Hewlett Packard
Enterprise

CHAPEL RELEASE
1.25.1/1.26.0: .
LIBRARY IMPROVEMEN

-
.
|

Chapel Team < i
December 9,2021 / March 31,2022 %5

OUTLINE

New Package Modules

Argument Parser and *--help’

Standard library Stabilization
Other Library Improvements

&
; \\wfﬁ\“

NEW PACKAGE MODULES

e Copy Aggregation Library

g

e Socket Library

g

e Go-Style Channels

7

e Concurrent Map Module

COPY AGGREGATION LIE

COPY AGGREGATION LIBRARY
Background and This Effort

Background: Copy aggregation can significantly speed up fine-grained copies
o Initially added to Arkouda in the Chapel 1.22 timeframe
o Chapel 1.24 added an automatic copy aggregation optimization to the compiler
o A generally useful feature that we ultimately want in Chapel’s standard library

This Effort: Expose existing copy aggregation to users

o Current implementation requires that one side of the copy is always local
—'DstAggregator’ when source is local and destination may be remote
—‘SrcAggregator’ when destination is local and source may be remote

5

COPY AGGREGATION LIBRARY

Example

e Reverse array using aggregation:
use BlockDist, CopyAggregation;

const size = 10000;
const D = newBlockDom(0..size);
var A, reversedA: [D] int = D;

forall (rA, 1) in zip(reversedA, D) with (var agg = new SrcAggregator (int)) do
agg.copy (rA, Alsize-1i]);

COPY AGGREGATION LIBRARY

Impact

e Copy aggregation is available to users, provides a large speedup for fine-grained copies
 Particularly on networks where Chapel has poor small-message rates

16-node Bale Indexgather

2000
1800
1600
1400
1200
1000
800
600
400

0] IIIIIIIIII

200
Aries InfiniBand

MB/s

m Fine-Grained Aggregated

COPY AGGREGATION LIBRARY
Next Steps

e Support aggregating more operations

« Add copy aggregator where both source and destination can be remote
« Add atomic aggregators

o Add support for arbitrary user-defined aggregation

e Further improve performance and reduce memory footprint
e Including optimizing local aggregations

8

SOCKET LIBRARY

SOCKET LIBRARY
Background and This Effort

Background: TCP and UDP socket programming have not been supported in Chapel

e Could only be done through C interoperability
 Blocking socket calls are a mismatch for Qthreads-based user-level tasking

This Effort: Implemented a ‘Socket’ module in Chapel

o Implemented as a Google Summer of Code Project
—Student: Lakshya Singh
—Mentors: Ankush Bhardwaj (Chapel GSoC 2020 Alum), Krishna Kumar Dey (Chapel GSoC 2019 Alum), Michael Ferguson

— .

SOCKET LIBRARY

Example
use Socket; proc client () throws {
var clientSock = new udpSocket();

var port: uint(l6) = 8812; // send “hello” to the server
var host = "127.0.0.1"; var n = clientSock.send(b"hello", addr);
var addr = 1pAddr.ipvé4 (IPv4Localhost, port); }
proc server (srvSock: udpSocket) throws ({ proc main () throws ({

// receive 5 bytes from the connected client // create a new server

var got = srvSock.recv(5); var srvSock = new udpSocket () ;

// do something with ‘got’ bind(srvSock, addr);

// start a server and a client in different tasks
cobegin ({

server (srvSock) ;

client ()

— .

SOCKET LIBRARY
Status and Next Steps

Status:

e Included in 1.26 as a package module
« Uses 'libevent' to allow useful work in other Chapel tasks while waiting on network activity

e Implementation has some caveats at present:
—only works with C back-end (e.g., 'CHPL_TARGET_COMPILER=gnu")
—only works with 'CHPL_TASKS=qthreads'

Next Steps:
o Address caveats listed above—especially the problems when building with the LLVM back-end
« Use the I/O plugin facility tfo arrange socket I/O calls to work with libevent

o Study the performance of servers written in Chapel
o Add a helper class to make it easier to implement a server and demonstrate a simple HTTP server

—

12

GO-STYLEC

GO-STYLE CHANNELS
Background and This Effort

Background: Chapel intends to support general parallel programming
e One missing idiom was a message queue like in Go and Rust (known as a ‘channel’ there)

This Effort: Implement Go-style channels in Chapel

o Implemented as a Google Summer of Code Project
- Student: Divye Nayyar
— Mentors: Michael Ferguson, Aniket Mathur (Chapel GSoC 2020 Alum)

Status: Included in 1.26 as a package module

Next Steps:

o Add compiler support for blocking ‘select’ statements (see example on next slide)
 Investigate and improve performance
e Enable channels to communicate across locales

— -

GO-STYLE CHANNELS

Examples

// simple send/recv
use Channel;

var channell = new channel (int, 5);

begin {

channell.send (4) ;

}
var recvl: int;
channell.recv (recvl);
writeln ("Received ", recvl);

// current approach for writing a select
use selectOperation;

var sell: SelectBaseClass = new shared
SelectCase (x1, channell, recv, 0),
sel?2: SelectBaseClass = new shared
SelectCase (x2, channel?2, send, 0);
var arr = [sell, sel?];
const option = selectProcess(arr);
if option == 0 {
writeln ("Received: ", x1);
} else {
writeln("Sent: ", x2);

15

GO-STYLE CHANNELS

Examples

// simple send/recv
use Channel;

var channell = new channel (int, 5);

begin {
channell.send (4);

}

var recvl: int;

channell.recv (recvl);

writeln ("Received ",

recvl) ;

// proposed select statement syntax
select {

when var x1 = channell.recv () {

writeln ("Received: ", x1);

}
when channel?2.send(x2) {
writeln("Sent: ", x2);

// Syntax above requires compiler integration

16

CONCURRENT MAP MODULE

Background:
A high-performance, concurrent map
o Offers an API like the standard ‘Map’, e.g., ‘add()’, ‘set()’, and ‘remove()’
« Uses the ‘EpochManager’ package module for epoch-based memory management
e Only supported on x86_64 with GCC or Clang

e Implemented as a Google Summer of Code Project
— Student: Garvit Dewan
—Mentor: Louis Jenkins (Chapel GSoC 2017 Alum)

This Effort:
« Reviewed and merged ‘ConcurrentMap’ with help from the author
» Offered as a package module

Next Steps:

e Get ‘ConcurrentMap’ to work with managed classes Cowned’, ‘shared’)
« Consider supporting more platforms

— .

ARGUMENT PARSER AND ‘--HELP’

Background:

o Argument parsing library released in 1.25 for handling arguments passed to ‘main()’
— updated in 1.25.1 to handle '--help' requests

This Effort:

o Add customizable handling of the '--help' flag and optional help text generated from the defined arguments
—Handles help requests in the form of '-h' and '--help’
—Builds a help message and a usage message
—Prints the combined help and usage messages and exits when help requested or bad input

Open Discussions:
« How should argument parser’s help and usage messages be formatted? (#18687)
e How should help message and metadata be defined for ArgumentParser options/flags? (#18646)

— .

https://github.com/chapel-lang/chapel/issues/18687
https://github.com/chapel-lang/chapel/issues/18646

ARGUMENT PARSER AND ‘--HELP’

Example help output:
« No additional Chapel code needed to access this functionality

$ quickStart -h
USAGE: quickStart <POSITIONAL> [-h, —--help] [--debug]

[-—optional <OPTIONAL>]

ARGUMENTS :
POSITIONAL

OPTIONS:
-h, --help Display this message and exit

-—-optional <OPTIONAL>

See source in the ArgumentParser documentation

Next Steps: Continue to add new features, improve message formatting

o Constrain option values
o Conditionally require/exclude other arguments

—

21

https://chapel-lang.org/docs/1.26/modules/packages/ArgumentParser.html

STANDARD LIBRARY
STABILIZATION

STANDARD LIBRARY STABILIZATION

Background

e The effort to release Chapel 2.0 is currently focused primarily on standard library stabilization
« Stabilization: The interface should not change in ways that break existing programs

» We have been reviewing standard libraries

e On even weeks, we review a new module, scrutinizing
—the name of the module itself
—names of public types, enums, global variables, constants, ...
—names of public procedures, arguments
—behaviors / definitions of all public symbols

e On odd weeks we follow up on a previously reviewed module

o Also created a sub-team to review the IO module
—10 sub-team members meet regularly and call full-tfeam meetings when part of the interface is ready for discussion

—

23

STANDARD LIBRARY STABILIZATION
This Effort

e This release we continued that cadence
e As of the Chapel 1.25 release, we had:

e Reviewed 23 standard libraries

« Stabilized 2 standard libraries

e During this release cycle we:
» Reviewed 7 more standard libraries
» Re-reviewed 7 standard libraries
e Implemented many changes based on reviews

24

STANDARD LIBRARY STABILIZATION

Status: In Numbers

e 30 modules reviewed

2 modules stabilized:

o Path, Builtins

6 modules that are close to being stabilized:

o CTypes, Sys, Regex, Time, Version, Subprocess
7 modules that we’'ve decided not to stabilize before Chapel 2.0:

« CommbDiagnostics, Memory[.Diagnostics], BitOps, GMP, Dynamiclters, Vectorizinglterator, Help
6 modules that still need review:

o SysError, Errors, FileSystem, Heap, Memory.Movelnitialization, Locales
- See the Ongoing Work deck for more on Locale model design

25

STANDARD LIBRARY STABILIZATION

This Effort: Overview

|
O
0 c
o b 2 =
(@)]
2 = - o 4)) O
c v o (@)} * | O Ol | E %) ~
£ 10 > O | n |+ Olo |l s © | S| | X OClo|l g |Llg|w
E15|ol=|2|. |9 = 2|5 EIBIE|IZIEw|Ball g2 |E|2E|R|G|S
'5_CGJ.£‘°E.£_)O qa?>.9"°m%l—3(§~§(§~mw.§m:mot_c:
m(O [T |3 |wn|L | o Z@m|Onh|h | h|O|X|-[>|0n|x|Q|<|un |w
1.24
1.25
Stable Progress Review Started

: * - ChapelEnv was renamed to ChplConfig, CPtr / SysCTypes were combined and renamed to CTypes,
Spawn was renamed to Subprocess, and Regexp was renamed to Regex

Memory.Movelnitialization

26

STANDARD LIBRARY

STABILIZATION
e Barrier .
e Reflection .
o Types)

SysCTypes/CPtr/SysBasic
ChapelEnv

e Vectorizinglterator .
e Time <
e DateTime e Version.

Biginteger

BARRIER MODULES

Background:
 ‘Barriers’ module provides a general-purpose barrier
—Initializer only accepts the number of tasks participating with no notion of locality, which limits scalability
 ‘AllLocalesBarriers’ module provides a global singleton barrier between all locales
—Has good scalability, but only suitable for SPMD-style codes

Open Discussions:
» Should we move all barriers to a new ‘Collectives’ module and create a single ‘barrier’ type? (#18861 / #18863)
e Should we keep ‘check()’ and ‘reset() methods? (#18862)
» Should we continue to support a waiting policy? (#18864)
e Should reusability be selectable? (#18865)

— .

https://github.com/chapel-lang/chapel/issues/18861
https://github.com/chapel-lang/chapel/issues/18863
https://github.com/chapel-lang/chapel/issues/18862
https://github.com/chapel-lang/chapel/issues/18864
https://github.com/chapel-lang/chapel/issues/18865

REFLECTION MODULE

Background: The Reflection module allows users to query properties about composite types
e e.g.,, fetch a field by ordinal position or name, or get the number of fields in a type

Actions Taken / Decisions Made:
» Deprecated formals for ‘getField()’ family of functions in favor of a standard naming scheme (#18958)
—Now uses ‘idx’, ‘name’, 'obj’ instead of one-letter formal names
« Want to implement a new general-purpose function fto resolve any expression
— This function will replace the ‘canResolve()’ family of functions
o Want to unify the ‘getField()’” and ‘getFieldRef()’ functions into a single function

Open Discussions:

o Should most Reflection functions be methods instead? (#17984)
—Worry about polluting the global method namespace
« Should we drop the ‘get’ from most Reflection function names? (#18006)

o How should inherited fields be reported by ‘numFields()? (#8736)

— .

https://github.com/chapel-lang/chapel/pull/18958
https://github.com/chapel-lang/chapel/issues/17984
https://github.com/chapel-lang/chapel/issues/18006
https://github.com/chapel-lang/chapel/issues/8736

TYPES MODULE

Background:
e This module contains functions to query and modify types

Decisions Made:
e Move all ‘isXType’ and ‘isXValue’ query functions into ‘Types’
-e.g, ‘isArrayType’, ‘isDmapValue’, ‘isRangeType’, ‘isSingleValue’, etc.
—Since these are in internal modules, from a user’s perspective, this primarily affects where things are documented
« Remove type/subtype comparison operators (in favor of named functions)
— For example: we don’t need the '<' operator on types because we already have ‘isProperSubtype’

Open Discussions:
« Should we have: ‘isXType’, ‘isXValue’, and ‘isX’ functions for each type ‘X’ or just one of these three? (#19361)

« Should we rename ‘isFloatType’/ ‘isFloatValue’/isFloat’ to something else? (#19362)
— There is no type named ‘float’ in Chapel (as there is in C), people may confuse this with ‘isReal’
« Should we have non-param ‘numBits’/‘numBytes’ functions? (#19364)

— |

30

https://github.com/chapel-lang/chapel/issues/19361
https://github.com/chapel-lang/chapel/issues/19362
https://github.com/chapel-lang/chapel/issues/19364

SYSCTYPES, CPTR, SYSBASIC MODULES

Background:

o Chapel has supported C type aliases for convenience, but spread across multiple modules:

-‘SysCTypes’: types whose representations are likely to vary between C compilers (e.g., ‘c_int’, ‘size_t")

—‘CPtr’: types representing C pointers and fixed-size arrays (as well as related procedures)

—‘SysBasic: types corresponding to C “float’ and ‘double’ as well as some system-oriented types (‘off_t’, ‘mode_t’, ‘socklen_t")
e In practice, these features felt scattered, and therefore challenging to remember what lived where

Actions Taken:
» Created a new ‘CTypes’ module to serve as a central place for major C type aliases and related routines

—replaces ‘SysCTypes’ and ‘CPtr’ while also including ‘c_float’ and ‘c_double’ from ‘SysBasic’
—started using ‘c_’ prefix more uniformly on such types (e.qg., ‘size_t’ -> ‘c_size_t")
« Moved other C types from ‘SysBasic’ to ‘Sys’

Open Discussions:
« Should we make other changes to pointer-related features within ‘CTypes’? (#18010, #18011, #18014, #18015, #18016, #18017)

« What should happen to the remaining features in ‘SysBasic’, which are mostly error-related?
—e.g., can we merge with ‘SysError’ or ‘Errors™?

— .

https://github.com/chapel-lang/chapel/issues/18010
https://github.com/chapel-lang/chapel/issues/18011
https://github.com/chapel-lang/chapel/issues/18014
https://github.com/chapel-lang/chapel/issues/18015
https://github.com/chapel-lang/chapel/issues/18016
https://github.com/chapel-lang/chapel/issues/18017

CHAPELENV MODULE

Background:
e ‘ChapelEnv’ is an auto-‘use’d module that exposes the ‘CHPL_* settings as ‘param’ values
-e.g.,, CHPL_HOME, CHPL_COMM, CHPL_TASKS, CHPL_MEM, etc.
« Its name raised some concerns:

- By convention, modules starting with ‘Chapel’ are typically not intended for end-users
- “Env[ironment]” seemed misleading since the settings could be inferred or specified on the ‘chpl’ command-line

« It also seemed difficult to stabilize given that the ‘CHPL_* settings have grown and evolved frequently
o Auto-‘use’ seemed like overkill given the number of symbols it defines and how rarely they are used

Actions Taken:

« Deprecated the contents of the ‘ChapelEnv’ module, replacing it with a new non-auto-‘use’d module ‘ChplConfig’
- new name reflects that it supports reasoning about the configuration of the ‘chpl’ compiler, whether set or inferred

o Characterized uses of the ‘CHPL_* variables in Chapel code
-e.g., ‘CHPL_COMM != “none™ is a common idiom used to determine whether we’re compiling for multi-locale execution

Open Discussions:
o What user-facing queries could we support to replace raw ‘CHPL_* string comparisons? (#19188)

— .

https://github.com/chapel-lang/chapel/issues/19188

VECTORIZING ITERATOR MODULE

Background:

» ‘Vectorizinglterator’ provided iterators that served to indicate a parallel loop should not infroduce new tasks
—flagged a loop as a candidate for vectorization, GPU-style parallelization, etc.
forall 1 in vectorizeOnly(l..n) do
—have had lingering concerns about its definition, syntax, implementation, efc.
—an auto-‘use’d module

o Chapel 1.25.0 added a ‘foreach’ loop form as a language-based way of expressing similar information

Actions Taken / Decisions Made:

» Decided to deprecate ‘Vectorizinglterator’
» Deprecated all of its iterators in Chapel 1.26.0

Next Steps:
« deprecate the ‘Vectorizinglterator module itself (left as a separate step due to its auto-‘use’)
o implement ‘with-clauses’ and shadow variables for “foreach’ loops (#18500)
« add support for foreach’ expressions (#19336)

—

33

https://github.com/chapel-lang/chapel/issues/18500
https://github.com/chapel-lang/chapel/issues/19336

TIME MODULE

Background:

e One of our older modules, defining a “Timer’ type for timing things, a ‘sleep’ call, queries for current date, time
« Has some overlap with the newer, better-designed ‘DateTime’ module

Actions Taken / Decisions Made:
e Plan to rename ‘Timer’ to ‘stopwatch’ as a more accurate name and to extend its methods (#16393)
—but where to store it? ‘Time™? ‘DateTime”? Combine them into one module? Add a new module?
« Conversations seem to be tfrending toward keeping two distinct modules:
—‘DateTime’ for reasoning about real-world dates and times
— 2?77 for taking timings, measuring the passage of time

Open Discussions:
o What should the name of this second module be?

- ‘Time’: has the advantage of matching what Python, Rust, Go, Java call this; yet difficult to distinguish from ‘DateTime’
—or should we rename ‘DateTime’ to something else, like simply ‘Dates’™?
—‘Timers’: suggests things that measure time (more awkwardly: ‘'Timepieces’, ‘Chronometers’, ‘Chrono’)

» What should we call our monotonic clock query? (e.g., ‘now()’, ‘clock()’, ‘ticC)’, ‘tick()?)

— .

https://github.com/chapel-lang/chapel/issues/16393

DATETIME MODULE

Background:
« Support for representing dates, times, date + times, and timedeltas
« Heavily influenced by the Python module ‘datetime’
o Exposes some C relics such as 'struct tm' from <time.h>

Decisions Made:
« Hide/deprecate/'no doc" C procs like 'timetuple’, 'strptime’, and 'ctime' (#18833)
« Remove some ambiguous functions like 'operator datetime.-(dt: datetime, d: date): timedelta' (#18834)
o Chapel-ify names to fit the standard module style guide (#18846)
o Track whether a time is timezone-aware at the type level (#18941)

Open Discussions:

 Cleanly deprecating ‘TZInfo' for timezones is a challenge

—'TZInfo' requires defining all fimezones at compile time
- loading from tzdata is impractical and won’t get updated until recompiled
—Would like a replacement in hand to let users upgrade, but low priority at this point

—

35

https://github.com/chapel-lang/chapel/issues/18833
https://github.com/chapel-lang/chapel/issues/18834
https://github.com/chapel-lang/chapel/issues/18846
https://github.com/chapel-lang/chapel/issues/18941

BIGINTEGER MODULE

Background:
» Provides ‘bigint’ type for storing very large integers, and many methods and functions that use them

Actions Taken / Decisions Made:

« renamed 13 additional methods, for a total of 20 renamed methods and one renamed enum
renamed arguments of 6 additional methods, for a total of 11 methods with renamed arguments
updated the return value of 2 methods
hid an additional implementation detail, for a tfotal of 2
added documentation to renamed symbols

fixed some bugs and inconsistencies

Open Discussions:

e new 'round’ enum name should be revisited—conflicts with ‘Math.round()'
e There are 17 other small library stabilization issues remaining that are likely uncontentious

—See the list of issues
- And 9 non-breaking changes

— .

https://github.com/chapel-lang/chapel/issues?q=is%3Aissue+is%3Aopen+BigInteger+label%3A%22type%3A+Chapel+2.0%22+

MATH MODULE

Background:

» Provides mathematical constants and functions, e.g., 'e’, 'sqrt()’, 'gcd()'
—Names are usually based on C's interface, which was influenced by ISO standards

e Included in all programs by default

Actions Taken / Decisions Made:
» Decided to split into two modules, one that will still be auto-included and one that will need a 'use'/'import’

Open Discussions:
o What names should be used when splitting the module in two? (#18989)
o Which symbols should still be included by default? (#182%0)
« How closely should the interface match C/the ISO standards? Lean seems to be "fairly closely", e.g.
—How to name 'log' functions and related module-level constants? (#18995)
—'cproj' (#19011) and 'erf' (#19013) aren't self-explanatory, but have established meaning
« Rounding support is incomplete, should it be extended for 2.0? (#19024)

— .

https://github.com/chapel-lang/chapel/issues/18989
https://github.com/chapel-lang/chapel/issues/18990
https://github.com/chapel-lang/chapel/issues/18995
https://github.com/chapel-lang/chapel/issues/19011
https://github.com/chapel-lang/chapel/issues/19013
https://github.com/chapel-lang/chapel/issues/19024

10 MODULE

Background and Actions Taken

Background:

e The IO module handles reading and writing to files, as well as formatted |10
—‘write()’, ‘writeln() and ‘writef()’ are provided by default, all other 10 functions are defined in the IO module
o Implements ‘file’ and ‘channel’ types
o This module is very large, ~7300 lines
e The IO module has several known API design issues (#7954)

Actions Taken:
e 10 subteam performed initial review on most of the IO module and made proposals for Chapel 2.0
« Presented proposals to entire Chapel team for feedback and approval
e Began implementing some of the proposals (see next slide)

— .

https://github.com/chapel-lang/chapel/issues/7954

10 MODULE
Status

Completed:

o Deprecated the I/O style feature (#18501)
« Deprecated binary format strings, including endianness specifiers (#18503)

Pending:
e Rename I/O ‘channel type to ‘reader’ and ‘writer’ (#18112)

o Add an extensible Encoder/Decoder mechanism (#18499)
o Deprecate and ‘h’ format string specifiers in favor of Encoders/Decoders

— .

https://github.com/chapel-lang/chapel/issues/18501
https://github.com/chapel-lang/chapel/issues/18503
https://github.com/chapel-lang/chapel/issues/18112
https://github.com/chapel-lang/chapel/issues/18499

10 MODULE

Open Discussion and Next Steps

Open Discussions:

o What should be done with the ‘iokind’ field on channels? (#19314)
Resolve ‘readline’ vs ‘readIn’ vs ‘read*line’ functionality (#19495)
Clean up ‘read’ functionality (#19498)
Replace ‘readstring’ and ‘readbytes’, mimic Python’s behavior (#18496)
Deprecate ‘readwrite’, ‘readWriteLiteral’, and ‘readWriteNewline’ (#19500)
Should ‘assertEOF’ be replaced with ‘atEOF? (#19316)

Next Steps:
« Reach decisions on the open discussion items above
e Implement the Encoder/Decoder design
e Rename ‘channel to ‘reader’ and ‘writer’
« Review 'file' interface

—

40

https://github.com/chapel-lang/chapel/issues/18496
https://github.com/chapel-lang/chapel/issues/19314
https://github.com/chapel-lang/chapel/issues/19495
https://github.com/chapel-lang/chapel/issues/19498
https://github.com/chapel-lang/chapel/issues/19496
https://github.com/chapel-lang/chapel/issues/19500
https://github.com/chapel-lang/chapel/issues/19316

MAP MODULE

Background:

e The Map module contains only the ‘map’ type
o A map is an unordered collection of key/value pairs

Actions Taken / Decisions Made:

« Made 'map.getValue()' throw instead of halting when key is not present (#18786)
— Additionally, added overload with sentinel value to return instead

e Decided to deprecate operators (#18493)
—Removing old operator methods (=, ==, I=, +, +=,|, |5, &, &=, -, -=, %, "=)
— Added by default when the module was created
—Unneeded and unused

Open Discussions:
» Should parallel-safe and/or distributed collections be distinct types? (#18494)

— .

https://github.com/chapel-lang/chapel/issues/18786
https://github.com/chapel-lang/chapel/issues/18493
https://github.com/chapel-lang/chapel/issues/18494

SET MODULE

Background:

e The Set module contains only the ‘set’ type
o A set is a collection of unique, unordered, and unindexed elements

Actions Taken / Decisions Made:

o Deprecated 'set.isIntersecting()' (#18796)
o Added arguments to initializers for more control over resizing (#18810)
« Updated some function argument names to use ‘element’ in favor of X’ (#18797)

o Documented that the first argument takes precedence in set operations (#18842)
- Overriding the ‘==‘ operator on a record can result in fwo elements that are not identical being considered equivalent
- e.g., when intersecting two sets that contain '=="-equivalent elements, the one from the LHS will be chosen

Open Discussions:
» Should parallel-safe and/or distributed collections be distinct types? (#18494)

—

42

https://github.com/chapel-lang/chapel/pull/18796
https://github.com/chapel-lang/chapel/pull/18810
https://github.com/chapel-lang/chapel/pull/18797
https://github.com/chapel-lang/chapel/pull/18842
https://github.com/chapel-lang/chapel/issues/18494

SUBPROCESS MODULE

Background:
 provides a 'subprocess' type and methods for launching and communicating with subprocesses

Actions Taken / Decisions Made:

« renamed a method to better match naming conventions
subprocess.sendPosixSignal ()

« moved module-scope constants that name pipe styles info an enum
enum pipeStyle {..}

« added two methods for sending specific signals to subprocesses
subprocess.abort (), subprocess.alarm()

Other Comments:

 plan to deprecate POSIX signal names from 'Subprocess' and move them to ‘Sys.POSIX’
—e.g. 'SIGALRM!, 'SIGINT", 'SIGKILL'

—

43

RANDOM MODULE

Background:
e Provides two random number generators: NPB and PCG
e Provides a pseudo-interface named 'RandomStreaminterface'

Decisions Made:
» Keep only the PCG generator, move NPB generator to a package or test module

 Remove the pseudo-interface

Open Discussions:
e |s it possible to replace ‘iterate’ methods with ‘these’ iterators? (#192603)
Name for the generator, e.g., just ‘Random’, and for the potential future random-generator interface (#19601)
Semantic questions about the random number generator types (#19602)
Should the ‘Random’ type be generic over the element type? (#19604)
—Should they produce elements of other types? This is possible with the PCG generator
Should we keep ‘getNth() and ‘skipToNth()? if so, what are good names for them? (#192606)

— »

https://github.com/chapel-lang/chapel/issues/19603
https://github.com/chapel-lang/chapel/issues/19601
https://github.com/chapel-lang/chapel/issues/19602
https://github.com/chapel-lang/chapel/issues/19604
https://github.com/chapel-lang/chapel/issues/19606

REGEX MODULE

Background:
« The Regex module provides support for regular expressions based on Google’s RE2 library

Actions Taken / Decisions Made:
« Renamed ‘RegexMatch’ fields ‘size’—‘numBytes’ and ‘offset’'—‘byteOffset’ (#19076)

« Renamed arguments ‘needle’—‘pattern’ and ‘region’—‘indices’ (#18264)
— Also updated methods on strings and bytes to use new names
« Should the Regex module define tertiary methods on string/bytes? (#18960, #17226)

- Removed ‘string.search’ and ‘bytes.search’ methods with ‘ignorecase’ argument
—Decided to replace ‘search’ with ‘find’, which returns a ‘bytelndex’ where a regular expression and string/byte match

— Decided to remove ‘matches’ method
—Decided to replace ‘match’ with ‘startsWith’, which returns true if a string/byte starts with a given regular expression

» Decided to use ‘new regex(“/a/”) instead of ‘compile(“/a/”)’, for compiling regular expressions (#17187)

Open Discussions:
» Deprecate and replace regex.sub and regex.subn (#19079)

—

45

https://github.com/chapel-lang/chapel/issues/19076
https://github.com/chapel-lang/chapel/issues/18264
https://github.com/chapel-lang/chapel/issues/18960
https://github.com/chapel-lang/chapel/issues/17226
https://github.com/chapel-lang/chapel/issues/17187
https://github.com/chapel-lang/chapel/issues/19079

VERSION MODULE

Background:

« Supports compile-time reasoning about version numbers for Chapel and Chapel programs
—Introduced in 1.23

Actions Taken:

« Decided to add support for reasoning about versions at run-time
— use case: Mason needs to evaluate versions for package dependencies it discovers at run-time

Open Discussions:

e How to provide a non-param type like ‘sourceVersion’ (#19201)
—draft implementation (PR #19300)

46

https://github.com/chapel-lang/chapel/issues/19201
https://github.com/chapel-lang/chapel/pull/19300

STANDARD LIBRARY STABILIZATION
Next Steps

e Continue with our current process
« Start reviewing remaining modules

« Revisit modules that were first examined in previous releases

« Continue resolving issues discussed in reviews, e.g.
—Finalize design for serial, parallel, and distributed collections
—How closely should the Math module interface match C/the ISO standards?
- Finalize the Encoder/Decoder design
—Finalize the division and naming of the DateTime and Time modules

e Develop a means of documenting the stability of a module (or language feature)

47

OTHER LIBRARY IMPR

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.25.1 and 1.26.0 releases,
refer to the following sections in the CHANGES.md file:

e 'Name Changes in Libraries'

 'Deprecated / Removed Library Features'
 'Standard Library Modules'

 'Package Modules'

e 'Documentation’

 'Error Messages / Semantic Checks'
 'Bug Fixes for Libraries'

— .

https://github.com/chapel-lang/chapel/blob/release/1.26/CHANGES.md

THANK YOU

https://chapel-lang.org
@ChapelLanguage

