATURES AND CAPABILITIES:
MULTI-LOCALE SUPPORT

Background, Effort, and Impact

Background:
• Early efforts only supported the first GPU on the first node
• In 1.26 we added multi-GPU support on the first node
• but still required 'CHPL_COMM=none'

This Effort: Added support for 'gasnet' and 'ibv’ communication layers

Impact: Now possible to write native Chapel code that runs across all GPUs on a multi-node system

coforall loc in Locales do on loc {
coforall gpu in here.gpus do on gpu {
forall {

// body of loop turns into GPU kernel

}
}

}

6

MULTI-LOCALE SUPPORT

Example

var A, B, C: [1..n] int; // local arrays stored on locale 0

coforall node in Locales do on node {
const locChunk = …;
var Al: [locChunk] int;
var Bl = B[locChunk], Cl = C[locChunk];

coforall gpu in here.gpus do on gpu {
const gpuChunk = …;
var Ag: [gpuChunk] int;
var Bg = Bl[gpuChunk], Cg = Cl[gpuChunk];

Ag = Bg + alpha * Cg;

Al[gpuChunk] = Ag;
}
A[locChunk] = Al;

}

7

MULTI-LOCALE SUPPORT

Loops like on the previous slide

Perform computation (promotion
turns into GPU kernel)

Example

var A, B, C: [1..n] int; // local arrays stored on locale 0

coforall node in Locales do on node {
const locChunk = …;
var Al: [locChunk] int;
var Bl = B[locChunk], Cl = C[locChunk];

coforall gpu in here.gpus do on gpu {
const gpuChunk = …;
var Ag: [gpuChunk] int;
var Bg = Bl[gpuChunk], Cg = Cl[gpuChunk];

Ag = Bg + alpha * Cg;

Al[gpuChunk] = Ag;
}
A[locChunk] = Al;

}

8

MULTI-LOCALE SUPPORT

'Al', 'Bl', and 'Cl' are node-local copied
"chunks" of A,B, and C

'Ag', 'Bg', and 'Cg' and GPU-local
copied "chunks" of Al, Bl, and Cl

NEW FEATURES AND CAPABILITIES:
NEWLY GPU-ELIGIBLE LOOPS

Background and This Effort

Background:
• 'chpl' compiler conducts an analysis to determine when a loop is eligible to become a GPU kernel

– Non-eligible loops will execute on the CPU instead

• Known limitations are documented in the GPU tech note
• We plan to address many of these limitations in future releases

This Effort:
• Addressed loop eligibility limitations encountered while porting the SHOC benchmarks to Chapel
• Several minor usability improvements (shown on next slide)
• 'forall' over multidimensional arrays

10

NEWLY GPU-ELIGIBLE LOOPS

https://chapel-lang.org/docs/main/technotes/gpu.html

Impact

11

NEWLY GPU-ELIGIBLE LOOPS

var A: [0..N] real;
var cond = funcReturningABool();
forall i in 0..10 {

var tup = (1,2);
var rec = someRecord();
A[i] = A[i] * sin(pi); // math functions
if cond { // certain types of 'if' statements

// ...
}
A[i] = A[i] + rec.prop; // field accesses
A[i+1] = A[i+1] + tup[1]; // use of tuples

}

Impact:
• This loop is now eligible for GPU execution
• Comments indicate what now works

Background and This Effort

12

FORALL OVER MULTIDIMENSIONAL ARRAYS

Background:
• Prior to 1.28, compiling GPU-bound loops over multidimensional arrays resulted in a compiler error

on here.gpus[0] {
var A: [1..100, 1..100] int;
forall a in A {

a += 1
}

}

This effort:
• In 1.28, the code works:

– The iteration over the first dimension in the domain will be launched on the GPU
– The iteration over the remaining dimension(s) is performed serially, as if it were a regular 'for' loop

NEW FEATURES AND CAPABILITIES:
DIAGNOSTICS AND UTILITIES

Background and This Effort

Background:
• Logging and assertion functions are useful to:

– understand program behavior
– get assurance that things run as you expect
– help optimize for performance

• GPU support is an area that can definitely benefit from such tools

This Effort:
• Introduces a new module to track kernel launches: 'GPUDiagnostics'
• 'Memory.Diagnostics' now tracks allocations on GPUs
• Adds additional utilities in a new module: 'GPU'

– one notable feature is 'assertOnGpu()', which is used to ensure a loop executes on a GPU

• More details in the GPU tech note

14

DIAGNOSTICS AND UTILITIES

https://chapel-lang.org/docs/main/technotes/gpu.html

GPUDiagnostics module: start/stop verbose output

use GPUDiagnostics;

startVerboseGPU(); // start reporting GPU events (kernel launches)

on here.gpus[0] {
var A: [0..10] int;
foreach a in A do a += 1; // this will launch as a kernel

}
stopVerboseGPU(); // stop reporting GPU events (kernel launches)

15

DIAGNOSTICS AND UTILITIES

Output:

0 (gpu 0): foo.chpl:6: kernel launch (block size: 512x1x1)

Output:

(kernel_launch = 1)

GPUDiagnostics module: counting kernel launches

16

DIAGNOSTICS AND UTILITIES

use GPUDiagnostics;

startGPUDiagnostics(); // start counting GPU events (kernel launches)

on here.gpus[0] {
var A: [0..10] int;
foreach a in A do a += 1; // this will launch as a kernel

}
stopGPUDiagnostics(); // stop counting GPU events (kernel launches)
writeln(getGPUDiagnostics());

Memory.Diagnostics: new support for GPUs

use Memory.Diagnostics;
startVerboseMem(); // start reporting memory events
on here.gpus[0] {

var A: [0..10] int;
foreach a in A do a += 1;

}
stopVerboseMem(); // stop reporting memory events

Output:

0 (gpu 0): foo.chpl:4: allocate 88B of domain(1,int(64),false) at 0x7f90e8000800
0 (gpu 0): foo.chpl:4: allocate 168B of [domain(1,int(64),false)] int(64) at 0x7f90e8000a00
0 (gpu 0): foo.chpl:4: allocate 88B of array elements at 0x7f90e8000c00
0 (gpu 0): foo.chpl:5: free 88B of array elements at 0x7f90e8000c00
0 (gpu 0): foo.chpl:5: free 168B of [domain(1,int(64),false)] int(64) at 0x7f90e8000a00
0 (gpu 0): foo.chpl:5: free 88B of domain(1,int(64),false) at 0x7f90e8000800

17

DIAGNOSTICS AND UTILITIES

assertOnGpu()

18

DIAGNOSTICS AND UTILITIES

Example asserting at compile-time:
proc directlyRecursiveFunc() { directlyRecursiveFunc(); }
foreach i in 0..10 {

assertOnGpu();
directlyRecursiveFunc();

}
// error: Loop containing assertOnGpu() is not eligible for execution on a GPU

// assertOnFailToGpuize.chpl:1: note: function is recursive

Example asserting at runtime:
on functionThatReturnsSomeLocale() {

foreach i in 0..10 {
assertOnGpu();
// …

}
}
// will halt at the assertion at runtime if ‘functionThatReturnsSomeLocale()’ does not return a GPU locale

EXPLORATIONS

• GPU Vendor Portability
• Benchmarks and Performance Tracking
• PGAS Style Communication and GPUs
• Memory Strategies

EXPLORATIONS:
GPU VENDOR PORTABILITY

GPU Vendor Portability

Background:
• We currently only support NVIDIA GPUs, but want to support other vendors as well (e.g., AMD and Intel)

This Effort:
• Investigated a few options to achieve vendor portability

– A) Write different runtime layers for each vendor
– B) Use a portable library (e.g., ‘libomptarget’) as a portable runtime layer

Status:
• After investigating both options, we have decided to start with option A
• Removed vendor-specific code from main GPU API, pushing it into a smaller vendor-specific interface

Next Steps:
• Implement the vendor-specific interface for AMD and bring it up to par with NVIDIA
• Begin benchmarking the AMD layer and continue to optimize both

21

EXPLORATIONS

EXPLORATIONS:
BENCHMARKING AND PERFORMANCE TRACKING

Background and Effort

Background on benchmarking: We want benchmarks that target GPUs
• Ideally with base versions created and maintained by someone outside of our group
• Why we want benchmarks:

– performance comparison
– evaluate language expressibility
– help guide our design
– more robust test suite

Background on performance:
• With large datasets, we are close to matching the performance of a CUDA-based implementation of Stream

– Stream is a benchmark that operates on vectors and scalars ('A = B + alpha * C')

• We want to evaluate (and maintain) our performance across different patterns

This Effort:
• Created Chapel version of SHOC Triad and Sort benchmarks
• Set up performance tracking infrastructure for GPUs

23

BENCHMARKS AND PERFORMANCE TRACKING

SHOC Benchmarks

• SHOC: The Scalable HeterOgeneous Computing Benchmark Suite
• Developed by ORNL
• Used to test performance and stability of GPUs

• Implemented single-GPU version of these two benchmarks:
• Triad

– uses a pipelining (computation/communication overlap) pattern not seen in our existing GPU implementations of Stream
– we implemented both a "direct translation" version and a Chapeltastic version

• Sort
– radix sort
– implemented a "direct translation" version; making a Chapeltastic version is future work

24

BENCHMARKS AND PERFORMANCE TRACKING

Impact and Next Steps

Impact:
• While implementing Sort we encountered bugs and ran into limitations

– for example: allowing different block sizes on different kernels (this could only be configured on a whole-program basis)

• We created workarounds in the interim, which will eventually be exposed through the language
• We have also started gathering nightly performance data

Next steps:
• Continue implementation of SHOC benchmarks
• Implement benchmarks in other suites (e.g., RajaPerf)
• Create versions of benchmarks that target multiple nodes and GPUs
• Performance analysis and optimization

25

BENCHMARKS AND PERFORMANCE TRACKING

EXPLORATIONS:
PGAS-STYLE COMMUNICATION AND GPUS

Background

Background: Chapel’s global namespace allows direct access to local and remote variables
• Having a global namespace simplifies parallel programming
• This means (outside of GPUs):

– across nodes: no need to write MPI-style explicit send/receive calls to manage data migration

• The dream (for GPUs):
– between GPUs and hosts: No need to write 'cuMemCpyHtoD' and the like
– between GPUs: No need to write combinations of these things

• Communication layers such as GASNet are middleware layers that enable this outside of GPUs
– Can we use them for GPUs?

27

PGAS-STYLE COMMUNICATION AND GPUS

This Effort and Next Steps

This Effort: investigating whether we can leverage GASNet; also identify new communication patterns
• GASNet does have support for accessing data on GPUs (i.e., support for memory kinds)
• However, it cannot address calls originating from within a GPU kernel

Next Steps:
• Potential solutions:

– Have GPU signal back to CPU to conduct communication

• Other approaches:
– Prefetch communication (hoist relevant writes/reads out of kernel)
– Stop kernel, conduct communication, launch a new kernel to resume

28

PGAS-STYLE COMMUNICATION AND GPUS

EXPLORATIONS:
MEMORY STRATEGIES

Background and This Effort

Background:
• By default, we use unified memory (a.k.a. "managed memory" or "Unified Virtual Memory")

– we did this to implement GPU support quickly
– in this mode, the CUDA driver migrates pages between physical host/device memories

• But there is a cost:
– the compiler and user have less control over data management (which may be required for good performance)
– it’s not compatible with GASNet's memory-kinds support

This Effort:
• Introduced memory strategies, selected via a new ‘CHPL_GPU_MEM_STRATEGY’ environment variable

– Traditional approach is named ‘unified_memory’ and remains the default
– New ‘array_on_device’ mode causes:

– array data to be stored on device
– all other data to be stored on “page locked” host memory, permitting it to be accessed directly by the GPU

30

MEMORY STRATEGIES

Examples

• In both examples, the code is the same, but where we allocate—and when we transfer data—differs
• expressions in purple indicate data on host, orange on device

• With the unified memory mode ('A' moves twice, 'x' moves once) —
on here.gpus[0] {

var x = 123;
var A: [0..10] int;
foreach i in 0..10 do A[i] = A[i] + x;
writeln(A);

}

• With the array on device mode ('A' copied once, 'x' accessed via DMA once) —
on here.gpus[0] {

var x = 123;
var A: [0..10] int;
foreach i in 0..10 do A[i] = A[i] + x;
writeln(A);

}

31

MEMORY STRATEGIES

// x allocated into unified memory (starting on host)
// array data allocated into unified memory (starting on host)

// computation on device; a page faults occur: 'A' and 'x' move to device
// page fault occurs: A is transferred to host

// x allocated onto host (since it's a scalar and not an array)
// array data allocated on device (in page-locked fashion)
// computation on device; x accessed by DMA
// A is transferred to host

Next Steps

Next steps:
• Consider other modes to allocate all / more data on the host
• Identify memory access patterns that work for unified memory, yet not when the array data is on the device:

– For example: element-wise access like 'A[idx] = ...' is not working as of today

• Evaluate performance to better understand impact

32

MEMORY STRATEGIES

STATUS SUMMARY &
PROPOSED PRIORITIES

Summary:
New features:

– multi-locale support
– improved diagnostics
– improved loop eligibility

Explorations:
– vendor portability

– benchmarking
– memory strategies
– communication

Next Steps:
• AMD support
• Performance analysis and optimization of initial user GPU codes
• Port benchmarks to identify performance and feature gaps

34

STATUS SUMMARY AND PROPOSED PRIORITIES

OTHER GPU IMPROVEMENTS

For a more complete list of GPU improvements in the 1.27.0 and 1.28.0 releases, refer to the
following sections in the CHANGES.md file:

• ‘GPU Computing’
• ‘Bug Fixes for GPU Computing'

36

OTHER LIBRARY IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

