Hewlett Packard
Enterprise

: \k__-‘---»
CHAPEL 1.27.0/1:28.0 RELEASE NOTES:
COMPILER, PERFORMANCE,
AND TOOL IMPROVEMENTS

Chapel Team
June 30, 2022 / September 15, 2022

OUTLIN

oLV

e Scan Op

¢ Dyno-Chpld

e Mason Improve

LLVM-14
Background, This Effort and Status

Background:

e LLVM is the default back-end for Chapel
« The LLVM project releases new major versions about twice per year

This Effort:

o Updated Chapel to use LLVM-14, the latest major version
—Updated the version in the third-party directory
—Updated the Chapel compiler to address API differences

« Maintained compatibility with older versions as well

Status:

« Started using LLVM-14 for most test configurations
— Continued testing versions 11-13 for a subset of test configurations

Next Steps: Continue tracking new releases of LLVM

—

4

N\ N —

USINGLLVMTYPES TO

ACCELERATE COMPILATION

LLVM ADTS
Background and This Effort

Background:

o The LLVM project includes some data structures designed for use in compilers
—These Abstract Data Types (ADTS) are alternatives to standard C++ data structures
- Some examples:

SmallVector //alternative to std:vector optimized for short vectors
SmallPtrSet //alternative to std:set optimized for small sets

DenseSet // alternative to std::set
DenseMap // alternative to std:map
This Effort:

o Added some uses of these LLVM ADTs to the production compiler, which improved performance

—As a result, the LLVM Support Library is now required to build the compiler
—If no system install of LLVM is found, the LLVM Support Library will be built from the bundled LLVM

 Also began making use of these ADTs in new ‘dyno’ compiler code

—

LLVM ADTS
Impact and Next Steps

Impact: Modest improvement in average total compilation time (6%)
e 33% improvement in average scope resolve time
e 15% improvement in average resolution time

« No significant improvement for larger applications

Average Total Compilation Time Average Compilation Time Per Pass: resolve

1.5

Time (seconds)
w
Time (seconds)

0.5

03 Jul 10 Jul 17 Jul 24 Jul 31 Jul 07 Aug 03 Jul 10 Jul 17 Jul 24 Jul 31 Jul 07 Aug

Next Steps: Look for additional use-case opportunities in both ‘dyno’ and the production compiler

—

SCAN OPTIMIZATIONS
Background

e Scans on block-distributed arrays were parallelized in Chapel 1.20
» Uses a multi-pass implementation

—Each locale does a parallel scan on its region of the array, stores per-locale state into replicated array
—Initial locale gathers per-locale state, does a serial cross-locale scan, stores results info a replicated array
— Each locale updates its region of the array with the cross-locale results

+ scan

parallel per-locale scan: =———f s—

. 1(2]3]1({2]3]12]
serial cross-locale

exclusive scan: = 0 "" 3 '|'I
parallel per-locale update: =—(p s—

1]2]3[4|5]6]7]8]

SCAN OPTIMIZATIONS
This Effort

e |dentified that replicated arrays have high creation cost due to large amount of communication

e Updated block-distributed array scan implementation to avoid using replicated arrays
o Use local array on initial locale to store first-pass results
— Allows remote locale to store results in parallel, speeding up serial cross-locale scan
o Use custom replicated-like data structure to store cross-locale scan results
—Scan algorithm permits creating per-locale storage during first-pass, avoiding separate comm to create distributed array

e Made micro-optimizations to further reduce scan communication

» Updated per-locale portion of scan to operate on local views when input and output distributions match
« Reduces overhead for indexing into arrays

var A = newBlockArr(l..n, int);
var B = + scan A; // A and B have same distribution, can operate on local views of A
var C = + scan A[{1..10}1]1; //AandC have different distribution, must operate on global view of A

— .

SCAN OPTIMIZATIONS

Impact

e Improved performance and scalability of scans on block-distributed arrays

Block Scan Time
Cray XC (Aries) -- 32 GB / locale

16 64 128 256 512
Locales (x 36 cores / locale)

— .

SCAN OPTIMIZATIONS

Impact

e Improved performance and scalability of scans on block-distributed arrays
 Particularly for configurations with less optimized fine-grained communication

Block Scan Time
SGI 8600 (EDR IB) -- 48 GB / locale

16 64 128 240
Locales (x 40 cores / locale)

12

SCAN OPTIMIZATIONS
Status and Next Steps

Status:

« Scans on block-distributed arrays are well-funed with minimal communication
- No known remaining optimization opportunities remain

Next Steps:

 Parallel scan improvements:

—ensure scans of 1D array-like expressions are parallelized
B = + scan (A: int);

— parallelize scans of multidimensional arrays
- consider extending parallelism to challenging/less mature distributions (e.g., Cyclic, Block-Cyclic)
—generalize implementation to support cases where the ‘result’ and ‘state’ types don’t match

« Add support for partial scans, exclusive scans, directional scans

 Finalize and document the user-defined reduction/scan interface

» Reduce the overheads associated with creating replicated / distributed / privatized arrays

—

13

DYNO-CHPLDOC
Background

e The ‘chpldoc’ tool generates “.rst’/.html’ documentation files by parsing commented ‘.chpl’ source files
 ‘sphinx’ is leveraged under the hood to generate ‘html’ files from “.rst’

e Historically, ‘chpldoc’ was implemented as an optional pass within the ‘chpl’ compiler
« This approach resulted in several display issues with ‘chpldoc’ output that had never been addressed

e Since the compiler front-end is being rewritten for ‘dyno’, ‘chpldoc’ needed to be revisited as well

 Since ‘dyno’ adds a new compiler library interface, a standalone ‘chpldoc’ tool is an ideal test case for it
— Demonstrates how linters or code formatting tools could be similarly based on the ‘dyno’ compiler library

e As of 1.26, had a rough prototype of this new ‘dyno’-based ‘chpldoc’
e Only 15/150 tests of ‘chpldoc’ passed using it at that time

— .

DYNO-CHPLDOC
This Effort

e In 1.28, we have replaced ‘chpldoc’ with this ‘dyno’-based version of ‘chpldoc’
« Serves as a drop-in replacement for ‘chpldoc’
o Improves several cases that were not handled well with the previous ‘chpldoc’

e Increased number of documentation tests by ~10%

e Updated ‘sphinx’ Domain for the Chapel language, ‘sphinxcontrib-chapeldomain’, to v0.0.23
e Now handles ‘operator’ keyword

— .

DYNO-CHPLDOC

Impact

e Improved ability to control ‘.rst’ output
e The ‘dyno’ parser maintains a more accurate representation of the original Chapel source code

e Operators are now labeled with ‘operator’ keyword rather than ‘proc’

* WaS! proc x(s: bytes, n: integral): bytes

* NOW: operator *(s: bytes, n: integral): bytes

e Internal rewrites of language features are no longer revealed:

e WaS: ' const myLocaleSpace = 0..chpl__nudgeHighBound(numLocales)

* NOW: const myLocaleSpace = 0..<numlLocales

e Was: var infolLevels = new set(LogLevel, chpl__buildArrayExpr(LogLevel.INFO, LogLevel. DEBUG))

« now: Vvar infolLevels = new set(Loglevel, [LogLevel.INFO, LogLevel. DEBUG])

—

17

DYNO-CHPLDOC
Impact (continued)

e Literals are now displayed as they appear in source code

e ‘string’ values are quoted:

—was: param defaultBuffSize = if CHPL_COMM == ugni then 4096 else 8192

—now: param defaultBuffSize =if CHPL_COMM == "ugni" then 4096 else 8192

« ‘real’ values display all significant decimal places:

—was: param pi=3.14159

—now: param pi=3.14159265358979323846

« Hex and octal values display in proper format:

—was: param H5F_ACC_DEFAULT = 65535: c_uint

—now: param H5F_ACC_DEFAULT = Oxffff: c_uint

—

proc mkdir(name: string, mode: int = 511, parents: bool = false) throws

proc mkdir(name: string, mode: int = 00777, parents: bool = false) throws

|18

DYNO-CHPLDOC

Impact (continued)

e Postfix “?” operator is now displayed to indicate a nilable class type
e WAS: proc this(tbl: string) ref: shared nilable Toml throws

e Now: proc this(tbl: string) ref: shared Toml|? throws

e Multi-declarations declared outside of records and classes are now handled

module M {
var x, y, z: int; // previously would not print any of these

}

e ‘use’/import” hints for submodules now include their parent module’s name

e WaAs: use Diagnostics;

° nNow: use Memory.Diagnostics;

—

19

DYNO-CHPLDOC
Status

e Default ‘chpldoc’ tool is now ‘dyno-chpldoc’
« Both ‘chpldoc’ and ‘chpldoc-legacy’ are built with the ‘make chpldoc’ command

e Previous version of ‘chpldoc’ can still be accessed if desired
» Use ‘chpldoc --legacy’ or ‘chpldoc-legacy’ to invoke previous version

e Any documentation differences for Chapel modules are improvements or innocuous [#20558]
« Also verified Arkouda-generated documentation

e Performance is roughly equivalent to the previous version of ‘chpldoc’

e e.g., timed results from running full documentation test suite
—1ml4s ‘chpldoc
—1m1l4s ‘chpldoc --legacy’

— .

https://github.com/chapel-lang/chapel/pull/20558

DYNO-CHPLDOC
Next Steps

e Tune performance
« Opportunities exist for improvements to execution time, and possibly to memory overhead

e Add support for automated testing of code examples within chpldoc comments

e Get feedback from users

e Remove support for ‘chpdoc-legacy’ and simplify compiler code that was supporting it

— .

MASON IMPROVEMENTS
Background

e Mason is Chapel’s package manager
» Design inspired by Rust’s Cargo

e Mason aims to standardize and simplify the build process for Chapel programs
o Compiling a Chapel program can get complicated with flags, etc., so Mason aims to handle builds for users

o If all Chapel users used Mason, there would be a common feel to building and running all projects
—i.e., just run ‘mason build’ and the project compiles as expected

e Mason aims to create a community around Chapel package development
» Registry hosted online to store packages, but does not have many packages today

e Mason aims to handle dependency management, creating reproducible builds
» Keeping version dependencies straight can be tedious when done by hand

—

23

MASON IMPROVEMENTS
This Effort: Mason Package Types

e Mason previously assumed that all packages were going to be libraries
 Library packages do not run as standalone projects and are only expected to be ‘use’d by other projects
« Made Mason unusable for applications and small projects

e Implemented a “Library”, “Application”, “Lightweight” distinction
 Library: use Mason to create and publish a library to the Mason registry
—Not intended to be run as a standalone application
« Application: use Mason as a build tool and dependency manager
—Designed to assist in the development of standalone applications, benchmarks, etc.

e Lightweight: use Mason only as a dependency manager
— Useful for projects like Arkouda that already have a build process, but would like to use Mason packages

e These changes were inspired by Rust’s Cargo

—

24

MASON IMPROVEMENTS
This Effort: Initialization

e Simplified mason package initialization to only create essential files (matches Cargo initialization)

Result of ‘mason new’ in 1.26
yPackage/

Result of ‘mason new’ in 1.28

MyPackage/

Mason.toml
example/

src/

— myPackage. chpl
test/

Mason. toml
src/
L myPackage.chpl

» Removed confusing interactive initialization

o Would prompt users o input information about licensing and Chapel versioning — unnecessary in most cases
— Fields are populated with defaults and can be modified as needed by users

e Aligned behavior of ‘mason new’ and ‘mason init’
e ‘mason new’ creates a mason package given a location, ‘'mason init’ creates a mason package in current directory

— .

MASON IMPROVEMENTS
This Effort: Other Improvements
e Added user-requested ability to include git repositories as Mason dependencies

» Package does not need to be in Mason registry
« Package does not need to conform to Mason “release” requirements

« Can use a specific revision or branch of the package

HelloWorld = { git = "https://github.com/myrepo/HelloWorld",
branch = "test-branch" }

e Added a ‘mason modules’ command that generates command-line flags
« Enables usage of Mason packages outside of the Mason package directory structure
» Result is the absolute path fo Mason packages in TOML (e.g., /path/to/mason-home/MyPackage.chpl)

e Reworked Mason documentation, splitting into multiple sections instead of one monolithic page

« Added tutorials on using Mason from a package-user perspective
- Previous documentation was written assuming library-developer perspective

—

26

MASON IMPROVEMENTS
This Effort: Experimenting with Arkouda

e Have been exploring usage of Mason in Arkouda to see where it could add value to existing projects

« Given Mason’s goal of being a build tool, wanted to see what it would take to replace the Arkouda ‘Makefile’
« Converting Arkouda modules to Mason packages could provide values to other users (e.g., argsort)

e ‘mason modules’ command was motivated by Arkouda, enabling integration into existing build process
« Provides compiler flags to use Mason packages without changing the Arkouda directory structure
« An experimental Arkouda branch using this approach helped identify areas in need of improvement

e Using Mason in offline environments is an ongoing effort

e Additional Mason development will be needed in order to provide value to Arkouda

— .

MASON IMPROVEMENTS
Next Steps

e Improve Mason build support
o Allow users to programmatically specify build flags, override commands, efc.

e Work towards providing a greater set of Mason packages
» Port some existing Chapel package modules to Mason packages

e Enable Mason to be built in all configurations for portability
e Today, can only be built with a ‘CHPL_COMM=none’ runtime

e Further improve Mason documentation
« Add central document where supported commands are outlined and explained from user perspective

e Further improve Mason flexibility and usability
« Allow different module names for Mason projects, improve testing infrastructure, etc.

— .

PORTABILITY IMPROVEMENTS

Background: New requirements to build Chapel can intfroduce portability challenges

o cmake 3.13.4 or newer is now required
« the Chapel compiler now requires the LLVM Support library, but the bundled version is built if it is not found

This Effort: Continued to improve portability and packaging

o Addressed build problems in several configurations:
- GCC 12, Alpine Linux, or Amazon Linux 2022

« Improved several aspects of Chapel configuration and build:
- stopped saving the path to the linker in case it changes after ‘chpl’ is built
—the quickstart environment now uses a system LLVM package when available
—‘CHPL_LLVM=none’ can use a system LLVM support library when available
—now linking dynamically with the system LLVM on Mac OS X

o Chapel 1.28 was tested with 47 different OS configurations and prerequisite install commands were generated

o A community member has created a Chapel AUR package for Arch Linux!

Impact: Users are less likely to run info build issues in the field

— |

30

https://chapel-lang.org/docs/1.28/usingchapel/prereqs.html
https://aur.archlinux.org/packages/chapel

N\ N —

OTHER COMPILER, PERFORMANCE,

AND TOOL IMPROVEMENTS

OTHER COMPILER, PERFORMANCE, AND TOOL IMPROVEMENTS

For a more complete list of compiler, performance, and tool changes and improvements in the
1.27.0 and 1.28.0 releases, refer to the following sections in the CHANGES.md file:

 ‘Compiler Improvements’

 ‘Compilation-Time / Generated Code Improvements’

 ‘Error Messages / Semantic Checks’

o ‘[Platform-Specific] Performance Optimizations / Improvements’

e ‘Tool Improvements"’

 ‘Packaging / Configuration Changes’

e ‘Build System Improvements’

o ‘Portability / Platform-specific Improvements’

 ‘Bug Fixes [for Build Issues | for Tools] / ‘Platform-specific Bug Fixes’
e ‘Launchers’

 ‘Third-Party Software Changes’

— .

https://github.com/chapel-lang/chapel/blob/release/1.28/CHANGES.md

