
CHAPEL RELEASE NOTES,
1.25.1 / 1.26.0:
LIBRARY IMPROVEMENTS

Chapel Team
December 9, 2021 / March 31, 2022

OUTLINE

• New Package Modules
• Argument Parser and ‘--help’
• Standard library Stabilization
• Other Library Improvements

NEW PACKAGE MODULES

• Copy Aggregation Library
• Socket Library
• Go-Style Channels
• Concurrent Map Module

COPY AGGREGATION LIBRARY

Background and This Effort

Background: Copy aggregation can significantly speed up fine-grained copies
• Initially added to Arkouda in the Chapel 1.22 timeframe
• Chapel 1.24 added an automatic copy aggregation optimization to the compiler
• A generally useful feature that we ultimately want in Chapel’s standard library

This Effort: Expose existing copy aggregation to users
• Current implementation requires that one side of the copy is always local

– ’DstAggregator’ when source is local and destination may be remote
– ‘SrcAggregator’ when destination is local and source may be remote

5

COPY AGGREGATION LIBRARY

Example

• Reverse array using aggregation:
use BlockDist, CopyAggregation;

const size = 10000;
const D = newBlockDom(0..size);
var A, reversedA: [D] int = D;

forall (rA, i) in zip(reversedA, D) with (var agg = new SrcAggregator(int)) do
agg.copy(rA, A[size-i]);

6

COPY AGGREGATION LIBRARY

Impact

• Copy aggregation is available to users, provides a large speedup for fine-grained copies
• Particularly on networks where Chapel has poor small-message rates

7

COPY AGGREGATION LIBRARY

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Aries InfiniBand

M
B/

s

16-node Bale Indexgather

Fine-Grained Aggregated

Next Steps

• Support aggregating more operations
• Add copy aggregator where both source and destination can be remote
• Add atomic aggregators
• Add support for arbitrary user-defined aggregation

• Further improve performance and reduce memory footprint
• Including optimizing local aggregations

8

COPY AGGREGATION LIBRARY

SOCKET LIBRARY

Background and This Effort

Background: TCP and UDP socket programming have not been supported in Chapel
• Could only be done through C interoperability
• Blocking socket calls are a mismatch for Qthreads-based user-level tasking

This Effort: Implemented a ‘Socket’ module in Chapel
• Implemented as a Google Summer of Code Project

– Student: Lakshya Singh
– Mentors: Ankush Bhardwaj (Chapel GSoC 2020 Alum), Krishna Kumar Dey (Chapel GSoC 2019 Alum), Michael Ferguson

10

SOCKET LIBRARY

Example

11

SOCKET LIBRARY

use Socket;

var port: uint(16) = 8812;
var host = "127.0.0.1";
var addr = ipAddr.ipv4(IPv4Localhost, port);

proc server(srvSock: udpSocket) throws {
// receive 5 bytes from the connected client
var got = srvSock.recv(5);
// do something with ‘got’

}

proc client() throws {
var clientSock = new udpSocket();
// send “hello” to the server
var n = clientSock.send(b"hello", addr);

}

proc main() throws {
// create a new server
var srvSock = new udpSocket();
bind(srvSock, addr);

// start a server and a client in different tasks
cobegin {

server(srvSock);
client();

}
}

Status and Next Steps

Status:
• Included in 1.26 as a package module
• Uses 'libevent' to allow useful work in other Chapel tasks while waiting on network activity
• Implementation has some caveats at present:

– only works with C back-end (e.g., 'CHPL_TARGET_COMPILER=gnu')
– only works with 'CHPL_TASKS=qthreads'

Next Steps:
• Address caveats listed above—especially the problems when building with the LLVM back-end
• Use the I/O plugin facility to arrange socket I/O calls to work with libevent
• Study the performance of servers written in Chapel
• Add a helper class to make it easier to implement a server and demonstrate a simple HTTP server

12

SOCKET LIBRARY

GO-STYLE CHANNELS

Background and This Effort

Background: Chapel intends to support general parallel programming
• One missing idiom was a message queue like in Go and Rust (known as a ‘channel’ there)

This Effort: Implement Go-style channels in Chapel
• Implemented as a Google Summer of Code Project

– Student: Divye Nayyar
– Mentors: Michael Ferguson, Aniket Mathur (Chapel GSoC 2020 Alum)

Status: Included in 1.26 as a package module

Next Steps:
• Add compiler support for blocking ‘select’ statements (see example on next slide)
• Investigate and improve performance
• Enable channels to communicate across locales

14

GO-STYLE CHANNELS

Examples

15

GO-STYLE CHANNELS

// simple send/recv
use Channel;

var channel1 = new channel(int, 5);

begin {
channel1.send(4);

}
var recv1: int;
channel1.recv(recv1);
writeln("Received ", recv1);

// current approach for writing a select
use selectOperation;
var sel1: SelectBaseClass = new shared

SelectCase(x1, channel1, recv, 0),
sel2: SelectBaseClass = new shared

SelectCase(x2, channel2, send, 0);
var arr = [sel1, sel2];

const option = selectProcess(arr);

if option == 0 {
writeln("Received: ", x1);

} else {
writeln("Sent: ", x2);

}

Examples

16

GO-STYLE CHANNELS

// simple send/recv
use Channel;

var channel1 = new channel(int, 5);

begin {
channel1.send(4);

}
var recv1: int;
channel1.recv(recv1);
writeln("Received ", recv1);

// proposed select statement syntax
select {

when var x1 = channel1.recv() {
writeln("Received: ", x1);

}
when channel2.send(x2) {

writeln("Sent: ", x2);
}

}

// Syntax above requires compiler integration

CONCURRENT MAP MODULE

Background:
• A high-performance, concurrent map
• Offers an API like the standard ‘Map’, e.g., ‘add()’, ‘set()’, and ‘remove()’
• Uses the ‘EpochManager’ package module for epoch-based memory management
• Only supported on x86_64 with GCC or Clang
• Implemented as a Google Summer of Code Project

– Student: Garvit Dewan
– Mentor: Louis Jenkins (Chapel GSoC 2017 Alum)

This Effort:
• Reviewed and merged ‘ConcurrentMap’ with help from the author
• Offered as a package module

Next Steps:
• Get ‘ConcurrentMap’ to work with managed classes (‘owned’, ‘shared’)
• Consider supporting more platforms

18

CONCURRENT MAP MODULE

ARGUMENT PARSER AND ‘--HELP’

Background:
• Argument parsing library released in 1.25 for handling arguments passed to ‘main()’

– updated in 1.25.1 to handle '--help' requests

This Effort:
• Add customizable handling of the '--help' flag and optional help text generated from the defined arguments

– Handles help requests in the form of '-h' and '--help'
– Builds a help message and a usage message
– Prints the combined help and usage messages and exits when help requested or bad input

Open Discussions:
• How should argument parser’s help and usage messages be formatted? (#18687)
• How should help message and metadata be defined for ArgumentParser options/flags? (#18646)

20

ARGUMENT PARSER AND ‘--HELP’

https://github.com/chapel-lang/chapel/issues/18687
https://github.com/chapel-lang/chapel/issues/18646

21

ARGUMENT PARSER AND ‘--HELP’

$ quickStart -h
USAGE: quickStart <POSITIONAL> [-h, --help] [--debug] [--optional <OPTIONAL>]

ARGUMENTS:
POSITIONAL

OPTIONS:
-h, --help Display this message and exit
--optional <OPTIONAL>

Next Steps: Continue to add new features, improve message formatting
• Constrain option values
• Conditionally require/exclude other arguments

See source in the ArgumentParser documentation

Example help output:
• No additional Chapel code needed to access this functionality

https://chapel-lang.org/docs/1.26/modules/packages/ArgumentParser.html

STANDARD LIBRARY
STABILIZATION

Background

• The effort to release Chapel 2.0 is currently focused primarily on standard library stabilization
• Stabilization: The interface should not change in ways that break existing programs

• We have been reviewing standard libraries
• On even weeks, we review a new module, scrutinizing

– the name of the module itself
– names of public types, enums, global variables, constants, …
– names of public procedures, arguments
– behaviors / definitions of all public symbols

• On odd weeks we follow up on a previously reviewed module

• Also created a sub-team to review the IO module
– IO sub-team members meet regularly and call full-team meetings when part of the interface is ready for discussion

23

STANDARD LIBRARY STABILIZATION

This Effort

• This release we continued that cadence
• As of the Chapel 1.25 release, we had:

• Reviewed 23 standard libraries
• Stabilized 2 standard libraries

• During this release cycle we:
• Reviewed 7 more standard libraries
• Re-reviewed 7 standard libraries
• Implemented many changes based on reviews

24

STANDARD LIBRARY STABILIZATION

Status: In Numbers

• 30 modules reviewed
• 2 modules stabilized:

• Path, Builtins
• 6 modules that are close to being stabilized:

• CTypes, Sys, Regex, Time, Version, Subprocess
• 7 modules that we’ve decided not to stabilize before Chapel 2.0:

• CommDiagnostics, Memory[.Diagnostics], BitOps, GMP, DynamicIters, VectorizingIterator, Help

• 6 modules that still need review:
• SysError, Errors, FileSystem, Heap, Memory.MoveInitialization, Locales

– See the Ongoing Work deck for more on Locale model design

25

STANDARD LIBRARY STABILIZATION

This Effort: Overview

26

STANDARD LIBRARY STABILIZATION

Bu
ilt

in
s

Ch
pl

Co
nf

ig
*

H
ea

p
Li

st
M

ap
Se

t
Fi

le
Sy

st
em

IO Pa
th

R
ef

le
ct

io
n

T
yp

es
Bi

gI
nt

eg
er

M
at

h
R

an
do

m
Ba

rr
ie

rs
CT

yp
es

*
Su

bp
ro

ce
ss

*
Sy

s
Sy

sB
as

ic
Sy

sE
rr

or
D

at
eT

im
e

R
eg

ex
*

T
im

e
V

er
si

on
St

rin
g

/
By

te
s

R
an

ge
s

D
om

ai
ns

A
rr

ay
s

Sh
ar

ed
 /

 O
w

ne
d

Er
ro

rs
M

em
or

y.
M

ov
eI

ni
tia

liz
at

io
n

Lo
ca

le
s

1.24

1.25

1.26

Stable Progress Review Started

* - ChapelEnv was renamed to ChplConfig, CPtr / SysCTypes were combined and renamed to CTypes,
Spawn was renamed to Subprocess, and Regexp was renamed to Regex

STANDARD LIBRARY
STABILIZATION

• Barrier
• Reflection
• Types
• SysCTypes/CPtr/SysBasic
• ChapelEnv
• VectorizingIterator
• Time
• DateTime
• BigInteger

• Math
• IO
• Map
• Set
• Subprocess
• Random
• Regex
• Version

Background:
• ‘Barriers’ module provides a general-purpose barrier

– Initializer only accepts the number of tasks participating with no notion of locality, which limits scalability

• ‘AllLocalesBarriers’ module provides a global singleton barrier between all locales
– Has good scalability, but only suitable for SPMD-style codes

Open Discussions:
• Should we move all barriers to a new ‘Collectives’ module and create a single ‘barrier’ type? (#18861 / #18863)
• Should we keep ‘check()’ and ‘reset()’ methods? (#18862)
• Should we continue to support a waiting policy? (#18864)
• Should reusability be selectable? (#18865)

28

BARRIER MODULES

https://github.com/chapel-lang/chapel/issues/18861
https://github.com/chapel-lang/chapel/issues/18863
https://github.com/chapel-lang/chapel/issues/18862
https://github.com/chapel-lang/chapel/issues/18864
https://github.com/chapel-lang/chapel/issues/18865

Background: The Reflection module allows users to query properties about composite types
• e.g., fetch a field by ordinal position or name, or get the number of fields in a type

Actions Taken / Decisions Made:
• Deprecated formals for ‘getField()’ family of functions in favor of a standard naming scheme (#18958)

– Now uses ‘idx’, ‘name’, ’obj’ instead of one-letter formal names

• Want to implement a new general-purpose function to resolve any expression
– This function will replace the ‘canResolve()’ family of functions

• Want to unify the ‘getField()’ and ‘getFieldRef()’ functions into a single function

Open Discussions:
• Should most Reflection functions be methods instead? (#17984)

– Worry about polluting the global method namespace

• Should we drop the ’get’ from most Reflection function names? (#18006)
• How should inherited fields be reported by ‘numFields()’? (#8736)

29

REFLECTION MODULE

https://github.com/chapel-lang/chapel/pull/18958
https://github.com/chapel-lang/chapel/issues/17984
https://github.com/chapel-lang/chapel/issues/18006
https://github.com/chapel-lang/chapel/issues/8736

Background:
• This module contains functions to query and modify types

Decisions Made:
• Move all ‘isXType’ and ‘isXValue’ query functions into ‘Types’

– e.g., ‘isArrayType’, ‘isDmapValue’, ‘isRangeType’, ‘isSingleValue’, etc.
– Since these are in internal modules, from a user’s perspective, this primarily affects where things are documented

• Remove type/subtype comparison operators (in favor of named functions)
– For example: we don’t need the '<' operator on types because we already have ‘isProperSubtype’

Open Discussions:
• Should we have: ‘isXType’, ‘isXValue’, and ‘isX’ functions for each type ‘X’ or just one of these three? (#19361)
• Should we rename ‘isFloatType’/ ‘isFloatValue’/’isFloat’ to something else? (#19362)

– There is no type named ‘float’ in Chapel (as there is in C), people may confuse this with ‘isReal’

• Should we have non-param ‘numBits’/‘numBytes’ functions? (#19364)

30

TYPES MODULE

https://github.com/chapel-lang/chapel/issues/19361
https://github.com/chapel-lang/chapel/issues/19362
https://github.com/chapel-lang/chapel/issues/19364

Background:
• Chapel has supported C type aliases for convenience, but spread across multiple modules:

– ‘SysCTypes’: types whose representations are likely to vary between C compilers (e.g., ‘c_int’, ‘size_t’)
– ‘CPtr’: types representing C pointers and fixed-size arrays (as well as related procedures)
– ‘SysBasic’: types corresponding to C ‘float’ and ‘double’ as well as some system-oriented types (‘off_t’, ‘mode_t’, ‘socklen_t’)

• In practice, these features felt scattered, and therefore challenging to remember what lived where

Actions Taken:
• Created a new ‘CTypes’ module to serve as a central place for major C type aliases and related routines

– replaces ‘SysCTypes’ and ‘CPtr’ while also including ‘c_float’ and ‘c_double’ from ‘SysBasic’
– started using ‘c_’ prefix more uniformly on such types (e.g., ‘size_t’ -> ‘c_size_t’)

• Moved other C types from ‘SysBasic’ to ‘Sys’

Open Discussions:
• Should we make other changes to pointer-related features within ‘CTypes’? (#18010, #18011, #18014, #18015, #18016, #18017)

• What should happen to the remaining features in ‘SysBasic’, which are mostly error-related?
– e.g., can we merge with ‘SysError’ or ‘Errors’?

31

SYSCTYPES, CPTR, SYSBASIC MODULES

https://github.com/chapel-lang/chapel/issues/18010
https://github.com/chapel-lang/chapel/issues/18011
https://github.com/chapel-lang/chapel/issues/18014
https://github.com/chapel-lang/chapel/issues/18015
https://github.com/chapel-lang/chapel/issues/18016
https://github.com/chapel-lang/chapel/issues/18017

Background:
• ‘ChapelEnv’ is an auto-‘use’d module that exposes the ‘CHPL_*’ settings as ‘param’ values

– e.g., CHPL_HOME, CHPL_COMM, CHPL_TASKS, CHPL_MEM, etc.

• Its name raised some concerns:
– By convention, modules starting with ‘Chapel’ are typically not intended for end-users
– “Env[ironment]” seemed misleading since the settings could be inferred or specified on the ‘chpl’ command-line

• It also seemed difficult to stabilize given that the ‘CHPL_*’ settings have grown and evolved frequently
• Auto-‘use’ seemed like overkill given the number of symbols it defines and how rarely they are used

Actions Taken:
• Deprecated the contents of the ‘ChapelEnv’ module, replacing it with a new non-auto-‘use’d module ‘ChplConfig’

– new name reflects that it supports reasoning about the configuration of the ‘chpl’ compiler, whether set or inferred

• Characterized uses of the ‘CHPL_*’ variables in Chapel code
– e.g., ‘CHPL_COMM != “none”’ is a common idiom used to determine whether we’re compiling for multi-locale execution

Open Discussions:
• What user-facing queries could we support to replace raw ‘CHPL_*’ string comparisons? (#19188)

32

CHAPELENV MODULE

https://github.com/chapel-lang/chapel/issues/19188

Background:
• ‘VectorizingIterator’ provided iterators that served to indicate a parallel loop should not introduce new tasks

– flagged a loop as a candidate for vectorization, GPU-style parallelization, etc.
forall i in vectorizeOnly(1..n) do

– have had lingering concerns about its definition, syntax, implementation, etc.
– an auto-‘use’d module

• Chapel 1.25.0 added a ‘foreach’ loop form as a language-based way of expressing similar information

Actions Taken / Decisions Made:
• Decided to deprecate ‘VectorizingIterator’
• Deprecated all of its iterators in Chapel 1.26.0

Next Steps:
• deprecate the ‘VectorizingIterator’ module itself (left as a separate step due to its auto-‘use’)
• implement ‘with-clauses’ and shadow variables for ‘foreach’ loops (#18500)
• add support for ‘foreach’ expressions (#19336)

33

VECTORIZING ITERATOR MODULE

https://github.com/chapel-lang/chapel/issues/18500
https://github.com/chapel-lang/chapel/issues/19336

Background:
• One of our older modules, defining a ‘Timer’ type for timing things, a ‘sleep’ call, queries for current date, time
• Has some overlap with the newer, better-designed ‘DateTime’ module

Actions Taken / Decisions Made:
• Plan to rename ‘Timer’ to ‘stopwatch’ as a more accurate name and to extend its methods (#16393)

– but where to store it? ‘Time’? ‘DateTime’? Combine them into one module? Add a new module?

• Conversations seem to be trending toward keeping two distinct modules:
– ‘DateTime’ for reasoning about real-world dates and times
– ‘???’ for taking timings, measuring the passage of time

Open Discussions:
• What should the name of this second module be?

– ‘Time’: has the advantage of matching what Python, Rust, Go, Java call this; yet difficult to distinguish from ‘DateTime’
– or should we rename ‘DateTime’ to something else, like simply ‘Dates’?

– ‘Timers’: suggests things that measure time (more awkwardly: ’Timepieces’, ‘Chronometers’, ‘Chrono’)

• What should we call our monotonic clock query? (e.g., ‘now()’, ‘clock()’, ‘tic()’, ‘tick()’?)

34

TIME MODULE

https://github.com/chapel-lang/chapel/issues/16393

Background:
• Support for representing dates, times, date + times, and timedeltas
• Heavily influenced by the Python module ‘datetime’
• Exposes some C relics such as 'struct tm' from <time.h>

Decisions Made:
• Hide/deprecate/"no doc" C procs like 'timetuple', 'strptime', and 'ctime' (#18833)
• Remove some ambiguous functions like 'operator datetime.-(dt: datetime, d: date): timedelta' (#18834)
• Chapel-ify names to fit the standard module style guide (#18846)
• Track whether a time is timezone-aware at the type level (#18941)

Open Discussions:
• Cleanly deprecating 'TZInfo' for timezones is a challenge

– 'TZInfo' requires defining all timezones at compile time
– loading from tzdata is impractical and won’t get updated until recompiled

– Would like a replacement in hand to let users upgrade, but low priority at this point

35

DATETIME MODULE

https://github.com/chapel-lang/chapel/issues/18833
https://github.com/chapel-lang/chapel/issues/18834
https://github.com/chapel-lang/chapel/issues/18846
https://github.com/chapel-lang/chapel/issues/18941

Background:
• Provides ‘bigint’ type for storing very large integers, and many methods and functions that use them

Actions Taken / Decisions Made:
• renamed 13 additional methods, for a total of 20 renamed methods and one renamed enum
• renamed arguments of 6 additional methods, for a total of 11 methods with renamed arguments
• updated the return value of 2 methods
• hid an additional implementation detail, for a total of 2
• added documentation to renamed symbols
• fixed some bugs and inconsistencies

Open Discussions:
• new 'round' enum name should be revisited—conflicts with 'Math.round()'
• There are 17 other small library stabilization issues remaining that are likely uncontentious

– See the list of issues
– And 9 non-breaking changes

36

BIGINTEGER MODULE

https://github.com/chapel-lang/chapel/issues?q=is%3Aissue+is%3Aopen+BigInteger+label%3A%22type%3A+Chapel+2.0%22+

Background:
• Provides mathematical constants and functions, e.g., 'e', 'sqrt()', 'gcd()'

– Names are usually based on C's interface, which was influenced by ISO standards

• Included in all programs by default

Actions Taken / Decisions Made:
• Decided to split into two modules, one that will still be auto-included and one that will need a 'use'/'import'

Open Discussions:
• What names should be used when splitting the module in two? (#18989)
• Which symbols should still be included by default? (#18990)
• How closely should the interface match C/the ISO standards? Lean seems to be "fairly closely", e.g.

– How to name 'log' functions and related module-level constants? (#18995)
– 'cproj' (#19011) and 'erf' (#19013) aren't self-explanatory, but have established meaning

• Rounding support is incomplete, should it be extended for 2.0? (#19024)

37

MATH MODULE

https://github.com/chapel-lang/chapel/issues/18989
https://github.com/chapel-lang/chapel/issues/18990
https://github.com/chapel-lang/chapel/issues/18995
https://github.com/chapel-lang/chapel/issues/19011
https://github.com/chapel-lang/chapel/issues/19013
https://github.com/chapel-lang/chapel/issues/19024

Background and Actions Taken

Background:
• The IO module handles reading and writing to files, as well as formatted IO

– ‘write()’, ‘writeln()’ and ‘writef()’ are provided by default, all other IO functions are defined in the IO module
• Implements ‘file’ and ‘channel’ types
• This module is very large, ~7300 lines
• The IO module has several known API design issues (#7954)

Actions Taken:
• IO subteam performed initial review on most of the IO module and made proposals for Chapel 2.0
• Presented proposals to entire Chapel team for feedback and approval
• Began implementing some of the proposals (see next slide)

38

IO MODULE

https://github.com/chapel-lang/chapel/issues/7954

Status

Completed:
• Deprecated the I/O style feature (#18501)
• Deprecated binary format strings, including endianness specifiers (#18503)

Pending:
• Rename I/O ‘channel’ type to ‘reader’ and ‘writer’ (#18112)
• Add an extensible Encoder/Decoder mechanism (#18499)
• Deprecate ‘j’ and ‘h’ format string specifiers in favor of Encoders/Decoders

39

IO MODULE

https://github.com/chapel-lang/chapel/issues/18501
https://github.com/chapel-lang/chapel/issues/18503
https://github.com/chapel-lang/chapel/issues/18112
https://github.com/chapel-lang/chapel/issues/18499

Open Discussion and Next Steps

Open Discussions:
• What should be done with the ‘iokind’ field on channels? (#19314)
• Resolve ‘readline’ vs ‘readln’ vs ‘read*line’ functionality (#19495)
• Clean up ‘read’ functionality (#19498)
• Replace ‘readstring’ and ‘readbytes’, mimic Python’s behavior (#18496)
• Deprecate ‘readwrite’, ‘readWriteLiteral’, and ‘readWriteNewline’ (#19500)
• Should ‘assertEOF’ be replaced with ‘atEOF’? (#19316)

Next Steps:
• Reach decisions on the open discussion items above
• Implement the Encoder/Decoder design
• Rename ‘channel’ to ‘reader’ and ‘writer’
• Review 'file' interface

40

IO MODULE

https://github.com/chapel-lang/chapel/issues/18496
https://github.com/chapel-lang/chapel/issues/19314
https://github.com/chapel-lang/chapel/issues/19495
https://github.com/chapel-lang/chapel/issues/19498
https://github.com/chapel-lang/chapel/issues/19496
https://github.com/chapel-lang/chapel/issues/19500
https://github.com/chapel-lang/chapel/issues/19316

Background:
• The Map module contains only the ‘map’ type
• A map is an unordered collection of key/value pairs

Actions Taken / Decisions Made:
• Made 'map.getValue()' throw instead of halting when key is not present (#18786)

– Additionally, added overload with sentinel value to return instead

• Decided to deprecate operators (#18493)
– Removing old operator methods (=, ==, !=, +, +=, |, |=, &, &=, -, -=, ^, ^=)
– Added by default when the module was created
– Unneeded and unused

Open Discussions:
• Should parallel-safe and/or distributed collections be distinct types? (#18494)

41

MAP MODULE

https://github.com/chapel-lang/chapel/issues/18786
https://github.com/chapel-lang/chapel/issues/18493
https://github.com/chapel-lang/chapel/issues/18494

Background:
• The Set module contains only the ‘set’ type
• A set is a collection of unique, unordered, and unindexed elements

Actions Taken / Decisions Made:
• Deprecated 'set.isIntersecting()' (#18796)
• Added arguments to initializers for more control over resizing (#18810)
• Updated some function argument names to use ‘element’ in favor of ‘x’ (#18797)
• Documented that the first argument takes precedence in set operations (#18842)

– Overriding the ‘==‘ operator on a record can result in two elements that are not identical being considered equivalent
– e.g., when intersecting two sets that contain '==‘-equivalent elements, the one from the LHS will be chosen

Open Discussions:
• Should parallel-safe and/or distributed collections be distinct types? (#18494)

42

SET MODULE

https://github.com/chapel-lang/chapel/pull/18796
https://github.com/chapel-lang/chapel/pull/18810
https://github.com/chapel-lang/chapel/pull/18797
https://github.com/chapel-lang/chapel/pull/18842
https://github.com/chapel-lang/chapel/issues/18494

Background:
• provides a 'subprocess' type and methods for launching and communicating with subprocesses

Actions Taken / Decisions Made:
• renamed a method to better match naming conventions

subprocess.sendPosixSignal()

• moved module-scope constants that name pipe styles into an enum
enum pipeStyle {…}

• added two methods for sending specific signals to subprocesses
subprocess.abort(), subprocess.alarm()

Other Comments:
• plan to deprecate POSIX signal names from 'Subprocess' and move them to ‘Sys.POSIX’

– e.g. 'SIGALRM', 'SIGINT', 'SIGKILL'

43

SUBPROCESS MODULE

Background:
• Provides two random number generators: NPB and PCG
• Provides a pseudo-interface named 'RandomStreamInterface'

Decisions Made:
• Keep only the PCG generator, move NPB generator to a package or test module
• Remove the pseudo-interface

Open Discussions:
• Is it possible to replace ‘iterate’ methods with ‘these’ iterators? (#19603)
• Name for the generator, e.g., just ‘Random’, and for the potential future random-generator interface (#19601)
• Semantic questions about the random number generator types (#19602)
• Should the ‘Random’ type be generic over the element type? (#19604)

– Should they produce elements of other types? This is possible with the PCG generator

• Should we keep ‘getNth()’ and ‘skipToNth()’? if so, what are good names for them? (#19606)

44

RANDOM MODULE

https://github.com/chapel-lang/chapel/issues/19603
https://github.com/chapel-lang/chapel/issues/19601
https://github.com/chapel-lang/chapel/issues/19602
https://github.com/chapel-lang/chapel/issues/19604
https://github.com/chapel-lang/chapel/issues/19606

Background:
• The Regex module provides support for regular expressions based on Google’s RE2 library

Actions Taken / Decisions Made:
• Renamed ‘RegexMatch’ fields ‘size’→‘numBytes’ and ‘offset’→‘byteOffset’ (#19076)
• Renamed arguments ‘needle’→‘pattern’ and ‘region’→‘indices’ (#18264)

– Also updated methods on strings and bytes to use new names

• Should the Regex module define tertiary methods on string/bytes? (#18960, #17226)
– Removed ‘string.search’ and ‘bytes.search’ methods with ‘ignorecase’ argument
– Decided to replace ‘search’ with ‘find’, which returns a ‘byteIndex’ where a regular expression and string/byte match
– Decided to remove ‘matches’ method
– Decided to replace ‘match’ with ‘startsWith’, which returns true if a string/byte starts with a given regular expression

• Decided to use ‘new regex(“/a/”)’ instead of ‘compile(“/a/”)’, for compiling regular expressions (#17187)

Open Discussions:
• Deprecate and replace regex.sub and regex.subn (#19079)

45

REGEX MODULE

https://github.com/chapel-lang/chapel/issues/19076
https://github.com/chapel-lang/chapel/issues/18264
https://github.com/chapel-lang/chapel/issues/18960
https://github.com/chapel-lang/chapel/issues/17226
https://github.com/chapel-lang/chapel/issues/17187
https://github.com/chapel-lang/chapel/issues/19079

Background:
• Supports compile-time reasoning about version numbers for Chapel and Chapel programs

– Introduced in 1.23

Actions Taken:
• Decided to add support for reasoning about versions at run-time

– use case: Mason needs to evaluate versions for package dependencies it discovers at run-time

Open Discussions:
• How to provide a non-param type like ‘sourceVersion’ (#19201)

– draft implementation (PR #19300)

46

VERSION MODULE

https://github.com/chapel-lang/chapel/issues/19201
https://github.com/chapel-lang/chapel/pull/19300

Next Steps

• Continue with our current process
• Start reviewing remaining modules

• Revisit modules that were first examined in previous releases

• Continue resolving issues discussed in reviews, e.g.
– Finalize design for serial, parallel, and distributed collections
– How closely should the Math module interface match C/the ISO standards?
– Finalize the Encoder/Decoder design
– Finalize the division and naming of the DateTime and Time modules

• Develop a means of documenting the stability of a module (or language feature)

47

STANDARD LIBRARY STABILIZATION

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.25.1 and 1.26.0 releases,
refer to the following sections in the CHANGES.md file:

• 'Name Changes in Libraries'
• 'Deprecated / Removed Library Features'

• 'Standard Library Modules'
• 'Package Modules'
• 'Documentation'

• 'Error Messages / Semantic Checks'
• 'Bug Fixes for Libraries'

49

OTHER LIBRARY IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.26/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

