
June 30, 2022 / September 15, 2022
Chapel Team

CHAPEL 1.27.0/1.28.0 RELEASE NOTES:
COMPILER, PERFORMANCE,
AND TOOL IMPROVEMENTS

OUTLINE

• LLVM-14 Support
• LLVM Types in ‘chpl’
• Scan Optimizations
• Dyno-Chpldoc
• Mason Improvements
• Portability Improvements

LLVM-14 SUPPORT

Background, This Effort and Status

Background:
• LLVM is the default back-end for Chapel
• The LLVM project releases new major versions about twice per year

This Effort:
• Updated Chapel to use LLVM-14, the latest major version

– Updated the version in the third-party directory
– Updated the Chapel compiler to address API differences

• Maintained compatibility with older versions as well

Status:
• Started using LLVM-14 for most test configurations

– Continued testing versions 11–13 for a subset of test configurations

Next Steps: Continue tracking new releases of LLVM

4

LLVM-14

USING LLVM TYPES TO
ACCELERATE COMPILATION

Background and This Effort

Background:
• The LLVM project includes some data structures designed for use in compilers

– These Abstract Data Types (ADTs) are alternatives to standard C++ data structures
– Some examples:
SmallVector // alternative to std::vector optimized for short vectors
SmallPtrSet // alternative to std::set optimized for small sets
DenseSet // alternative to std::set
DenseMap // alternative to std::map

This Effort:
• Added some uses of these LLVM ADTs to the production compiler, which improved performance

– As a result, the LLVM Support Library is now required to build the compiler
– If no system install of LLVM is found, the LLVM Support Library will be built from the bundled LLVM

• Also began making use of these ADTs in new ‘dyno’ compiler code

6

LLVM ADTS

Impact and Next Steps

Impact: Modest improvement in average total compilation time (6%)
• 33% improvement in average scope resolve time
• 15% improvement in average resolution time
• No significant improvement for larger applications

Next Steps: Look for additional use-case opportunities in both ‘dyno’ and the production compiler

7

LLVM ADTS

SCAN OPTIMIZATIONS

Background

• Scans on block-distributed arrays were parallelized in Chapel 1.20
• Uses a multi-pass implementation

– Each locale does a parallel scan on its region of the array, stores per-locale state into replicated array
– Initial locale gathers per-locale state, does a serial cross-locale scan, stores results into a replicated array
– Each locale updates its region of the array with the cross-locale results

9

SCAN OPTIMIZATIONS

+ scan 1 1 1 1 1 1 1 1

1 2 3 1 2 3 1 2

+ exc-scan0 3 6

1 2 3 4 5 6 7 8

+ +

parallel per-locale scan:

serial cross-locale
exclusive scan:

parallel per-locale update:

This Effort

• Identified that replicated arrays have high creation cost due to large amount of communication

• Updated block-distributed array scan implementation to avoid using replicated arrays
• Use local array on initial locale to store first-pass results

– Allows remote locale to store results in parallel, speeding up serial cross-locale scan

• Use custom replicated-like data structure to store cross-locale scan results
– Scan algorithm permits creating per-locale storage during first-pass, avoiding separate comm to create distributed array

• Made micro-optimizations to further reduce scan communication

• Updated per-locale portion of scan to operate on local views when input and output distributions match
• Reduces overhead for indexing into arrays

var A = newBlockArr(1..n, int);
var B = + scan A; // A and B have same distribution, can operate on local views of A
var C = + scan A[{1..10}]; // A and C have different distribution, must operate on global view of A

10

SCAN OPTIMIZATIONS

Impact

• Improved performance and scalability of scans on block-distributed arrays

11

SCAN OPTIMIZATIONS

0
0.5
1

1.5
2

2.5
3

16 64 128 256 512

Ti
m
e
(s
ec
on
ds
)

Locales (x 36 cores / locale)

1.26
1.28

Block Scan Time
Cray XC (Aries) -- 32 GB / locale

fa
st

er

Impact

• Improved performance and scalability of scans on block-distributed arrays
• Particularly for configurations with less optimized fine-grained communication

12

SCAN OPTIMIZATIONS

0
0.5
1

1.5
2

2.5
3

16 64 128 240

Ti
m
e
(s
ec
on
ds
)

Locales (x 40 cores / locale)

1.26
1.28

Block Scan Time
SGI 8600 (EDR IB) -- 48 GB / locale

fa
st

er

Status and Next Steps

Status:
• Scans on block-distributed arrays are well-tuned with minimal communication

– No known remaining optimization opportunities remain

Next Steps:
• Parallel scan improvements:

– ensure scans of 1D array-like expressions are parallelized
B = + scan (A: int);

– parallelize scans of multidimensional arrays
– consider extending parallelism to challenging/less mature distributions (e.g., Cyclic, Block-Cyclic)
– generalize implementation to support cases where the ‘result’ and ‘state’ types don’t match

• Add support for partial scans, exclusive scans, directional scans
• Finalize and document the user-defined reduction/scan interface
• Reduce the overheads associated with creating replicated / distributed / privatized arrays

13

SCAN OPTIMIZATIONS

DYNO-CHPLDOC

Background

• The ‘chpldoc’ tool generates ‘.rst’/‘.html’ documentation files by parsing commented ‘.chpl’ source files
• ‘sphinx’ is leveraged under the hood to generate ‘.html’ files from ‘.rst’

• Historically, ‘chpldoc’ was implemented as an optional pass within the ‘chpl’ compiler
• This approach resulted in several display issues with ‘chpldoc’ output that had never been addressed

• Since the compiler front-end is being rewritten for ‘dyno’, ‘chpldoc’ needed to be revisited as well
• Since ‘dyno’ adds a new compiler library interface, a standalone ‘chpldoc’ tool is an ideal test case for it

– Demonstrates how linters or code formatting tools could be similarly based on the ‘dyno’ compiler library

• As of 1.26, had a rough prototype of this new ‘dyno’-based ‘chpldoc’
• Only 15/150 tests of ‘chpldoc’ passed using it at that time

15

DYNO-CHPLDOC

This Effort

• In 1.28, we have replaced ‘chpldoc’ with this ‘dyno’-based version of ‘chpldoc’
• Serves as a drop-in replacement for ‘chpldoc’
• Improves several cases that were not handled well with the previous ‘chpldoc’

• Increased number of documentation tests by ~10%

• Updated ‘sphinx’ Domain for the Chapel language, ‘sphinxcontrib-chapeldomain’, to v0.0.23
• Now handles ‘operator’ keyword

16

DYNO-CHPLDOC

Impact

• Improved ability to control ‘.rst’ output
• The ‘dyno’ parser maintains a more accurate representation of the original Chapel source code

• Operators are now labeled with ‘operator’ keyword rather than ‘proc’:
• was:

• now:

• Internal rewrites of language features are no longer revealed:
• was:

• now:

• was:

• now:

17

DYNO-CHPLDOC

Impact (continued)

• Literals are now displayed as they appear in source code
• ‘string’ values are quoted:

– was:

– now:

• ‘real’ values display all significant decimal places:

– was:

– now:

• Hex and octal values display in proper format:

– was:

– now:

18

DYNO-CHPLDOC

• Postfix ‘?’ operator is now displayed to indicate a nilable class type

• was:

• now:

• Multi-declarations declared outside of records and classes are now handled

• ‘use’/’import’ hints for submodules now include their parent module’s name

• was:

• now:

Impact (continued)

19

DYNO-CHPLDOC

module M {
var x, y, z: int; // previously would not print any of these

}

Status

• Default ‘chpldoc’ tool is now ‘dyno-chpldoc’
• Both ‘chpldoc’ and ‘chpldoc-legacy’ are built with the ‘make chpldoc’ command

• Previous version of ‘chpldoc’ can still be accessed if desired
• Use ‘chpldoc --legacy’ or ‘chpldoc-legacy’ to invoke previous version

• Any documentation differences for Chapel modules are improvements or innocuous [#20558]
• Also verified Arkouda-generated documentation

• Performance is roughly equivalent to the previous version of ‘chpldoc’
• e.g., timed results from running full documentation test suite

– 1m14s ‘chpldoc’
– 1m14s ‘chpldoc --legacy’

20

DYNO-CHPLDOC

https://github.com/chapel-lang/chapel/pull/20558

Next Steps

• Tune performance
• Opportunities exist for improvements to execution time, and possibly to memory overhead

• Add support for automated testing of code examples within chpldoc comments

• Get feedback from users

• Remove support for ‘chpdoc-legacy’ and simplify compiler code that was supporting it

21

DYNO-CHPLDOC

MASON IMPROVEMENTS

Background

• Mason is Chapel’s package manager
• Design inspired by Rust’s Cargo

• Mason aims to standardize and simplify the build process for Chapel programs
• Compiling a Chapel program can get complicated with flags, etc., so Mason aims to handle builds for users
• If all Chapel users used Mason, there would be a common feel to building and running all projects

– i.e., just run ‘mason build’ and the project compiles as expected

• Mason aims to create a community around Chapel package development
• Registry hosted online to store packages, but does not have many packages today

• Mason aims to handle dependency management, creating reproducible builds
• Keeping version dependencies straight can be tedious when done by hand

23

MASON IMPROVEMENTS

This Effort: Mason Package Types

• Mason previously assumed that all packages were going to be libraries
• Library packages do not run as standalone projects and are only expected to be ‘use’d by other projects
• Made Mason unusable for applications and small projects

• Implemented a “Library”, “Application”, “Lightweight” distinction
• Library: use Mason to create and publish a library to the Mason registry

– Not intended to be run as a standalone application

• Application: use Mason as a build tool and dependency manager
– Designed to assist in the development of standalone applications, benchmarks, etc.

• Lightweight: use Mason only as a dependency manager
– Useful for projects like Arkouda that already have a build process, but would like to use Mason packages

• These changes were inspired by Rust’s Cargo

24

MASON IMPROVEMENTS

This Effort: Initialization

• Simplified mason package initialization to only create essential files (matches Cargo initialization)

• Removed confusing interactive initialization
• Would prompt users to input information about licensing and Chapel versioning — unnecessary in most cases

– Fields are populated with defaults and can be modified as needed by users

• Aligned behavior of ‘mason new’ and ‘mason init’
• ‘mason new’ creates a mason package given a location, ’mason init’ creates a mason package in current directory

25

MASON IMPROVEMENTS

Result of ‘mason new’ in 1.26 Result of ‘mason new’ in 1.28

This Effort: Other Improvements

• Added user-requested ability to include git repositories as Mason dependencies
• Package does not need to be in Mason registry
• Package does not need to conform to Mason “release” requirements
• Can use a specific revision or branch of the package

• Added a ‘mason modules’ command that generates command-line flags
• Enables usage of Mason packages outside of the Mason package directory structure
• Result is the absolute path to Mason packages in TOML (e.g., /path/to/mason-home/MyPackage.chpl)

• Reworked Mason documentation, splitting into multiple sections instead of one monolithic page
• Added tutorials on using Mason from a package-user perspective

– Previous documentation was written assuming library-developer perspective

26

MASON IMPROVEMENTS

HelloWorld = { git = "https://github.com/myrepo/HelloWorld",
branch = "test-branch" }

This Effort: Experimenting with Arkouda

• Have been exploring usage of Mason in Arkouda to see where it could add value to existing projects
• Given Mason’s goal of being a build tool, wanted to see what it would take to replace the Arkouda ‘Makefile’
• Converting Arkouda modules to Mason packages could provide values to other users (e.g., argsort)

• ‘mason modules’ command was motivated by Arkouda, enabling integration into existing build process
• Provides compiler flags to use Mason packages without changing the Arkouda directory structure
• An experimental Arkouda branch using this approach helped identify areas in need of improvement

• Using Mason in offline environments is an ongoing effort

• Additional Mason development will be needed in order to provide value to Arkouda

27

MASON IMPROVEMENTS

Next Steps

28

MASON IMPROVEMENTS

• Improve Mason build support
• Allow users to programmatically specify build flags, override commands, etc.

• Work towards providing a greater set of Mason packages
• Port some existing Chapel package modules to Mason packages

• Enable Mason to be built in all configurations for portability
• Today, can only be built with a ‘CHPL_COMM=none’ runtime

• Further improve Mason documentation
• Add central document where supported commands are outlined and explained from user perspective

• Further improve Mason flexibility and usability
• Allow different module names for Mason projects, improve testing infrastructure, etc.

PORTABILITY IMPROVEMENTS

Background: New requirements to build Chapel can introduce portability challenges
• cmake 3.13.4 or newer is now required
• the Chapel compiler now requires the LLVM Support library, but the bundled version is built if it is not found

This Effort: Continued to improve portability and packaging
• Addressed build problems in several configurations:

– GCC 12, Alpine Linux, or Amazon Linux 2022

• Improved several aspects of Chapel configuration and build:
– stopped saving the path to the linker in case it changes after ‘chpl’ is built
– the quickstart environment now uses a system LLVM package when available
– ‘CHPL_LLVM=none’ can use a system LLVM support library when available
– now linking dynamically with the system LLVM on Mac OS X

• Chapel 1.28 was tested with 47 different OS configurations and prerequisite install commands were generated
• A community member has created a Chapel AUR package for Arch Linux!

Impact: Users are less likely to run into build issues in the field

30

PORTABILITY IMPROVEMENTS

https://chapel-lang.org/docs/1.28/usingchapel/prereqs.html
https://aur.archlinux.org/packages/chapel

OTHER COMPILER, PERFORMANCE,
AND TOOL IMPROVEMENTS

For a more complete list of compiler, performance, and tool changes and improvements in the
1.27.0 and 1.28.0 releases, refer to the following sections in the CHANGES.md file:

• ‘Compiler Improvements’
• ‘Compilation-Time / Generated Code Improvements’

• ‘Error Messages / Semantic Checks’
• ‘[Platform-Specific] Performance Optimizations / Improvements’
• ‘Tool Improvements`

• ‘Packaging / Configuration Changes’
• ‘Build System Improvements’

• ‘Portability / Platform-specific Improvements’
• ‘Bug Fixes [for Build Issues | for Tools]’ / ‘Platform-specific Bug Fixes’
• ‘Launchers’

• ‘Third-Party Software Changes’

32

OTHER COMPILER, PERFORMANCE, AND TOOL IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

